
Formal Methods in Computer-Aided Design 2022

Synthesizing Transducers from Complex

Specifications

Anvay Grover

The University of Wisconsin-Madison

Madison, USA

anvayg@cs.wisc.edu

Ruediger Ehlers

Clausthal University of Technology

Clausthal, Germany

ruediger.ehlers@tu-clausthal.de

Loris D’Antoni

The University of Wisconsin-Madison

Madison, USA

loris@cs.wisc.edu

AbstractÐAutomating string transformations has been a driv-
ing application of program synthesis. Existing synthesizers that
solve this problem produce programs in domain-specific lan-
guages (DSL) that are designed to simplify synthesis and therefore
lack nice formal properties. This limitation prevents the synthe-
sized programs from being used in verification applications (e.g.,
to check complex pre-post conditions) and makes the synthesizers
hard to modify due to their reliance on the given DSL.

We present a constraint-based approach to synthesizing trans-
ducers, a model with strong closure and decidability properties.
Our approach handles three types of specifications: input-output
(i) examples, (ii) types expressed as regular languages, and
(iii) distances that bound how many characters the transducer
can modify when processing an input string. Our work is the first
to support such complex specifications and it does so by using
the algorithmic properties of transducers to generate constraints
that can be solved using off-the-shelf SMT solvers. Our synthesis
approach can be extended to many transducer models and it can
be used, thanks to closure properties of transducers, to compute
repairs for partially correct transducers.

I. INTRODUCTION

String transformations are used in data transformations [1],

sanitization of untrusted inputs [2], [3], and many other

domains [4]. Because in these domains bugs may cause serious

security vulnerabilities [2], there has been increased interest

in building tools that can help programmers verify [2], [3] and

synthesize [1], [5], [6] string transformations.

Techniques for verifying string transformations rely on

automata-theoretic approaches that provide powerful decid-

ability properties [2]. On the other hand, techniques for

synthesizing string transformations rely on domain-specific

languages (DSLs) [1], [5]. These DSLs are designed to make

synthesis practical and have to give up the closure and

decidability properties enabled by automata-theoretic models.

The disconnect between the two approaches raises a natural

question: Can one synthesize automata-based models and

therefore retain and leverage their elegant properties?

A finite state transducer (FT) is an automaton where each

transition reads an input character and outputs a string of

output characters. For instance, Figure 1 shows a transducer

that ‘escapes’ instances of the " character. So, on input

a"\"a, the transducer outputs the string a\"\\"a. FTs have

found wide adoption in a variety of domains [3], [7] because

of their many desirable properties (e.g., decidable equivalence

check and closure under composition [8]). There has been

q0start q1

a → a

" → \"

\ → \

a → a

" → "

\ → \

(a) Transducer EscapeQuotes

Examples: {a"a ↦→ a\"a, a\\a ↦→ a\\a, a\a ↦→ a\a, a\"a ↦→ a\"a, \ ↦→
\}

Types: [a"]∗

\?|([a"]
∗

\[a"\][a"]
∗

)
∗ → a

∗

\?|(a
∗

\[a"\]a
∗

)
∗

Distance: At most 1 edit per input character

(b) Specification to synthesize EscapeQuotes

Fig. 1: Simplified version of EscapeQuotes from [2].

increasing work on building SMT solvers for strings that

support transducers; the Ostrich tool [9] allows a user to write

programs in SMT where string-transformations are modelled

using transducers. One can then write constraints over such

programs and use an SMT solver to automatically check for

satisfiability or prove unsatisfiability of those constraints. For

example, given a program like the following:

y = escapeQuotes(x)

z = escapeQuotes(y)

assert(y==z) //Checking idempotence

one can use Ostrich to write a set of constraints and use them

to prove whether the assertion holds. However, to do so, one

needs to first write a transducer T that implements the function

escapeQuotes. However, writing transducers by hand is a

cumbersome and error-prone task and what we present in this

paper is an approach for synthesizing such transducers.

In this paper, we present a technique for synthesizing

transducers from high-level specifications. We use three dif-

ferent specification mechanisms to quickly yield desirable

transducers: input-output examples, input-output types, and

input-output distances. When provided with the specification

in Figure 1b, our approach yields the transducer in Figure 1.

While none of the three specification mechanisms are effective

in isolation, they work well altogether. Input-output examples

are easy to provide, but only capture finitely many inputs.

Similarly, input-output types are a natural way to prevent a

transducer from generating undesired strings and can often be

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_36
This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_36
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_36
https://creativecommons.org/licenses/by/4.0/


obtained from function/API specifications. Last, input-output

distances are a natural way to specify how much of the input

string should be preserved by the transformation.

We show that if the size of the transducers is fixed, all such

specifications can be encoded as a set of constraints whose

solution directly provides a transducer. While the constraints

for examples are fairly straightforward, to encode types and

distances, we show that one can use constraints to ªguessº

the simulation relation and the invariants necessary to prove

that the transducer has the given type and respects the given

distance constraint.

Because our constraint-based approach is based on decision

procedures and is modular, it can support more complex

models of transducers: (i) Symbolic Finite Transducers (s-

FTs), which support large alphabets [10], and (ii) FTs with

lookahead, which can express functions that otherwise require

non-determinism. In addition, closure properties of transducers

allow us to reduce repair problems for string transformations

to our synthesis problem.

Contributions: We make the following contributions.

• A constraint-based synthesis algorithm for synthesizing

transducers from complex specifications (Sec. III).

• Extensions of our synthesis algorithm to more complex

modelsÐe.g., symbolic transducers and transducers with

lookaheadÐand problemsÐe.g., transducer repairÐthat

showcase the flexibility of our approach and the power of

working with transducers, which enjoy strong theoretical

propertiesÐunlike domain-specific languages (Sec. IV).

• ASTRA: a tool that can synthesize and repair transducers

and compares well with a state-of-the-art tool for synthe-

sizing string transformations (Sec. V).

Proofs and additional results are available at [11].

II. TRANSDUCER SYNTHESIS PROBLEM

In this section, we define the transducer synthesis problem.

A deterministic finite automaton (DFA) over an alphabet Σ
is a tuple D = (QD, δD, q

init

D , FD): QD is the set of states,

δD : QD × Σ → QD is the transition function, qinitD is the

initial state, and FD is the set of final states. The extended

transition function δ∗D : QD × Σ∗ → QD is defined as

δ∗D(q, ε) = q and δ∗D(q, au) = δ∗D(δD(q, a), u). We say that D
accepts a string w if δ∗D(q

init

D , w) ∈ FD. The regular language

L(D) is the set of strings accepted by a DFA D.

