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Boggart: Towards General-Purpose Acceleration of Retrospective Video Analytics

Neil Agarwal, Ravi Netravali
Princeton University

Abstract

Commercial retrospective video analytics platforms have in-
creasingly adopted general interfaces to support the custom
queries and convolutional neural networks (CNNs) that dif-
ferent applications require. However, existing optimizations
were designed for settings where CNNs were platform- (not
user-) determined, and fail to meet at least one of the fol-
lowing key platform goals when that condition is violated:
reliable accuracy, low latency, and minimal wasted work.

We present Boggart, a system that simultaneously meets
all three goals while supporting the generality that today’s
platforms seek. Prior to queries being issued, Boggart care-
fully employs traditional computer vision algorithms to gen-
erate indices that are imprecise, but are fundamentally com-
prehensive across different CNNs/queries. For each issued
query, Boggart employs new techniques to quickly character-
ize the imprecision of its index, and sparingly run CNNs (and
propagate results to other frames) in a way that bounds ac-
curacy drops. Our results highlight that Boggart’s improved
generality comes at low cost, with speedups that match (and
most often, exceed) prior, model-specific approaches.

1 INTRODUCTION

Video cameras are prevalent in our society, with massive de-
ployments across major cities and organizations [4, 10, 11,
22,32,47]. These cameras continually collect video data that
is queried retrospectively to guide traffic/city planning, busi-
ness or sports analytics, healthcare, crime investigation, and
many other applications [5, 14,23, 26,31, 33-35,37,61, 69,
122]. Queries typically involve running convolutional neural
network (CNN) models that locate and characterize partic-
ular objects in scenes [53, 99, 104, 106, 125]. Applications
tailor the architectures and weights of those CNNs to their
unique requirements (e.g., accuracy, latency, and resource
cost) and target tasks, e.g., via specialization to scenes or ob-
ject types [8,13,116], proprietary training datasets [7,27,28].

To support these diverse applications, commercial video
analytics platforms (e.g., Microsoft Rocket [41,44,45], Ama-
zon Rekognition [39], Google AI [70], IBM Maximo [83])
have steadily transitioned away from exposing only prede-
termined video processing results, towards being platforms
that allow users/applications to register custom, large-scale
video analytics jobs without worrying about infrastructural
details [55,116,118]. To register a query, users typically pro-
vide (1) a CNN model of arbitrary architecture and weights,
(2) a target set of videos (e.g., feeds, time periods), and
(3) an accuracy target indicating how closely the provided
results must match those from running the CNN on every

frame. Higher accuracy targets typically warrant more infer-
ence (and thus, slower responses and higher costs).

From a platform perspective, there exist three main goals
for each registered query. First and foremost, provided re-
sults should reliably meet the specified accuracy target (usu-
ally above 80% [80,92,105, 116]). Subject to that constraint,
the platform should aim to consume as few computational
resources as possible (i.e., minimize unnecessary work) and
deliver responses as quickly as possible. The main difficulty
in achieving these goals stems from the potentially massive
number of video frames to consider, and the high compute
costs associated with running a CNN on each one. For exam-
ple, recent object detectors would require 500 GPU-hours to
process a week of 30-fps video from just one camera [77,82].

Unfortunately, despite significant effort in optimizing ret-
rospective video analytics [42,48,80,81,93-95], no existing
solution is able to simultaneously meet the above goals for
the general interfaces that commercial platforms now offer.
Most notably, recent optimizations perform ahead-of-time
processing of video data to build indices that can accelerate
downstream queries [48, 80, 95]. However, these optimiza-
tions were designed for settings where models were known
a priori (i.e., not provided by users), and thus deeply inte-
grate knowledge of the specific CNN into their ahead of time
processing. Porting these approaches to today’s bring-your-
own-model platforms fundamentally results in unacceptable
accuracy violations and resource overheads. The underly-
ing reason is that models with even minor discrepancies (in
architecture or weights) can deliver wildly different results
for the same tasks and frames. Consequently, using different
models for ahead-of-time processing and user queries can
yield accuracy drops of up to 94% (§2.3). Building an index
for all potential models is unrealistic given the massive space
of CNNs [102,107,114,149], and the inherent risk of wasted
resources since queries may never be issued [80, 137].

In this paper, we ask “can retrospective video analytics
platforms operate more like general-purpose accelerators to
achieve their goals for the heterogeneous queries+models
provided by users?” We argue that they can, but doing so
requires an end-to-end rethink of the way queries are exe-
cuted, from the ahead-of-time processing used to develop in-
dices, to the execution that occurs only once a user provides
a model and accuracy target. We examine the challenges as-
sociated with each phase, and present Boggart, a complete
video analytics platform that addresses those challenges.

