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Abstract—Diffusion-based molecular communications (DBMC)
systems rely on diffusive propagation of molecules to convey
information. In a DBMC system, as each emitted molecule
experiences a stochastic delay, pulse shaping is crucial for a
DBMC system’s reliability and overall performance. To this end,
acknowledging the inherent resource-limited nature of a DBMC
system, a novel framework to model and optimize a DBMC trans-
mitter is introduced in this paper. Leveraging tools from wireless
packet scheduling theory, the DBMC pulse shaping problem is
formulated as an energy-constrained resource allocation problem.
Through the developed framework, it is shown that the provably
optimal pulse shape that minimizes the error probability is the
delayed-spike pulse, where the incurred delay is a decreasing
function of the available energy budget. The framework is
then extended to both absorbing and passive/observing receiver
structures, as well as systems where molecules can degrade
in the transmitter body prior to release. Numerical results
corroborate the developed analysis, and show that the delayed-
spike outperforms conventional, non-zero-width pulse shapes in
terms of error performance.

I. INTRODUCTION

Diffusion-based molecular communication (DBMC) is a
way of conveying information through the exchange of chem-
ical signals (molecules). A DBMC system relies primarily
on diffusive propagation of the messenger molecules after
their release, which causes each molecule to exhibit Brownian
motion in the communication environment [1]. The random-
ness of Brownian motion introduces an inherent stochasticity
to a DBMC system, and leads to molecules within a same
transmission experiencing different delays in their arrivals at
the receiver. The randomness can also lead to some molecules
to never arrive at the receiver, causing significant attenuation in
the received signal. Understanding and alleviating the effects
of this stochasticity has lead to significant efforts into many
subfields of DBMC research, such as channel modeling, mod-
ulation design, detection and equalization, source and channel
coding, etc.

In a DBMC system, the received signal is significantly
affected by the particular molecular waveform emitted by the
transmitter (i.e., the molecules’ release times). Consequently,
alongside modulation techniques, coding, and detection strate-
gies, the performance of a DBMC system is also a function
of the particular pulse shape employed by the transmitter.
In [2], it is demonstrated that the best DBMC pulse shape
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is a Dirac-delta at t = 0 (the earliest allowable emission
time), in terms of minimizing the received signal spread at the
receiver. In [3], the error performance of a DBMC system is
considered for more practical pulse shapes such as square and
exponential waves, and it is argued that while transmitting the
same number of molecules, the exponential wave is typically
a better alternative than square pulses. In [4]–[6], the use
of multiple molecule types have been considered to induce
a shorter pulse width at the receiver, through mathematical
combining strategies [4], [5], or inducing chemical reactions in
the channel [6]. In [7], it is shown that a similar received signal
narrowing can also be induced by external enhancements of the
DBMC channel, whereas [8], [9] show the received pulse can
be narrowed through time differentiation at the receiver end.
In [10], [11], adaptively changing the transmission rate over
consequent symbols is considered, which can be considered as
a frame-level shaping of the signal emitted by the transmitter.
In [12], implementational aspects of pulse shaping is discussed
in the context of microfluidic devices.

A DBMC system is inherently energy-limited, whether it
be natural or synthetic. For example, devices in the nano-
scale can face severe energy constraints [13], and microbial
communities often avoid signal over-production to limit energy
over-consumption and metabolic burden [14]–[16]. Further-
more, the messenger molecules are often converted from
other molecules through chemical means prior to their release,
particularly in DBMC systems that leverage microbial com-
munities [17]–[19]. However, to the best of our knowledge, the
problem of DBMC transmit pulse shaping has not yet been for-
mally considered under energy-constraints on generating and
releasing the messenger molecules, including aforementioned
prior art. Motivated by this, we address energy-constrained
DBMC pulse shaping herein. In particular, leveraging tools
from wireless packet scheduling theory [20]–[23], we develop
a theoretical framework that models a DBMC transmitter as
a molecule-scheduling entity, which allows for formulating
DBMC pulse shaping problems as resource (energy) allocation
optimizations. Through this framework, we find the energy-
constrained optimal pulse shapes for DBMC systems with
varying receiver structures, transmitter constraints, as well as
molecular degradation [24], [25].

In our previous works [22], [23], we developed a theoretical
framework to model wireless packet transmission scheduling
scenarios under two-sided delay constraints, which refers to
scenarios where transmitting packets both too early and too
late are undesirable. This also applies to DBMC systems;
we explicitly map these delay constraints’ correspondence to
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DBMC systems in Sections III, IV, and VII. Furthermore, a
packet/job in [22], [23] can also be interpreted as a molecule
to be processed, linking the findings of our priors works to
this paper’s scenario of interest. However, both [22], [23]
rely on perfect, a priori information on quantities such as
the diffusive propagation delay and molecular degradation
times, which are random. Motivated by this property, and
differing from [22], [23], we build our framework by directly
addressing this stochasticity herein (see Section III). Overall,
the contributions of this paper are as follows:

1) We develop a theoretical framework that fundamentally
links pulse shaping and resource allocation for a DBMC
system.

2) Using the developed framework, we solve the energy-
constrained pulse shaping problem for a DBMC system.
In particular, we provably show that the optimal pulse
shape that minimizes the error probability for a DBMC
system is the delayed-spike, whose incurred delay is a
decreasing function of the available energy budget.

3) We expand our framework to cover molecular degrada-
tion within the transmitter prior to signal emission, and
provide pulse shaping strategies under said signal loss
at the transmitter.

4) Numerical results support the analytical findings of the
paper, and demonstrate that the delayed-spike outper-
forms the widespread non-zero-width pulse shapes such
as the square and exponential waves.

5) The findings of the work can be flexibly utilized (or
extended) to cover passive/observing receiver structures,
different channel topologies, and molecular degradation
profiles.

The remainder of the paper is organized as follows: Section
II presents the system model and describes the problem of
interest in the paper. Section III provides some key definitions
and highlights the parallelisms between DBMC pulse shaping
and scheduling theory. Section IV formally formulates the
problems of interest, and solves for a special case to build
intuition. Section V presents the main results, Theorems 1-
2, which address error-optimal DBMC pulse shaping under
energy constraints (and vice versa). The corresponding proofs
are in Appendices B-C. Section VII provides extensions to the
developed framework, mainly for i) cases where molecular
degradation can occur within the transmitter prior to signal
emission, and ii) passive receivers. Lastly, Section VIII con-
cludes the paper.

II. SYSTEM MODEL

In this paper, unless stated otherwise, we consider a point-
to-point DBMC system between a transmitter (TX) and an
absorbing receiver (RX) in a one dimensional driftless channel.
The distance between TX and RX is denoted by d, and
the diffusion coefficient of the released messenger molecules
(type-M) is denoted by D.

A. The Transmitter

In this paper, we consider a binary communication scenario,
in which the transmitter employs a binary concentration shift

keying (BCSK) modulation to convey a single bit of informa-
tion to the receiver by releasing N molecules for transmitting
a bit b = 1, and staying silent for b = 0. We first emphasize
that the methods developed in this paper can be extended
to many other modulation schemes as well. We focus on
BCSK due to its widespread use in the MC literature and
its simple implementation by nano-scale machinery ([26]–
[29], etc.). That said, expanding the typical considerations
of said prior art, we herein consider an additional step in
molecule release. In particular, as the messenger molecules
are often converted/synthesized from other molecules prior
to their release, we consider the case where the type-M
messenger molecules need to be synthesized prior to their
release towards the receiver. For a BCSK bit-1 transmission,
N number of type-M molecules are converted from type-S
source molecules through some chemical reaction chain that
yields S → M , which takes a certain duration τi and incurs
an energy consumption/metabolic burden cost w(τi). Defining
τ =

[
τ1 · · · τN

]
, we assume the cost associated with

converting/processing and releasing all N molecules to have
the following properties:

1) The overall cost incurred by the whole transmission
is decomposable in each w(τi), that is w(τ ) =∑N

i=1 w(τi).
2) For a particular argument τi, w(τi) is strictly convex and

decreasing in τi, and is positive (w(τi) > 0 for all i).
3) Given τi, w(τi) does not depend on time index i. That

is, each molecule is indistinguishable/identical.