A total finite state transducer (FT) is a tuple T =
(QT , δ

st

T , δ
out

T , qinitT ), where QT are states and qinitT is the

initial state. Transducers have two transition functions: δstT :
qT×Σ → qT defines the target state, while δoutT : qT×Σ → Σ∗

defines the output string of each transition. The extended

function for states δst∗T is defined analogously to the extended

transition function for a DFA. The extended function for output

strings is defined as δout∗T (q, ε) = ε and δout∗T (q, au) =
δout∗T (q, a) ·δoutT (δst∗T (q, a), u). Given a string w we use T (w)
to denote δout∗T (qinitT , w), i.e., the output string generated by

T on w. Given two DFAs P and Q, we write {P}T{Q} for a

transducer T iff for every string s in L(P ), the output string

T (s) belongs to L(Q).

An edit operation on a string is either an insertion/deletion

of a character, or a replacement of a character with a different

one. For example, editing the string ab to the string acb

requires one edit operation, which is inserting a c after the

a. The edit distance ed_dist(s, t) between two strings s and

t is the number of edit-operations required to reach t from s.
We use len(w) to denote the length of a string w. The mean

edit distance mean_ed_dist(s, t) between two strings s and t
is defined as ed_dist(s, t)/len(s). For example, the mean edit

distance from ab to acb is 1/2 = .5.

We can now formulate the transducer synthesis problem.

We assume a fixed alphabet Σ. If the specification requires

that s is translated to t, we write that as s ↦→ t.

Problem Statement 1 (Transducer Synthesis). The transducer

synthesis problem has the following inputs and output:

Inputs

• Number of states k and upper bound l on the length of

the output of each transition.

• Set of input-output examples E = [s ↦→ t].
• Input-output types P and Q, given as DFAs.

• A positive upper bound d ∈ Q on the mean edit distance.

Output A total transducer T = (QT , δ
st

T , δ
out

T , qinitT ) with k
states such that:

• Every transition of T has an output with length at most

l, i.e., ∀qT ∈ QT , a ∈ Σ. len(δoutT (q, a)) ≤ l.
• T is consistent with the examples: ∀s ↦→ t ∈ E. T (s) = t.
• T is consistent with input-output types, i.e., {P}T{Q}.

• For every string w ∈ P , mean_ed_dist(w, T (w)) ≤ d.

The synthesis problem that we present here is for FTs,

and in Section III, we provide a sound algorithm to solve

it using a system of constraints. One of our key contributions

is that our encoding can be easily adapted to synthesizing

richer models than FTs (e.g., symbolic transducers [8] and

transducers with regular lookahead), while still using the same

encoding building blocks (Section IV).

III. CONSTRAINT-BASED TRANSDUCER SYNTHESIS

In this section, we present a way to generate constraints to

solve the transducer synthesis problem defined in Section II.

The synthesis problem can then be solved by invoking a

Satisfiability Modulo Theories (SMT) solver on the constraints.

We use a constraint encoding, rather than a direct algorith-

mic approach because of the multiple objectives to be satisfied.

Synthesizing a transducer that translates a set of input-output

examples is already an NP-Complete problem [12]. On top of

that, we also need to handle input-output types and distances.

Our encoding is divided into three parts, one for each ob-

jective, which are presented in the following subsections. This

division makes our encoding very modular and programmable.

In Section IV we show how it can be adapted to different trans-

ducer models and problems. We include a brief description of

the size of the constraint encoding in the extended version.

The transducer we are synthesizing has k (part of the

problem input) states QT = {q0, ..., qk−1}. We often use qinitT

as an alternative for q0, the initial state of T .

295



We illustrate how our encoding represents a transition

q1
a/bc
−−−→ q2. The target state is captured using an uninterpreted

function dst : QT × Σ → QT , e.g., dst(q1,a) = q2. Repre-

senting the output of the transition is trickier because its length

is not known a priori. The output bound l allows us to limit the

number of characters that may appear in the output. We use an

uninterpreted function doutch : QT ×Σ×{0, . . . , l−1} → Σ to

represent each character in the output string; in our example,

doutch (q1,a, 0) = b and doutch (q1,a, 1) = c. Since an output

string’s length can be smaller than l, we use an additional

uninterpreted function doutlen : QT × Σ → {0, . . . , l} to

model the length of a transition’s output; in our example

doutlen(q1,a) = 2. We say an assignment to the above variables

extends to a transducer T for the transducer T obtained by

instantiating δst and δout as described above.

A. Input-output Examples

Goal: For each input output-example s ↦→ t ∈ E, T should

translate s to t.

Translating s to the correct output string means that

δout∗T (qinitT , s) = t. Generating constraints that capture this

behavior of T on an example is challenging because we do not

know a priori what parts of t are produced by what steps of the

transducer’s run. Suppose that we need to translate s = a0a1 to

t = b0b1b2. A possible solution is for the transducer to have

the run q0
a0/b0
−−−→ q1

a1/b1b2
−−−−−→ q2. Another possible solution

might be to instead have q0
a0/b0b1
−−−−−→ q1

a1/b2
−−−→ q2. Notice that

the two runs traverse the same states but produce different

parts of the output strings at each step. Intuitively, we need a

way to ªtrackº how much output the transducer has produced

before processing the i-th character in the input and what state

it has landed in. For every input example s ↦→ t such that

s = a0 · · · an and t = b0 · · · bm, we introduce an uninterpreted

function configs : {0, . . . , n} → {0, . . . ,m} × QT such

that configs(i) = (j, qT ) iff after reading a0 · · · ai−1,

the transducer T has produced the output b0 · · · bj−1 and

reached state qTÐi.e., δout∗T (q0, a0 · · · ai−1) = b0 · · · bj−1 and

δst∗T (q0, a0 · · · ai−1) = qT .

We describe the constraints that describe the behavior of

configs. Constraint 1 states that a configuration must start

at the initial state and be at position 0 in the output.

configs(0) = (0, qinitT ) (1)

Constraint 2 captures how the configuration is updated when

reading the i-th character of the input. For every 0 ≤ i < n,

0 ≤ j < m, c ∈ Σ, and qT ∈ QT :

configs(i) = (j, qT ) ∧ ai = c⇒

[
⋀︂

0≤z<l

(doutch (qT , c, z) = bj+z ∨ z ≥ doutlen(qT , c))∧

configs(i+ 1) = (j + doutlen(qT , c),d
st(qT , c))]

(2)

Informally, if the i-th character is c and the transducer has

reached state qT and produced the characters b0 · · · bj−1 so

far, the transition reading c from state qT outputs characters

bj · · · bj+f−1, where f is the output length of the transition.

The next configuration is then (j + f,dst(qT , c)).
Finally, Constraint 3 forces T to be completely done with

generating t when s has been entirely read. Recall that

len(s) = n and len(t) = m.
⋁︂

qT∈QT

configs(n) = (m, qT ) (3)

The encoding for examples is sound and complete [11].

B. Input-Output Types

Goal: T should satisfy the property {P}T{Q}.