Ahead-of-time processing (indexing). To support our goals,
an index must meet the following criteria: (1) comprehensive
with respect to data of interest for different models/queries —
any information loss would result in unpredictable accuracy
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drops, (2) links information across frames so CNN inference
results — the most expensive part of query execution [80, 94]
— can be propagated from one frame to another at low cost,
and (3) cheap to construct since queries may never come in.

We show with Boggart that, if applied in a conservative
manner, traditional computer vision (CV) algorithms [52,88,
100, 127] can be repurposed to generate such an index per
video. Along these lines, Boggart’s ahead-of-time processing
extracts a comprehensive set of potential objects (or blobs)
in each frame as areas of motion relative to the background
scene. Trajectories linking blobs across frames are then com-
puted by tracking low-level, model-agnostic video features,
e.g., SIFT keypoints [110]. Crucially, Boggart’s trajectories
are computed once per video (not per video/model/query tu-
ple) using cheap CV tasks that require only CPUs, and are
generated 58% faster than prior model-specific indices con-
structed using compressed CNNs and GPUs (§6.3).

Query execution. Once a user registers a query and CNN,
the main question is how to use the comprehensive index to
quickly generate results that meet the accuracy target, i.e.,
running inference on as few frames as possible, and aggres-
sively propagating results along Boggart’s trajectories. The
challenge is that Boggart’s index is extremely coarse and im-
precise relative to CNN results. For instance, blob bounding
boxes may be far larger than those generated by CNNs, and
may include multiple objects that move in tandem. Worse,
the imprecision of Boggart’s index varies with respect to dif-
ferent models and queries; prior systems avoid this issue by
using indices that directly approximate specific models.

To handle this, Boggart introduces a new execution
paradigm that first selects frames for CNN inference in a
manner that sufficiently bounds the potential propagation
error from index imprecision and unavoidable inconsisten-
cies in CNN results [97]. The core idea is that such errors
are largely determined by model-agnostic features about the
video (e.g., scene dynamics), and can be discerned via in-
ference on only a small set of representative frames. CNN
results are then propagated using a custom set of accuracy-
aware techniques that are specific to each query type (e.g.,
detection, classification) and robustly handle (and dynami-
cally correct) imprecisions in Boggart’s trajectories.

Results. We evaluated Boggart using 96 hours of video from
8 diverse scenes, a variety of CNNs, accuracy targets, and ob-
jects of interest, and 3 widely-used query types: binary clas-
sification, counting, and detection. Across these scenarios,
Boggart consistently meets accuracy targets while running
CNNSs on only 3-54% of frames. Perhaps more surprisingly
given its focus on generality and model-agnostic indices,
Boggart outperforms existing systems that (1) rely solely on
optimizations at query execution time (NoScope [94]) by 19-
97%, and (2) use model-specific indices (Focus [80] running
with knowledge of the exact CNN) by -5-58%.

Taken together, our results affirmatively answer the ques-
tion above, showing that Boggart can support the general in-

terfaces and diverse user models that commercial platforms
face, while delivering reliable accuracy and comparable (typ-
ically larger) speedups than prior, model-specific optimiza-
tions. The source code and experimental data for Boggart
are available at https://github.com/neilsagarwal/boggart.

2 BACKGROUND AND MOTIVATION

In this section, we first present an overview of retrospective
video analytics pipelines and their use cases (§2.1). We then
describe existing optimizations (§2.2), and present measure-
ments highlighting their inability to generalize to the differ-
ent models and queries that users register (§2.3). Additional
related work can be found in §7.