We assume there are sufficiently many type-S molecules at the
transmitter at t = 0 to convert to type-M messenger molecules.
Also note that the case for bit-0 is trivial from a pulse shaping
standpoint as no molecules are released.

We note that for a single, individual chemical reaction, the
activation energy required to achieve it implies a constant
energy cost w, regardless of τ . However, looking at the
aggregate behavior of an MC node (e.g., a bacterial cell), a
faster production rate of a certain MC signaling molecule (i.e.,
smaller τ values) would incur increasingly higher metabolic
burden in the cell [30]–[33]. The convex-decreasing nature
of w(τ) is inspired from this relationship, and represents
the dramatic metabolic burden increase of rapidly producing
signaling molecules. The extension of our framework to other,
non-convex w(τ) functions is an interesting future research
direction. Throughout the remainder of the paper, we will use
the words energy and cost interchangeably, both referring to
w(τ).

B. The Channel

After a molecule is released from TX, it can undergo a
degradation reaction in the communication channel, which
renders it unusable from a communication perspective at
RX. Molecular degradation is commonly modeled as a first-
order reaction hence an exponential decay profile in the
MC literature ([24], [25], [34], etc.), which we also employ
herein. Subject to exponential decay, a molecule’s degradation-
induced lifetime is an exponentially distributed random vari-

This article has been accepted for publication in IEEE Transactions on Molecular, Biological, and Multi-Scale Communications . This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMBMC.2023.3329801

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 15,2023 at 00:12:49 UTC from IEEE Xplore.  Restrictions apply. 



3

able with rate k, which implies that its survival probability
until a particular time t after its release to be [24]

psurv = P (Tsurv > t) = e−kt,

where Tsurv denotes said degradation-induced lifetime. Over-
all, for a 1-D driftless DBMC channel with exponential
degradation, a molecule’s arrival time density, fhit(t), is given
by [34]

fhit(t) =
d√

4πDt3
exp

(
− d2

4Dt
− kt

)
. (1)

Equation (1) implicitly assumes a molecule’s release time is
Ti = 0. The case where Ti > 0 simply shifts the support of
fhit(t) to the right by Ti.

C. The Receiver

At the receiver end, the receiver collects the type-M
molecules as they arrive, and increments its received molecule
counter by one upon each arrival. The receiver collects the
molecules within a symbol duration defined by the interval
[0, tR], and obtains the arrival count y. The receiver then
performs a threshold detection with threshold γ to decode the
BCSK symbol by performing

y
H1

≷
H0

γ, (2)

where Hi denotes the hypothesis that bit-i was transmitted.
Note that for our theoretical analysis in Sections IV-V, we
consider a one-shot communication scenario where only a
single bit is sent (i.e., a no-ISI scenario). A one-shot model
is accurate in the lower data rate regime, wherein ISI is
negligible due to diffusion dynamics (see [35]–[37], etc.). A
rigorous extension to with-ISI scenarios is a non-trivial one,
and we pose this problem as a future research question. That
said, although rigorous theoretical analysis is given for no-
ISI systems, the proposed pulse shape explicitly mitigates
the effects of ISI as well. Numerical results we provide in
Section VI do consider ISI in their evaluations, and confirm
the efficacy of the proposed scheme in with-ISI systems.

In the one-shot BCSK transmission scenario considered, a
molecule with index i and a particular release time Ti has
until tR to successfully arrive at the receiver (while also
surviving until its arrival). Denoting this success probability
as pi, following from (1), we have

pi(Ti) =
∫ tR−Ti

0

fhit(t)dt

=
1

2
e−
√

k
D d erfc

[ d√
4D(tR − Ti)

−
√

k(tR − Ti)
]

+
1

2
e
√

k
D d erfc

[ d√
4D(tR − Ti)

+
√
k(tR − Ti)

]
,

(3)
where erfc(·) is the Gaussian complementary error function.

We note that although the framework in this paper is
presented through its application on a 1-D driftless system,
the cases for three dimensional diffusion channels follow
almost identically to the 1-D case we consider herein: the only

difference arises from the particular arrival density function
fhit(t) and its integral that defines the successful arrival
probability. The solutions as well as the approach developed
in this paper thus can be directly adapted to 3-D systems, as
well as other cases with other arrival density functions (e.g.,
DBMC systems with flow).

III. PRELIMINARIES

As previously mentioned, the transmitter’s goal is convert-
ing N type-S molecules to type-M messenger molecules, and
releasing them towards the receiver to transmit a bit-1 to
the DBMC receiver. In this section, we provide a methodical
novel framework of optimizing MC transmission, leveraging
concepts and approaches from wireless packet scheduling
theory [20]–[22]. In particular, we first address minimizing
energy consumption/metabolic burden of an MC transmitter
via arranging molecule processing durations (i.e., τi), subject
to constraints on communication fidelity (i.e., bit-error ratio,
BER). Leveraging this result, we then address the dual for-
mulation, perhaps of more interest, which seeks to minimize
BER subject to constraints on the available energy budget at
the transmitter.

For a molecule to be successfully counted towards the
received signal at the RX, it needs to i) successfully arrive
at the receiver, and ii) survive until the molecule has arrived.
Clearly, a molecule has a higher probability of arrival if it
has more time to arrive at the receiver, thus the first condition
implies the molecule should depart the transmitter as soon as
possible. Likening this phenomenon to our nomenclature from
our prior works [22], [23], we call this diffusion-delay induced
need for earlier transmission the pre-transmission delay (pre-
delay) constraint. Note that a pre-delay constraint constrains
time block available prior to release, and implies “earlier
release the better”.

On the other hand, the more time a molecule requires
for absorption, the longer it needs to survive. Thus, from
a purely molecule survival perspective, a later release is
better, which we call a post-transmission delay (post-delay)
constraint. These two factors (diffusive delay and molecular
degradation) compete and the govern appropriate time of
release of a molecule to maximize its probability of successful
reception (that is, pi) within the symbol duration. We note
that which of these factors dominate is highly dependent on
the receiver structure. For example, in this paper’s system of
interest (absorbing receivers that increment their arrivals upon
molecule reception), pi is a decreasing function of the release
time Ti (see Figure 1 for visualization). We will leverage this
monotonic behavior when optimizing the MC transceivers.

In Subsection VII-B, we discuss an extension to the pre-
sented framework of this paper to passive receivers [37], in-
stead of absorbing ones that we typically consider throughout
the paper. For passive receivers that sample at tR to obtain
y, we will observe that diffusive propagation (pre-delay) and
molecule lifetime (post-delay) can in fact conflict, which can
break the monotonicity of pi in Ti. The behavior of pi is
governed by the relationship between d, D, k, and tR.
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Fig. 1. Successful reception probability pi with respect to Ti for a 1-D
DBMC system with molecular degradation. d = 10 µm, D = 100 µm2 s−1,
k = 1× 10−3 s−1, tR = 10 s.

