
Planar and Minor-Free Metrics Embed into Metrics of
Polylogarithmic Treewidth with Expected Multiplicative

Distortion Arbitrarily Close to 1 ∗

Vincent Cohen-Addad† Hung Le‡ Marcin Pilipczuk§ Michał Pilipczuk¶

Abstract

We prove that there is a randomized polynomial-time algorithm that given an edge-weighted
graph G excluding a fixed-minor Q on n vertices and an accuracy parameter ε > 0, constructs an
edge-weighted graph H and an embedding η : V (G) → V (H) with the following properties:

• For any constant size Q, the treewidth of H is polynomial in ε−1, log n, and the logarithm of
the stretch of the distance metric in G.

• The expected multiplicative distortion is (1 + ε): for every pair of vertices u, v of G, we have
distH(η(u), η(v)) ⩾ distG(u, v) always and E[distH(η(u), η(v))] ⩽ (1 + ε)distG(u, v).

Our embedding is the first to achieve polylogarithmic treewidth of the host graph and comes close
to the lower bound by Carroll and Goel, who showed that any embedding of a planar graph with
O(1) expected distortion requires the host graph to have treewidth Ω(log n). It also provides a
unified framework for obtaining randomized quasi-polynomial-time approximation schemes for a
variety of problems including network design, clustering or routing problems, in minor-free metrics
where the optimization goal is the sum of selected distances. Applications include the capacitated
vehicle routing problem, and capacitated clustering problems.

1 Introduction

Tree metrics are among the easiest metrics that an algorithm designer could have to deal with: a vast
number of NP-hard problems in tree metrics can be solved in polynomial time, some even in linear time.
Unfortunately, most real-world problems take place in much more complicated metrics. Hence, the
question of how well one can embed a complicated metric into a simpler one, such as for example a tree
metric, has naturally emerged in the 90s. A sequence of works [7, 8, 26] culminated in showing that any
n-point metric stochastically embeds into a tree metric such that for any pair of points, their distance
is in expectation preserved up to a multiplicative factor, the distortion, of O(log n); and that such an
embedding can be computed in polynomial time. This result has a number of algorithmic applications
and became a part of the standard toolbox for algorithm design.

Bartal [8] showed that theO(log n) bound on the distortion is the best one can hope for in the worst-
case, for arbitrary metric spaces. To improve upon this bound, one would need to focus on input metrics
that exhibit special structure, such as for example shortest-paths metrics in planar and minor-free graphs.
Planar and minor-free metrics are well-studied and have appeared in many practical applications, in

∗This work is a part of projects CUTACOMBS (Ma. P.) and BOBR (Mi. P.) that have received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements
No. 714704 and 948057, respectively). Hung Le is supported by the NSF CAREER Award No. CCF-2237288 and an NSF Grant
No. CCF-2121952. Ma. P. is also part of BARC, supported by the VILLUM Foundation grant 16582.

†Google Research, France (cohenaddad@google.com)
‡University of Massachusetts Amherst, USA (hungle@cs.umass.edu)
§Institute of Informatics, University of Warsaw, Poland and IT University of Copenhagen, Denmark

(marcin.pilipczuk@mimuw.edu.pl)
¶Institute of Informatics, University of Warsaw, Poland (michal.pilipczuk@mimuw.edu.pl)

1

particular network design, routing or clustering applications. In the early 2000s, researchers have thus
asked: Could we improve the distortion when the input metric is planar (and the host metrics are
trees)? Carroll and Goel [10] showed that unfortunately, the Ω(log n) lower bound also holds when the
input metric is planar. (A lower bound of Ω(log n) was shown earlier for embedding a planar grid into
random spanning trees [4].)

While tree metrics are topologically simple, the ultimate goal of algorithmic designers is to solve
algorithmic problems efficiently. In this respect, metrics induced by graphs of bounded treewith are
almost equally powerful while permitting much more complicated structures. Specifically, one can solve
an extremely broad class of problems on graphs of bounded treewidth using dynamic programming on
tree decompositions; see [19, Chapter 7]. The next question in line was thus whether one can improve
over the O(log n) distortion bound for embedding planar metrics into trees if we instead aim to embed
planar metrics into bounded treewidth graphs, hence bypassing the lower bound of [10].

Question 1. Could we embed planar graphs into low-treewidth graphs with small distortion, ideally
constant or (1 + ε) for any fixed ε ∈ (0, 1)?

By low treewidth, we mean a constant or even polylogarithmic treewidth – which would be enough
to obtain quasi-polynomial approximation schemes for a large number of NP-hard problems. As we
will point out later, constant treewidth is impossible if one insists on o(log n) distortion.

However, research on Question 1 has been riddled with negative results. In particular, any detemi-
nistic embedding of planar graphs with a worst-case constant distortion must have treewidth Ω(

√
n)

of the host graph, which is a nearly trivial bound, since every n-vertex planar graph has treewidth
O(

√
n) [10]. Any randomized embedding of planar graphs into constant treewidth graphs must have

expected distortion Ω(log n) [10, 11]. And any randomized embedding that has an expected constant
distortion c for any given constant c ⩾ 1must have treewidthΩ(log n/c) [10]. Given these lower bounds,
it seems hopeless to achieve any significant progress on Question 1. On a positive note, some progress
has been made recently on embeddings with additive distortion, where the input metrics were further
restricted to have stretch 2ℓ for some ℓ > 01, and the distortion is additive+ε2ℓ [24, 31, 15, 29]. Additive
distortion is a much weaker guarantee than multiplicative distortion and is not truly comparable to the
O(log n) multiplicative distortion obtained for general metrics2. These weaknesses severely limit the
kind of algorithmic applications of embeddings with additive distortion.

On the other hand, the aforementioned lower bounds still leave room for a slim hope: they do
not rule out an embedding with expected distortion (1 + ε) and treewidth Oε(log n). The lower
bound of treewidth Ω(log n/c) mentioned earlier, while holding for any constant distortion c, does
not exclude the possibility of an embedding with the treewidth of host graph of O(log n/ε) for the
expected distortion (1 + ε). Nevertheless, it has remained unclear how to obtain an embedding with
any constant distortion, say, of an n-vertex planar graphs into graphs with treewidth significantly
better than the trivial bound O(

√
n). We note that the discussion so far applies equally to weighted

and unweighted planar graphs; in other words, having the same weight on every edge does not seem to
make the problem easier . The lower bound of Carroll and Goel [10] holds for the unweighted planar
grid.

In this work, we show that an embedding with polylogarithmic treewidth is possible for an expected
distortion (1 + ε). Our result is the first positive progress on Question 1.

Theorem 1.1. For every fixed graphK there exists a randomized polynomial-time algorithm that, given
an edge-weighted K-minor-free graph G and an accuracy parameter ε > 0, constructs a probabilistic
metric embedding of G with expected distortion (1 + ε) into a graph of treedepth3

OK

(
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5

)
,

1The stretch is the ratio between the maximum pairwise distance and the minimum pairwise distance in a metric.
2If one sets ε ≈ 2−ℓ logn, one gets multiplicative distortion O(logn), but then the treewidth is proportional to 2ℓ/ logn,

which is way too large in most cases. We are rather concerned with graphs of treewidth polynomial in ℓ.
3The treedepth of a graph G is the minimum possible depth (number of vertices on a root-to-leaf path) of an elimination

forest of G. The treedepth of a graph is an upper bound on its treewidth.

2

where n is the vertex count of G and ℓ is the logarithm of the stretch of the metric induced by G.

In particular, for planar graphs — which excludeK5 as a minor — with edge weights in [1, nc] for
any constant c, our treewidth bound in Theorem 1.1 is polylog(n), as ℓ = log(nc) = O(log n). In this
work, we do not attempt to minimize the degree of the polylogarithmic factor bounding the treewidth.

Applications. Theorem 1.1 is a part of a broader research agenda, aiming to design approximation
schemes for optimization problems in structured metrics. Notable examples of structured metrics
include Euclidean and doubling metrics. For Euclidean metrics, tremendous progress was immediately
made and quasi-polynomial-time approximation schemes (QPTASs) and PTASs for other geometric
problems (including k-median) were presented in a series of subsequent works [6, 5]. The work of
Arora and Mitchell, which uses the notion of quad-tree decompositions to break the Euclidean metric
instances into subinstances of the problem with limited interactions, quickly became a framework that
solved a variety of problems. Talwar [51] took one step further by showing that any doubling metric (a
generalization of Euclidean metric that does not necessitate an embedding of the points) embeds with
(1 + ε) expected distortion into a graph of treewidth at most Od,ε(ℓ), where ℓ is the logarithm of the
stretch. This immediately led to (1) QPTASs for a variety of problems for which the objective is the sum
of the lengths of a multiset of edges, and for which a QPTAS is known for bounded treewidth graphs;
and (2) a QPTAS for TSP beyond Euclidean spaces.

Unfortunately, the picture for shortest-path metrics of graphs such as metrics induced by the shortest
paths of planar graphs or graphs excluding a fixed minor proved more challenging to address. Indeed,
obtaining PTASes, or even QPTASes for TSP, or other network design problems such as Steiner tree
or k-MST, or clustering problems has been an important challenge that has been partially resolved
during the last 25 years. An illustrating example is that no PTAS for the k-MST problem was known
until last year [13] and no QPTAS is known for the vehicle routing problem (unless the capacities
are assumed to be absolute constant [15, 31]), nor for non-uniform facility location in minor-free
metrics. The non-uniform facility location problem is indeed an illustrative example: The question
of generalizing results for planar graphs to more general families of graphs, such as graph excluding
a fixed minor, has been an important research agenda. While Grigni [33] gave a QPTAS for TSP for
minor-free graphs, it was only recently improved to EPTAS by Borradaile et al. [9]. These were recently
improved (and extended to the subset version4) by Le [44] and Cohen-Addad et al. [15]. The recent
result of Cohen-Addad [13] is a step toward a framework that generalizes planar results on several
network design problems (e.g. Steiner forest) to minor-free metrics. Unfortunately, the approach fails
for more sophisticated objectives such as vehicle routing or clustering (facility location or k-median).

The gap between planar (and more generally minor-free) metrics on the one hand and Euclidean
and doubling metrics on the other hand is mainly due to the embedding to treewidth-Od,ε(ℓ) graphs of
Talwar [51] which provided QPTASs for most metric optimization problems (except for k-means or
k-center where the objective is to minimize a sum of squared distances or a maximum distance and for
which different techniques were used [16, 14, 32, 31]). Our Theorem 1.1 overcomes the fundamental
embedding bottleneck. As corollaries, we obtain QPTASes for several problems where prior techniques
were failing.

The first problem is the Capacitated Vehicle Routing Problem (CVRP) in planar metrics. In this
problem, we are given: (i) a set of clients represented by a subset of points in the metric, and each client
has a demand, (ii) a vehicle with capacityQ, and (iii) a special point r called a depot. A feasible solution
of the CVRP is a collection of tours starting from and ending at the depot r where on each tour the
vehicle can collect demand from each client such that the total demand collected is at most the capacity
Q and over all tours, the demand of every client is collected. The goal is to find a feasible collection of
tours with minimum cost. There are three different variants of CVRP: unit demands (where the demand
of every client is 1), splittable demands (where the demand of each client can be collected in more than
one tour), and unsplittable demands (where the demand of each client can only be collected in one tour).

4In the subset version, the problem is to visit given subset of the input vertices.

3

There has been a tremendous amount of attention recently on this problem (e.g. [15, 31]); Yet all the
techniques developed only address the special case where the capacity is o(log log n). This stands in
stark contrast with the work of Das and Mathieu [20] which gave a QPTAS for the unrestricted problem
in Euclidean spaces of fixed dimension in 2010.

Corollary 1.2. For any 1/2 > ε > 0, there exists a randomized (1 + ϵ)-approximation scheme for the
unit demand Capacitated Vehicle Routing in minor-free metrics with running time nε

−O(1) logO(1) n.

The proof follows from Theorem 1.1 and the QPTAS of Jayaprakash and Salavatipour [36] for
bounded treewidth graphs. We refer the readers to Section 7 for more details.

We also obtain the first QPTAS for the classic Facility Location problem in minor-free metrics. Here,
the input consists of a metric space, two sets of points C,F , and a cost function f : F ↦→ R. The goal
is to identify a set S ⊆ F so as to minimize

∑
c∈C minq∈S dist(c, q) +

∑
q∈S f(q). While a QPTAS

for the problem on Euclidean metrics of fixed dimension has been known since the late 90s [6] and a
PTAS later on [40, 14], the first PTAS for planar metrics only dates back to 2019 [18] (see also [16, 17]
for the case with uniform costs). Yet, an approximation scheme in minor-free metrics has eluded the
community until now.

Corollary 1.3. For any 1/2 > ε > 0, there exists a randomized (1 + ϵ)-approximation scheme for the
Facility Location problem in minor-free metrics with running time nε

−O(1) logO(1) n.

In the Capacitated k-Median problem, we have two sets of points C,F and a capacity constraint
µ : C ↦→ N. The goal is to find a set of k centers from F and assignments of the points of C to the
centers such that each center i ∈ F is assigned at most µ(i) points, and the total distance from each
point to its assigned center is minimum. The Capacitated Facility Location problem is similar, but now
each point i has an associated opening cost f(i) (for opening a facility at that point) similar to the
Facility Location problem above, and the goal is to open a set of facilities F and assignment of other
points to each facility so that: (a) each facility in i ∈ S is assigned at most µ(i) points, and (b) the total
cost

∑
i∈S f(i) +

∑
p d(p, S(p)) is minimum, where S(p) is the facility to which p is assigned, and

d(·, ·) is the distance function of the input metric. Again, these problems have been known to admits
a QPTAS for Euclidean metrics of fixed dimension [12], but nothing better than the general metric
O(log k)-approximation algorithm was known for planar (and so minor-free) metrics.

Corollary 1.4. For any 1/2 > ε > 0, there exists a randomized (1+ϵ)-approximation scheme for Capaci-
tated k-Median and Capacitated Facility Location in minor-free metrics with running time nε

−O(1) logO(1) n.

The algorithms in Corollary 1.4 follows the same line of the algorithm for the CVRP: embed the
input metric to a low-treewidth graph, and solve the low-treewidth instances in quasi-polynomial time.