2.1 Primer on Retrospective Video Analytics

Numerous applications leverage (and are guided by) insights
gleaned from analyzing the large amount of video data pre-
viously captured in different environments. For example,
sports analytics tools leverage video analytics on previous
game film to detect players on a field; these detections are fed
into tracking algorithms to determine the efficacy of various
strategies and to evaluate player performance [16,29]. Sim-
ilarly, retail analysts use video analytics to locate customers
in indoor environments with high accuracy, in order to un-
derstand customer-product interaction and, ultimately, to im-
prove store layout designs and product placement [31, 34].
City planners and traffic engineers employ video analytics to
extract trends from historical footage, e.g., identifying points
of congestion or opportunities for expansion [3,20,33,35].
Despite their diverse use cases, retrospective video an-
alytics generally share two main properties that charac-
terize their computational requirements. First, they typi-
cally process video frames using convolutional neural net-
works (CNNs), a class of deep neural networks that have
become the norm for automated vision processing due to
their success in extracting spatial dependencies within im-
ages [53, 99, 104, 106, 125]. CNNs incorporate 3 kinds of
layers: convolutional (responsible for recognizing pixel-level
features), pooling (responsible for making these features
more abstract), and fully-connected (responsible for using
acquired features for prediction). In a CNN, each successive
layer learns a more complex feature representation. Earlier
layers focus on simple features such as colors and edges,
while later layers aim to recognize specific objects. We re-
fer the reader to prior reports [80,94, 103] for more details.
Second, retrospective video analytics applications typi-
cally use CNNs to perform object-centric queries, e.g., to
locate, characterize, and label different types of objects in
frames. Indeed, the output of a CNN is a set of bounding
boxes that localize all identified objects in a given frame,
with each box being accompanied by a probability distri-
bution characterizing its potential labels (or types). Such
object-centric queries subsume those reported by both recent
academic literature [55, 64, 92,94, 105] and industrial orga-
nizations that run video analytics platforms [36, 80,87, 111,
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116, 140]. Concretely, in this paper, we consider the follow-
ing query types (and accuracy metrics):

e binary classification: return a binary decision as to
whether a specific object or type of object appears in each
frame. Accuracy is measured as the fraction of frames
tagged with the correct binary value.

e counting: return the number of objects of a given type that
appear in each frame. Per-frame accuracy is set to the per-
cent difference between the returned and correct counts.

e bounding box detection: return the coordinates for the
bounding boxes that encapsulate each instance of a spe-
cific object or object type. Per-frame accuracy is measured
as the mAP score [67], which considers the overlap (IOU)
of each returned bounding box with the correct one.

The heterogeneity in use cases also brings important dif-
ferences between manifestations of retrospective video an-
alytics applications. Most notably, applications often apply
specialized CNNss that cater to their specific target environ-
ments, object(s) of interest, required accuracy, task complex-
ity, and available computational resources [75, 80,94, 113].
Recent analyses of production video analytics workloads
have shown that applications carry out such specialization by
(1) selecting an existing reference model architecture from
a popular family (e.g., ResNet, YOLO) and (2) training that
model using custom and/or proprietary datasets that yield de-
sirable weights for the target use case [116].

2.2 Existing Acceleration Approaches

Query-time strategies. Systems such as NoScope [94] and
Tahoma [42] only operate once a user issues a query. To
accelerate response generation, they first train cascades of
cheaper binary classification CNNs that are specialized to
the user-provided CNN, object of interest, and target video.
The specific cascade to use is selected with the goal of meet-
ing the accuracy target while minimizing computation and
data loading costs. If confidence is lacking with regards to
meeting the accuracy target, the user’s CNN is incrementally
run on frames until sufficient confidence is achieved.

Ahead-of-time (preprocessing) strategies. Other systems
provide speedups by performing some computation ahead of
time, i.e., before a query is issued; for ease of exposition, we
refer to such computations as preprocessing in the rest of the
paper. For example, Focus [80] speeds up binary classifica-
tion queries by building an approximate, high-recall index of
object occurrences using a specialized and compressed CNN
that roughly matches the full CNN on the target video. Ob-
jects are then clustered based on the features extracted by the
compressed model such that, during query execution, the full
CNN only runs on the centroid of each cluster, with labels
being propagated to all other objects in the same cluster.
Blazelt [93] and TASTI [95] accelerate aggregate versions
of certain query types, e.g., total counts across all frames.
Preprocessing for both systems involves generating sampled

results using the full CNN. TASTI uses the sampled results
to train a cheap embedding CNN that runs on all frames and
clusters those that are similar from the model’s perspective.
During query execution, the full CNN is run only on select
frames in each cluster, with the results propagated to the rest.
In contrast, Blazelt uses the sampled results to train spe-
cialized CNNs that act as control variates for the remaining
frames: the specialized CNNs run on all frames, and the re-
sults are correlated with sampled results from the full CNN
to provide guarantees in statistical confidence. OTIF [48] fol-
lows a similar strategy, but uses proxy models (trained using
the sampled results) to extract tracks about model-specific
objects that are later used to accelerate tracking queries.

Videozilla [81] aims to extend such indexing optimiza-
tions across multiple video streams. More specifically, it
identifies and exploits semantic similarities across streams
that are based on the features extracted by the full CNN.