IV. ARRANGING PROCESSING DURATIONS: THE
ONE-BY-ONE PROCESSING CASE

In our prior works [22], [23], we showed that in cases where
all propagation delays obey tprop,i < tR, and the transmitter
has access to the propagation delay and degradation-induced
lifetimes of each molecule a priori, it can arrange the molecule
departure times Ti such that the arrival of all N molecules are
guaranteed. This is valid for configurations where either pre-
and post-delay constraints are present, or possibly both. How-
ever, the DBMC setup is inherently subject to stochasticity in
propagation delays due to the Brownian motion exhibited by
the type-M molecules after their release [38]. Even further, a
molecule can randomly degrade in the channel, which adds
another degree of stochasticity to the received signal at the
receiver end [24], [25]. Due to this inherent randomness, the
arrival of all N molecules can never be guaranteed with full
certainty, as there can always be a particularly long diffusive
delay of a molecule, or an extremely fast degradation. To this
end, we take a stochastic approach herein.

A. Error-Constrained Energy Minimization

Either engineered biological systems or synthetic human-
made devices, DBMC transceivers are envisioned to be
employed in small-scale operations, thus managing their
metabolic burden and/or their energy efficiency is crucial for
their operation and longevity [13]. On the other hand, achiev-
ing better communication fidelity via providing low error
rates is a hallmark of success in any form of communication
technology, including DBMC systems. Motivated by this, this
section first proposes a scheduling-based DBMC pulse shaping
design that tackles energy consumption w(τ ). Afterwards,
Subsection IV-B will leverage the results and the intuition built
in this subsection to optimize the pulse shape to minimize error
rates.

Firstly, leveraging our prior approach developed in [23],
we address the energy consumption optimization problem. In
particular, we herein seek to minimize the transmitter’s w(τ )
while converting and releasing the N molecules for a BCSK
bit-1, subject to satisfying a target error probability Ptarget as

a quality of service measure. In its most general form, the
overall problem can be formulated as

min
τ

w(τ ) =

N∑
i=1

w(τi) (4a)

s.t. Pe(τ ; γ, d,D, k, tR) ≤ Ptarget (4b)
0 < τi < tR, ∀i = 1, . . . , N. (4c)

Note that the error probability, denoted by Pe, is a function
of the duration times τ , as τi’s affect each molecule’s release
time Ti. Recall that the integral in (3) is maximized for a
fixed tR when tR−Ti is minimized. An error event for a bit-
1 transmission occurs when y < γ, thus having a smaller
τi (thus smaller Ti) implies a smaller error probability. In
fact, to minimize Pe, each molecule should ideally have as
much time between their release and tR to maximize their
capture probability, leading to the error-minimizing release
time vector T = 0, implying τ = 0. However, this incurs a
large cost w(τ ), as w(τ ) is convex and decreasing in τ . On the
other hand, a larger set of τi’s would alleviate this, but would
decrease arrival probabilities and increase errors. In essence,
for a one-shot BCSK transmission, there is a fundamental
trade-off between energy consumption and error probability,
leading to the constrained optimization problem in (4).
First-in First-out Ordering: To build intuition into the design
strategy, we first address the case where the transmitter synthe-
sizes each type-M molecule from its type-S source molecule
one-by-one (while other type-S molecules wait in a queue to
be processed).1 The transmitter waits until it synthesizes all
N messenger molecules for transmitting b = 1, and releases
them together at the time of completion. Note that this implies
Ti =

∑N
j=1 τj for all i. Let τr =

∑N
j=1 τj = Ti denote this

common release time.
As each molecule departs at the same time, each molecule

observes an equal pi(τr). Thus, the total arrival count at
the receiver until time tR, denotes by y, follows a binomial
distribution with N trials and success probability pi(

∑N
j=1 τj)

obtained from (3). Assuming equally likely bit transmissions,
and observing that P (error|b = 0) = 0 under no ISI and
external noise, the theoretical error probability for the one-
shot BCSK system with a decision threshold γ can then be
expressed as

Pe =
1

2
P (error|b = 0) +

1

2
P (error|b = 1) =

1

2
P (y < γ)

=
1

2
CDF(B)(⌊γ⌋;N, pi(τr))

=
1

2
I1−pi(τr)(N − ⌊γ⌋, ⌊γ⌋+ 1).

(5)

Here, CDF(B)(x;n, p) denotes the binomial cumulative dis-
tribution function (CDF) evaluated at x, and Ix(a, b) denotes
the regularized incomplete Beta function with Ix(a, b) =∫ x

0
ua−1(1−u)b−1du∫ 1

0
ua−1(1−u)b−1du

.

1In wireless packet scheduling literature, this ordering is commonly referred
to as the first-in first-out (FIFO) rule ([20]–[22], etc.).
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Recall that the error probability Pe is monotone increasing
in τr, whereas w(τi) is monotone decreasing. Then, the opti-
mal τr for the error-constrained energy minimization problem
in (4) for FIFO ordering simply becomes the largest τr that
critically satisfies the target error probability

τr = {τ | I1−pi(τ)(N − ⌊γ⌋, ⌊γ⌋+ 1) = Ptarget}. (6)

The set is guaranteed to have a single element due to the
monotonicity of Pe in τr, thus the solution for the release
time in the FIFO case is unique.

The question of allocating individual τi’s for a given τr
remains. To solve this problem, we first highlight that as a
direct consequence of its definition in Subsection II-A, w(τ ) is
a Schur-convex function2. Under a Schur-convex cost function
w(x), if a vector x1 gets majorized by another vector x2

(i.e., is more “balanced”, see footnote 3 and [21], [22], [39]),
this necessarily implies that w(x1) < w(x2).3 Thus, given a
particular τr, the optimal solution that minimizes w(τ ) is the
τ vector that gets majorized by any other N -element duration
vector that sums up to τr. This vector is simply the vector
of equal elements. Thus, given said common release time τr
that is found by solving (6), the most cost-efficient allocation
among individual τi’s is setting τi =

τr
N for all i, which solves

the problem when combined with (6).
An interesting observation is that the energy-optimal so-

lution is not dependent on the particular form of the w(τ )
function. As long as it is convex and decreasing, and the
properties laid out in Subsection II-A are satisfied, the solution
that finds τr by (6) and sets τi =

τr
N is always optimal.

B. Energy-Constrained Pulse Shaping for Error Probability
Minimization

As a “dual” to the error-constrained energy efficiency prob-
lem, the problem of minimizing the error probability with a
fixed energy budget can also be of particular interest in data
communication applications of DBMC. Leveraging the solu-
tion strategy we previously determined, we address this new
problem herein. Similar to Subsection IV-A, we also consider
each molecule to be processed/converted one-by-one, stored
until the whole batch of N molecules is complete (at time
τr), and released at Ti = τr (i.e., the FIFO case). Denoting
wmax as the available total energy budget, (7) describes the
corresponding problem:

min
τ

Pe(τ ; γ, d,D, k, tR) (7a)

s.t. w(τ ) =
∑N

i=1
w(τi) = wmax (7b)

0 < τi < tR, ∀i = 1, . . . , N. (7c)

Similar to Subsection IV-A, we leverage the monotonicity of
Pe in τr to find an analytical solution for the optimal τ vector.

2A function is Schur-convex if it is defined on a symmetric convex set A, is
symmetric with respect to variable permutations, and it is a convex function
of its variables [39], [40]. The considered w(τ ) satisfies all three of these
requirements.