In Euclidean/doubling metrics, many problems were first known to admit QPTASes and then were
subsequently improved to PTASes with additional ideas tailoring for each problem. Following the same
pattern, we hope that additional ideas will be developed to improve our QPTASes to PTASes.

Our techniques. For simplicity of exposition, we assume that ℓ = O(log n). A basic idea in the
embedding of Talwar [51] for metrics of doubling dimension is a randomized ball carving: given a graph
C of diameter D in a doubling metric, one can stochastically partition C (using balls of random radii)
into a set of clusters, sayP , of diameter at mostD/2 such that the probability of cutting every two points
x and y into two different clusters is bounded by O(dist(u,v)D). Then we construct an (εD/ log n)-net
N of C and designated it as portals: in the output host graph, we connect every x ∈ N to every other
point of C by an edge of length equal to the distance of the endpoints in G, and recurse on each cluster
in P . Due to the bounded doubling dimension assumption, the size of N is bounded polynomially
in log n/ε, which finally results in polylogarithmic treewidth. For every edge uv in G, each of the
O(log n) levels of recursion incurs an expected distortion ofO(ε

logn)dist(u, v): the edge uv is cut with

4

probability O(dist(u,v)D) and, thanks to the properties of the chosen net N , the detour in the case of
cutting uv is bounded by O(ε

lognD).
One could try to apply Talwar’s technique for planar metrics. For the stochastic decomposition

into clusters, the decomposition of Klein, Plotkin, and Rao [39] provides the same probability of cutting
any two points into two different clusters. However, the step of choosing an (εD/ log n)-net N is
problematic: we now can no longer bound the size of N . In fact, even in as simple graphs as stars it
may happen that |N | = n. Thus, obtaining any non-trivial treewidth bound following this approach
seems very difficult. On the other hand, stars have already pretty good treewidth.

We thus aims at designing an approach that implicitly distinguishes grid-like planar graphs, to
which Talwar’s decomposition could be applied, from planar metrics that are already “tree-like shaped”.
As obtaining a small r-net for r ≪ D seems impossible in planar graphs, we aim at lowering the
probability that uv is cut in a way that incurs a detour Ω(D). Consider the following example. Assume
that we applied the aforementioned clustering scheme to a graph C and we obtained a partition P
into clusters that are arranged in a “grid-like” fashion: the quotient graph C/P (defined as a graph
with the vertex set P and two elements A,B ∈ P adjacent if G contains an edge between A and B)
is a grid. Then, instead of cutting out all clusters of P , we would like to do the following: choose
randomly one of the middle ξ columns of the grid C/P (for a parameter ξ to be chosen later), carve
out the clusters on that column as subgraphs for recursion, and also recurse on the remaining left and
right parts of the grid. Instead of a net, we designate as portals only one vertex per cluster from the
chosen column of the grid. In the recursion, the recursive calls for clusters on the chosen column have
multiplicatively smaller diameter, while (with enough columns in the entire grid) the left and right parts
have at most 0.75|V (C)| vertices; this givesO(ℓ log n) = O(log2 n) bound on the recursion depth. For
the detour bound, note that now an edge uv has probabilityO(dist(u,v)D) of being chosen on a boundary
of the cluster times the probability 1

ξ that this cluster is actually in the chosen column. Since an edge
that is actually cut experiences a detour of O(D), the expected additive distortion due to the detours
imposed by the entire process is thus O(log2 n · 1

ξ · dist(u,v)
D D) ∼ O(log

2 n
ξ dist(u, v)), and choosing

ξ to be log2 n/ε (which may lead to O(ξ log2 n) = O(log4 n/ε) final treewidth bound on the output
embedding) gives the desired bound.

The main argument of our approach is a proof that this set of “ξ columns to randomly choose from”
can always be found, even if C/P does not look like a grid. To this end, we need another property of
the clustering algorithm: with high probability, the diameter of the quotient graph C/P is bounded
by a polylogarithmic function of n, which we henceforth denote by ρ. Then, the treewidth of C/P is
bounded byO(ρ), which gives us the first “column”: a setA1 ofO(ρ) of clusters, whose deletion leaves
connected components of multiplicatively smaller size. We henceforth refer to such a set of clusters as
a balanced cut.

We need more balanced cuts to choose from and we would like the balanced cuts to be mostly
disjoint in the sense of not containing the same edge of G on their boundary many times. However,
there is a number of star-like examples where this is not possible, i.e., there is a cluster contained in
every balanced cut. We proceed as follows: after picking the first balanced cut A1 as in the previous
paragraph, we refine te partition P by, for every cluster C1 ∈ A1, replacing C1 with the result of
applying again the clustering scheme to C1 and diameter D/2. Then, we find a balanced cut A2 in the
obtained partition P2, and continue to P3 by again replacing the clusters used by A2 with a result of
applying the clustering scheme to them. The replacement process stop at single-vertex clusters, where
cutting would not cause any detour.

Now, every edge uv is contained in the boundary of clusters larger than single vertices in O(ℓ) =

O(log n) balanced cuts Ai. Hence, if we produce Ω(log
3 n
ε) balanced cuts, the expected detour analysis

will still give the desired result. But there is a problem: as we expand the partitions Pi, the diameter
and hence the bound on the treewidth of C/Pi grows, so our guarantee on the size ofAi detoriates as i
increases.

This is the moment where the topological assumption on the input graph finally comes into play.
Naively, the difference between the diameters of C/Pi+1 and C/Pi can be as large as Ω(|Ai| · ρ), as

5

every cluster of Ai is replaced with a set of clusters whose quotient graph has diameter ρ. However, if
we assume that the given graph excludes some fixed apex graph5 as a minor, then we can prove that
after k steps, the diameter of C/Pk is only O(

√∑k−1
i=1 |Ai| · ℓρ). The key graph theoretic property of

apex-minor-free graphs used here is the following: to cover an apex-minor-free (unweighted) graph of
treewidth ⩾ t with balls of radius d, one has to pick at least Ω((t/d)2) such balls. This proves that if
one continues the process of finding and unraveling cuts for ξ steps, where ξ is any large polylogarithm
one wishes for, all created balanced cuts will have sizes bounded by another polylogarithmic bound
τ depending only on ξ. This, in turn, gives the final polylogarithmic bound on the treewidth of the
obtained embedding.

This concludes the overview of the proof of Theorem 1.1 under the assumption that the input
graph excludes a fixed apex graph as a minor; this in particular includes planar graphs, which exclude
K5. To extend this to the setting when any fixed graph K is excluded, we start by applying the
Robertson-Seymour structure theorem [50] that essentially states that the input graph G admits a tree
decomposition where the torso of every bag consists of a graph coming from a fixed apex-minor-free
graph class, with a constant number of vertices added to it. We then carefully apply our technique to
the apex-minor-free part of the centroid bag of that decomposition.

A bit more on related works. There is a long line of work on embedding planar and minor-free
metrics into Euclidean and normed spaces. Rao [49] constructed an embedding of planar metrics into
Euclidean spaces with distortion O(

√
log n). For any ℓp space with p ⩾ 1, Rao obtained an embedding

with O((log n)1/p) distortion. Rao’s results were extended to minor-free metrics [3, 41]; the distortion
isO(h1−1/p(log n)1/p)where h is the size of the excluded minor. Better embedding results were known
for graphs of small pathwidth [2, 46]. For the Euclidean case, Newman and Rabinovich [48] provided a
matching lower bound for Rao’s embedding, showing that distortion O(

√
log n) achieved by Rao is the

best possible.
Of special interest is the case of ℓ1. The famous ℓ1 embedding conjecture [34] states that planar

metrics are embeddable into ℓ1 with O(1) distortion. The conjecture is believed to hold for general
minor-free metrics [34, 45]. While the conjecture remains open even for planar metrics, progress has
been made for various special cases: k-outerplanar graphs [34], graphs with a small face cover [42, 28],
or when every demand pair has a face containing both endpoints [43]. We refer readers to [2] and
references therein for more embedding results.

Organization. We present our clustering tool in Section 3. Sections 4 and 5 prove Theorem 1.1 for
the case of graph classes excluding a fixed apex graph as a minor. Then, in Section 6, we discuss how
to extend the proof to graphs excluding an arbitrary fixed minor. Section 7 provides details on the
aforementioned applications of Theorem 1.1.

2 Preliminaries

For a real t, we sometimes write exp(t) := et, where e is the base of the natural logarithm. We use the
Iverson bracket notation: for a boolean assertion ψ, [ψ] is 1 if ψ holds and 0 otherwise.

Graphs. We use standard graph notation. Most of graphs considered in this paper are edge-weighted,
which means that with every edge e we associate a positive weight length(e), interpreted as the length
of e. Hence, for an edge-weighted graphGwe can consider the distance metric induced inG: for vertices
u, v, distG(u, v) is the smallest possible length of a path connecting u and v, or +∞ if such a path does
not exist, where the length of a path P , denoted length(P), is the sum of the weights of edges of P .
The stretch of this metric is the ratio between the maximum finite distance and the minimum distance
between two distinct vertices in G.

5An apex graph is a graph that can be made planar by removing one vertex.

6

The notions of diameter and radius in an edge-weighted graph G are defined with respect to the
distance metric induced in G. When speaking about distances in an unweighted graph, or about its
diameter or radius, we mean the standard graph-theoretic notions, where every edge is considered to
have length 1.

For a graph G and a partition C of the vertex set of G, we define the quotient graph G/C as the
unweighted graph on vertex set C where parts C,C ′ ∈ C are adjacent if in G there is an edge with one
endpoint in C and the other in C ′. Note that while G can be edge-weighted, we always consider G/C
to be an unweighted graph.

Decompositions. A tree decomposition of a graph G is a tree T together with a function bag(·) that
with every node x of T associates its bag bag(x) ⊆ V (G) so that (i) for every vertex u of G, the nodes
of T whose bags contain u form a connected subtree of T , and (ii) whenever u and v are adjacent in
G, there is a node in T whose bag contains both u and v. The width of a tree decomposition is the
maximum size of a bag minus 1, and the treewidth of a graph G is the minimum possible width of a tree
decomposition of G.

An elimination forest of a graph G is a rooted forest F with the same vertex set as G satisfying the
following property: whenever u and v are adjacent in G, either u is an ancestor of v in F or vice versa.
The treedepth of a graph G is the minimum possible depth (number of vertices on a root-to-leaf path) of
an elimination forest of G.

It is easy to see that the treewidth of a graph is never larger than the treedepth minus 1: to construct
a tree decomposition (T, bag) of width d− 1 from an elimination forest F of depth d, take T to be F
with all roots connected into a path, and for every vertex u set bag(u) to be the set of ancestors of u
in F . On the other hand, it is well-known that the treedepth of an n-vertex graph is never larger than
log2 n times its treewidth plus 1 [47, Corollary 6.1]. Thus, from the point of view of constructing metric
embeddings into graphs of polylogarithmic treewidth, we can equivalently consider embeddings into
graphs of polylogarithmic treedepth instead.

We use the standard minor order for graphs. A graphK is an apex graph if there is a vertex u such
that K − u is planar. The following lemma, which follows from the previous literature, is the sole
argument in which we exploit the topological simplicity of the considered graphs.

Lemma 2.1. For every apex graphK there is a positive integer αK such that the following holds. Suppose
G is aK-minor-free (unweighted) graph and Z is a subset of vertices of G such that every vertex of G is at
distance at most d from a vertex of Z . Then the treewidth of G is upper bounded by αKd

√
|Z|.

Lemma 2.1 was proved explicitly in the case of planar graphs by Demaine et al. [21, Theorem 3.3].
In their proof, they use only two properties of planar graphs: (a) if a planar graph G has treewidth t,
then G contains the s× s grid as a minor for s ∈ Ω(t), and (b) if a planar graph G contains the s× s
grid as a minor, then every distance-d dominating set in G — a set Z such that every vertex of G is at
distance at most d from Z — has size Ω((s/d)2) (see [21, Lemma 3.1]). To lift this proof to the case of
K-minor-free graphs for a fixed apex graphK , one can use the result of Fomin et al. [30, Theorem 3]: If
aK-minor-free graphG has treewidth t, thenG contains the triangulated s× s grid Γs as a contraction,
for s ∈ ΩK(t) (see [30] for a definition of Γs). It can be easily seen that the minimum size of a distance-d
dominating set in a graph does not increase under edge contractions, and is of the order Ω((s/d)2)
in Γs. Therefore, every distance-d dominating set in aK-minor-free graph of treewidth t must have
size ΩK((t/d)2); this readily implies the statement of Lemma 2.1.

Metric embeddings. A metric embedding of an edge-weighted graph G consists of the host graph —
an edge-weighted graph H — and the embedding η : V (G) → V (H) satisfying distH(η(u), η(v)) ⩾
distG(u, v) for all u, v ∈ V (G). The embedding η has (multiplicative) distortion c if distH(η(u), η(v)) ⩽
c·distG(u, v) for allu, v ∈ V (G). It will be often the case that ametric embedding is constructed by a ran-
domized procedure; thenwe can say that η has expected (multiplicative) distortion c ifEdistH(η(u), η(v)) ⩽
c · distG(u, v) for all u, v ∈ V (G).

7

3 Partitioning tools

In this section we introduce our probabilistic partitioning tools, which are heavily inspired by the work
on padded decompositions [1, 26]. We start by presenting a procedure that partitions a given graph into
clusters of significantly smaller diameter so that for any path Q, the expected number of edges of Q
cut by the boundaries of the clusters is proportional to the length of Q. We then use our partitioning
procedure in a hierarchical fashion to create a multi-level decomposition of a given graph.

3.1 Probabilistic preliminaries

We need a few standard tools from the probability theory. We will use the standard Chernoff bound,
stated below, and its simple corollary, proven for completeness in Appendix A.

Theorem 3.1 (Multiplicative Chernoff bound). Let X1, . . . , Xn be independent random variables with
values in {0, 1}. Let X =

∑n
i=1Xi, let µ = E[X], and let 0 ⩽ δ be a real. Then,

P (X ⩾ µ(1 + δ)) ⩽ exp(−δ2µ/(2 + δ)).