2.3 The Problem: Model-Specific Preprocessing

As confirmed by prior work [80, 93, 95] and our results
in §6.3, preprocessing (intuitively) reduces the amount of
computation required during query execution, and is crucial
to enabling fast responses. However, all existing solutions
suffer from the same fundamental issue: they deeply inte-
grate a specific CNN into their preprocessing computations
(e.g., to generate sampled results for training the compressed
models used to build indices or group similarly-perceived
frames), and assume that all future queries will use that
same exact CNN. While such an approach was compatible
with prior platforms that exposed only predetermined results
from platform-selected CNN(s), it is no longer feasible with
the bring-your-own-model interfaces that are now common-
place on commercial platforms. To make matters worse, con-
sider that queries can be made at any point in the future and
the space of potential CNNs is immense and rapidly evolv-
ing [102, 107,114, 149], with variations in architecture (e.g.,
# of layers) or weights (e.g., different training datasets). In
fact, building an index for even today’s reference models
would quickly present intractable resource challenges at the
scale of retrospective video datasets: there exist tens of pop-
ular model families, each with multiple architecture options,
e.g., the ResNet family alone has 8 architectures.

To quantify the issues when this assumption is violated,
we ran experiments asking: how would accuracy be affected
if the CNN provided by users during query execution (i.e.,
query CNN) was different than the CNN used during pre-
processing (i.e., preprocessing CNN)? We consider the three
query types above, videos and objects described in §6.1, and
a wide range of CNNs: Faster RCNN, YOLOV3, and SSD,
each trained on two datasets (COCO and VOC Pascal).

For each possible pair of preprocessing and query CNNss,
we ran both CNNs on the video to obtain a list of object
bounding boxes per frame. In line with Focus’ observation
that classification results from two CNNs may not identically
match but should intersect for the top-k results [80], we ig-

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 935



100 100

Accuracy (%)
wv
o o
Accuracy (%)
w
o

YOLO YOLO FRCNN FRCNN SSD  SSD
(COCO) (VOC) (COCO) (VOC) (COCO) (VOC)

(a) Binary classification.

YOLO YOLO FRCNN FRCNN SSD  SSD
(COCO) (VOC) (COCO) (VOC) (COoCO) (voC)

(b) Counting.

O YOLO (COCO) O FRCNN (COCO) @ SSD (COCO)
O YOLO (VOC) @ FRCNN (VOC) M SSD (VOC)

Accuracy (%)

YOLO YOLO FRCNN FRCNN SSD  SSD
(COCO) (VOC) (COCO) (VOC) (COCO) (voC)

(c) Bounding box detection.

Figure 1: Query accuracies when different CNNs are used for preprocessing (bar types) and query execution (X axes). Bars show
results for the median video, and error bars span the 25-75th percentiles. Models are listed as ‘architecture (training dataset)’.

nore the classifications from each CNN. Instead, we consider
all bounding boxes from the preprocessing CNN that have an
IOU of > 0.5 with some box generated by the query CNN;
results were largely unchanged for other IOU thresholds.
This presents the best scenario (accuracy-wise) for existing
preprocessing strategies. Finally, we compute query results
separately using only the remaining preprocessing CNN’s
boxes or all of the query CNN’s boxes, and compare them.
Figure 1 shows that discrepancies between preprocessing
and query CNNs can lead to significant accuracy degrada-
tions, with the errors growing as query precision increases.
For example, median degradations were 0-32% for binary
classifications, but jump to 8-84% and 46-94% for count-
ing and detections. Note that degradations for binary clas-
sification and counting are by definition due to the prepro-
cessing CNN entirely missing objects relative to the query
CNN. Parsed differently, median degradations across query
types were 0-84%, 2-94%, and 1-90% when the preprocess-
ing and query CNNs diverged in terms of only architecture,
only weights, or both. Figure 2 shows that these degradations
persist even for variants in the same family of CNNs.

Takeaway. Ultimately, when run on the general interfaces
of today’s commercial video analytics platforms where users
can provide CNN:g, all existing optimizations would sacrifice
at least one key platform goal:

e reliable accuracy: running preprocessing optimizations as
is (using platform-determined CNNs) would yield unpre-
dictable and substantial (up to 94%) accuracy hits;

e minimal wasted work: performing preprocessing for all
potential user CNNs is not only unrealistic given the sheer
number of possibilities, but would also result in substan-
tial wasted work since queries may never be issued;

e [ow-latency responses: optimizing only once a query is is-
sued will yield higher than necessary response times.

3 OVERVIEW OF BOGGART

This section describes the overall workflow that Boggart uses
to simultaneously meet all three platform goals for general,
user-provided CNNs (Figure 3). §4 and §5 detail its prepro-
cessing and query execution phases, and the project reposi-
tory includes end-to-end visualizations of its operation [9].