3 An N -element, non-increasing sequence x1 is said to be majorized by
another N -element, non-increasing sequence x2 if summing up to the same
value,

∑N
i=1 x1,i ≤

∑N
i=1 x2,i holds for all m = 1, . . . , N − 1.

In particular, we again note that Pe is minimized if and only
if τr is minimized, which implies that the error minimization
problem is in fact equivalent to minimizing τr =

∑N
i=1 τi.

Thus, this finding shows us that the energy-constrained error
minimization problem in DBMC with FIFO processing is
fundamentally analogous to the so-called completion time
minimization problem in wireless packet scheduling [41], [42],
which we had addressed in our prior work [23], whose tools
we leverage herein.

In our earlier work, through Lemmas 4 and 5 of [23], we
had shown that the necessary and sufficient conditions when
minimizing completion time are the following:

• The allocation vector τ exhausts all of the available wmax

budget when allocating.
• The vector τ is energy-optimal within the interval

[0,
∑N

i=1 τi].
4

For this subsection’s case of interest, combining these two
conditions, the minimum attainable completion time is attained
when τi = w−1(wmax

N ) for all i, since this allocation both
exhausts wmax and ensures energy-optimality (equal allocation
is the best allocation due to majorization, see Subsection
IV-A). Thus, the earliest release time is τr = Nw−1(wmax

N ). It
then follows from the monotonicity of Pe that the minimum
attainable error probability with a budget of wmax is

P ∗
e = I1−pi(Nw−1(wmax

N )(N − ⌊γ⌋, ⌊γ⌋+ 1). (8)

Note that similar to the energy-minimization problem, the
optimal allocation for energy-constrained error minimization
also entails balancing as much as possible. Furthermore, this
approach is again independent of the particular w(τ) function,
as long as it is convex and decreasing in τ , and τi are
interchangeable (thus Schur-convex). That said, the actual
value attained by the optimal allocation can change according
to the particular w(τ) function and system parameters d, D,
k, and tR.

V. SIMULTANEOUS SYNTHESIS OF SIGNAL MOLECULES:
DBMC PULSE SHAPE OPTIMIZATION

The one-by-one processing consideration is akin to a queue
with a single server in queueing theory [43], which finds MC
examples in confined tunnels of cascaded enzymatic reactions
(mentioned as substrate channeling in [44]). However, it is
likely that in many MC systems, messenger molecules are
synthesized simultaneously (e.g., through different enzyme
molecules or independent, spontaneous reactions [45]). Mo-
tivated by this, in this section, we remodel the system in
Section IV to allow for simultaneous production of different
molecules. In particular, we consider each of the N molecules
to be independently synthesized, taking τi duration for its
S → M conversion, and released as it is synthesized (that
is, Ti = τi).

We first highlight that a set of molecule release times, T ,
is akin to a pulse shape in DBMC [2], [3]. For example, a set
of equally spaced molecule releases is equivalent to a square
pulse; an instantaneous release of N molecules represents

4Condition 1 follows from w(τ) being decreasing, and Condition 2 follows
from a contradiction on Condition 1. For further details, see [23].
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a spike, etc. Acknowledging this, and recalling Ti = τi, it
follows that arranging the τ vector is equivalent designing
a pulse shape. In the remainder of the section, we will use
τ -optimization and pulse shaping interchangeably.

A. Pulse Shaping for Error-Constrained Energy Minimization

Following a similar order to the FIFO case, we first address
pulse shaping for energy minimization subject to a target error
probability (Equation (4)), Ptarget, for this newly considered
arbitrary release time case. We will then follow by addressing
the dual problem (Equation (7)), that is, energy-constrained
BER minimization.

Prior to providing a solution, we first observe that contrary
to Section IV, each molecule can potentially depart at different
times in this section. Thus, we can now potentially have
pi(τi) ̸= pj(τj) for i ̸= j, and the exact error probability can
no longer be evaluated by the binomial CDF due to unequal
success probabilities. In particular, denoting pi(τi) = pi for
brevity, the sum of N independent Bernoulli random vari-
ables with success probabilities p1, . . . , pN follow a Poisson-
binomial distribution, with probability mass function (PMF)

P (y = k) =
∑
A∈Sk

∏
i∈A

pi
∏
j /∈A

(1− pj) , (9)

where Sk is the set of all k-element subsets of the N -element
set of molecules, and A is an arbitrary element of Sk. Thus,
given γ and a particular τ vector with induced successful
arrival probabilities pi = pi(τi), the error probability for
threshold-decoded BCSK can be expressed as

Pe =
1

2
P (y > γ|b = 0) +

1

2
P (y ≤ γ|b = 1) =

1

2
P (y < γ)

=
1

2

⌊γ⌋∑
k=0

∑
A∈Sk

∏
i∈A

pi
∏
j /∈A

(1− pj) .

(10)

We now present Theorem 1, which provides the energy-
optimal pulse shape for BCSK signaling. Specifically, Theo-
rem 1 states that the optimal solution has all τi equal, and
critically meets the target error probability.

Theorem 1. In a single-shot diffusive MC system using BCSK
signaling with threshold detection, under a convex decreasing
energy cost of molecule production duration, given τi < tR−√

9+ 4kd2

D −3

4k is satisfied, the energy-minimizing τ vector has
τi = {τ | I1−pi(τi)(N − ⌊γ⌋, ⌊γ⌋ + 1) = Ptarget} for all
i = 1, . . . , N . That is, Pe(τ ) = Ptarget, and τi = τj for all
i, j.

Proof. See Appendix B.

Overall, Theorem 1 shows that in a single-shot DBMC
system using BCSK with threshold detection, the (uniquely)
optimal pulse shape in terms of error-constrained energy-
minimization is a delayed spike. Furthermore, the optimal τi
values can simply be found by critically satisfying the target
error probability. Note that for all τi equal, the error probability
expression in (10) becomes equivalent to (5).

Theorem 1 is valid when the system is operating in a regime

where τi is “small” (τi < tR−
√

9+ 4kd2

D −3

4k ). This is an added
constraint with respect to FIFO (which allows for all τi < tR),
and ensures the error probability is Schur-convex in τi (which
is leveraged in the optimality proof in Appendix B). For further
details, we refer the reader to Lemma 1 in Appendix A. Note
that having a small τi regime also corresponds to yielding
low error probability, which is typically the desired operating
regime of a DBMC system, softening the added τi constraint’s

restrictiveness. The inflection point at τi = tR−
√

9+ 4kd2

D −3

4k is
dependent on the relationship between d, D, tR, and the decay
rate k. It holds irrespective of the decision threshold γ, and
pj values other than the one of interest (pi). In Figure 2, we
present an example with N = 3 molecules to corroborate the
proof in Appendix A, and our discussion herein. The figure
presents the error probability expression provided in (10) and
this inflection point. For demonstrative purposes, the plots
consider fixed p2 and p3 values and sweeps Pe with respect
to τ1.

Figure 2 demonstrates that the inflection point is not sig-
nificantly restricting the system at hand over a large range
of parameters. It also supports the theoretical analysis in
Appendix A that the smaller error rate regime (i.e, left hand
side of the inflection point) indeed yields a convex Pe in
τi. Throughout the remainder of this paper, we assume that
the system is operating in this low error probability/small τi
regime.

Note that similar to the FIFO case, the solution strategy
for optimal τ vector found in Theorem 1 is not dependent on
the particular w(τ) function. As long as w(τ) is convex and

decreasing in its argument (τ ) and τi < tR −
√

9+ 4kd2

D −3

4k is
satisfied, the optimality of the fully balanced τi holds. That
said, the actual value of the cost, w(τ ), is clearly dependent
on the specific w(τ) of the system.