Lemma 3.2. Let k ⩾ 1 be an integer and let X1, X2, . . . be independent random variables with values
{−1, 1} such that for every i ⩾ 1, P(Xi = 1) ⩽ 1

8 . Let Z be a random viariable defined as the minimum
i such that k +

∑i
j=1Xj < 0. Then

P (Z > 2k) ⩽ exp

(
− k

12

)
.

We will also use random variables with exponential distributions. Recall that a real-valued random
variableX has exponential distribution with parameter λ > 0, denotedX ∼ Exp(λ), if its distribution
has density given g(t) = λ exp(−λt) · [t ⩾ 0]. It is well-known that exponentially-distributed random
variables are memoryless in the sense explained by the statement below.

Lemma 3.3. Suppose X is a random variable with an exponential distribution. Then for every pair of
nonnegative reals s ⩽ t, we have

P(X ⩽ s+ t | X ⩾ s) = P(X ⩽ t).

In one of the more involved proofs, we will use memorylessness in a quite convoluted fashion. In
order not to clutter the arguments later, we abstract the probabilistic part as the lemma below. While
this statement may be next to trivial for readers more experienced with the probability theory in general
or exponential clocks in particular, for the sake of rigour we provide a proof in Appendix A.

Lemma 3.4. Let n be a positive integer, X1, X2, . . . , X2n be independent random variables, each with
distributon Exp(1), let f1, f2, . . . , f2n be measurable functions where fi : Ri−1 → R⩾0 ∪ {+∞} for
1 ⩽ i ⩽ 2n and fi ≡ 0 for n < i ⩽ 2n, and let p ⩾ 0 be a real. We say that an index i is good if
Xi ⩾ fi(X1, X2, . . . , Xi−1) and excellent if additionally Xi > fi(X1, X2, . . . , Xi−1) + p. Let N ∈
{n, n+1, . . . , 2n} be the number of good indices (note that every i > n is good almost surely) and let (Ii)Ni=1

be random variables being consecutive good indices. For 1 ⩽ i ⩽ N , let Yi = XIi − fIi(X1, . . . , XIi−1).
Then, Y1, Y2, . . . , Yn are independent random variables, each with distribution Exp(1). Consequently, if
for 1 ⩽ i ⩽ n we denote by Ai the event “Ii is excellent”, then the events (Ai)

n
i=1 are independent and

each happens with probability e−p.

3.2 A single level

We first define a simple partitioning procedure to create one level of a hierarchical decomposition. The
properties of the procedure are asserted in the following lemma.

8

Lemma 3.5. There is a randomized polynomial-time algorithm that given a connected n-vertex edge-
weighted graph G with diameter D and a real parameter r > 0, outputs a partition C of the vertex set of
G into clusters satisfying the following properties:
(P1) For each C ∈ C, G[C] is connected.
(P2) For every t ⩾ 0, the probability that in C there is a cluster inducing a subgraph of diameter larger

than 2r(t+ 1 + lnn) is at most e−t.
(P3) For every t ⩾ 0, the probability that the diameter of G/C is larger than 120 · D

r · (t+ 1 + lnn) is at
most e−t.

(P4) For every pathQ inG, the expected number of edges onQ whose endpoints belong to different clusters
is at most length(Q)

D · 4ℓ, where ℓ is the least integer such that the stretch of the distance metric in G is
strictly smaller than 2ℓ.

The remainder of this section is devoted to proving Lemma 3.5. For tie-breaking, we assume that
there is a fixed in advance total order⪯ on the vertices ofG. By scaling, we may assume thatD = 2ℓ and
that the distance between every pair of distinct vertices of G is strictly larger than 1. Further, we may
assume that r < D, for otherwise we may return a partition consisting of one part: the whole V (G).

The procedure. At the beginnning, the procedure initiates C to be ∅, and it will iteratively add
clusters (subsets of V (G)) to C one-by-one until C becomes a partition of V (G). At every step, a vertex
is called free if it does not belong to any element of C.

The procedure iteratively, as long as there exists a free vertex, picks a ⪯-minimal free vertex v,
samples a radius rv := r(1 + Xv), where Xv ∼ Exp(1) is an independent random variable with
exponential distribution, and creates a new element Cv in C consisting of all vertices within distance
at most rv from v in the graph G−

⋃
C (i.e., subgraph of G induced by the free vertices). Vertex v is

called the center of Cv , set Cv is the cluster of v, and rv is the radius of v.

Running time. The procedure clearly takes (randomized) polynomial time and produces a partition
C of V (G) into clusters. Note that every cluster Cv is connected, contains v, and is of radius at most rv .

Properties. We now verify properties (P1)–(P4). Let k bet the number of steps taken by the procedure,
and let v1, . . . , vk the centers of the consecutive clusters constructed by the procedure. For brevity, we
denote Xi := Xvi , Ci := Cvi , and ri := rvi , for i ∈ {1, . . . , k}. Furthermore, let Gi = G −

⋃
j<iCj ;

that is, Gi is the subgraph of G induced by the vertices free at the moment of creation of Ci.
Property (P1) follows directly from the construction. Since the diameter of G[Ci] is at most 2ri,

property (P2) follows directly from the following statement.

Claim 3.1. For every t ⩾ 0, the probability that there exists i ∈ {1, . . . , k} such that ri > r(t+1+ lnn)
is at most e−t.

Proof. For every i ∈ {1, . . . , k}, we have

P (ri > r(t+ 1 + lnn)) = P(Xi > t+ lnn) = e−(t+lnn) = e−t/n.

The lemma follows by the union bound, as there are at most n clusters.

In the next claim we verify the key property (P3). For brevity, letH := G/C be the quotient graph.
Recall that H is unweighted.

Claim 3.2. For every t ⩾ 0, the probability that the diameter ofH is larger than 120 · D
r · (t+ 1 + lnn)

is at most e−t.

Proof. Consider any two vertices u1 and u2. LetQ be any shortest path from u1 to u2 inG (with respect
to the edge weights). By definition we have |Q| ⩽ D. In the argumentation below, we consider Q to be
oriented from u1 to u2.

9

Let Z = {v ∈ V (H) | Cv ∩ V (Q) ̸= ∅} be the set of those centers whose clusters intersect Q. We
color the vertices of Q using palette Z as follows. Initially, all vertices are uncolored. We consider the
vertices v ∈ Z in the same order as the clustering procedure. Upon considering vertex v, we find the
first and the last vertex of Cv ∩ V (Q) that are uncolored so far, say q1v and q2v , and we color with color
v all vertices lying between q1v and q2v on Q. Note that this may result in recoloring some vertices that
were colored in previous iterations. If all vertices of Cv ∩ V (Q) were colored before, we do not color
any vertices in this iteration, hence there will be no vertex of color v.

Note that at every moment, all vertices colored with any color v ∈ Z form an interval on Q.
Furthermore, if when considering a center v we recolor at least one vertex colored v′ to v, then the
interval between q1v and q2v on Q contains all vertices colored previously with v′, hence all vertices
colored v′ get recolored to v. Finally, note that at the end of the procedure, every vertex is assigned
some color.

Let Z ′′ ⊆ Z be the set consisting of all vertices v ∈ Z such that when v was considered during
the coloring procedure, at least one vertex of Q was colored with color v. Further, let Z ′ ⊆ Z ′′ be the
set consisting of all those vertices v ∈ Z for which at least one vertex of Q is colored with color v at
the end of the coloring procedure. Let û1 and û2 be cluster centers such that u1 ∈ Cû1

and u2 ∈ Cû2
.

Observe that in H there is a path from û1 to û2 that uses only vertices of Z ′, as for every v ∈ Z ′, both
q1v and q2v are contracted onto v in H . Hence,

distH(û1, û2) ⩽ |Z ′| − 1.

So to give an upper bound on the probability that distH(û1, û2) is large, it suffices to bound the
probability that Z ′ is large.

Consider the moment at the beginning of the i-th step of the procedure, that is, when clusters
Cj for j < i were already constructed. A segment is a maximal subpath of Q whose all vertices are
uncolored; let Si be the family of segments at the beginning of the ith step. Call the cluster Ci tenoning
if Ci contains all vertices of at least one segment.

Let
λ := t+ 1 + lnn.

For any center vi, let Ri be the distance in Gi from vi to the nearest vertex that is uncolored in Gi. We
have vi ∈ Z ′′ if and only if ri ⩾ Ri. Let p := 1

12λ ; note that thus, p ⩽
1
12 ⩽ 1

8 . We say that the vertex vi
is good if ri > Ri + pr. The crucial observation is the following: if vi is good, then it is either tenoning,
or there is a subpath Q′ of Q of length at least pr such that all vertices of Q′ were uncolored before
the ith step, and all of them, except possibly for the endpoints, receive color vi in the ith step. In the
former case we have

|Si+1| < |Si|,

and in the latter case we have ∑
S∈Si

length(S)−
∑

S∈Si+1

length(S) ⩾ pr.

This motivates the following measurement. The potential at the beginning of step i is defined as:

πi := |Si|+ 2 ·
∑

S∈Si
length(S)

pr
.

Note that
π1 ⩽ 1 +

⌈
2D

pr

⌉
=: k.

Clearly, |Si+1| ⩽ |Si|+ 1 and
⋃
Si+1 ⊆

⋃
Si, for all relevant i. Hence, πi+1 ⩽ πi + 1. Furthermore, if

vi is good, then πi+1 ⩽ πi − 1. Note that πi > 0 for 1 ⩽ i ⩽ |Z ′′|.

10

Let I1, I2, . . . , I|Z′′| be the indices of the consecutive elements of Z ′′ (note that these are random
variables, and even the length of this sequence is a random variable). For j ⩾ 1, let Yj := (rIj −RIj)/r.
For j ⩾ 1, let Aj be the event “vIj is good”, which is the same as “Yj > p”.

Now, an important observation is that Lemma 3.4 applies: variables Yj are independent, each has
distribution Exp(1), and events (Aj)j⩾1 are independent and each individually happens with proba-
bility e−p. Indeed, to formally apply Lemma 3.4 we artifically extend the sequence X1, X2, X3, . . . =
Xv1 , Xv2 , Xv3 , . . . of independent random variables with distribution Exp(1) to length 2n and set
fi := Ri/r whenever i is still an index of a center and fi ≡ 0 otherwise.

Then, as 1− e−p ⩽ p ⩽ 1
8 and r < D, by Lemma 3.2 we infer that

P(|Z ′′| > 2k) ⩽ exp

(
− k

12

)
⩽ exp

(
− D

6pr

)
⩽ exp (−2λ) = exp (−2(t+ 1 + lnn)) .

On the other hand, using r < D,

2k = 2 + 2

⌈
2D

pr

⌉
⩽
D

r
· 10 · 12λ = 120 · D

r
· (t+ 1 + lnn).

Denote w := 120 · D
r · (t+ 1 + lnn). This means that

P(distH(û1, û2) > w) ⩽ P(|Z ′| > w) ⩽ P(|Z ′′| > w)

⩽ P(|Z ′′| > 2k) ⩽ exp (−2(t+ 1 + lnn)) .

By the union bound over all choices of u1 and u2, we obtain

P (diam(H) > w) ⩽ exp (−2(t+ 1 + lnn) + 2 lnn) ⩽ e−t.

This finishes the proof.

Finally, we show property (P4).

Claim 3.3. Let Q be a path in G. Then the expected number of edges of Q whose endpoints belong to
different clusters in C is bounded by length(Q)

r · 4ℓ.

Proof. We color the edges of Q with colors being cluster centers as follows: for an edge xy on Q, if
x ∈ Cu and y ∈ Cv , then the edge xy is colored with the center among {u, v} whose cluster was
conceived earlier (so if u = v, the edge xy is colored v). A segment is a maximal subpath of edges of Q
of the same color. An edge ofQ with endpoints belonging to different clusters is charged to the segment
it is contained in. Note that a segment can be charged by 0, 1, or 2 edges; a segment is positive if it is
charged by at least one edge.

We now make a crucial observation: For every edge e on Q and every real d > 0,

P(e lies in a positive segment of length ⩽ d) ⩽
d

r
. (1)

Indeed, for an index i, let xi be the endpoint of e that is closer to vi in Gi (or xi = ⊥ if both endpoints
of e are already in clusters) and let Ri be the distance between vi and xi in Gi (Ri = +∞ if xi = ⊥).
Note that Ri is a measurable function of values (Xj)j<i. Let I be the index such that the color of e is
vI ; equivalently, I is the earliest index such that rI ⩾ RI . (Note that I is a random variable.) Next, let S
be the segment of e, and suppose for a moment that S is positive. Let yz be an edge of S that is charged
to S, with y ∈ CI and z /∈ CI . Note that both y and z are free at the moment when CI is constructed.
Since z /∈ CI , we have distGI

(vI , z) > rI , which together with distGI
(vI , xI) = RI implies that

length(S) ⩾ distGI
(xI , z) ⩾ rI −RI .

11

We conclude that the event “e lies in a positive segment of length ⩽ d” is contained in the event
RI ⩽ rI ⩽ RI + d. We may now use Lemma 3.4 to conclude that this event has probability at most
1− e−d/r ⩽ d/r; this establishes (1).

For an edge e ofQ, let S(e) be the segment containing e. We bound the number of positive segments
as follows.

#(positive segments) ⩽
∑

e∈E(Q)

length(e) · [S(e) is positive]
length(S(e))

⩽
∑

e∈E(Q)

ℓ∑
i=1

length(e) · [S(e) is positive] · [2i−1 ⩽ length(S(e)) ⩽ 2i] · 2−i+1

⩽ 2
ℓ∑

i=1

∑
e∈E(Q)

length(e) · [S(e) is positive] · [length(S(e)) ⩽ 2i] · 2−i.

Hence, by (1), the expected number of positive segments is bounded by

2
ℓ∑

i=1

∑
e∈E(Q)

length(e) · 2
i

r
· 2−i =

2ℓ

r

∑
e∈E(Q)

length(e) =
length(Q)

r
· 2ℓ.

This finishes the proof, as the total number of edges of Q whose endpoints belong to different clusters
is at most twice the number of positive segments.

As all the required properties are argued, the proof of Lemma 3.5 is complete.