Encoding this property using constraints is challenging

because it requires enforcing that when T reads one of the

(potentially) infinitely many strings in P it always outputs

a string in Q. To solve this problem, we draw inspiration

from how one proves that the property {P}T{Q} holdsÐ

i.e., using a simulation relation that relates runs over P ,

T and Q. Intuitively, if P has read some string w, we

need to be able to encode the behavior of T in terms of

w, i.e., what state of T this transducer is in after reading

w and what output string w′ it produced. Further, we also

need to be able to encode in which state Q would be after

reading the output string w′. We do this by introducing a

function sim: QP × QT × QQ → {0, 1}, which preserves

the following invariant: sim(qP , qT , qQ) holds if there exist

strings w,w′ such that δ∗P (q
init

P , w) = qP , δst∗T (qinitT , w) = qT ,

δout∗T (qinitT , w) = w′, and δ∗Q(q
init

Q , w′) = qQ.

Constraint 4 states the initial condition of the simulationÐ

i.e., P , T , and Q are in their initial states.

sim(qinitP , qinitT , qinitQ ) (4)

Constraint 5 encodes how we advance the simulation rela-

tion for states qP , qT , qQ and for a character c ∈ Σ, using free

variables c0 . . . , cl−1 and q0Q . . . , q
l
Q that are separate for each

combination of qP , qT , qQ, and c:

sim(qP , qT , qQ) ⇒
⋀︂

0≤z≤l

(doutlen(qT , c) = z ⇒

[
⋀︂

0≤x<z

doutch (qT , c, x)=cx]∧

[q0Q=qQ ∧
⋀︂

1≤x<z

qxQ=dQ(q
x−1
Q , cx−1)]∧

sim(δP (qP , c),d
st(qT , c), q

z
Q))

(5)

Intuitively, if sim(qP , qT , qQ) and we read a character c,
P moves to δP (qP , c) and T moves to dst(qP , c). However,

we also need to advance Q and the doutlen symbols produced

by doutch . We hard-code the transition relation δQ in an un-

interpreted function dQ : QQ × Σ → QQ, and apply it to

compute the output state reached when reading the output

string. E.g., if doutlen(qT , c) = 2 and doutch (qT , c, 0) = c0 and

doutch (qT , c, 1) = c1, the next state in Q is dQ(dQ(qQ, c0), c1).
Lastly, Constraint 6 states that if we encounter a string in

L(P )Ði.e., P is in a state qP ∈ FPÐthe relation does not

296



contain a state qQ /∈ FQ. Since Q is deterministic, this means

that Q accepts T ’s output.
⋀︂

qP∈FP

⋀︂

qQ /∈FQ

¬sim(qP , qT , qQ) (6)

The constraint encoding for types is sound and complete [11].

C. Input-output Distance

Goal: The mean edit distance between any input string w
in L(P ) and the output string T (w) should not exceed d.

Capturing the edit distance for all the possible inputs in the

language of P and the corresponding outputs produced by the

transducer is challenging because these sets can be infinite.

Furthermore, exactly computing the edit distance between an

input and an output string may involve comparing characters

appearing on different transitions in the transducer run. For

example, consider the transducer shown in Figure 2a and

suppose that we are only interested in strings in the input type

P = a(ba)∗a. The first transition from q0 deletes the a,

therefore making 1 edit. This transducer has a cycle between

states q1 and q2, which can be taken any number of times.

Each iteration, locally, would require that we make 2 edits:

one to change the b to a, and the other to change the a to

b. However, the total number of edits made over any string in

the input type P = a(ab)∗a by this transducer is 1, because

the transducer changes strings of the form a(ba)na to be of

the form (ab)na. Looking at the transitions in isolation, we

are prevented from deducing that the edit distance is always

1 because the first transition delays outputting a character. If

there was no such delay, as is the case for the transducer in

Figure 2b, which is equivalent on the relevant input type to

the one in Figure 2a, then this issue would not arise.

We take inspiration from Benedikt et al. [13] and focus

on the simpler problem of synthesizing a transducer that

has ‘aggregate cost’ that satisfies the given objective.1 For

a transducer T and string s = a0 . . . an, let qinitT

a0/y0
−−−−→

q1T . . . q
n
T

an/yn
−−−−→ qn+1

T be the run of s on T . Then, the

aggregate cost of T on s is the sum of the edit distances

ed_dist(ai, yi) over all indices 0 ≤ i ≤ n. The mean aggregate

cost of T on s is the aggregate cost divided by len(s), the

length of s. It follows that if T has a mean aggregate cost

lower than some specified d for every string, then it also has

a mean edit distance lower than d for every string.

However, the mean aggregate cost overapproximates the edit

distance, e.g., the transducer in Figure 2a has mean aggregate

cost 1, while the mean edit distance when considering only

strings in P = a(ab)∗a is less than 1/2. For this reason, if

the mean edit distance objective was set to 1/2, our constraint

encoding can only synthesize the transducer in Figure 2b, and

not the equivalent one in Figure 2a.

1Benedikt et al. [13] studied a variant of the problem where the distance
is bounded by some finite constant. Their work shows that when there is a
transducer between two languages that has some bounded global edit distance,
then there is also a transducer that is bounded (but with a different bound)
under a local method of computing the edit distanceÐi.e., one where the
computation of the edit distance is done transition by transition.

q0start q1

q2

q3
a→ϵ

b→a a→b

a→a

(a) Transducer with delayed output

q0start q1

q2

q3
a→a

b→b a→a

a→ϵ

(b) Transducer without delay

Fig. 2: Transducers with and without delay.

Our encoding is complete for transducers in which the

aggregate cost coincides with the actual edit distance. We

leave the problem of being complete with regards to global

edit distance as an open problem. In fact, we are not even

aware of an algorithm for checking (instead of synthesizing)

whether a transducer satisfies a mean edit distance objective.2

In Section IV-B, we present transducers with lookahead, which

can mitigate this source of incompleteness. Furthermore, our

evaluation shows that using the aggregate cost and enabling

lookahead are both effective techniques in practice.

We can now present our constraints. First, we provide

constraints for the edit distance of individual transitions (recall

that transitions are being synthesized and we therefore need to

compute their edit distances separately). Secondly, we provide

constraints that implicitly compute state invariants to capture

the aggregate cost between input and output strings at various

points in the computation. We are given a rational number d as

an input to the problem, which is the allowed distance bound.

Edit Distance of Individual Transitions. To compute the edit

distance between the input and the output of each transition,

we introduce a function ed: QT × Σ → Z. For a transition

from state qT reading a character c, ed(qT , c) represents

the edit distance between c and δoutT (qT , c). Notice that this

quantity is bounded by the output bound l. The constraints to

encode the value of this function are divided into two cases:

i) the output of the transition contains the input character c
(Constraint 7), ii) the output of the transition does not contain

the input character c (Constraint 8). In both cases, the values

are set via a simple case analysis on whether the length of

the output is 0 (edit distance is 1) or not (the edit distance is

related to the length of the output).