B. Pulse Shaping for Energy-Constrained Error Minimization

As mentioned in Section IV-B, from a DBMC design
perspective, minimizing the error probability with the available
resources is of particular interest. To this end, we herein
present the main result of the paper: The optimal pulse shape
for BER minimization under a limited energy budget wmax. In
particular, we now extend the results of Theorem 1 to its dual
problem of energy-constrained error minimization, through
presenting Theorem 2.

We assume the problem is well-posed, that is, the available
budget wmax can provide a valid duration vector with τi <

tR−
√

9+ 4kd2

D −3

4k . Given a valid solution exists, by leveraging
the duality between energy- and time-optimal scheduling,
Theorem 2 finds the minimum attainable error probability of a
threshold-decoded BCSK system under no ISI, given a certain
budget wmax.

Theorem 2. In a single-shot diffusive MC system using BCSK
signaling with threshold detection, under a convex decreasing
energy cost of molecule production duration w(τ) and a total
energy budget wmax, the error probability-minimizing duration
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Fig. 2. Convexity of Pe in (10) with respect to τi. p2 = 0.4, p3 = 0.6, D = 100 µm2 s−1, and tR = 10 s.

vector τ consists of τi = w−1(wmax

N ) for all i = 1, . . . , N .
Thus, the lowest attainable error rate is

P ∗
e = I1−pi(w−1(wmax

N )(N − ⌊γ⌋, ⌊γ⌋+ 1).

Proof. See Appendix C.

The result of Theorem 2 shows that under a fixed energy
budget and a convex cost, the uniquely optimal one-shot BCSK
pulse is a delayed spike, with the optimal delay equal to
w−1(wmax

N ). Note that as wmax → ∞, the delay converges
to τi → 0. This is in agreement with prior results, which
suggest that under no constraints, the optimal pulse is a delta
at t = 0. From this perspective, the delay of τi = w−1(wmax

N )
can be considered as the price of having a limited budget
for transmission. To illustrate this point, Figure 3 presents the
delay-budget curve (i.e., the τi–wmax curve) for w(τ) = 1

τ as
a demonstrative example.

Similar to other results in Sections IV-Section V, for the
error minimization case, as long as w(τ) is convex and

decreasing in its argument (τ ) and τi < tR −
√

9+ 4kd2

D −3

4k ,
the solution form for optimal τ vector is the delayed spike.
However, the actual value of the delay is clearly affected by
the particular w(τ) of the system of interest.

VI. NUMERICAL RESULTS

In this section, we compare the theoretically optimal
delayed-spike to conventionally considered pulse shapes with
non-zero width under a fixed energy budget wmax, in particular
the square pulse considered in [2], [3] and the exponential

0 10 20 30 40 50 60 70 80 90 100
 w

max

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 
i (

s
)

Fig. 3. The τi vs. wmax curve for w(τ) = 1
τ

, N = 10.

pulse [3]. Note that although we developed our theoretical
analysis for single-shot (no-ISI) systems (i.e., Sections IV-
V), the numerical results in this section do consider ISI. The
channel memory is selected as S = 10, which covers at least
99.9% of all successful molecule arrival probabilities for data
points evaluated in the section. All data points are evaluated
over 107 bit transmission realizations.

As detailed in Section V, the delayed-spike has release times
Ti = w−1(wmax

N ) for all molecules to be transmitted. On
the other hand, the non-zero width pulses with pulse width
Wp reside within an interval [tbegin, tbegin + Wp] for some
pulse begin time tbegin. Note that each pulse shape has a
different w(τi) distribution in the molecules, thus these pulse
begin times can vary according to the strategy employed and
Wp. For example, the square pulse has a constant rate of
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molecule release. Given that the pulse resides within the in-
terval [tbegin, tbegin+Wp], the square pulse releases molecule
i at time Ti = tbegin +

(i−1)×Wp

N−1 for every i = 1, . . . , N . The
pulse begin time, tbegin, is chosen such that the corresponding
processing durations τi = Ti are as small as possible, that
is, they fully exhaust the available energy budget wmax.
Note that shifting the pulse furthest left yields the lowest
error probability, as it maximizes the individual molecule
arrival probabilities (see Figure 1). A similar approach is
also taken for the exponential signal, which however has
a logarithmically spaced release time vector as opposed to
the linear spacing of the square wave. Overall, Figure 4
presents comparative bit error ratio (BER) performances of
the mentioned pulse shapes with different pulse widths, for
varying symbol durations (tR = 10 s (left) and tR = 8 s
(right)).

Overall, the results in Figure 4 demonstrate that BER im-
proves as the pulse width narrows. This supports the analysis
in Section V, and corroborates the optimality argument of
the delayed-spike (i.e., the zero-width pulse). Note that for
non-zero-width pulses, while fully exhausting wmax, some
release times are expected to be smaller than the delayed-
spike’s common release time, whereas some are larger. These
larger release times incur smaller pi values compared to
pi(w

−1(wmax

N )), whereas smaller release times have larger pi.
Due to convexity of Pe and w(τ), the detriment of these larger
Ti outweigh the benefits of smaller release times, which leads
to worse performance compared to fully balancing all Ti (i.e.,
the delayed-spike). Note that this effect is more severe for
smaller tR as pi values are more sensitive to increases in Ti in
this regime. As a result, the improvement of the delayed-spike
over non-zero-width pulses is expected to be more pronounced
when tR is smaller. Note that the above explanation applies
to systems both with and without ISI. In the presence of ISI,
the detriment of having a larger Ti is even more pronounced
compared to the no-ISI case, as molecules that are released
later are more likely to cause ISI to future symbols, in addition
to having lower pi for the intended symbol.

An interesting observation is that given a fixed wmax, the
error rate is not necessarily monotone-decreasing in N , which
is unlike DBMC systems without any energy constraints.
Note that as N increases, the available energy per molecule
decreases (e.g, wmax

N for delayed-spike), which causes each
molecule’s release time Ti = τi to increase. This decreases
pi and makes each molecule have a smaller probability of
contributing to the received signal, which poses a trade-off
with the benefits of increasing N (number of molecules N
is also the number of trials of a Poisson-binomial for a no-
ISI system, see (10)). As can also be observed from Figure
4b, the optimal N that minimizes BER is a function of the
employed pulse shape and the pulse width Wp (in addition to
system parameters such as wmax, the cost function w(τ ), and
the channel parameters).

VII. EXTENSIONS

In this section, we discuss some extensions on the pro-
vided framework and the corresponding solution of Section

Algorithm 1 Error-minimizing pulse shaping under perfect
type-S degradation, statistical type-M degradation and diffu-
sion delay.
Inputs: N , wmax, w(τ), tR, k, d, D

1: Initialize c = 0
2: while 1 do
3: Set τi = Tdeg,i for all i = 1, . . . , c
4: Compute remaining energy:

wrem = wmax −
∑c

i=1 w(Tdeg,i)
5: Allocate remaining durations equally:

τc+1 = · · · = τN = wrem

N
6: if τi ≤ Tdeg,i for all i = 1, . . . , N then
7: break
8: else
9: c← c+ 1

10: end if
11: end while

return τ

V. Specifically, we address the pulse shaping optimization
problem (for error minimization) under new added constraints
and receiver structures.

A. Degradation within Transmitter

In the original problem formulation, we considered diffusive
delay, as well as molecular degradation in the channel after
molecules are processed and released. In this subsection, we
extend our analysis to systems where molecules can also de-
grade within the transmitter body, prior to their conversion and
release. We revisit the energy-constrained error-minimization
problem in Subsection V-B under this added constraint.