3.3 Hierarchical decomposition

We will use the decomposition procedure described in the previous section recursively, to construct a
hierarchical decomposition of a given graph into smaller and smaller induced subgraphs of the input
graph. To formulate the properties of the hierarchical decompositions, we need a few definitions.

A clustering chain of a connected graphG (not necessarily edge-weighted) is a sequence C0, C1, . . . , Ck
of partitions of V (G) such that

• Ck = {V (G)};
• C0 is the discrete partition with every vertex in a separate part; and
• for all i, j ∈ {0, 1, . . . , k} with i < j, Ci refines Cj in the following sense: every part of Ci is
entirely contained in a single part of Cj ;

• for all i ∈ {0, 1, . . . , k} and each C ∈ Ci, the graph G[C] is connected.
For i ∈ {0, 1, . . . , k − 1} and a part C ∈ Ci+1, we let Ci[C] be the set of parts of Ci that are entirely
contained in C ; note that Ci[C] is a partition of C . For an edge e of G, the level of e is the largest index
i ∈ {1, . . . , k} such that the endpoints of e belong to different parts of Ci.

With these definition in place, we can formulate a statement that summarizes the properties of the
hierarchical decomposition.

Lemma 3.6. There is a randomized polynomial-time algorithm that given a parameter δ > 0 and a
connected edge-weighted n-vertex graphG where the distance between any pair of vertices is in the interval
(1, 2ℓ], either reports failure or computes a clustering chain C0, C1, . . . , Cℓ ofGwith the following properties:

(Q1) For every i ∈ {0, 1, . . . , ℓ} and every cluster C ∈ Ci, the graph G[C] has diameter at most 2i.

(Q2) For every i ∈ {0, . . . , ℓ−1} and every clusterC ∈ Ci+1, the quotient graphG[C]/Ci[C] has diameter
at most 480(ln(2ℓn2/δ) + 1)2.

(Q3) For every path Q in G and i ∈ {0, . . . , ℓ− 1}, the expected number of edges of Q of level i is upper
bounded by 2−i · 8ℓ(ln(2ℓn2/δ) + 1) · length(Q).

12

The algorithm reports failure with probability at most δ.

The remainder of this section is devoted to the proof of Lemma 3.6.
The algorithm constructing the chain C0, C1, . . . , Cℓ is very simple. First, set Cℓ := V (G). Then,

iteratively for every i = ℓ− 1, . . . , 1, consider the graph G[C] for every part C ∈ Ci+1, and apply the
algorithm of Lemma 3.5 to G[C] with parameter

ri :=
2i−1

ln(2ℓn2/δ) + 1
.

Thus we obtain a partition Ci[C] of C , and we set Ci :=
⋃

C∈Ci+1
Ci[C].

Call the resulting sequence of partitions L := (C0, C1, . . . , Cℓ) good if the following conditions hold:
• For each i ∈ {0, . . . , ℓ} and C ∈ Ci, the graph G[C] has diameter at most 2i.
• For each i ∈ {0, . . . , ℓ − 1} and each cluster C ∈ Ci+1, the quotient graph G[C]/Ci[C] has
diameter at most 480(ln(2ℓn2/δ) + 1)2.

Note that if L is good, then it is a clustering chain. Indeed, then for every cluster C ∈ C0, G[C] has
diameter at most 1, so since distances in G are always strictly larger than 1, C cannot have more than
one vertex. All other properties of a clustering chain follow directly from the construction.

We now verify that L is good with high probability.

Claim 3.4. We have
P(L is not good) ⩽ δ.

Proof. Observe that L is good provided the in each application of the algorithm of Lemma 3.5, the
events described is properties (P2) and (P3) do not happen, where in both properties we set

t := ln(2ℓn/δ).

Indeed, when we apply the algorithm to G[C] for some cluster C ∈ Ci+1 (i ∈ {0, 1, . . . , ℓ− 1}), the
two events described in properties (P2) and (P3) can be rephrased as follows:

• Property (P2): There is a cluster C ′ ∈ Ci[C] such that G[C ′] has diameter larger than

2ri(t+ 1 + lnn) = 2i.

• Property (P3): The quotient graph G[C]/Ci[C] has diameter larger than

120 · D
ri

· (t+ 1 + lnn) = 120D · (ln(2ℓn
2/δ) + 1)2

2i−1
,

where D is the diameter of G[C]. Assuming that D ⩽ 2i+1 (which is implied by the event
from property (P2) not holding in the run of the algorithm that constructed C), the event above
contains the event that G[C]/Ci[C] has diameter larger than 480(ln(2ℓn2/δ) + 1)2.

By Lemma 3.5, each of the above events happens with probability at most e−t = δ
2ℓn . Since there are

at most 2ℓn events in question, by the union bound we conclude that C0, C1, . . . , Cℓ is not good with
probability at most δ.

Therefore, the algorithm can simply report failure if L is not good. So from now on we may assume
that L is good, and therefore a clustering chain. Properties (Q1) and (Q2) follow directly from the
goodness of L, so to finish the proof, it remains to show that L also satisfies property (Q3). We do this
in the next claim.

Claim 3.5. For every path Q in G and i ∈ {0, . . . , ℓ− 1}, the expected number of edges of Q of level i is
upper bounded by 2−i · 8ℓ(ln(2ℓn2/δ) + 1) · length(Q).

13

Proof. Removing edges of levels larger than i breaks Q into subpaths Q1, Q2, . . . , Qk , where each path
Qj is entirely contained in a single cluster of Ci+1. By property (P4) of Lemma 3.5, the expected number
of edges of level i on each path Qj , j ∈ {1, . . . , k} is upper bounded by

length(Qj)

ri
· 4ℓ = 2−i · 8ℓ(ln(2ℓn2/δ) + 1) · length(Qj).

By the linearity of expectation, the expected total number of edges of level i on Q is upper bounded by

2−i · 8ℓ(ln(2ℓn2/δ + 1) ·
k∑

j=1

length(Qj) ⩽ 2−i · 8ℓ(ln(2ℓn2/δ) + 1) · length(Q).

This completes the proof of Lemma 3.6.

4 Treewidth tools

In this section we prepare tools related to treewidth. We first give a combinatorial lemma about
apex-minor-free graphs that can be regarded as a variation on Lemma 2.1. Let us start with a definition.

For a connected unweighted graph G and integers a, b, c ⩾ 0, an (a, b, c)-contraction sequence
consists of

• a sequence of graphs G0, G1, . . . , Gb, and
• for every 1 ⩽ i ⩽ b, a collection of pairwise disjoint subgraphs H1

i , . . . ,H
ai
i of Gi−1,

such that the following conditions hold:
• G0 = G and Gb is a one-vertex graph.
• Each Hj

i is of radius at most c.
• Gi is obtained fromGi−1 by contracting each of the subgraphsHj

i , 1 ⩽ j ⩽ ai, to a single vertex.
• It holds that

∑b
i=1 ai ⩽ a.

With this definition in place, we can state and prove the promised lemma.

Lemma 4.1. For every apex graph K there exists a constant αK such that if a K-minor-free graph G
admits an (a, b, c)-contraction sequence for some integers a, b, c ⩾ 1, then the treewidth of G is bounded
by αKbc

√
a.

Proof. We let αK be the constant provided by Lemma 2.1.
For 1 ⩽ i ⩽ b and 1 ⩽ j ⩽ ai, let vji be a vertex of Hj

i such that all vertices of Hj
i are within

distance c from vji in Hj
i . When Hj

i is contracted onto a single vertex in the construction of Gi

from Gi−1, we imagine that Hj
i is contracted onto vji and we keep the name vji for the obtained vertex.

Thus, we have V (Gi) = {vji : 1 ⩽ i ⩽ ai}∪ (V (Gi−1)−
⋃ai

j=1 V (Hj
i)). In particular, V (Gi) ⊆ V (G)

for every 0 ⩽ i ⩽ b.
Let Z = {vji : 1 ⩽ i ⩽ b, 1 ⩽ j ⩽ ai}; thus Z is a subset of V (G) of size at most a. The crucial

observation is as follows: for every 1 ⩽ i ⩽ b and v ∈ V (Gi), we have

distGi(v, Z ∩ V (Gi)) ⩾ distGi−1(v, Z ∩ V (Gi−1))− c. (2)

Indeed, consider a shortest path Q connecting v with a vertex of Z ∩ V (Gi) in Gi. All vertices and
edges of Q, except for possibly the last edge and the endpoint z ∈ Z ∩ V (Gi), exist in Gi−1. Thus, Q
either is entirely contained in Gi−1, or it can be extended to a path from v to Z ∩ V (Gi−1) in Gi−1 by
appending a path of length at most c within the graph Hj

i to which z belongs. This proves (2).
As Gb consists of a single vertex, from (2) we obtain that every vertex of G0 = G is within distance

at most bc from a vertex of Z . As |Z| ⩽ a, the lemma follows from Lemma 2.1.

14

Next, we use Lemma 4.1 to prove a statement that is the cornerstone of our approach. Intuitively it
says that in a clustering chain of an edge-weighted apex-minor-free graph, one can find many disjoint
balanced separators consisting of clusters. Again, we need a few definitions.

For a (possibly edge-weighted) graph G, a cut is a family of pairwise disjoint vertex subsets of G,
each inducing a connected subgraph of G. For a cut A, let F (A) be the set of those edges e of G for
which there exists A ∈ A that contains exactly one endpoint of e. Note that since every part A ∈ A
induces a connected subgraph of G, G[A] is a connected component of G− F (A). We say that a cut A
is balanced if the vertex set of every component of G− F (A) is contained in A or consists of at most
|V (G)|/2 vertices. A pair of cuts A,A′ is non-conflicting if every set in A ∩A′ consists of one vertex.

Let L = (C0, C1, . . . , Ck) be a clustering chain of a connected graph G. We say that a cut A
respects L if A ⊆

⋃k
i=0 Ci; in other words, every part A ∈ A is a cluster belonging to one of partitions

C0, C1, . . . , Ck. A cut packing in L is a family of pairwise non-conflicting cuts that respect L.

Lemma 4.2. For every apex graphK there exists a constant γK > 0 such that the following holds. Let
G be a K-minor-free graph and let L = (C0, C1, . . . , Ck) be a clustering chain of G such that for every
i ∈ {0, 1, . . . , k − 1} and C ∈ Ci+1, the quotient graph G[C]/Ci[C] has radius at most c. Suppose F is a
cut packing in L such that every cut in F has size at most τ and

|F| ⩽ γK · τ

k2c2
.

Then there exists a balanced cut A respecting L and of size at most τ such that F ∪ {A} is also a cut
packing in L. Moreover, given G, L, and F , such a balanced cut A can be found in polynomial time.

Proof. Let Ĉ :=
⋃k

i=0 Ci; the elements of Ĉ will be called clusters. Call a cluster D ∈ Ĉ free if D consists
of one vertex or is not contained in any member of F . IfD is not free, it is called used. A free clusterD
is maximal if there is no cluster D′ ⊇ D that is free. Let D be the family consisting of all maximal free
clusters. Note that D is a partition of V (G). Let H = G/D. In other words, H is obtained from G by
contracting every maximal free cluster into a single vertex.

Let ξ := |F|. The crucial observation is as the following: H admits a (τξ, k, c)-contraction sequence.
Indeed, we can proceed through levels i = 1, 2, . . . , k, and upon considering level i, contract all used
clusters contained in Ci that have not been contracted so far. Since there are at most τξ used clusters in
total, and at every point we contract a graph of radius at most c (due to the assumption on the quotient
graphs appearing in the clustering chain L), this is a (τξ, k, c)-contraction sequence.

By Lemma 4.1, the treewidth ofH is bounded by αK ·
√
τξ · kc for a constant αK > 0 depending

only onK . Using the algorithm of Feige et al. [27, Theorem 6.4], in polynomial time we can compute a
tree decomposition (T, bag) of G where every bag has size at most βK ·

√
τξ · kc, where βK > 0 is

again a constant depending only onK .
We now use the following standard statement about tree decompositions, see e.g. [19, Lemma 7.19].

Claim 4.1. Suppose (T, bag) is a tree decomposition of a graphG and ω : V (G) → R⩾0 is a nonnegative
weight function on the vertices ofG. Then there exists a node x of T such that for every connected component
J of G− bag(x), we have ω(V (J)) ⩽ ω(V (G))/2.

Setting ω(D) := |D| for each D ∈ D, we find that there exists a node x of T such that every
connected component ofH−bag(x) consists of clusters of total size at most |V (G)|/2. Note that such a
node x can be found in polynomial time by examining the nodes of T one by one. Denote A := bag(x).

As A ⊆ V (H) = D ⊆ Ĉ, A is a cut that respects L. Since A consists only of free clusters, it is
also non-conflicting with every member of F . Therefore, F ∪ {A} is a cut packing in L. Further, the
property of A described in the previous paragraph ensures that A is balanced. Finally, observe that

|A| ⩽ βK ·
√
τξ · kc ⩽ βK√

γK
· τ.

Hence, if we set γK := β2K , then we have |A| ⩽ τ and A satisfies all the required properties.

15

5 Embedding

In this section we prove Theorem 1.1 for the case of apex-minor-free graphs. Let then G be the input
edge-weighted graph that isK-minor-free, whereK is a fixed apex graph. We may assume that G is
connected, for otherwise we treat every connected component of G separately. We may also assume
that for every uv ∈ E(G), we have length(uv) = distG(u, v). Let n be the vertex count of G and let ℓ̂
be the least integer such that the ratio of the sum of the weights of all edges of G to the smallest edge
weight of G is strictly less than 2ℓ̂. Note that ℓ̂ = OK(ℓ+ lnn) where ℓ is the logarithm of the stretch
of the metric of G. By rescaling, we assume that every distance in G is larger than one and the total
length of all edges of G is at most 2ℓ̂. We have that any simple path in G has length at most 2ℓ̂, hence,
in particular, any connected subgraph of G has diameter at most 2ℓ̂.

Let us also fix the accuracy parameter ε > 0 given on input.