[
⋁︂

0≤z<doutlen(qT ,c)

doutch (qT , c, z) = c] ⇒

[doutlen(qT , c) = 0 ⇒ ed(qT , c) = 1∧

doutlen(qT , c) ̸= 0 ⇒ ed(qT , c) = doutlen(qT , c)− 1]

(7)

[
⋀︂

0≤z<doutlen(qT ,c)

doutch (qT , c, z) ̸= c] ⇒

[doutlen(qT , c) = 0 ⇒ ed(qT , c) = 1∧

doutlen(qT , c) ̸= 0 ⇒ ed(qT , c) = doutlen(qT , c)]

(8)

2The mean edit distance is similar to mean payoff [14], which discounts
a cost by the length of a string and looks at the behavior of a transducer in
the limit. Our distance is different because 1) it looks at finite-length strings,
and 2) it requires computing the edit distance, which cannot be done one
transition at a time.

297



Edit Distance of Arbitrary Strings. Suppose that T has the

transitions q0
a/a
−−→ q1

a/bc
−−−→ q2, and the specified mean edit

distance is d = 0.5. The edit distance is 0 for the first transition

and 2 for the second one. For the input string aa, the mean

aggregate cost is 2/2, which means that the specification is

not satisfied. In general, we cannot keep track of every input

string in the input type and look at its length and the number

of edits that were made over it. So, how can we compute

the mean aggregate cost over any input string? The first part

of our solution is to scale the edit distance over a single

transition depending on the specified mean edit distance. This

operation makes it such that an input string is under the edit

distance bound if the sum of the weighted edit distances of

its transitions is ≥ 0. The invariant we need to maintain is

that the sum of the weights at any stage of the run gives us

where we are with regard to the mean aggregate cost. For each

transition we compute the difference between the edit distance

over the transition and the specified mean edit distance d. We

introduce the uninterpreted function wed : QT × Σ → Q,

which stands for weighted edit distance. For a transition at

qT reading a character c, the weighted edit distance is given

by wed(qT , c) = d − ed(qT , c). The sum of the weights of

all transitions tells us the cumulative difference. Going back to

our example, the weighted edit distances of the two transitions

are wed(q0,a) = 0.5 and wed(q1,a) = −1.5, making the

cumulative distance −1 and implying that the specification is

violated. We can now compute the mean edit distance over

a run without keeping track of the length of the run and the

number of edits performed over it.

We still need to compute the weighted edit distance for

every string in the possibly infinite language L(P ). Building

on the idea of simulation from the previous section, we

introduce a new function called en : QP × QT × QQ → Q,

which tracks an upper bound on the sum of the distances so

far at that point in the simulation. This function is similar

to a progress measure, which is a type of invariant used

to solve energy games [15], a connection we expand on in

Section VI. In particular, we already know that if there exist

strings w,w′ such that δ∗P (q
init

P , w) = qP , δst∗T (qinitT , w) =
qT , δout∗T (qinitT , w) = w′, and δ∗Q(q

init

Q , w′) = qQ, then

we have sim(qP , qT , qQ). Let this run over T be denoted

by qinitT

a0/y0
−−−−→ q1T . . . q

n−1
T

an−1/yn−1

−−−−−−−→ qT , where w =
a0 · · · an−1, w′ = y0 · · · yn−1, and qT = qnT . We have that

en(qP , qT , qQ) ≥
∑︁n−1
i=0 wed(qiT , ai).

The en function is a budget on the number of edits we

can still perform. At the initial states, we start with no ‘initial

credit’ and the energy is 0.

en(qinitP , qinitT , qinitQ ) = 0 (9)

Constraint 10 bounds the energy budget according to the

weighted edit distance of a transition by computing the mini-

mum budget required at any point to still satisfy the distance

bound. For each combination of qP , qT , qQ, and c ∈ Σ, the

constraint uses free variables c0, . . . , cl and q0Q, . . . , q
l−1
Q :

⋀︂

0≤z<l

(doutlen(qT , c)=z ⇒

[
⋀︂

0≤x<z

doutch (qT , c, x)=cx]∧[q
0
Q=qQ ∧

⋀︂

1≤x<z

qxQ=dQ(q
x−1
Q , cx−1)]∧

en(qP , qT , qQ) ≥ en(δP (qP , c),d
st(qT , c), q

z
Q)−wed(qT , c))

(10)

In our example, Constraint 10 encodes that the energy at

q0 can be 1 less than that at q1, but that the energy at q1
needs to be 3 greater than at q2 since we need to spend 3 edit

operations over the second transition.

At any point during a run, the transducer is allowed to go

below the mean edit distance and then ‘catch up’ later because

we only care about the edit distance when the transducer has

finished reading a string in L(P ). Therefore, when we reach a

final state of P , the transducer should not be in ‘energy debt’.
⋀︂

qP∈FP

sim(qP , qT , qQ) ⇒ en(qP , qT , qQ) ≥ 0 (11)

The encoding presented in this section is sound [11].

IV. RICHER MODELS AND SPECIFICATIONS

We extend our technique to more expressive models (Sec-

tions IV-A and IV-B) and show how our synthesis approach

can be used not only to synthesize transducers, but also to

repair them (Section IV-C). Furthermore, in the extended

version of the paper, we describe an encoding of an alternative

distance measure [11].

A. Symbolic Transducers

Symbolic finite automata (s-FA) and transducers (s-FT) ex-

tend their non-symbolic counterparts by allowing transitions to

carry predicates and functions to represent (potentially infinite)

sets of input characters and output strings. Figure 3a shows an

s-FT that extends the escapeQuotes transducer from Figure 1a

to handle alphabetic characters. The bottom transition from

q0 reads a character " (bound to the variable x) and outputs

the string \" (i.e., a \ followed by the character stored in x).

Symbolic finite automata (s-FA) are s-FTs with no outputs. To

simplify our exposition, we focus on s-FAs and s-FTs that only

operate over ASCII characters that are ordered by their codes.

In particular, all of our predicates are unions of intervals over

characters (i.e., x ̸= \ is really the union of intervals [NUL-

[] and []-DEL]); we often use the predicate notation instead

of explicitly writing the intervals for ease of presentation.

Furthermore, we only consider two types of output functions:

constant characters and offset functions of the form x+k that

output the character obtained by taking the input x and adding

a constant k to itÐe.g., applying x + (−32) to a lowercase

alphabetic letter gives the corresponding uppercase letter.