Let Tdeg,i be the degradation-induced lifetime of a molecule
within the transmitter body. That is, each type-S molecule
degrades at t = Tdeg,i, thus if τi > Tdeg,i, the molecule is lost
before being converted to type-M and released5. Similar to the
framework in Sections IV-V, the goal of the transmitter in this
subsection is successfully converting all N type-S molecules
(now before they degrade at Tdeg,i), to minimize Pe subject
to a fixed energy budget wmax.

1) The Case with Full Lifetime Information: We first
address the case where the transmitter has perfect a priori
knowledge on these lifetimes Tdeg,i. Note that information on
diffusive propagation and type-M degradation in the channel
are still only statistical. For this case, we provide Algorithm
1, which yields the error-minimizing τ vector (pulse shape)
for the case where type-S lifetimes are perfectly known.
Algorithm 1 assumes Tdeg,i are ordered in a non-decreasing
manner (i.e., Tdeg,1 ≤ Tdeg,2 ≤ · · · ≤ Tdeg,N ) for convenience
in presentation. Note that this assumption does not lose gen-
erality, as the molecules are identical/indistinguishable from a
communication perspective (they contribute to y equally).

Algorithm 1 proposes that if type-S degradation times are
perfectly known, the optimal solution algorithm resembles a
water-filling strategy. Specifically, if the available wmax allows
for having τ1 = · · · = τN < Tdeg,1, the optimal pulse
shape is again a τi-delayed spike, which is in agreement with

5We assume this degradation can happen until the molecule’s M → S is
completed and the type-M molecule released.
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Fig. 4. BER vs. N for different pulse shapes. w(τ) = 1
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2
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Step 1
τi = 1

wrem = 5
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τ1 = 0.5
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τi = 4/3

Step 3
τ1 = 0.5
τ2 = 1
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Result:

Fig. 5. An example for Algorithm 1 with N = 5, wmax = 5,
w(τ) = 1

τ
, T deg =

[
0.5, 1, 1.8, 2, 2.7

]
. The resultant vector τ = T =[

0.5, 1, 1.5, 1.5, 1.5
]
.

Theorem (2). However, if the available wmax is too low for
equal allocation, Algorithm 1 sets τ1 = Tdeg,1, and seeks
to equalize {τ2 = · · · = τN} with the remaining energy.
The algorithm passes over the molecules one-by-one, and
runs until it finds the smallest c such that τi = Tdeg,i for
all i ≤ c and τk+1 = · · · = τN are both satisfied with
the available wmax, and wmax is fully exhausted. Figure 5
presents a demonstrative example of Algorithm 1 with N = 5.
In Figure 5, the algorithm first seeks to fully equalize the
durations as τi = 1, as this is the optimal pulse under no
type-S degradation (Theorem 2). However, equal allocation
violates a type-S lifetime since 0.5 = Tdeg,1 < τ1 = 1. In
Step 2, the algorithm allocates Tdeg,1 = τ1 = 0.5, and seeks to
fully equalize all remaining {τ2, . . . , τN} with the remaining
energy budget. The algorithm keeps iterating until there is no
type-S lifetime violation, and terminates when this condition
is met.

We now present Theorem 3, which shows that Algorithm
1 yields the optimal pulse shape for the setting considered in
this subsection.

Theorem 3. Given a fixed energy budget wmax, Algorithm 1
yields the optimal τ vector that minimizes Pe.

Proof. See Appendix D.

2) The Case with Statistical Lifetime Information: Sub-
section VII-A1 assumes exact knowledge of the degradation-

induced lifetimes of the type-S molecules Tdeg,i, and provides
the optimal pulse shape, which is not necessarily a delayed-
spike due to some Tdeg,i’s potentially constraining the allo-
cation. The results of Subsection VII-A1 hold for any type
of type-S decay profile, yet requires exact information on
the type-S lifetime constraints. Similar to type-M molecule’s
degradation in the channel, type-S degradation is also likely
to be stochastic, thus exact knowledge of Tdeg,i values may
not be practical. Even further, the stochastic case incurs a non-
zero probability for each molecule to degrade prior to being
synthesized (i.e, in cases where τi > Tdeg,i), thus guaranteeing
all molecules will be successfully converted and released
before type-S degradation (i.e., Subsection VII-A1) is not
feasible in practice. Motivated by this, this subsection proposes
a method to deal with this stochasticity when designing the
pulse shape.

The first approach we discuss herein is a natural extension
taken in Subsection VII-A1 to the stochastic case. For the
sake of argumentation, let us assume type-S molecules exhibit
exponential decay, with rate kS (other degradation profiles can
follow an identical procedure). Assuming the transmitter has
access to degradation statistics (i.e., the value of kS), it can
leverage a similar approach to Subsection VII-A1 by matching
the distribution of the decay profile as follows:

1) Generate N exponential random variables with rate kS .
2) Sort the generated degradation times in increasing order

to obtain T deg.
3) Run Algorithm 1 with the obtained T deg to generate τ .

On average, this approach is expected to perform worse
than running Algorithm 1 with perfect information due to
mismatches in degradation lifetimes. Furthermore, in cases
where the generated lifetime is larger than the true Tdeg,i, the
algorithm is likely to lose the molecule to type-S degradation
(unless Step 5 of Algorithm 1 yields a τi ≤ Tdeg,i).

Given there is a sufficient energy budget wmax, Algorithm 1
satisfies τi ≤ Tdeg,i for all molecules, thereby guaranteeing no
type-S losses. However, when doing so, the algorithm spends
a significant portion of its energy budget to a small number
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of molecules with particularly short Tdeg,i lifetimes, leaving
other molecules low remaining energy – hence larger τi and
smaller pi. We argue herein that avoiding this imbalance in
τi might be desirable in some cases, even though it entails
the loss of some molecules (hence transmission intensity). In
particular, we herein consider invoking to Section V’s result
of setting τi = w−1(wmax

N ) for all i. Note that this method
does not utilize any type-S degradation information, thus can
be considered a no-lifetime-information method.

In order to compare the presented methods under type-S
degradation, we present Figure 6. As expected, the results of
Figure 6 show that running Algorithm 1 with exact Tdeg,i

information yields lower error probabilities than relying only
on statistical information (kS). More importantly, the results
support our claim in the previous paragraph that although
Algorithm 1 is provably optimal given every type-S molecule
is successfully converted and released, it may not always be
the best option when type-S loss is allowed. Note that in the
small N regime, every molecule’s possible contribution to the
received signal is significant, thus the system is better off
by releasing as many molecules as possible, hence avoiding
type-S losses. However, as N increases, this improvement is
diminished as a single molecule’s contribution is less signifi-
cant. Furthermore, accommodating for a few, very constraining
Tdeg,i deadlines causes a large majority of the remaining
molecules to increase their release times significantly in order
to meet the wmax budget, thereby increasing error rates.

B. Passive (Observing) Receivers: The Non-Monotonic pi
Case

Throughout the paper, we leveraged the fact that for an
absorbing receiver that cumulatively counts the arrivals, the
success probability of each molecule pi is a decreasing func-
tion of the release time Ti (recall Figure 1). However, this is
dependent on the particular receiver structure, and may not
always hold for other receiver types such as passive (observ-
ing) receivers. Instead of absorbing, counting, and removing
the molecules from the environment, passive receivers simply
sample the number of molecules at a particular instant tR,
which constitute their received signal y [37].