Procedure embed. We first describe a recursive embedding procedure embed. The input to the
procedure is a connected induced subgraph G′ of G. The output is a metric embedding (H ′, η′) of G′

together with an elimination forest F ′ of H ′. Procedure embed(G′) proceeds as follows:
• If G′ has one vertex, return the trivial embedding: H ′ = G′ and η′ is the identity on V (G′).
• Otherwise, apply a subprocedure split(G′), which we will describe later. This procedure finds
a subset of edges F ⊆ E(G) (called cutedges) and a subset of vertices Z ⊆ V (G) (called portals).

• Let D be the set of connected components of the graph G′ − F . For every component D ∈ D,
recurse on D to obtain a metric embedding (HD, ηD) of D and an elimination forest FD of HD .

• Construct an embedding (H ′, η′) ofG′ as follows. First,H ′ is obtained by taking the disjoint union
of graphs {HD : D ∈ D} and adding, for every portal z ∈ Z , a copy z′ of z; this copy is made
adjacent to every vertex u of G′ by an edge of length distG(z, u). Next, we set η′ :=

⋃
D∈D ηD .

• Finally, construct an elimination forest F ′ of H ′ by first taking the disjoint union of forests
{FD : D ∈ D}, and then iteratively adding all vertices {z′ : z ∈ Z} in any order. Each time z′ is
added to F ′, we make it the new root and attach all former roots as children of z′.

A straightforward induction shows that procedure embed indeed outputs a metric embedding of the
graph provided on input. Hence, it remains to specify the procedure split. This will be done so that
the following two conditions are satisfied:

• The depth of the recursion tree of embed is bounded by ℓ̂ · ⌈log2 n⌉ = O((ℓ+ lnn) lnn).
• In every recursion call, split returns a portal set Z of size polynomial in ℓ̂, 1/ε, and lnn.

Thus, the depth of the eventually constructed elimination forest of G will be polynomial in ℓ̂, 1/ε, and
lnn, which will certify the treedepth of the target graph in the obtained metric embedding of G.

Procedure split. We now describe the procedure split. Recall that the input to this procedure is a
connected subgraph G′ of G, where we may assume that G′ has at least two vertices. It follows that D,
the diameter of G′, is strictly larger than 1. Let then ℓ′ ∈ {1, . . . , ℓ̂} be such that 2ℓ′−1 < D ⩽ 2ℓ

′ . We
call ℓ′ the level of the subgraph G′. Let

δ :=
ε

cℓ̂n ln2 n
, ξ := 64ℓ̂3⌈log2 n⌉

(
ln(2ℓ̂n2/δ) + 1

)
· (1/ε),

σ := 480(ln(2ℓ̂n2/δ) + 1)2, τ := (ξ + 1) · γK ℓ̂2σ2,

where c > 0 is a constant that will be determined later and γK is the constant provided by Lemma 4.2.
Note that

τ ∈ OK

(
ℓ̂5/ε · lnn · (lnn+ ln ℓ̂+ ln(1/ε))5

)
.

We apply the algorithm of Lemma 3.6 to G′ with parameter δ, thus obtaining a clustering chain
L = (C0, C1, . . . , Cℓ′) of G′. It may happen that this algorithm reports failure; this happens with
probability at most δ. In this case, we terminate the whole effort, and instead of trying to compute a
metric embedding of G ourselves, we apply the algorithm of Fakcharoenphol, Rao, and Talwar [26] that

16

finds an embedding of G into a tree (thus, a graph of treedepth O(lnn)) with expected multiplicative
distortion O(lnn). From now on, we suppose the algorithm of Lemma 3.6 succeeded in finding the
clustering chain L.

Note that by Lemma 3.6, property (Q2), for every i ∈ {0, . . . , ℓ′ − 1} and cluster C ∈ Ci+1, the
diameter of the quotient graph G[C]/Ci[C] is bounded by σ. So starting with F = ∅, we may apply the
algorithm of Lemma 4.2 repeatedly to find a cut packing F in L consisting of balanced cuts of size at
most τ so that

|F| ⩾ τ

γK ℓ̂2σ2
= ξ + 1.

Once F is constructed, we discard from F the cut {V (G′)}, if present; let F ′ be the obtained packing
of size at least ξ. Then we pick a cut A ∈ F ′ uniformly at random and define the output of split(G′)
as follows:

• as cutedges we set F := F (A); and
• as portals we set a set Z consisting of one vertex from each cluster A ∈ A, selected arbitrarily.

This concludes the description of procedure split.

Properties. We first observe that in procedure embed, at every recursion call we observe progress in
significantly reducing either the diameter or the vertex count.

Claim 5.1. Suppose a call embed(G′) invokes a subcall of embed(G′′), for some induced subgraph G′′

of G′. Then |V (G′′)| ⩽ |V (G′)|/2 or the level of G′′ is strictly smaller than the level of G′.

Proof. Let ℓ′ be the level of G′. Recall that procedure embed(G′) calls split(G′) to find suitable
cutedges F and portals Z to recurse. Let A be the cut used by split(G′) to find define F and Z .
Recall that A is balanced, which means that every connected component of G′ − F (A) that is not
a member of A has at most |V (G′)|/2 vertices. On the other hand, if L = (C0, C1, . . . , Cℓ′) is the
hierarchical clustering considered in procedure split(G′), then A ⊆ C0 ∪ C1 ∪ . . . ∪ Cℓ′−1, because
the cut Cℓ′ = {V (G′)} was explicitly excluded from sampling. Since every cluster within partitions
C0, C1, . . . , Cℓ′−1 induces a subgraph of has diameter at most 2ℓ′−1 (Lemma 3.6, property (Q1)), it follows
that for each A ∈ A, G[A] has level strictly smaller than ℓ′. The claim follows.

An immediate consequence of Claim 5.1 is the following.

Claim 5.2. The depth of the recursion tree of embed(G) is bounded by ℓ̂⌈log2 n⌉.

Proof. Consider any root-to-leaf path P in the recursion tree of embed(G). By Claim 5.1, we may color
every edge of P , say with parent call embed(G′) and child call embed(G′′), blue if |V (G′′)| ⩽ |V (G′)|/2
and red if the level ofG′′ is strictly smaller than the level ofG′. Clearly, P cannot contain more than ℓ̂ red
edges in a row, and there are no more edges on P after the ⌈log2 n⌉th blue edge. The claim follows.

Observe that every call of procedure split returns a portal set Z of size at most τ . Hence, from
Claim 5.2 it follows that if embed(G) returns a metric embedding (H, η) and an elimination forest F
of H , then the depth of F is bounded by

1 + τ ℓ̂⌈log2 n⌉ = OK

(
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5

)
.

Consequently, the above expression is also an upper bound on the treedepth of H , as desired.
It remains to bound the expected distortion.
Consider first the corner case when one of the calls of procedure split failed. Then we invoked

the algorithm of [26], which computed a metric embedding into a tree with expected multiplicative
distortion O(lnn). Every invocation of procedure split fails with probability at most δ, and by
Claim 5.2, the total number of calls to split is bounded by nℓ̂⌈log2 n⌉. Therefore, the total contribution
to the expected multiplicative distortion from this case is

δ · nℓ̂⌈log2 n⌉ · O(lnn),

17

which is upper bounded by ε/2 assuming we choose c large enough.
From now on we assume that all calls to split succeeded and our algorithm has indeed constructed

a metric embedding (H, η) of G. Fix a pair of vertices u1, u2 ∈ V (G) and let Q be a shortest path
connecting u1 and u2 in G. Note that within the recursion tree of embed(G), there exists a unique
call embed(G′) such that the whole path Q is contained in G′, but this cannot be said about any
call embed(G′′) invoked within embed(G′). This means that Q contains at least one of the cutedges
belonging to F (A), where A is the cut considered in the call split(G′). Equivalently, there exists a
cluster A ∈ A such that Q contains an edge with exactly one endpoint in A. Let z be the vertex of A
chosen to the portal set Z by split(G′), and let z′ ∈ V (H) be the copy of z created within embed(G′).
By triangle inequality, we have

distH(η(u1), η(u2)) ⩽ distH(η(u1), z
′) + distH(η(u2), z

′) = distG(u1, z) + distG(u2, z).

Since Q intersects A, say at vertex q, we have

distG(u1, z) ⩽ distG(u1, q) + distG(q, z) ⩽ distG(u1, q) +D,

where D is the diameter of G[A]. Similarly distG(u2, z) ⩽ distG(u2, q) +D, implying that

distH(η(u1), η(u2)) ⩽ distG(u1, z) + distG(u2, z) ⩽ distG(u1, q) + distG(u2, q) + 2D

= length(Q) + 2D = distG(u1, u2) + 2D.

For an index h ∈ {0, 1, . . . , ℓ̂⌈log2 n⌉ − 1}, we introduce a random variable Xh defined as follows:

• If at depth h of the recursion tree of embed(G) there is no call embed(G′) such that Q is entirely
contained in G′, then Xh = 0.

• Otherwise, consider the unique call embed(G′) at depth h such that Q is entirely contained in G′.
Then we let

Xh :=
∑
A∈A

2diam(G[A]) · |E(Q) ∩ F (A)|, (3)

whereA is the cut considered in procedure split(G′), F (A) is the set of edges with exactly one
endpoint in A, and diam(G[A]) is the diameter of G[A].

The reasoning of the previous paragraph together with Claim 5.2 proves that

distH(η(u1), η(u2)) ⩽ distG(u1, u2) +

ℓ̂⌈log2 n⌉−1∑
h=0

Xh.

Consider then a fixed h ∈ {0, 1, . . . , ℓ̂⌈log2 n⌉ − 1} such that there is a call embed(G′) at depth
h such that Q is entirely contained in G′. Recall that within split(G′) we constructed a clustering
chain L = (C0, C1, . . . , Cℓ′) and a cut packing F ′, and we sampled a balanced cut A from F ′. Since
members of F ′ are pairwise non-conflicting, for every fixed cluster C ∈

⋃ℓ′−1
i=1 Ci of positive diameter,

the probability that C belongs to A is upper bounded by 1
|F ′| ⩽ 1

ξ . Moreover, if C ∈ Ci, then the
diameter of G[A] is upper bounded by 2i (Lemma 3.6, property (Q1)). By property (Q3) of Lemma 3.6,

18

we infer the following:

EXh ⩽ E

⎛⎝ℓ′−1∑
i=1

∑
C∈Ci

|E(Q) ∩ F (C)| · [C ∈ A] · 2i+1

⎞⎠
⩽

1

ξ
·
ℓ′−1∑
i=1

2i+2 · E

⎛⎝ ∑
e∈E(Q)

[e is of level i in L]

⎞⎠
⩽

1

ξ
·
ℓ′−1∑
i=1

2i+2 · 2−i · 8ℓ̂(ln(2ℓ̂n2/δ) + 1) · length(Q)

⩽
1

ξ
· 32ℓ2(ln(2ℓ̂n2/δ) + 1) · length(Q)

=
ε

2ℓ̂⌈log2 n⌉
· length(Q).

By (3), we conclude that

E distH(η(u1), η(u2)) ⩽ (1 + ε/2)distG(u1, u2).

Taking into account the additional summand of (ε/2) ·distG(u1, u2) from the case when one of the calls
to split reports a failure, we conclude that the expected multiplicative distortion of the embedding is
(1 + ε), as desired. This concludes the proof of Theorem 1.1.

6 Extension to proper minor-closed graph classes

In this section we extend the main result to K-minor-free graphs for a fixed graph K that is not
necessarily an apex graph. The arguments of Section 4 crucially rely on the graph class excluding an
apex graph. Here, we desing a workaround using the structure theorem of Robertson and Seymour [50].

Tools from the graph minors theory. We need a bit more notation on tree decompositions. Let
(T, bag) be a tree decomposition of a graph G. For an edge st ∈ E(T), the adhesion of st, denoted
adh(st), equals bag(s) ∩ bag(t). For a vertex t ∈ V (T), the torso of t, denoted torso(t), is the graph
obtained from G[bag(t)] by turning the adhesion adh(st) into a clique, for every s ∈ NT (t). If G is an
edge-weighted graph, every new edge uv in adh(st) is assigned length equal to distG(u, v).

We need the following corollary of the structure theorem for graphs excluding a fixed minor.
Unfortunately, we did not find a similar form in the literature; we discuss how to obtain this corollary
from existing results in Appendix B.

Theorem 6.1. For every graphK0 there exists a constant capices, an apex graphK , and a polynomial-time
algorithm that, given a K0-minor-free graph G, computes a tree decomposition (T, bag) of G and for
every t ∈ V (T) a set apices(t) ⊆ bag(t) of size at most capices so that for every t ∈ V (T), the graph
torso(t)− apices(t) does not containK as a minor.

Note that in the decomposition (T, bag) returned by Theorem 6.1, every adhesion needs to be of
size strictly smaller than capices + |V (K)|: an adhesion is turned into a clique in the torso while the
clique number of torso(t)− apices(t) is strictly less than |V (K)| as this graph isK-minor-free.

We also need the following observation (proved formally in Appendix B).

Lemma 6.2. For every apex graphK there exists an apex graphK ′ such that if G isK-minor-free and
G′ is created from G by adding, for every nonempty clique A in G, a new vertex vA with neighborhood
NG′(vA) = A, then G′ isK ′-minor-free.

19

Initial steps. Armed with Theorem 6.1, we now describe modifications to the split procedure.
Recall that the input is an induced subgraph G′ of the input graph G that is connected and has at
least two vertices. We denote by D the diameter of G′ and by ℓ′ ∈ {1, . . . , ℓ̂} the least integer such
that D ⩽ 2ℓ

′ . Recall also that in G, we assume that for every uv ∈ E(G), the length of uv equals
distG(u, v).

Instead of applying Lemma 3.6 directly to G′, we proceed as follows. We apply the algorithm of
Theorem 6.1 to G′, obtaining a tree decomposition (T, bag) and subsets apices(t) for all t ∈ V (T). We
find a node t ∈ V (T) such that every connected component of G′ − bag(t) has at most |V (G′)|/2
vertices (see Claim 4.1). We denote G1 := G′ − apices(t) and G2 := torso(t)− apices(t). We designate
apices(t) as portals and delete them from G′; thus, we will focus on G1 and G2 in what follows.