In the rest of the section, we show how we can solve the

transducer synthesis problem in the case where P and Q are

s-FAs and the goal is to synthesize an s-FT (instead of an

FT) that meets the given specification. Intuitively, we do this

by ‘finitizing’ the alphabet of the now symbolic input-output

298



q0start q1

x ̸= " ∧ x ̸= \ → x

x = " → \x

x = \ → x

x ̸= \ → x

x = \ → x

(a) escapeQuotes s-FT

q0start q1

a → a

" → \"

\ → \

a → a

" → "

\ → \

(b) F (escapeQuotes)

minterms: [x ̸= " ∧ x ̸= \], [x = "], [x = \]
witness char: wit([x ̸= "∧x ̸= \])=a, wit([x = "])=", wit([x = \])=\

(c) Set of minterms and their witness elements

Fig. 3: Example of Finitization

types, synthesizing a finite transducer over this alphabet using

the technique presented in Section III, and then extracting an

s-FT from the solution.

Finitizing the Alphabet. The idea of finitizing the alphabet

of s-FAs is a known one [8] and is based on the con-

cept of minterms , which is the set of maximal satisfiable

Boolean combinations of the predicates appearing in the s-

FAs. For an s-FA M , we can define its set of predicates as:

Predicates(M) = {ϕ | q
ϕ
−→ q′ ∈ δM}. The set of minterms

mterms(M) is the set of satisfiable Boolean combinations of

all the predicates in Predicates(M). For example, for the set

of predicates over the s-FT escapeQuotes in Figure 3a, we have

that mterms(escapeQuotes) = {x ̸= " ∧ x ̸= \, x = ", x =
\}. The reader can learn more about minterms in [8]. We

assign each minterm a representative character, as indicated

in Figure 3c, and then construct a finite automaton from the

resulting finite alphabet Σ. For a character c ∈ Σ, we refer

to its corresponding minterm by mt(c). In the other direction,

for each minterm ψ ∈ minterms(M), we refer to its uniquely

determined representative character by wit(ψ).

For an s-FA M , we denote its corresponding FA over the

alphabet mterms(M) with F (M). Given an s-FA M , the set

of transitions of F (M) is defined as follows:

δF(M)={q
wit(ψ)
−−−−→ q′|q

ϕ
−→ q′∧ψ ∈ mterms(M)∧IsSat(ψ∧ϕ)}

This algorithm replaces a transition guarded by a predicate ϕ
in the given s-FA with a set of transitions consisting of the

witnesses of the minterms where ϕ is satisfiable. In interval

arithmetic this is the set of intervals that intersect with the

interval specified by ϕ. The transition from q1 guarded by the

predicate [x ̸= \] in Figure 3a intersects with 2 minterms

[x ̸= " ∧ x ̸= \] and [x = "]. As a result, we see that this

transition is replaced by two transitions in Figure 3b, one that

reads " and another that reads a.

From FTs to s-FTs. Once we have synthesized an FT T ,

we need to extract an s-FT from it. There are many s-FTs

equivalent to a given FT and here we present one way of doing

this conversion which is used in our implementation. Let the

size of an interval I (the number of characters it contains) be

given by size(I), and the offset between 2 intervals I1 and

I2 (i.e. the difference between the least elements of I1 and

I2) be given by offset(I1, I2). Suppose we have a transition

q
c/y0···yn
−−−−−−→ q′, where c, yi ∈ Σ. Then, we construct a transition

q
mt(c)/f0···fn
−−−−−−−−→ q′, where for each yi, the corresponding

function fi is determined by the following rules (x always

indicates variable bound to the input predicate):

1) If c = yi, then fi = (x), i.e. the identity function.

2) If mt(c) and mt(yi) consist of single intervals I1 and I2,

respectively, such that size(I1) = size(I2) , then fi =
(x+ offset(I1, I2)). For instance, if the input interval is

[a-z] and the output interval is [A-Z], then the output

function is (x+(−32)), which maps lowercase letters to

uppercase ones.

3) Otherwise fi = yiÐi.e., the output is a character in the

output minterm.

While our s-FT recovery algorithm is sound, it may apply

case 3 more often than necessary and introduce many con-

stants, therefore yielding a transducer that does not generalize

well to unseen examples. Our evaluation shows that our

technique works well in practice. The proof of soundness of

this algorithm in the extended version [11].

B. Synthesizing Transducers with Lookahead

Deterministic transducers cannot express functions where

the output at a certain transition depends on future characters

in the input. Consider the problem of extracting all substrings

of the form <x> (where x ̸= <) from an input string. This

is the getTags problem from [16]. A deterministic transducer

cannot express this transformation because when it reads <

followed by x it has to output <x if the next character is a >

and nothing otherwise. However, the transducer does not have

access to the next character!

Instead, we extend our technique to handle deterministic

transducers with lookahead, i.e., the ability to look at the string

suffix when reading a symbol. Formally, a Transducer with

Regular Lookahead is a pair (T,R) where T is an FT with

ΣT = QR × Σ, and R is a total DFA with ΣR = Σ. The

transducer T now has another input in its transition function,

although it still only outputs characters from Σ, i.e., δoutT :
QT×(QR×Σ) → Σ, and δstT : QT×(QR×Σ) → QT . The se-

mantics is defined as follows. Given a string w = a0 · · · an, we

define a function rw such that rw(i) = δR(q
init

R , an · · · ai+1).
In other words, rw(i) gives the state reached by R on the

reversed suffix starting at i+1. At each step i, the transducer T
reads the symbol (ai, rw(i)). The extended transition functions

now take as input a lookahead word, which is a sequence of

pairs of lookahead states and characters, i.e., from (QR×Σ)∗.

To synthesize transducers with lookahead, we introduce

uninterpreted functions dR for the transition function of R,

and lookw for the r-values of w on R. We also introduce a

bound kR on the number of states in the lookahead automaton

R (our algorithm has to synthesize both T and R). The

modified constraints needed to encode input-output types and

input-output examples to use lookahead are described in the

extended version of the paper [11]. Part of the transducer with

lookahead we synthesize for the getTags problem is shown

in Figure 4. Notice that there are 2 transitions out of q1 for

299



q0start q1
x = <, r0 → ϵ

x ̸= < ∧ x ̸= >, r1 → <x

x ̸= < ∧ x ̸= >, r0 → ϵ

(a) Subset of transitions in T

r0start r1

x ̸= < ∧ x ̸= >

x = <

x = >

x ̸= < ∧ x ̸= >

x = >

x = <

(b) Lookahead automaton R

Fig. 4: Regular lookahead for getTags

the same input but different lookahead state: the string <x is

outputted when the lookahead state is r1.

Lookahead and aggregate cost: Lookahead can help rep-

resenting transducers, even deterministic ones, in a way that

has lower aggregate costÐi.e., the aggregate cost better ap-

proximates the actual edit distance. Suppose that we want to

synthesize a transducer that translates the string abc to ab

and the string abd to bd. This translation can be done using

a deterministic transducer with transitions q0
a/ϵ
−−→ q1

b/ϵ
−−→ q2,

followed by two transitions from q2 that choose the correct

output based on the next character. Such a transducer would

have a high aggregate cost of 4, even though the actual edit

distance is 1. In contrast, using lookahead we can obtain a

transducer that can output each character when reading it; this

transducer will have aggregate cost 1 for either string. We

conjecture that for every transducer T , there always exists an

equivalent transducer with regular lookahead (T ′, R) for which

the edit distance computation for aggregate cost coincides with

the actual edit distance of T .