Preprocessing. The main goal of Boggart’s preprocessing
phase is to perform cheap computations over a video dataset
such that the outputs (an index) can accelerate query exe-

100

O ResNetl100 B ResNet50+FPN+SyncBn
80 {m ResNet50+FPN [0 ResNet50

60
40
20

Accuracy (%)

ResNet50 ResNetl00 ResNet50 ResNet50
+FPN  +FPN+SyncBn

Figure 2: Accuracies when CNNs for preprocessing (bar types)
and query execution (X axis) are FasterRCNN+COCO with dif-
ferent ResNet backbones. Results are for counting queries; bars
list medians with error bars for 25-75th percentiles.

cution for diverse user CNNs, without sacrificing accuracy.
Crucially, to avoid the pitfalls of prior work (§2.3), Bog-
gart’s preprocessing does not incorporate any knowledge of
the specific CNN(s) that will be used during query execution.
Instead, our insight is that traditional computer vision (CV)
algorithms [88,100,124,127] are well-suited for such prepro-
cessing, as they extract information purely about video data,
rather than how a specific model or query would parse that
data. Using generic CV algorithms enables Boggart to gen-
erate a single index per video, rather than per video/query/-
model tuple. Further, those CV algorithms are computation-
ally cheaper than (even compressed) CNNs, and rely on
CPUs (not GPUs), keeping monetary costs low (§6.3). Both
aspects drastically reduce the potential for wasted work.
However, in contrast to their intended use cases, for our
purposes, CV algorithms must be conservatively tuned to en-
sure that accuracy during query execution is not sacrificed.
Namely, Boggart’s index must comprehensively include all
information that may influence or be incorporated in a query
result (across CNNs), regardless of how coarse or imprecise
that information is. Whereas coarse or imprecise results can
be corrected or filtered out during query execution, missing
information would result in unpredictable accuracy drops.

Accordingly, Boggart carefully uses a combination of mo-
tion extraction and low-level feature tracking techniques to
identify all potential objects as areas of motion (or blobs)
relative to a background estimate, and record their trajecto-
ries across frames by tracking each blob’s defining pixels (or
keypoints). For the former task, only high-confidence pixels
are marked as being part of the background, ensuring that
even minor motion is treated as a potential object; note that
static objects are definitively discovered during query execu-
tion via CNN sampling on the frames across which the ob-
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Figure 3: Overview of Boggart.

jects are static. For the latter task, any uncertainty in trajec-
tory continuity (e.g., tracking ambiguities) is handled by sim-
ply starting a new trajectory; this ensures that results are not
mistakenly propagated across different objects during query
execution, albeit at the cost of additional inference. Overall,
we did not observe any missed moving objects in Boggart’s
indices across our broad evaluation scenarios (§6.1).

Trajectories are a fundamental shift from the clustering
strategies that prior systems use to group frames or objects
based on how they are perceived by a specific CNN (§2.2). In
contrast, trajectories are computed in a model-agnostic man-
ner, but still provide a mechanism through which to prop-
agate CNN results across frames during query execution —
the primary source of speedups. Such generality does, how-
ever, come at a cost. Whereas prior efforts cluster on frames
or object classes, Boggart’s trajectories group frames on a
per-object basis. This discrepancy lets Boggart defer the de-
termination of how a user’s CNN perceives each object to
query execution, but it limits potential propagation, i.e., Bog-
gart propagates the result for an object across the frames in
which it appears, while prior approaches can propagate re-
sults across appearances of different objects. Note that this
discrepancy does not apply to detection queries that require
precise object locations (not just labels) to be propagated.

A natural question is: why not cluster objects on the fea-
tures extracted by traditional CV algorithms to enable more
result propagation? The issue is that, if performed without
knowledge of the user-provided CNN, such clustering could
lead to unsafe result propagation. More specifically, objects
that are similar on some set of features but are perceived dif-
ferently by the user’s CNN could end up in the same cluster.

Query Execution. Once a user registers a query (providing a
CNN, accuracy target, and video to consider), Boggart’s goal
is to generate a full set of per-frame results as quickly as pos-
sible, while reliably meeting the target accuracy. This trans-
lates to using the index from preprocessing (i.e., blobs and
trajectories) to run the CNN on a small sample of frames, and
efficiently propagate those results to the remaining frames.

The main challenge is that, owing to their general-purpose
nature (relative to different models/queries) and closeness to
noisy image signals, the CV algorithms used during prepro-
cessing typically produce results that fail to precisely align
with those from a user’s CNN [55, 105]. Consequently, in

being comprehensive, Boggart’s index is coarse and impre-
cise relative to the target results from a user’s CNN, e.g.,
with misaligned bounding boxes or extraneous objects that
are not of interest to the query. Worse, the degree of impre-
cision is specific to the user CNN, and can lead to cascading
errors (and accuracy drops) as results are propagated along
Boggart’s trajectories. All prior efforts avoid these issues by
tuning indices to specific CNNs at the cost of generality.