Modifying the clustering step. We apply the clustering step (Lemma 3.6) to G1 with the following
modification: in the tie-breaking order ⪯, we put all vertices of V (G2) before the remaining vertices of
V (G1)− V (G2). In other words, when the algorithm chooses the next center of a cluster, we prefer a
center lying in bag(t)− apices(t). We obtain a clustering chain L1 = (C1

0 , C1
1 , . . . , C1

ℓ′).
Recall that in torso(t), each new edge put within an adhesion has length equal to the distance of

the endpoints in G′. Hence, both in G1 and G2 we have the property that the length of an edge equals
the distance between its endpoints. This implies that, for every cluster C in L, if C intersects V (G2),
then G2[C ∩ V (G2)] is a connected subgraph of G2 of diameter not larger than the diameter of G1[C].
Hence, we can obtain from L1 a clustering chain L2 = (C2

0 , . . . , C2
ℓ′) of G2 by restricting every cluster

C to C ∩ V (G2) and deleting clusters disjoint with V (G2). Observe that, because adhesions are turned
into cliques in the torso, for every 1 ⩽ i < ℓ′ and C ∈ C1

i+1 with C ∩ V (G2) ̸= ∅, the diameter of
G2[C ∩ V (G2)]/C2

i [C ∩ V (G2)] is not larger than the diameter of G1[C]/C1
i [C].

Furthemore, we make the following crucial observation: the obtained distribution of clustering
chain L2 of G2 is the same as if we just applied the algorithm of Lemma 3.6 directly to G2 without any
modifications (and with the same order ⪯, but restricted to the vertices of G2).

Obtaining a cut packing. Having obtained L1 and L2, we proceed as follows. Let G3 be an un-
weighted graph obtained from G2 by adding, for every s ∈ NT (t), a vertex vs adjacent to all vertices
of adh(st). Theorem 6.1 implies that G2 is K-minor-free for an apex graph K that depends only on
K0. Now, Lemma 6.2 implies that G3 isK ′-minor-free for another apex graphK ′ that depends only on
K . We extend L3 to a clustering chain of G3 by adding at every level singleton clusters ({vs})s∈NT (t),
except for the top level where we now have V (G3) as the only cluster. Note that the diameter of every
quotient graph discussed in property (Q2) increased by at most 2. This increase is neglible and will be
be promptly ignored in the argumentation to follow.

We use the graphG3 and the clustering chain L3 in the repeated application of Lemma 4.2 to obtain
a large cut packing F . We do one modification to the process: in the definition of a balanced separator,
we put weight 1 on every vertex of V (G2) but, for every s ∈ NT (t), the weight of vs is defined as |Vs|,
where Vs is the set of vertices of V (G1)− V (G2) that belong to any bag of the connected component
of T − {st} containing s. Hence, the total weight of all vertices of G3 is |V (G1)| and every A ∈ F has
the property that every connected component of G3 − F (A) is either an element of A or has weight at
most |V (G1)|/2.

To obtain F ′ from F , we not only discard the cut {V (G3)} if present, but also, for every A ∈ F ,
whenever A contains a cluster {vs} for some s ∈ NT (t), we replace it within A with single-vertex
clusters {{v} : v ∈ adh(st)}. Since we replace {vs}with single-vertex clusters, the members of the cut
packing F ′ are still pairwise non-conflicting. Since every adhesion is of size less than capices + |V (K)|,
we increase the size of every element of F ′ by at most a constant multiplicative factor. Since the weight
of every vs is at most |V (G1)|/2, every cut in F ′ is still balanced. We obtain that every cut A ∈ F ′

contains only clusters of L2.

20

Cutting. The cut packing F ′ in clustering chain L2 projects to a cut packing F1 in clustering chain
L1 as follows: for every A ∈ F ′ and C ∈ A, we put into A1 the unique inclusion-wise minimal cluster
C ′ appearing in L1 such that C ′ ∩ V (G2) = C , and F1 consists of all cuts A1 constructed in this
manner. Note that thus, if C is a single-vertex cluster, then C ′ = C .

We make two observations. First, it follows directly from the construction above and the fact
that the members of F ′ are pairwise non-conflicting that the members of F1 are also non-conflicting.
Second, thanks to the weights used in G3, the cuts in F1 are balanced in the usual way in the graph
G1: for every A1 ∈ F1, every component of G1 − F (A1) is either a member of A1 or contains at most
|V (G1)|/2 vertices. To see this, note that for every component D1 of G1 − F (A1) that is not member
of A1, if A is the member of F ′ corresponding to A1, then there is a componentD′ of G3 − F (A) that
is not a member ofA,D′ ∩ V (G2) = D1 ∩ V (G2), and for every s ∈ NT (t) we have thatD1 ∩ Vs ̸= ∅
implies vs ∈ D′. Then, |D1| is bounded by the weight ofD′, which in turn is bounded by |V (G1)|/2 as
every cut in F ′ is balanced.

Hence, we can proceed with G1 and F1 as in the original algorithm: choose A1 ∈ F1 at random
and cut along it.

Since we obtained a family of pairwise non-conflicting balanced cuts inG1 in the end, the analysis of
the depth of the recursion and the expected distortion is the same. The depth of the obtained elimination
forest of the host graph grew by a constant factor: we add a constant number of vertices of apices(t)
in the beginning and then, in the process of constructing F ′ from F , we may have increased the size
of cuts by a constant factor. This finishes the proof of the extension to K-minor-free graphs, for an
arbitrary fixed graphK .

7 Algorithmic applications

In this section, we present some algorithmic applications of our embedding in Theorem 1.1, specifically,
in solving the CVRP and capacitated clustering/facility location problems.

The algorithms for all of these problems follow the same framework. Suppose that we are given an
instance ΠG of a problem Π to solve on an input planar graph G, and OPTG be the optimal solution of
ΠG. We use |OPTG| to denote the value of OPTG. Our algorithm for solving ΠG has three steps.

• Step 1. Normalize the edge weights of G so that w(e) ∈ [1, nO(1)] for every edge e ∈ E(G).
Then embed G into a graph H of treewidth kH = polylog(n) by Theorem 1.1 via embedding η.

• Step 2. Let ΠH be the instance of problem Π to solve on graph H . We solve ΠH in H to get an
optimal solution OPTH of ΠH .

• Step 3. Lift OPTH to a solution ÔPTG of the problem ΠG in the input graph G.

We note that if we skip the normalization in Step 1, our algorithm will have a factor of 2poly(ℓ) in
the running time. We show in all of the problems we consider below, we can do the normalization step,
and the framework gives a (1 + ε) approximation algorithm.

Capacitated vehicle routing problem. Here we show the implementation of each step for the
CVRP. In Step 1, we first compute a constant approximation solution, denoted by A, for the CVRP
problem in polynomial time [35]. (Indeed, even any poly(n)-approximation suffices for our purpose.).
Then we round every edge of weight at most ε|A|/(αn3) to ε|A|/(αn3) for some big constant α, and
remove every edge of weight more than |A| out of the graph. Then scale every edge so that the minimum
weight edge is 1. The maximum weight edge will be O(n3/ε). In Step 2, we use the algorithm for small
treewidth graphs by Jayaprakash and Salavatipour [37]:

Theorem 7.1 (Jayaprakash and Salavatipour [37]). Given a parameter ε > 0 and graph G of treewidth
at most k, one can find a (1 + ϵ)-approximate solution for :

21

• the CVRP with unit demands in time nO(k2 log3 n/ε)

• the CVRP with splittable/unsplittable demands in time nO(k2 log2c+3 n/ε2) when the capacity of the
vehicle is Q = nO(logc n) for some constant c > 0.

Let OPTH be the (1 + ε)-approximate solution returned by the algorithm in Theorem 7.1. Then
in Step 3, we simply look at every two consecutive vertices û and v̂ on the same tour that correspond
to two vertices u and v in G, respectively, and replace the portion of the tour between û and v̂ by the
shortest path from u to v in G. Let ÔPTG be the obtained tour. We now show that:

E[|ÔPTG|] ⩽ (1 + 4ε)|OPTG| (4)
and by scaling ε, we get a (1 + ε) approximation.

First, observe that since each edge belongs to at most n tours, and it could appear at most n times
in a tour, the normalization in Step 1 introduces a total error of |E(G)|n2ε|A|/(αn3) = ε|OPTG| for a
sufficiently large constant α.

We abuse notation by usingOPTG to denote an optimal solution of the CVPR (with unit/splittable/unsplittable
demands) inG after the normalization step. Let ÔPTH be the solution of CVPR inH obtained by replac-
ing every edge (x, y) ∈ OPTG by a shortest path between η(x) and η(y) inH . Let αx,y be the number
of times edge (x, y) appears in all tours in OPTG. We have:

E[|ÔPTH |] =
∑

(x,y)∈OPTG

α(x,y)E[dH(η(x), η(y))]

⩽ (1 + ε)
∑

(x,y)∈OPTG

αx,ydG(x, y) = (1 + ε)|OPTG|
(5)

Since OPTH is a (1 + ε)-approximate solution of CVPR in H , |OPTH | ⩽ (1 + ε)|ÔPTH |. Thus,
Equation (5) gives E[|OPTH |] ⩽ (1 + ε)2|OPTG| ⩽ (1 + 3ε)|OPTG| when ε ⩽ 1. Then Equation (4)
follows from that |ÔPTG| ⩽ |OPTH | and that the normalization step introduce an error of ε|OPTG|.

To complete the proof of Corollary 1.2, it remains to analyze the running time. The embedding step
(Step 1) and the lifting step (Step 3) can both be done in polynomial time. The most expensive step is
the second step. The running time in Corollary 1.2 follows directly from Theorem 7.1 as the treewidth
k = poly(log n, 1/ε) by Theorem 1.1.

We remark that for the unsplittable/splittable versions of the CVRP, we also obtain QPTASes.
However, the capacity of the vehicle is now restricted to be Q = nlog

O(1)(n) due to the restriction in
Theorem 7.1. Removing this restriction is an interesting open problem for future work.

Capacitated k-median and capacitated/uncapacitated facility location. The algorithms for
these problems use the same framework we set up above. For the normalization step, we also use a
simple O(log n) approximation obtained via tree embedding [26]. For the dynamic programming step,
we can solve both problems in time nO(k) where k is the treewidth. One could improve this running
time to (log n/ε)O(k)nO(1) by discretizing the distances to be a power of (1 + ε) but this does not
change the final running time of our algorithm. The final running time of the algorithm is dominated
by the running time of the dynamic programming step, which is 2poly(1/ε,log(n)). The approximation
factor analysis is the same as the analysis of CVRP, implying Corollary 1.3 and Corollary 1.4.

Acknowledgements

Over the last few years, we have conducted various discussions on embeddings of planar graphs into
low treewidth metrics. We thank Christian Wulff-Nilsen for participating in some of them in the last
few months and asking tricky questions. Marcin and Michał would like to acknowledge discussions on
the topic with François Dross, when he was a postdoc in Warsaw around 2020, when in particular we
have understood the limitations of the current lower bound techniques and of the Talwar’s scheme.

22

References

[1] Ittai Abraham, Yair Bartal, and Ofer Neiman. Advances in metric embedding theory. In
Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on Theory of Com-
puting, Seattle, WA, USA, May 21-23, 2006, pages 271–286. ACM, 2006. Full text at https://
www.cs.bgu.ac.il/~neimano/j37.pdf. URL: https://doi.org/10.1145/
1132516.1132557, doi:10.1145/1132516.1132557.

[2] Ittai Abraham, Arnold Filtser, Anupam Gupta, and Ofer Neiman. Metric embedding via shortest
path decompositions. SIAM Journal on Computing, 51(2):290–314, 2022. URL: https://doi.
org/10.1137/19m1296021, doi:10.1137/19m1296021.

[3] Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. Cops, robbers, and
threatening skeletons: Padded decomposition for minor-free graphs. SIAM Journal on Computing,
48(3):1120–1145, January 2019. URL: https://doi.org/10.1137/17m1112406, doi:
10.1137/17m1112406.

[4] Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-theoretic game and its
application to the k-server problem. SIAM Journal on Computing, 24(1):78–100, 1995. doi:
10.1137/s0097539792224474.

[5] Sanjeev Arora. Nearly linear time approximation schemes for euclidean TSP and other geometric
problems. In 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach,
Florida, USA, October 19-22, 1997, pages 554–563. IEEE Computer Society, 1997. URL: https://
doi.org/10.1109/SFCS.1997.646145, doi:10.1109/SFCS.1997.646145.

[6] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for euclidean k-
medians and related problems. In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 106–113.
ACM, 1998. URL: https://doi.org/10.1145/276698.276718, doi:10.1145/
276698.276718.

[7] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In 37th
Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16
October, 1996, pages 184–193, 1996. URL: https://doi.org/10.1109/SFCS.1996.
548477.

[8] Yair Bartal. On approximating arbitrary metrices by tree metrics. In Proceedings of the Thirtieth
Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages
161–168, 1998. doi:10.1145/276698.276725.

[9] G. Borradaile, H. Le, and C. Wulff-Nilsen. Minor-free graphs have light spanners. In 2017 IEEE
58th Annual Symposium on Foundations of Computer Science, FOCS ’17, pages 767–778, 2017.
doi:10.1109/FOCS.2017.76.

[10] Douglas E. Carroll and Ashish Goel. Lower bounds for embedding into distributions over excluded
minor graph families. In Algorithms - ESA 2004, 12th Annual European Symposium, Bergen, Nor-
way, September 14-17, 2004, Proceedings, pages 146–156, 2004. URL: https://doi.org/10.
1007/978-3-540-30140-0_15, doi:10.1007/978-3-540-30140-0_15.

[11] Amit Chakrabarti, Alexander Jaffe, James R. Lee, and Justin Vincent. Embeddings of topological
graphs: Lossy invariants, linearization, and 2-sums. In The Proceedings of the 49th Annual IEEE
Symposium on Foundations of Computer Science, FOCS’ 08., 2008. URL: https://doi.org/
10.1109/focs.2008.79, doi:10.1109/focs.2008.79.