C. Transducer Repair

In this section, we show how our synthesis technique can

also be used to ªrepairº buggy transducers. The key idea is

to use the closure properties of automata and transducersÐ

e.g., closure under union and sequential compositions [8]Ð

to reduce repair problems to synthesis ones. The ability

to algebraically manipulate transducers and automata is one

of the key aspects that distinguishes our work from other

synthesis works that use domain-specific languages [1], [5].

We describe two settings in which we can repair an incorrect

transducer Tbad: 1. Let {P}Tbad{Q} be an input-output type

violated by Tbad and let OutP (Tbad) be the finite automaton

describing the set of strings Tbad can output when fed inputs in

P (this is computable thanks to closure properties of transduc-

ers). We are interested in the case where OutP (Tbad)\Q ̸= ∅Ð

i.e., Tbad can produce strings that are not in the output type.

2. Let [s ↦→ t] be a set of input-output examples. We are

interested in the case where there is some example s ↦→ t such

that Tbad(s) ̸= t.

Repairing from the Input Language. This approach syn-

thesizes a new transducer for the inputs on which Tbad is

incorrect. Using properties of transducers, we can compute

an automaton describing the exact set of inputs Pbad ⊆ P for

which Tbad does not produce an output in Q (see pre-image

computation in [10]). Let restrict(T, L) be the transducer

that behaves as T if the input is in L and does not produce

an output otherwise (closure under restriction [10]). If we

synthesize a transducer T1 with type {Pbad}T1{Q}, then the

transducer restrict(T1, Pbad)∪restrict(Tbad, P\Pbad) satisfies

the desired input-output type (closure under union).

Fault Localization from Examples. We use this technique

when Tbad is incorrect on an example. We can compute a

set of ªsuspiciousº transitions by taking all the transitions

traversed when T (s) ̸= t for some s ↦→ t ∈ E (i.e., one of

these transitions is wrong) and removing all the transitions

traversed when T (s) = t for some s ↦→ t ∈ E (i.e., transitions

that are likely correct). Essentially, this is a way of identifying

Pbad when Tbad is wrong on some examples. We can also use

this technique to limit the transitions we need to synthesize

when performing repair.

V. EVALUATION

We implemented our technique in a Java tool ASTRA

(Automatic Synthesis of TRAnsducers), which uses Z3 [17] to

solve the generated constraints. We evaluate using a 2.7 GHz

Intel Core i5, RAM 8 GB, with a 300s timeout.

Q1: Can ASTRA synthesize practical transformations?

Benchmarks. Our first set of benchmarks is obtained from

Optician [5], [6], a tool for synthesizing lenses, which are

bidirectional programs used for keeping files in different data

formats synchronized. We adapted 11 of these benchmarks

to work with ASTRA (note that we only synthesize one-

directional transformations), and added one additional bench-

mark extrAcronym2, which is a harder variation (with a larger

input type) of extrAcronym. We excluded benchmarks that

require some memory, e.g., swapping words in a sentence, as

they cannot be modeled with transducers. Our second set of

benchmarks (Miscellaneous) consists of 6 problems we created

based on file transformation tasks (unixToDos, dosToUnix and

CSVSeparator), and s-FTs from the literature±escapeQuotes

from [18], getTags and quicktimeMerger from [16]. All of the

benchmarks require synthesizing s-FTs and getTags requires

synthesizing an s-FT with lookahead (details in Table I).

To generate the examples, we started with the examples that

were used in the original source when available. In 5 cases,

ASTRA synthesized a transducer that was not equivalent to the

one synthesized by Optician. In these cases, we used ASTRA to

synthesize two different transducers that met the specification,

computed a string on which the two transducers differed, and

added the desired output for that string as an example. We

repeated this task until ASTRA yielded the desired transducer

and we report the time for such sets of examples. The ability

to check equivalence of two transducers is yet another reason

why synthesizing transducers is useful. For each benchmark

we chose a mean edit distance of 0.5 when the transformation

could be synthesized with this distance and of 1 otherwise.

Effectiveness of ASTRA. ASTRA can solve 15/18 bench-

marks (13 in <1s and 2 under a minute) and times out on 3

benchmarks where both P and Q are big.

While the synthesized transducers have at most 3 states, we

note that this is because ASTRA synthesizes total transducers

300



TABLE I: ASTRA’s performance on the synthesis benchmarks. The right-most set of columns gives the synthesis time for ASTRA and Optician
(under 2 different configurations). The middle set of columns gives the sizes of the parameters to the synthesis problem: QP and QQ denote
the number of input and output states, and δP and δQ denote the number of transitions in the input and output types, respectively. A ✗

represents a benchmark that failed. Ð stands in for data that is not available; this is because we only re-ran Optician on the benchmarks
that were already encoded in its benchmark set, plus a few additional ones for comparing between the tools that we wrote ourselves.

Benchmark QP QQ δP δQ Σ E k l d ASTRA (s) Optician (s) Optician-re (s)

O
p

ti
ci

an

extrAcronym 6 3 10 3 3 2 1 1 .5 0.11 0.05 ✗

extrAcronym2 6 3 16 3 3 3 2 1 1 0.42 Ð Ð
extrNum 15 13 17 12 3 1 1 1 1 0.93 0.05 0.07
extrQuant 4 3 8 5 2 1 2 1 1 0.19 0.09 ✗

normalizeSpaces 7 6 19 10 2 2 2 1 1 0.46 16.64 ✗

extrOdds 15 9 29 13 5 3 3 2 1 15.87 0.12 ✗

capProb 3 3 3 3 2 2 2 1 1 0.05 0.05 ✗

removeLast 6 3 8 3 3 3 2 1 .5 0.21 0.15 0.07
sourceToViews 18 7 26 15 5 3 3 2 1 50.92 0.06 ✗

normalizeNamePos 19 7 35 24 13 1 6 2 1 ✗ 0.05 0.10
titleConverter 22 13 41 41 15 1 3 1 1 ✗ 0.07 ✗

bibtextToReadable 14 11 41 35 12 1 5 1 1 ✗ 0.64 0.15

M
is

ce
ll

an
eo

u
s unixToDos 5 7 17 19 4 4 2 2 .5 1.24 Ð Ð

dosToUnix 7 5 19 17 4 4 2 1 .5 0.41 Ð Ð
CSVSeparator 5 5 9 9 4 1 1 1 1 0.142 Ð Ð
escapeQuotes 2 2 6 5 3 5 2 2 1 0.188 ✗ ✗

quicktimeMerger 7 3 9 3 2 2 1 1 .5 0.075 Ð Ð
getTags 3 3 9 4 3 5 2 2 1 0.95 ✗ ✗

and then restricts their domains to the input type P . This is

advantageous because synthesizing small total transducers is

easier than synthesizing transducers that require more states to

define the domain. For instance, when we restrict the solution

of extrAcronym2 to its input type, the resulting transducer has

11 states instead of the 2 required by the original solution!