0 0.5 1 1.5 2 2.5 3

0

0.005

0.01

0.015

0.02

0.025

Fig. 7. Success probability pi with respect to Ti for a 1-D DBMC system with
molecular degradation and a passive receiver (11). d = 10 µm, L = 1 µm
D = 100 µm2 s−1, k = 1× 10−3 s−1, tR = 3 s.

Considering a 1-D DBMC system with a point transmitter
and a passive receiver that observes a region of length L, and
denoting the TX/center-of-RX distance as d, a unit impulse
emission from TX results in a concentration at the center point
of the RX as c(t) = 1√

4πDt
exp(− d2

4Dt ), given no degradation
in the environment [46], [47]. Considering the regime of L≪
d, the total concentration observed within the RX body can
be approximated to be uniform across the body [37], which
yields the channel impulse response

hnd(t) =
L√
4πDt

exp
(
− d2

4Dt

)
.

For systems with degradation in the channel, in addition to
residing in the RX observation region at t = tR, a molecule
released at time Ti needs to survive at least until t = tR to
successfully contribute to y. Considering exponential decay in
the system similar to Section II, this survival probability is

psurv = P (Tsurv > tR) = e−k(tR−Ti),

which yields a molecule’s probability of being successfully
counted (that is, pi) to be

pi(Ti) =
L√

4πD(tR − Ti)
exp

[
− d2

4D(tR − Ti)
−k(tR−Ti)

]
.

(11)
The success probability pi in (11) need not be monotonically

decreasing in Ti, as seen in Figure 7. The pi–Ti curves similar
to the those in Figure 7 define scenarios where converting
and releasing a molecule too early and too late are both
undesirable (also see discussion in Section III on pre- and post-
transmission delay constraints). We note that in such cases, the
delayed-spike pulse considered previously can still be lever-
aged, however with a modification. Let p∗i denote the largest
success probability in the pi−Ti curve, i.e, the peak value. In
cases where the equal allocation τi = Ti = w−1(wmax

N ) yields
a common release time that is larger than T −1

i (p∗i ) (right-
hand-side of the peak), then wmax should be fully exhausted
to minimize Ti as much as possible (similar to Section V).
However, if the available wmax allows for a common release
time that is smaller than T −1

i (p∗i ) (left-hand-side of the peak),
then full utilization of wmax is not beneficial as a partial
utilization and the resulting Ti could ensure achieving the
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highest success probability of p∗i . Thus, the common release
time should then be selected as

Ti = max
{
w−1

(wmax

N

)
, T −1

i (p∗i )
}
. (12)

Note that for cases width multimodal pi(Ti) functions (e.g.,
due to different degradation profiles, reaction chains that
govern reception/counting at RX, etc.), this argument can be
generalized.

VIII. CONCLUSIONS

In this paper, we investigated pulse shaping for DBMC,
under constraints on the available energy budget for molecule
transmission. Leveraging approaches from wireless packet
scheduling, we developed a framework that can be used to an-
alyze the DBMC pulse shaping problem from the perspective
of energy/time allocation. Through this framework, we proved
that the optimal pulse shape that minimizes BER is a delayed-
spike pulse under a convex energy cost on molecule synthe-
sis duration. Numerical results show that the delayed-spike
pulse outperforms conventional pulse shapes, corroborating the
analysis. Building on the introduced framework, we provided
extensions to cases where molecules can degrade within the
transmitter before release, as well as passive/observing re-
ceiver structures. Future work includes a rigorous treatment
of pulse shape design in DBMC systems with ISI, addressing
the energy-constrained pulse shaping problem under different
modulation schemes, and extending to non-convex energy
functions.
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APPENDIX A
LEMMA 1 AND ITS PROOF

To be used in the proofs of Theorems 1-2 in Appendices
B-C, we first provide a needed lemma herein.

Lemma 1. Given τi < tR −
√

9+ 4kd2

D −3

4k for all i, the error
probability Pe is Schur-convex (order-preserving) in τi.

Proof. A function is Schur-convex if it is defined on a sym-
metric convex set A, is symmetric with respect to variable
permutations, and it is a convex function of its variables [39],
[40]. We will proceed by showing Pe(τ) satisfies all these
requirements in its defined domain of interest.
Domain: The function is defined on a symmetric convex set

(IN where I = (0, tR −
√

9+ 4kd2

D −3

4k ) for each τi).
Symmetry: The error probability Pe(τ ) is a symmetric func-
tion on τi’s index permutations, that is, permuting τi’s do not
change the value. This is a direct result of each molecule being
identical and therefore contributing equally to the received
signal count.
Convexity in τi: We will leverage the positivity of the second

derivative of Pe to prove its convexity in τi. Using the chain
rule on the second derivative , we have

∂2Pe

∂τ2i
=

∂2Pe

∂p2i

(
∂pi
∂τi

)2

+
∂Pe

∂pi

∂2pi
∂τ2i

(13)

To evaluate ∂2Pe

∂τ2
i

, we first focus on ∂2Pe

∂p2
i

. As stated in
(10), that the error probability expression follows a Poisson-
binomial CDF. Observe from (9) that in each summand of the
error expression, which is

P (y = k) =
∑
A∈Sk

∏
i∈A

pi
∏
j /∈A

(1− pj) ,

each pi appears exactly once (in the form of pi or (1− pi)).
Therefore, each summand’s second derivative with respect to
pi is zero, hence ∂2Pe

∂τ2
i

= 0. This implies the first term in (13)

is always zero, and that ∂2Pe

∂τ2
i

= ∂Pe

∂pi

∂2pi

∂τ2
i

.
We now observe that the first subterm in the second term,

∂Pe

∂pi
, is always negative due to the monotone decreasing nature

of Pe.6

As ∂Pe

∂pi
< 0, satisfying ∂2pi

∂τ2
i

< 0 ensures ∂2Pe

∂τ2
i

> 0,

hence convexity. We now evaluate ∂2pi

∂τ2
i

> 0. Recalling each
molecule’s release time Ti = τi, from the fundamental theorem
of calculus, we have

∂pi
∂τi

=

[
∂

∂τi

∫ tR−τi

0

fhit(u)du

]
× tR − τi

∂τi

= −fhit(tR − τi)

=
−d√

4πD(tR − τi)3
e
− d2

4D(tR−τi)
−k(tR−τi).

(14)

Taking another derivative on this expression, we arrive at

∂2pi
∂τ2i

=
−d(tR − τi)e

− d2

(4D−k)(tR−τi)

√
4π (4D(tR − τi)3)

3
2

×
[
4D(tR − τi)(2k(tR − τi) + 3)− 2d2

]
.

(15)

In (15), we first observe that the denominator is positive.
Given the valid region of τi, (−d)(tR − τi) is negative.
Furthermore, e(·) always outputs a positive number by def-
inition. Combining these, the whole expression is negative
if

[
4D(tR − τi)(2k(tR − τi) + 3)− 2d2

]
> 0 is satisfied. A

reorganization yields

4Dku2 + 6Du− d2 > 0,

where u = tR−τi. This quadratic inequality has two satisfying
regions: u < −3D−

√
9D2+4kd2

4Dk and u > −3D+
√
9D2+4kd2

4Dk ,
where the former is invalid as it implies τi > tR. The latter

expression is satisfied when τi < tR −
√

9+ 4kd2

D −3

4k , which is
the assumed operating regime of interest in Section V (and
onwards). Thus, within the desired regime, ∂2pi

∂τ2
i

< 0, which

yields ∂2Pe

∂τ2
i

> 0, implying Pe is convex in τi for any i.