23

https://www.cs.bgu.ac.il/~neimano/j37.pdf
https://www.cs.bgu.ac.il/~neimano/j37.pdf
https://doi.org/10.1145/1132516.1132557
https://doi.org/10.1145/1132516.1132557
http://dx.doi.org/10.1145/1132516.1132557
https://doi.org/10.1137/19m1296021
https://doi.org/10.1137/19m1296021
http://dx.doi.org/10.1137/19m1296021
https://doi.org/10.1137/17m1112406
http://dx.doi.org/10.1137/17m1112406
http://dx.doi.org/10.1137/17m1112406
http://dx.doi.org/10.1137/s0097539792224474
http://dx.doi.org/10.1137/s0097539792224474
https://doi.org/10.1109/SFCS.1997.646145
https://doi.org/10.1109/SFCS.1997.646145
http://dx.doi.org/10.1109/SFCS.1997.646145
https://doi.org/10.1145/276698.276718
http://dx.doi.org/10.1145/276698.276718
http://dx.doi.org/10.1145/276698.276718
https://doi.org/10.1109/SFCS.1996.548477
https://doi.org/10.1109/SFCS.1996.548477
http://dx.doi.org/10.1145/276698.276725
http://dx.doi.org/10.1109/FOCS.2017.76
https://doi.org/10.1007/978-3-540-30140-0_15
https://doi.org/10.1007/978-3-540-30140-0_15
http://dx.doi.org/10.1007/978-3-540-30140-0_15
https://doi.org/10.1109/focs.2008.79
https://doi.org/10.1109/focs.2008.79
http://dx.doi.org/10.1109/focs.2008.79

[12] Vincent Cohen-Addad. Approximation schemes for capacitated clustering in doubling met-
rics. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2241–2259. SIAM, 2020.
URL: https://doi.org/10.1137/1.9781611975994.138, doi:10.1137/1.
9781611975994.138.

[13] Vincent Cohen-Addad. Bypassing the surface embedding: approximation schemes for network
design in minor-free graphs. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages
343–356. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520049, doi:
10.1145/3519935.3520049.

[14] Vincent Cohen-Addad, Andreas Emil Feldmann, andDavid Saulpic. Near-linear time approximation
schemes for clustering in doubling metrics. J. ACM, 68(6):44:1–44:34, 2021. URL: https://
doi.org/10.1145/3477541, doi:10.1145/3477541.

[15] Vincent Cohen-Addad, Arnold Filtser, Philip N. Klein, and Hung Le. On light spanners, low-
treewidth embeddings and efficient traversing inminor-free graphs. In 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages
589–600. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00061,
doi:10.1109/FOCS46700.2020.00061.

[16] Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approxima-
tion schemes for k-means and k-median in euclidean and minor-free metrics. SIAM J. Com-
put., 48(2):644–667, 2019. URL: https://doi.org/10.1137/17M112717X, doi:10.
1137/17M112717X.

[17] Vincent Cohen-Addad, Marcin Pilipczuk, and Michal Pilipczuk. Efficient approximation schemes
for uniform-cost clustering problems in planar graphs. In Michael A. Bender, Ola Svensson, and
Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019, September
9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 33:1–33:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.
ESA.2019.33, doi:10.4230/LIPIcs.ESA.2019.33.

[18] Vincent Cohen-Addad, Michal Pilipczuk, and Marcin Pilipczuk. A polynomial-time approximation
scheme for facility location on planar graphs. In David Zuckerman, editor, 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-
12, 2019, pages 560–581. IEEE Computer Society, 2019. URL: https://doi.org/10.1109/
FOCS.2019.00042, doi:10.1109/FOCS.2019.00042.

[19] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer,
2015. URL: https://doi.org/10.1007/978-3-319-21275-3, doi:10.1007/
978-3-319-21275-3.

[20] Aparna Das and Claire Mathieu. A quasi-polynomial time approximation scheme for euclidean
capacitated vehicle routing. In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages
390–403. SIAM, 2010. URL: https://doi.org/10.1137/1.9781611973075.33,
doi:10.1137/1.9781611973075.33.

[21] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans.
Algorithms, 1(1):33–47, 2005. URL: https://doi.org/10.1145/1077464.1077468,
doi:10.1145/1077464.1077468.

24

https://doi.org/10.1137/1.9781611975994.138
http://dx.doi.org/10.1137/1.9781611975994.138
http://dx.doi.org/10.1137/1.9781611975994.138
https://doi.org/10.1145/3519935.3520049
http://dx.doi.org/10.1145/3519935.3520049
http://dx.doi.org/10.1145/3519935.3520049
https://doi.org/10.1145/3477541
https://doi.org/10.1145/3477541
http://dx.doi.org/10.1145/3477541
https://doi.org/10.1109/FOCS46700.2020.00061
http://dx.doi.org/10.1109/FOCS46700.2020.00061
https://doi.org/10.1137/17M112717X
http://dx.doi.org/10.1137/17M112717X
http://dx.doi.org/10.1137/17M112717X
https://doi.org/10.4230/LIPIcs.ESA.2019.33
https://doi.org/10.4230/LIPIcs.ESA.2019.33
http://dx.doi.org/10.4230/LIPIcs.ESA.2019.33
https://doi.org/10.1109/FOCS.2019.00042
https://doi.org/10.1109/FOCS.2019.00042
http://dx.doi.org/10.1109/FOCS.2019.00042
https://doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/1.9781611973075.33
http://dx.doi.org/10.1137/1.9781611973075.33
https://doi.org/10.1145/1077464.1077468
http://dx.doi.org/10.1145/1077464.1077468

[22] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorithmic graph
minor theory: Decomposition, approximation, and coloring. In 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings,
pages 637–646. IEEE Computer Society, 2005. URL: https://doi.org/10.1109/SFCS.
2005.14, doi:10.1109/SFCS.2005.14.

[23] Reinhard Diestel, Ken-ichi Kawarabayashi, Theodor Müller, and Paul Wollan. On the excluded
minor structure theorem for graphs of large tree-width. J. Comb. Theory, Ser. B, 102(6):1189–
1210, 2012. URL: https://doi.org/10.1016/j.jctb.2012.07.001, doi:10.
1016/j.jctb.2012.07.001.

[24] David Eisenstat, Philip N. Klein, and Claire Mathieu. Approximating k-center in planar graphs.
In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’ 05.
Society for Industrial and Applied Mathematics. URL: https://doi.org/10.1137/1.
9781611973402.47, doi:10.1137/1.9781611973402.47.

[25] David Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27(3):275–
291, 2000. URL: https://doi.org/10.1007/s004530010020, doi:10.1007/
s004530010020.

[26] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004. URL: https://doi.org/
10.1016/j.jcss.2004.04.011, doi:10.1016/j.jcss.2004.04.011.

[27] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation algorithms
for minimum weight vertex separators. SIAM J. Comput., 38(2):629–657, 2008. URL: https:
//doi.org/10.1137/05064299X, doi:10.1137/05064299X.

[28] Arnold Filtser. A face cover perspective to ℓ1 embeddings of planar graphs. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1945–1954. 2020.
URL: https://doi.org/10.1137/1.9781611975994.120, doi:10.1137/1.
9781611975994.120.

[29] Arnold Filtser and Hung Le. Low treewidth embeddings of planar and minor-free met-
rics. In Proceedings of the 63rd Annual Symposium on Foundations of Computer Science, FOCS’
22, 2022. URL: https://doi.org/10.1109/focs54457.2022.00105, doi:10.
1109/focs54457.2022.00105.

[30] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Contraction obstructions for
treewidth. J. Comb. Theory, Ser. B, 101(5):302–314, 2011. URL: https://doi.org/10.
1016/j.jctb.2011.02.008, doi:10.1016/j.jctb.2011.02.008.

[31] E. Fox-Epstein, P. N. Klein, and A. Schild. Embedding planar graphs into low-treewidth graphs
with applications to efficient approximation schemes for metric problems. In Proceedings of the
30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ‘19, page 1069–1088, 2019.
doi:10.1137/1.9781611975482.66.

[32] Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields a
PTAS for k-means in doubling metrics. SIAM J. Comput., 48(2):452–480, 2019. URL: https:
//doi.org/10.1137/17M1127181, doi:10.1137/17M1127181.

[33] Michelangelo Grigni. Approximate TSP in graphs with forbidden minors. In Automata,
Languages and Programming, 27th International Colloquium, ICALP 2000, Geneva, Switzerland,
July 9-15, 2000, Proceedings, pages 869–877, 2000. URL: https://doi.org/10.1007/
3-540-45022-X_73, doi:10.1007/3-540-45022-X_73.

25

https://doi.org/10.1109/SFCS.2005.14
https://doi.org/10.1109/SFCS.2005.14
http://dx.doi.org/10.1109/SFCS.2005.14
https://doi.org/10.1016/j.jctb.2012.07.001
http://dx.doi.org/10.1016/j.jctb.2012.07.001
http://dx.doi.org/10.1016/j.jctb.2012.07.001
https://doi.org/10.1137/1.9781611973402.47
https://doi.org/10.1137/1.9781611973402.47
http://dx.doi.org/10.1137/1.9781611973402.47
https://doi.org/10.1007/s004530010020
http://dx.doi.org/10.1007/s004530010020
http://dx.doi.org/10.1007/s004530010020
https://doi.org/10.1016/j.jcss.2004.04.011
https://doi.org/10.1016/j.jcss.2004.04.011
http://dx.doi.org/10.1016/j.jcss.2004.04.011
https://doi.org/10.1137/05064299X
https://doi.org/10.1137/05064299X
http://dx.doi.org/10.1137/05064299X
https://doi.org/10.1137/1.9781611975994.120
http://dx.doi.org/10.1137/1.9781611975994.120
http://dx.doi.org/10.1137/1.9781611975994.120
https://doi.org/10.1109/focs54457.2022.00105
http://dx.doi.org/10.1109/focs54457.2022.00105
http://dx.doi.org/10.1109/focs54457.2022.00105
https://doi.org/10.1016/j.jctb.2011.02.008
https://doi.org/10.1016/j.jctb.2011.02.008
http://dx.doi.org/10.1016/j.jctb.2011.02.008
http://dx.doi.org/10.1137/1.9781611975482.66
https://doi.org/10.1137/17M1127181
https://doi.org/10.1137/17M1127181
http://dx.doi.org/10.1137/17M1127181
https://doi.org/10.1007/3-540-45022-X_73
https://doi.org/10.1007/3-540-45022-X_73
http://dx.doi.org/10.1007/3-540-45022-X_73

[34] AnupamGupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. Cuts, trees and ℓ1-embeddings
of graphs. Combinatorica, 24(2):233–269, 2004. URL: https://doi.org/10.1007/
s00493-004-0015-x, doi:10.1007/s00493-004-0015-x.

[35] M. Haimovich and A. H. G. Rinnooy Kan. Bounds and heuristics for capacitated routing prob-
lems. Mathematics of Operations Research, 10(4):527–542, 1985. URL: https://doi.org/10.
1287/moor.10.4.527, doi:10.1287/moor.10.4.527.

[36] Aditya Jayaprakash and Mohammad R. Salavatipour. Approximation schemes for capacitated
vehicle routing on graphs of bounded treewidth, bounded doubling, or highway dimension.
ACM Trans. Algorithms, 19(2), mar 2023. URL: https://doi.org/10.1145/3582500,
doi:10.1145/3582500.

[37] Aditya Jayaprakash and Mohammad R. Salavatipour. Approximation schemes for capacitated
vehicle routing on graphs of bounded treewidth, bounded doubling, or highway dimension.
ACM Transactions on Algorithms, 19(2):1–36, 2023. URL: https://doi.org/10.1145/
3582500, doi:10.1145/3582500.

[38] Ken-ichi Kawarabayashi and Paul Wollan. A simpler algorithm and shorter proof for the graph
minor decomposition. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
451–458. ACM, 2011. URL: https://doi.org/10.1145/1993636.1993697, doi:
10.1145/1993636.1993697.

[39] Philip Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition,
and multicommodity flow. In Proceedings of the 25th annual ACM symposium on Theory of
Computing, STOC’ 93, 1993. URL: https://doi.org/10.1145/167088.167261,
doi:10.1145/167088.167261.

[40] Stavros G. Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for
the euclidean k-median problem. SIAM Journal on Computing, 37(3):757–782, 2007. URL:
https://doi.org/10.1137/S0097539702404055, arXiv:https://doi.
org/10.1137/S0097539702404055, doi:10.1137/S0097539702404055.

[41] Robert Krauthgamer, James R. Lee, Manor Mendel, and Assaf Naor. Measured descent: a
new embedding method for finite metrics. Geometric and Functional Analysis, 15(4):839–
858, 2005. URL: http://dx.doi.org/10.1007/s00039-005-0527-6, doi:10.
1007/s00039-005-0527-6.

[42] Robert Krauthgamer, James R. Lee, and Havana (Inbal) Rika. Flow-cut gaps and face covers in pla-
nar graphs. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 525–534. 2019. URL: https://doi.org/10.1137/1.9781611975482.33,
doi:10.1137/1.9781611975482.33.

[43] Nikhil Kumar. An approximate generalization of the okamura-seymour theorem. In Pro-
ceedings of the 63rd Annual Symposium on Foundations of Computer Science, FOCS’ 22, Oc-
tober 2022. URL: https://doi.org/10.1109/focs54457.2022.00106, doi:
10.1109/focs54457.2022.00106.

[44] Hung Le. A PTAS for subset TSP in minor-free graphs. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
2279–2298, 2020. Full version: arxiv:1804.01588. URL: https://doi.org/10.1137/1.
9781611975994.140, doi:10.1137/1.9781611975994.140.