Comparison with Optician. We do not compare ASTRA to

tools that only support input-output examples. Instead, we

compare ASTRA to Optician on the set of benchmarks common

to both tools. Like ASTRA, Optician supports input-output

examples and types, but the types are expressed as regular

expressions. Furthermore, Optician also attempts to produce

a program that minimizes a fixed information theoretical

distance between the input and output types [5].

Optician is faster when the number of variables in the

constraint encoding increases, while ASTRA is faster on the

normalizeSpaces benchmark. Optician, which uses regular ex-

pressions to express the input and output types, does not work

so well with unstructured data. To confirm this trend, we wrote

synthesis tasks for the escapeQuotes and getTags benchmarks

in Optician and it was unable to synthesize those as wellÐ

e.g., escapeQuotes requires replacing every " character with

\".

To further look at the reliance of Optician on regular

expressions, we converted the regular expressions used in

the lens synthesis benchmarks to automata and then back to

regular expressions using a variant of the state elimination

algorithm that acts on character intervals. This results in

regular expressions that are not very concise and might have

redundancies. Optician could only solve 4/11 benchmarks that

it was previously synthesizing (Optician-re in Table I).

Answer to Q1: ASTRA can solve real-world benchmarks

and has performance comparable to that of Optician for similar

tasks. Unlike Optician, ASTRA does not suffer from variations

in how the input and output types are specified.

Q2: Can ASTRA repair transducers in practice?

Benchmarks. We considered the benchmarks in Table II.

The only pre-existing benchmark that we found was es-

capeQuotes, through the interface of the Bek programming

language used for verifying transducers [18]. We generated

11 additional faulty transducers to repair in the following two

ways: (i) Introducing faults in our synthesis benchmarks: We

either replaced the output string of a transition with a constant

character, inserted an extra character, or deleted a transition

altogether. (ii) Incorrect transducers: We intentionally provided

fewer input-output examples and used only example-based

constraints on some of our synthesis benchmarks.

All the benchmarks involve s-FTs. Three benchmarks are

wrong on both input-output types and examples and the rest

are only wrong on examples. Additionally, we note that to

repair a transducer, we need the ªrightº set of minterms.

Typically, the set of minterms extracted from the transducer

predicates is the right one, but in the case of the escape-

Brackets problems, ASTRA needs a set of custom minterms

we provide manuallyÐi.e., repairing the transducer requires

coming up with a new predicate. We are not aware of another

tool that solves transducer repair problems and so do not show

any comparisons.

Effectiveness of ASTRA. We indicate the number of suspi-

cious transitions identified by our fault localization procedure

(Section IV-C) in the column labeled δTbad
. In many cases,

ASTRA can detect 50% of the transitions or more as being

likely correct, therefore reducing the space of unknowns.

301



TABLE II: ASTRA’s performance on the repair benchmarks. Default is the case where a new transducer is synthesized for Pbad and Template
is the case where a partial solution to the solver is provided. The δTbad

column gives the number of transitions that were localized by the
fault-localization procedure as a fraction of the total number of transitions in the transducer. The other columns that describe the parameters
of the synthesis problem in the default case are the same as for Table I.

Benchmark QP QQ δP δQ Σ E k l d δTbad
Default (s) Template (s)

F
au

lt
in

je
ct

ed
swapCase1 2 1 6 3 3 2 1 1 1 3/3 0.04 0.02
swapCase2 2 1 4 3 3 2 1 1 1 1/2 ✗ ✗

swapCase3 2 1 6 3 3 2 1 1 1 1/3 0.06 0.05
escapeBrackets1 2 6 16 36 8 4 1 4 4 1/3 0.69 0.42
escapeBrackets2 1 6 1 7 6 5 1 4 4 1/2 ✗ ✗

escapeBrackets3 2 7 8 36 9 5 1 4 4 2/3 1.12 0.34
caesarCipher 2 1 4 2 3 1 1 1 1 1/1 ✗ ✗

S
y

n
th

. extrAcronym2 11 3 30 3 3 3 2 1 1 12/30 0.59 10.15
capProb 3 3 3 3 2 2 2 1 1 3/3 0.04 0.04
extrQuant 8 3 16 5 2 1 2 1 1 5/10 0.37 0.51
removeLast 6 3 8 3 3 2 2 1 .5 7/8 0.40 1.08

escapeQuotes 3 2 9 5 3 5 2 1 1 3/5 0.17 0.10

We compare 2 different ways of solving repair problems

in ASTRA. One uses the repair-from-input approach described

in Section IV-C (Default in Table II). The second approach

involves using a ‘template’, where we supply the constraint

solver with a partial solution to the synthesis problem, based

on the transitions that were localized as potentially buggy

(Template in Table II).

ASTRA can solve 9/12 repair benchmarks (all in less than

1 second). The times using either approach are comparable in

most cases. While one might expect templates to be faster, this

is not always the case because the input-output specification

for the repair transducer is small, but providing a template

requires actually providing a partial solution, which in some

cases happens to involve many constraints.

Answer to Q2: ASTRA can repair transducers with varying

types of bugs.

VI. RELATED WORK

Synthesis of string transformations. String transformations

are one of the main targets of program synthesis. Gulwani

showed they could be synthesized from input-output examples

[1] and introduced the idea of using a DSL to aid synthe-

sis. Optician extended the DSL-based idea to synthesizing

lenses [5], [6], which are programs that transform between

two formats. Optician supports not only examples but also

input-output types. While DSL-based approaches provide good

performance, they are also monolithic as they rely on the

structure of the DSL to search efficiently. ASTRA does not

rely on a DSL and can synthesize string transformations

from complex specifications that cannot be handled by DSL-

based tools. Moreover, transducers allow applying verification

techniques to the synthesized programs (e.g., checking whether

two solutions are equivalent). One limitation of transducers

is that they do not have ‘memory’, and consequently ASTRA

cannot be used for data-transformation tasks where this is

requiredÐe.g., mapping the string Firstname Lastname

to Lastname, FirstnameÐsomething Optician can do.

We remark that there exist transducer models with such

capabilities [19] and our work lays the foundations to handle

complex models in the future.