To bound accuracy degradations (and reliably meet the
specified target) while avoiding substantial inference, Bog-
gart introduces a new query execution approach with two
main components. First, to quickly and judiciously select
the frames to run CNN inference on, our key observation is
that errors from index imprecision and result propagation are
largely dictated by model-agnostic features about the video,
e.g., scene dynamics or trajectory lengths. Accordingly, Bog-
gart clusters chunks of video in the dataset based on those
features, and runs the user’s CNN only on cluster centroids
to determine the best frame selection strategy per cluster for
the query at hand, i.e., the lowest frequency of CNN infer-
ence that meets the user-specified target accuracy. We note
that, since clustering is based on model-agnostic features, it
can be performed during preprocessing; CNN inference on
centroids, however, only occurs once a user registers a query.

Second, to further limit inference overheads, Boggart in-
troduces a new set of result propagation techniques that are
specific to each query type and bolster propagation distances
in spite of imprecisions in the index. For instance, for bound-
ing box detections, Boggart leverages our empirical observa-
tion that the relative position between an object’s keypoints
(from preprocessing) and its bounding box edges remain sta-
ble over time. Building on this, Boggart propagates an ob-
ject’s CNN-produced bounding box to subsequent frames in
its trajectory by efficiently searching for the coordinates that
maximally preserve these spatial relationships.

Query model and assumptions. Boggart currently supports
the large body of object-centric queries whose results are re-
ported at the granularity of individual objects (e.g., label-
ing or locating them) and whose CNNs are run on a per-
frame basis. Thus, currently handled queries include classi-
fications, counting, and detections, as well as queries that
build atop those primitives such as tracking and activity
recognition. Such queries dominate the workloads reported
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by commercial platforms [36, 80, 87,116, 140], and subsume
those supported by prior work (§2.2). We note that Boggart’s
approach is general enough to also accelerate less common,
finer-grained queries, e.g., semantic segmentation [109]. For
such queries, the keypoints (and their matches across frames)
recorded in Boggart’s index can be used to propagate groups
of pixel labels; we leave implementing this to future work.

Boggart does not make any assumptions about or require
any knowledge of the object type(s) that a query targets. In-
stead, as described above, Boggart relies on generic back-
ground estimation and motion extraction to identify poten-
tial objects. The intuition is that a moving object of any kind
will involve (spatially correlated) moving pixels that can be
identified purely based on the scene. Boggart leaves it to the
user’s CNN to determine whether those potential objects are
of interest during query execution. We stress-test Boggart’s
robustness to different object types in §6.4.

Boggart’s preprocessing operates on videos from static
cameras that capture a single scene. Boggart currently does
not support preprocessing for videos with changing back-
grounds, e.g., CGl-generated films or videos from moving
cameras. We note, however, that the CV community has ac-
tively been extending the core techniques that Boggart builds
atop to deliver improved robustness in the face of moving
cameras [65, 128, 135, 142]. We leave an exploration of inte-
grating these efforts into Boggart to future work.

Reliance on Heuristics. Despite its focus on reliably meet-
ing accuracy targets, Boggart’s operation does involve mul-
tiple heuristics, i.e., tracking algorithms (§4), preset video
chunk sizes (§4), thresholds for blob extraction (§4), and
clustering parameters (§5.2). The upcoming sections and re-
sults in §6.4 elaborate on Boggart’s sensitivity to each pa-
rameter. More generally, Boggart’s approach to ensure suffi-
cient accuracy is shared: each heuristic is conservatively con-
figured to err on capturing too much data (resulting in unnec-
essary processing) rather than missing important data, i.e.,
prioritizing accuracy over efficiency. Examples include re-
turning blobs for unlikely (but possible) objects, splitting tra-
jectories upon uncertainty in object tracking, etc. §6 shows
that this approach enables Boggart to consistently and effi-
ciently deliver accurate query responses for diverse camera
feeds, queries, models, objects, and accuracy targets.

4 BOGGART’S PREPROCESSING

Boggart’s target output from preprocessing is a set of blobs
and their trajectories. To efficiently extract this information
and enable parallel processing over the dataset, Boggart op-
erates independently on video chunks (i.e., groups of con-
tiguous frames); the default chunk size is 1 min (profiled
in §6.4), and trajectories are bound to individual chunks to
eliminate any cross-chunk state sharing. The rest of this sec-
tion describes the analysis that Boggart performs per chunk.