6As intuition, note that an increase in pi implies a molecule’s arrival
probability is larger. All other things equal, this increase implies an increase
in P (y > γ|b = 1), hence a lower error probability.
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Overall, all the criteria are met for Schur-convexity,
hence necessarily follows that Pe(τ ) is Schur-convex (order-
preserving) in τ .

APPENDIX B
PROOF OF THEOREM 1

Showing Pe(τ ) = Ptarget: Each τ vector induces an arrival
probability p vector with pi = pi(τi), thus induces a proba-
bility of error, Pe(τ ). Let τ be the energy-optimal duration,
and suppose Pe(τ ) < Ptarget. In such a case, another vector
τ ′ can be designed such that

1) For a particular j, τi = τ ′i for all i ̸= j.
2) Select τ ′j such that Pe(τ

′) = Ptarget.
Since Pe(τ ) is monotone increasing in each τi, we know that
τ ′j > τj . Combining this with τi = τ ′i for all i ̸= j, as the
energy function w(τ) is decreasing in τ , we have

w(τ ′) =

N∑
i=1

w(τ ′i) = w(τ ′j) +

N∑
i̸=j

w(τ ′i)

= w(τ ′j) +

N∑
i ̸=j

w(τi)

< w(τj) +

N∑
i ̸=j

w(τi) = w(τ ),

(16)

implying τ cannot be energy-optimal, yielding a contradiction.
Thus, any optimal τ vector to be optimal, it has to ensure
Pe(τ ) = Ptarget.
Showing τi = τj for all i, j: Suppose a valid vector τ has
an arbitrary i, j pair that τi ̸= τj . Then, one can set up a
competitor vector τ ′ with τ ′i = τ ′j =

τi+τj
2 , and for all other

elements τl = τ ′l . Note that τ ′ gets majorized by τ . Similar to
[20], as w(x) is convex decreasing in x, this new configuration
yields w(τ ′) < w(τ ), thus τ cannot be energy-optimal.

It still remains to show is that this new allocation does
not violate the error probability constraint. Note that since
Pe is Schur-convex in the regime of interest (see Lemma 1
in Appendix A), the fact that τ ′ gets majorized by τ directly
implies Pe(τ

′) < Pe(τ ). Then, given τ is valid, τ ′ is also
valid (does not violate the error probability constraint). This
argument can be recursively applied until all τi are equal,
thus w(τ ) is minimized if and only if τi = τj for all
i, j ∈ {1, . . . , N}.

Both conditions for optimality are proven, hence the proof
is complete.

APPENDIX C
PROOF OF THEOREM 2

We first show that the error-optimal τ has to allocate all
its available wmax budget. Suppose otherwise, that is, a vector
τ has

∑N
i=1 w(τi) < wmax, and achieves Pe(τ ). Then, one

can devise a competitor τ ′ with
∑N

i=1 w(τ
′
i) = wmax by

decreasing the duration of a single duration, that is τ ′j < τj
and τi = τ ′i for all i ̸= j. Then, since as Pe(τ ) is mono-
tone increasing in each of its N arguments, we necessarily

have Pe(τ
′) < Pe(τ ), meaning τ cannot be optimal. Thus,∑N

i=1 w(τi) < wmax has to hold for error-optimality.
We now show that for optimal τ , we have τi = τj for all i, j.

Suppose otherwise, that is, there exists an i, j pair such that
τi ̸= τj . Then, we can devise a competitor τ ′ with τ ′i = τ ′j =
τi+τj

2 and τ ′l = τl for all l ̸= i, j, which gets majorized by τ ,
that is τ ′ ≺ τ . Since Pe(τ ) monotone increasing and Schur-
convex, this necessarily implies Pe(τ

′) < Pe(τ ), meaning
τ cannot be error-optimal. Note that similar to Appendix B,
since w(τ ) is Schur-convex and decreasing, we can show that
w(τ ′) < w(τ ), thus this competitor τ ′ does not violate the
energy budget constraint and is valid.

Overall, following both these contradictions, the energy-
minimizing τ vector needs to have all τi equal and fully
exhaust the available wmax budget, implying τ i = w−1(wmax

N )
for all i. The proof is complete.

APPENDIX D
PROOF OF THEOREM 3

Let a particular c be the stopping point of Algorithm 1, and
let τ denote the algorithm’s output. Then, by design, c is the
smallest index such that τi = Tdeg,i for all i ≤ c, the remaining
durations τc+1 = · · · = τN =

wmax−
∑c

i=1 w(Tdeg,i)

N−c > Tdeg,c,
and

∑N
i=1 w(τi) = wmax.

Given an energy budget wmax, we first show that the optimal
vector has to have τi = Tdeg,i for all i ≤ c. Suppose by
contradiction that a competitor vector τ ′ has τi = Tdeg,i − ϵ
for some ϵ > 0 at an arbitrary index i ≤ c, and τ ′j = Tdeg,j

for the rest of indices j ≤ c, j ̸= i.7 As w(τ) is decreasing,
w(τ ′i) > w(Tdeg,i) is true, meaning the remaining N − 1
molecules of τ ′ with index j ̸= i have less energy budget to
allocate compared to their counterparts in τ . Thus, at least one
element of τ ′ should be larger than its same-index counterpart
in τ . Clearly, the larger duration(s) cannot be selected from
indices {1, . . . , i − 1, i + 1, . . . , c}, as they are already at
their maximum allowable values due to their Tdeg,i limits.
Then the remaining N − c durations of τ ′ should be set
τ ′c+1 = · · · = τ ′N =

wmax−
∑c

i=1 w(τ ′
i)

N−c , since this is the best
allocation inter terms of Pe as it exhausts all remaining energy
left to {τ ′c+1, . . . , τ

′
N} and has all equal durations among them

(follows identical to Theorem 2) 8 . Note that this is equivalent
to having τ ′i = τi+δ for some δ > 0 as τc+1 = · · · = τN . Due
to the convex and decreasing nature of w(τ), we necessarily
have δ > ϵ

N−c to still satisfy
∑N

i=1 w(τ
′
i) = wmax. Let another

vector τ ′′ be such that δ = ϵ
M−c for these elements, and for the

remaining elements τ ′ = τ ′′. Clearly, Pe(τ
′′) < Pe(τ

′). Also
observe that we necessarily have

∑N
i=1 τi =

∑N
i=1 τ

′′
i for this

7This argument can be directly generalized to multiple such indices by
considering each index one-by-one.

8We assume this allocation does not violate type-S deadlines of molecules
{c+1, . . . , N} for clarity of presentation. In case it does violate for indices
{c+1, . . . , c+g}, arranging τ ′c+1, . . . , τ

′
N with the energy budget wmax−∑c

i=1 w(τ ′i) yields a subproblem that is identical in nature to the original
problem we prove herein. The optimal allocation of this subproblem would
be allocating {c+ 1, . . . , c+ g} critically and {c+ g + 1, . . . , N} equally
with the remaining energy, with a proof that is identical to the one laid out
in this appendix. This can be recursively done until there is no violations at
this step in the proof.
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third vector, and that τ ′′ majorizes τ summing up to the same
value. This implies Pe(τ ) < Pe(τ

′′) due to Schur-convexity
of Pe, hence Pe(τ ) < Pe(τ

′), implying the competitor vector
τ ′ cannot be optimal. Thus, τi = Tdeg,i for all i ≤ c has to be
true. Lastly, given τi = Tdeg,i for all i ≤ c, fully exhausting
the remaining energy wmax −

∑c
i=1 w(Tdeg,i) and allocating

among {τc+1, . . . , τN} is optimal to minimize a Schur-convex
Pe, which concludes the proof.
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