Synthesis of transducers. Benedikt et al. studied the ‘bounded

repair problem’, where the goal is to determine whether there

exists a transducer that maps strings from an input to an

output type using a bounded number of edits [13]. Their

work was the first to identify the relation between solving

such a problem and solving games, an idea we leverage in

this paper. However, their work is not implemented, cannot

handle input-output examples, and therefore shies away from

the source of NP-Completeness. Hamza et al. studied the

problem of synthesizing minimal non-deterministic Mealy ma-

chines (transducers where every transition outputs exactly one

character), from examples [12]. They prove that the problem

of synthesizing such transducers is NP-complete and provide

an algorithm for computing minimal Mealy machines that

are consistent with the input-output examples. ASTRA is a

more general framework that incorporates new specification

mechanisms, e.g., input-output types and distances, and uses

them all together. Mealy machines are also synthesized from

temporal specifications in reactive synthesis and regular model

checking, where they are used to represent parameterized

systems [20], [21]. This setting is orthogonal to ours as the

specification is different and the transducer is again only a

Mealy machine.

The constraint encoding used in ASTRA is inspired by the

encoding presented by Daniel Neider for computing minimal

separating DFA, i.e. a DFA that separates two disjoint regular

languages [22]. ASTRA’s use of weights and energy to specify

a mean edit distance is based on energy games [23], a kind of

2-player infinite game that captures the need for a player to

not exceed some available resource. One way of solving such

games is by defining a progress measure [15]. To determine

whether a game has a winning strategy for one of the players, it

can be checked whether such a progress measure exists in the

game. We showed that the search for such a progress measure

can be encoded as an SMT problem.

302



REFERENCES

[1] S. Gulwani, ªAutomating string processing in spreadsheets using input-
output examples,º in PoPL’11, January 26-28, 2011, Austin, Texas, USA,
January 2011.

[2] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes, ªFast
and precise sanitizer analysis with bek,º in USENIX Security Symposium,

vol. 58. USENIX, 2012.

[3] L. D’Antoni and M. Veanes, ªStatic analysis of string encoders and
decoders,º in International Workshop on Verification, Model Checking,

and Abstract Interpretation. Springer, 2013, pp. 209±228.

[4] Y. Zhang, A. Albarghouthi, and L. D’Antoni, ªRobustness to pro-
grammable string transformations via augmented abstract training,º in
International Conference on Machine Learning. PMLR, 2020, pp.
11 023±11 032.

[5] A. Miltner, S. Maina, K. Fisher, B. C. Pierce, D. Walker, and
S. Zdancewic, ªSynthesizing symmetric lenses,º Proceedings of the ACM

on Programming Languages, vol. 3, no. ICFP, pp. 1±28, 2019.

[6] A. Miltner, K. Fisher, B. C. Pierce, D. Walker, and S. Zdancewic, ªSyn-
thesizing bijective lenses,º Proceedings of the ACM on Programming

Languages, vol. 2, no. POPL, pp. 1±30, 2017.

[7] M. Mohri, ªFinite-state transducers in language and speech processing,º
Computational linguistics, vol. 23, no. 2, pp. 269±311, 1997.

[8] L. D’Antoni and M. Veanes, ªAutomata modulo theories,º Communica-

tions of the ACM, vol. 64, no. 5, pp. 86±95, 2021.

[9] T. Chen, M. Hague, J. He, D. Hu, A. W. Lin, P. Rümmer, and Z. Wu, ªA
decision procedure for path feasibility of string manipulating programs
with integer data type,º in International Symposium on Automated

Technology for Verification and Analysis. Springer, 2020, pp. 325±
342.

[10] L. D’Antoni and M. Veanes, ªThe power of symbolic automata and
transducers,º in International Conference on Computer Aided Verifica-

tion. Springer, 2017, pp. 47±67.

[11] A. Grover, R. Ehlers, and L. D’Antoni, ªSynthesizing transducers
from complex specifications,º 2022. [Online]. Available: https:
//arxiv.org/abs/2208.05131

[12] J. Hamza and V. Kunčak, ªMinimal synthesis of string to string functions
from examples,º in Verification, Model Checking, and Abstract Inter-

pretation, C. Enea and R. Piskac, Eds. Cham: Springer International
Publishing, 2019, pp. 48±69.

[13] M. Benedikt, G. Puppis, and C. Riveros, ªRegular repair of specifica-
tions,º in 2011 IEEE 26th Annual Symposium on Logic in Computer

Science. IEEE, 2011, pp. 335±344.

[14] R. Bloem, K. Chatterjee, and B. Jobstmann, ªGraph games and reactive
synthesis,º in Handbook of Model Checking, E. M. Clarke, T. A.
Henzinger, H. Veith, and R. Bloem, Eds. Springer, 2018, pp. 921±962.
[Online]. Available: https://doi.org/10.1007/978-3-319-10575-8_27

[15] L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin, ªFaster
algorithms for mean-payoff games,º Formal methods in system design,
vol. 38, no. 2, pp. 97±118, 2011.

[16] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner,
ªSymbolic finite state transducers: Algorithms and applications,º in
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, ser. POPL ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 137±150.
[Online]. Available: https://doi.org/10.1145/2103656.2103674

[17] L. De Moura and N. Bjùrner, ªZ3: An efficient smt solver,º in Inter-

national conference on Tools and Algorithms for the Construction and

Analysis of Systems. Springer, 2008, pp. 337±340.

[18] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes, ªFast
and precise sanitizer analysis with bek,º http://rise4fun.com/Bek/, 2012.

[19] R. Alur, ªStreaming string transducers,º in Logic, Language, Information

and Computation, L. D. Beklemishev and R. de Queiroz, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1±1.

[20] O. Markgraf, C.-D. Hong, A. W. Lin, M. Najib, and D. Neider,
ªParameterized synthesis with safety properties,º in Asian Symposium

on Programming Languages and Systems. Springer, 2020, pp. 273±
292.

[21] A. W. Lin and P. Rümmer, ªLiveness of randomised parameterised
systems under arbitrary schedulers,º in International Conference on

Computer Aided Verification. Springer, 2016, pp. 112±133.

[22] D. Neider, ªComputing minimal separating dfas and regular invariants
using sat and smt solvers,º in International Symposium on Automated

Technology for Verification and Analysis. Springer, 2012, pp. 354±369.

[23] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga,
ªResource interfaces,º in Embedded Software, Third International

Conference, EMSOFT 2003, Philadelphia, PA, USA, October 13-

15, 2003, Proceedings, 2003, pp. 117±133. [Online]. Available:
https://doi.org/10.1007/978-3-540-45212-6_9

303

https://arxiv.org/abs/2208.05131
https://arxiv.org/abs/2208.05131
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1145/2103656.2103674
http://rise4fun.com/Bek/
https://doi.org/10.1007/978-3-540-45212-6_9

	Introduction
	Transducer Synthesis Problem
	Constraint-based Transducer Synthesis
	Input-output Examples
	Input-Output Types
	Input-output Distance

	Richer Models and Specifications
	Symbolic Transducers
	Synthesizing Transducers with Lookahead
	Transducer Repair

	Evaluation
	Related Work
	References