Background estimation. Extracting blobs inherently re-
quires a point of reference against which to discern areas of

motion. Thus, Boggart’s first task is to generate an estimate
of the background scene for the current chunk. However,
existing background estimation approaches [46, 101] are ill-
suited for Boggart as they are primarily concerned with gen-
erating a single, coherent background image despite scene
dynamics (e.g., motion) that complicate perfect foreground-
background separation. In contrast, Boggart’s focus is on
navigating the following tradeoff between accuracy and ef-
ficiency, not coherence. On one hand, placing truly back-
ground pixels in the foreground will lead to spurious trajecto-
ries (and query execution inefficiencies). On the other hand,
incorrectly placing a temporarily static object in the back-
ground can result in accuracy degradations. Indeed, unlike
entirely static objects that will surely be detected via CNN
sampling and propagated to all frames in a chunk (during
query execution), temporarily static objects may be missed
and should only be propagated to select frames.

Boggart addresses the above tradeoff in a manner that fa-
vors accuracy. More specifically, Boggart only marks content
as pertaining to the background scene when it has high con-
fidence; all other content is conservatively marked as part of
the foreground and is resolved during query execution. To re-
alize this approach, Boggart eschews recent background esti-
mation approaches in favor of a custom, lightweight strategy.

In its most basic form, background estimation involves
recording the distribution of values assigned to each pixel
(or region) across all frames in the chunk, and then marking
the most frequently occurring value(s) (i.e., the peaks in the
probability density function) as the background [124, 127].
This works well in scenarios where there is a clear peak in the
distribution that accounts for most of the values, e.g., if ob-
jects do not pass through the pixel or do so with continuous
motion, or if an object is entirely static and can thus be safely
marked as the background. However, complications arise in
settings with multiple peaks. For instance, consider a pixel
with two peaks. Any combination of peaks could pertain to
the background: a tree could sway back and forth (both), a
single car could temporarily stop at a traffic light (one), or
multiple cars could serially stop and go at the light (none).

To distinguish between these multi-modal cases and iden-
tify peaks that definitely pertain to the background for a
chunk, Boggart extends (into the next chunk) the duration
over which the distribution of pixel values is computed. The
idea is that motion amongst background components should
persist with more video, while cases with temporarily static
objects should steadily transform into uni-modal distribu-
tions favoring either the background scene or the object (if it
remains static). To distinguish between the object and back-
ground in the latter case, Boggart further extends the distri-
bution of pixel values to incorporate video from the previous
chunk. If the same peak continues to rise, it must pertain to
the background since we know that the object was not static
throughout the entire chunk. Otherwise, Boggart conserva-
tively assigns an empty background for that pixel.
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of Boggart’s trajectories (and their constituent blobs) is shown in a different color.

Blob Extraction. Using the background estimate, Boggart
takes a second pass through the chunk in order to extract ar-
eas of motion (blobs) on each frame. More specifically, Bog-
gart segments each frame into a binary image whereby each
pixel is annotated with a marker specifying whether it is in
the foreground or background. Our implementation deems
a pixel whose value falls within 5% of its counterpart(s) in
the background estimate as a background pixel, but we find
our results to be largely insensitive to this parameter. Given
the noise in low-level pixel values [105], Boggart further re-
fines the binary image using a series of morphological oper-
ations [115], e.g., to convert outliers in regions that are pre-
dominantly either background or foreground. Lastly, Bog-
gart derives blobs by identifying components of connected
foreground pixels [71], and assigning a bounding box using
the top left and bottom right coordinates of each component.

Computing Trajectories. Boggart’s final preprocessing task
is to convert the set of per-frame blobs into trajectories that
track each blob across the video chunk. At first glance, it may
appear that sophisticated multi-object trackers (e.g., Kalman
Filters) [50, 91, 134, 138] could directly perform this task.
However, most existing trackers rely on pristine object de-
tections as input. Blobs do not meet this criteria, and instead
are far coarser and imprecise (Figure 4). At any time, a single
blob may contain multiple objects, e.g., two people walking
together. Blobs may split or merge as their constituent ob-
jects move and intersect. Lastly, the dimensions of a given
object’s blob bounding boxes can drastically fluctuate across
frames based on interactions with the estimated background.

To handle these issues, we turn to tracking algorithms that
incorporate low-level feature keypoints (SIFT [110] in par-
ticular) [88, 89], or pixels of potential interest in an image,
e.g., the corners that may pertain to a car windshield. Asso-
ciated with each keypoint is a descriptor that incorporates in-
formation about its surrounding region, and thus enables the
keypoint (and its associated content) to be matched across
images. Boggart conservatively applies this functionality to
generate correspondences between blobs across frames.