26

https://doi.org/10.1007/s00493-004-0015-x
https://doi.org/10.1007/s00493-004-0015-x
http://dx.doi.org/10.1007/s00493-004-0015-x
https://doi.org/10.1287/moor.10.4.527
https://doi.org/10.1287/moor.10.4.527
http://dx.doi.org/10.1287/moor.10.4.527
https://doi.org/10.1145/3582500
http://dx.doi.org/10.1145/3582500
https://doi.org/10.1145/3582500
https://doi.org/10.1145/3582500
http://dx.doi.org/10.1145/3582500
https://doi.org/10.1145/1993636.1993697
http://dx.doi.org/10.1145/1993636.1993697
http://dx.doi.org/10.1145/1993636.1993697
https://doi.org/10.1145/167088.167261
http://dx.doi.org/10.1145/167088.167261
https://doi.org/10.1137/S0097539702404055
http://arxiv.org/abs/https://doi.org/10.1137/S0097539702404055
http://arxiv.org/abs/https://doi.org/10.1137/S0097539702404055
http://dx.doi.org/10.1137/S0097539702404055
http://dx.doi.org/10.1007/s00039-005-0527-6
http://dx.doi.org/10.1007/s00039-005-0527-6
http://dx.doi.org/10.1007/s00039-005-0527-6
https://doi.org/10.1137/1.9781611975482.33
http://dx.doi.org/10.1137/1.9781611975482.33
https://doi.org/10.1109/focs54457.2022.00106
http://dx.doi.org/10.1109/focs54457.2022.00106
http://dx.doi.org/10.1109/focs54457.2022.00106
https://arxiv.org/abs/1804.01588
https://doi.org/10.1137/1.9781611975994.140
https://doi.org/10.1137/1.9781611975994.140
http://dx.doi.org/10.1137/1.9781611975994.140

[45] James R. Lee and Anastasios Sidiropoulos. On the geometry of graphs with a forbidden
minor. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC’
09, 2009. URL: https://doi.org/10.1145/1536414.1536450, doi:10.1145/
1536414.1536450.

[46] James R. Lee and Anastasios Sidiropoulos. Pathwidth, trees, and random embeddings. Combinator-
ica, 33(3):349–374, 2013. URL: https://doi.org/10.1007/s00493-013-2685-8,
doi:10.1007/s00493-013-2685-8.

[47] Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity — Graphs, Structures, and Algorithms,
volume 28 of Algorithms and combinatorics. Springer, 2012.

[48] Ilan Newman and Yuri Rabinovich. A lower bound on the distortion of embedding
planar metrics into euclidean space. Discrete and Computational Geometry, 29(1):77–81,
2002. URL: https://doi.org/10.1007/s00454-002-2813-5, doi:10.1007/
s00454-002-2813-5.

[49] Satish Rao. Small distortion and volume preserving embeddings for planar and euclidean metrics.
In Proceedings of the 15th Annual Symposium on Computational Geometry, 1999. URL: https:
//doi.org/10.1145/304893.304983, doi:10.1145/304893.304983.

[50] Neil Robertson and Paul D. Seymour. Graph Minors XVI. Excluding a non-planar graph. J. Comb.
Theory, Ser. B, 89(1):43–76, 2003.

[51] Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004,
pages 281–290, 2004. URL: https://doi.org/10.1145/1007352.1007399, doi:
10.1145/1007352.1007399.

A Omitted proofs of tools from probability theory

A.1 Proof of Lemma 3.2

For everyXi, define a random variableX ′
i ∈ {1,−1} such that P(X ′

i = 1) = 1
8 ,X

′
i ⩾ Xi almost surely,

and X ′
1, X

′
2, . . . are independent. Then, for every i,

∑i
j=1Xj ⩽

∑i
j=1X

′
j so, for a variable Z ′ defined

analogously forX ′
1, X

′
2, . . ., we have Z ′ ⩾ Z almost surely. Thus, it suffices to prove the lemma for the

sequenceX ′
1, X

′
2, . . . and the variable Z ′. By slightly abusing the notation, we renameX ′

i toXi and Z ′

to Z , that is, we assume P(Xi = 1) = 1
8 for every i ⩾ 1.

Let Y =
∑2k

j=1Xj . Then the condition k + Y ⩾ 0 is equivalent to the following condition: for at
least k

2 indices i ∈ {1, . . . , 2k} we have Xi = 1. Since the expected number of such indices is k
4 , by

Theorem 3.1 applied for δ = 1, we have

P (k + Y ⩾ 0) ⩽ exp

(
− k

12

)
.

As the event “k + Y ⩾ 0” contains the event “Z > 2k”, the proof is finished.

A.2 Proof of Lemma 3.4

Fix measurable sets S1, S2, . . . , Sn ⊆ R⩾0 and for 1 ⩽ j ⩽ n, let pj be the probability that a random
variable with distribution Exp(1) has its value in Sj . To prove the lemma, it suffices to show that

P (Y1 ∈ S1 ∧ . . . ∧ Yn ∈ Sn) =
n∏

j=1

pj . (6)

27

https://doi.org/10.1145/1536414.1536450
http://dx.doi.org/10.1145/1536414.1536450
http://dx.doi.org/10.1145/1536414.1536450
https://doi.org/10.1007/s00493-013-2685-8
http://dx.doi.org/10.1007/s00493-013-2685-8
https://doi.org/10.1007/s00454-002-2813-5
http://dx.doi.org/10.1007/s00454-002-2813-5
http://dx.doi.org/10.1007/s00454-002-2813-5
https://doi.org/10.1145/304893.304983
https://doi.org/10.1145/304893.304983
http://dx.doi.org/10.1145/304893.304983
https://doi.org/10.1145/1007352.1007399
http://dx.doi.org/10.1145/1007352.1007399
http://dx.doi.org/10.1145/1007352.1007399

We will need the following computation. Fix 1 ⩽ a ⩽ 2n, 1 ⩽ j ⩽ n, and x1, x2, . . . , xa−1 ∈ R⩾0.

2n∑
b=a+1

∫ fa+1(x1,...,xa)

0
e−xa+1dxa+1 . . .

∫ fb−1(x1,...,xb−2)

0
e−xb−1dxb−1∫ +∞

fb(x1,...,xb−1)
e−xb [xb − fb(x1, . . . , xb−1) ∈ Sj]dxb

=

2n∑
b=a+1

∫ fa+1(x1,...,xa)

0
e−xa+1dxa+1 . . .

∫ fb−1(x1,...,xb−2)

0
e−xb−1dxb−1

e−fb(x1,...,xb−1)

∫ +∞

0
e−y[y ∈ Sj]dy

=
2n∑

b=a+1

∫ fa+1(x1,...,xa)

0
e−xa+1dxa+1 . . .

∫ fb−1(x1,...,xb−2)

0
e−xb−1dxb−1

e−fb(x1,...,xb−1)pj

= pj

(
e−fa+1(x1,...,xa) +

∫ fa+1(x1,...,xa)

0
e−xa+1dxa+1(

e−fa+2(x1,...,xa+1) +

∫ fa+2(x1,...,xa+1)

0
e−xa+2dxa+2

. . .(
e−f2n−1(x1,...,x2n−2) +

∫ f2n−1(x1,...,x2n−2)

0
e−x2n−1dx2n−1

e−f2n(x1,...,x2n−1)
))

. . .
)

= pj

(
e−fa+1(x1,...,xa) +

∫ fa+1(x1,...,xa)

0
e−xa+1dxa+1(

e−fa+2(x1,...,xa+1) +

∫ fa+2(x1,...,xa+1)

0
e−xa+2dxa+2

. . .(
e−f2n−1(x1,...,x2n−2) +

∫ f2n−1(x1,...,x2n−2)

0
e−x2n−1dx2n−1

))
. . .

)
= pj

(
e−fa+1(x1,...,xa) +

∫ fa+1(x1,...,xa)

0
e−xa+1dxa+1(

e−fa+2(x1,...,xa+1) +

∫ fa+2(x1,...,xa+1)

0
e−xa+2dxa+2

. . .(
e−f2n−2(x1,...,x2n−3) +

∫ f2n−2(x1,...,x2n−3)

0
e−x2n−2dx2n−2

))
. . .

)
= . . . = pj . (7)

Here, we first used that f2n ≡ 0 so
e−f2n(x1,...,x2n−1) = 1.

Then, for i = 2n− 1, 2n− 2, . . . we used

e−fi(x1,...,xi−1) +

∫ fi(x1,...,xi−1)

0
e−xidxi = e−fi(x1,...,xi−1) + 1− e−fi(x1,...,xi−1) = 1.

28

We expand the left hand side of (6), conditioning on the values of I1, . . . , In, and then use repeat-
edly (7) for a = in−1, in−2, . . . , i1, 1.

P
(
∀nj=1Yj ∈ Sj

)
=

∑
1⩽i1<i2<...in⩽2n

P
(
∀nj=1Ij = ij ∧Xij − fij (X1, . . .) ∈ Sj

)
=

2n∑
i1=1

∫ f1

0
e−x1dx1

∫ f2(x1)

0
e−x2dx2 . . .

∫ fi1−1(x1,...,xi1−2)

0
e−xi1−1dxi1−1∫ +∞

fi1 (x1,...,xi1−1)
e−xi1 [xi1 − fi1(x1, . . . , xi1−1) ∈ S1]dxi1

2n∑
i2=i1+1

∫ fi1+1(x1,...,xi1
)

0
e−xi1+1dxi1+1 . . .

∫ fi2−1(x1,...,xi2−2)

0
e−xi2−1dxi2−1∫ +∞

fi2 (x1,...,xi2−1)
e−xi2 [xi2 − fi2(x1, . . . , xi2−1) ∈ S2]dxi2

. . .

2n∑
in=in−1+1

∫ fin−1+1(x1,...,xin−1
)

0
e−xin−1+1dxin−1+1 . . .

∫ fin−1(x1,...,xin−2)

0
e−xin−1dxin−1∫ +∞

fin (x1,...,xin−1)
e−xin [xin − fin(x1, . . . , xin−1) ∈ Sn]dxin

= pn

2n∑
i1=1

∫ f1

0
e−x1dx1

∫ f2(x1)

0
e−x2dx2 . . .

∫ fi1−1(x1,...,xi1−2)

0
e−xi1−1dxi1−1∫ +∞

fi1 (x1,...,xi1−1)
e−xi1 [xi1 − fi1(x1, . . . , xi1−1) ∈ S1]dxi1

2n∑
i2=i1+1

∫ fi1+1(x1,...,xi1
)

0
e−xi1+1dxi1+1 . . .

∫ fi2−1(x1,...,xi2−2)

0
e−xi2−1dxi2−1∫ +∞

fi2 (x1,...,xi2−1)
e−xi2 [xi2 − fi2(x1, . . . , xi2−1) ∈ S2]dxi2

. . .

2n∑
in−1=in−2+1

∫ fin−2+1(x1,...,xin−2
)

0
e−xin−2+1dxin−2+1 . . .

∫ fin−1−1(x1,...,xin−1−2)

0
e−xin−1−1dxin−1−1∫ +∞

fin−1
(x1,...,xin−1−1)

e−xin−1 [xin−1 − fin−1(x1, . . . , xin−1−1) ∈ Sn−1]dxin−1

= . . . =

n∏
j=1

pj .

This finishes the proof.

B Omitted proofs on graphs with an excluded minor

B.1 Proof of Theorem 6.1

In this section we sketch how to derive Theorem 6.1 from known results. We assume that the reader is
familiar with the notions of vortices and of near-embeddings and the structure theorem of Robertson
and Seymour [50]. In what follows, we will use the notation of Diestel et al. [23].

29

The crux lies in the following observation.

Lemma B.1. For every surface Σ and constants a, b there exists an apex graphK such that every graph
nearly-embeddable on Σ with at most a vortices of depth at most b each (and with no apices) does not
contain the graphK as a minor.

Proof. For an integer t, letWt be the t× t grid and let Ŵt be the graphWt with an additional vertex
added and made adjacent to all vertices of the grid. We will prove that for some t, depending on Σ, a,
and b only, Ŵt cannot be a minor of a graph G that is nearly-embedded as in the lemma statement.

Let G be a graph with a near embedding as in the lemma statement and assume there is a minor
model of Ŵt in G for large t. We focus on the gridWt part of Ŵt for a moment. It follows from [23,
Lemma 22] that there is a large subgrid Wt′ of Wt whose minor model is disjoint with vortices in
the following sense: for every vertex of the subgrid Wt′ , its branch set in the minor model of Wt′

is a subgraph of its branch set in the minor model of Wt and is vertex-disjoint with vortices of the
near-embedding. By possibly enlarging the branch set of the apex vertex of Ŵt, we obtain a minor
model of Ŵt′ in G such that the branch sets of the grid part are vertex-disjoint with vortices.

If we now contract every vortex of G into a single vertex, we obtain a graph embedded in Σ (in the
classic sense). The minor model of Ŵt′ in G projects to a minor model of Ŵt′ in the obtained graph.
However, as the Euler genus of Ŵs grows with s to infinity, this implies that t′ is bounded by a function
of Σ, which in turn implies that t is bounded as a function of Σ, a, and b. This finishes the proof.

Theorem 6.1 now follows from the structure theorem of Robertson and Seymour [50] (with its
algorithmic versions of [22, 38]) where in every bag we designate the apices of the near-embedding as
the set apices(t).

B.2 Proof of Lemma 6.2

Let G be the class ofK-minor-free graphs. Let G′ be the class of graphs that can be constructed from a
member G ∈ G by adding, for some cliques in G, a new vertex adjacent to the clique. We observe that
G′ is contraction-closed. Hence, the class G′′ defined as all subgraphs of graphs in G′ is minor-closed.

Recall that a graph classH has locally bounded treewidth if there exists a function f such that for
every H ∈ H, v ∈ V (H), and integer r ⩾ 0, the treewidth of the subgraph induced by the radius-r
ball around v in H is bounded by f(r). Eppstein [25] showed that for minor-closed graph classes, the
property of having locally bounded treewidth is equivalent to excluding some apex graph as a minor.

Hence, G has locally bounded treewidth, say with a function f . Then, G′ has locally bounded
treewidth with the function f ′(r) := f(r) + 1. Note that for every G′ ∈ G′, r ⩾ 0, subgraph G′′ of G′,
and a vertex v ∈ V (G′′), the ball of radius r centered at v in G′′ is a subgraph of the ball of radius r
centered at v in G′. Hence, G′′ has locally bounded treewidth with the same function f ′. Consequently,
as G′′ is minor-closed, it excludes some apex graph by [25]. This concludes the proof.

30

	Introduction
	Preliminaries
	Partitioning tools
	Probabilistic preliminaries
	A single level
	Hierarchical decomposition

	Treewidth tools
	Embedding
	Extension to proper minor-closed graph classes
	Algorithmic applications
	Omitted proofs of tools from probability theory
	Proof of Lemma ??
	Proof of Lemma ??

	Omitted proofs on graphs with an excluded minor
	Proof of Theorem ??
	Proof of Lemma ??