For each pair of consecutive frames, Boggart pairs the
constituent keypoints of each blob. This may yield any form
of an N — N correspondence depending on the underlying
tracking event, e.g., blobs entering/leaving a scene, fusion or
splitting of blobs. For instance, if the keypoints in a blob on
frame f; match with keypoints in N different blobs on frame

fi+1, there is a 1 — N correspondence. To generate trajec-
tories, Boggart makes a series of forwards and backwards
scans through the chunk. For each correspondence that is not
1 — 1, Boggart propagates that information backwards to ac-
count for the observed merging or splitting. For example, for
a 1 — N correspondence between frames f; and f;1|, Bog-
gart would split f;’s blob into N components using the rela-
tive positions of the matched keypoints on fi1 as a guide.

Index Storage. Preprocessing outputs are stored in Mon-
goDB [1]; overheads are profiled in §6.4. Matched keypoints
are stored with the corresponding frame IDs: row = [<((X,y)-
coordinates, frame #)>]. Blob coordinates (and their trajec-
tory IDs) are stored per frame to facilitate the matching of
CNN results and blobs on sampled frames during query exe-
cution (§5.1): row = [<((x,y)-coordinates of top left corner,
(x,y)-coordinates of bottom right corner, trajectory ID)>].

5 FAST, ACCURATE QUERY EXECUTION

During query execution, Boggart’s sole goal is to judiciously
use the user-provided CNN and the index from preprocess-
ing to quickly generate a complete set of results that meet
the specified accuracy target. Doing so involves answering
two questions: (1) what sampled (or representative) frames
should the CNN be run on such that we can sufficiently adapt
to the registered query (i.e., CNN, query type, and accuracy
target) and bound errors from index imprecisions?, and (2)
how can we use preprocessing outputs to accurately propa-
gate sampled CNN results across frames for different query
types? For ease of exposition, we describe (2) first, assuming
CNN results on representative frames are already collected.
5.1 Propagating CNN Results

Regardless of the query type, Boggart’s first task is to pair
the CNN’s bounding box detections on representative frames
with the blobs on those same frames; this, in turn, associates
detections with trajectories, and enables cross-frame result
propagation. To do this, we pair each detection bounding box
with the blob that exhibits the maximum, non-zero intersec-
tion. Trajectories that are not assigned to any detection are
deemed spurious and are discarded. Further, detections with
no matching blobs are marked as ‘entirely static objects’ and
are handled after all other result propagation (described be-
low). Note that, with this approach and in spite of the trajec-
tory corrections from §4, multiple detections could be asso-
ciated to a single blob, i.e., when objects move together and
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Figure 5: Accuracy (mAP) degradations when CNN bounding
boxes are propagated by computing the blob-to-detection coor-
dinate transformation on a representative frame, and applying
it to all other blobs in the trajectory. Line represents median
detections, with ribbons spanning 25-75th percentiles.

never separate. Using these associations, Boggart propagates
CNN results via techniques specific to the target query type.
Binary classification and counting. To support both query
types, each trajectory is labeled with an object count accord-
ing to the number of detections associated with it on repre-
sentative frames. If a trajectory passes through multiple rep-
resentative frames, Boggart partitions the trajectory into seg-
ments, and assigns each segment a count based on the associ-
ations from the closest representative frame. Lastly, Boggart
sums the counts across the trajectories that pass through each
frame, and returns either the raw count (for counting), or a
boolean indicating if count > O (for binary classification).
Bounding box detections. Whereas binary classification
and count queries simply require propagating coarse infor-
mation about object presence, bounding box queries require
precise positional information to be shared across frames.
However, as noted in §4, blobs and trajectories are inher-
ently imprecise and fail to perfectly align with detections. A
natural approach to addressing such discrepancies is to com-
pute coordinate transformations between paired detections
and blobs on representative frames, and apply those trans-
formations to the remainder of each blob’s trajectory; equiv-
alently, one could compute transformations for a blob across
its own trajectory, and apply them to add detections to non-
representative frames. Unfortunately, Figure 5 shows that de-
tection accuracy rapidly degrades with this approach, e.g.,
median degradations are 30% when propagating a box over
30 frames. The reason is that blobs and their paired detec-
tions move/resize differently across frames, resulting in me-
dian errors of 84% between the Euclidean distances of blob-
blob and detection-detection coordinate transformations.

To fill the void of stable propagation mechanisms, Bog-
gart leverages our finding that the relative positions between
an object’s constituent keypoints (i.e., those extracted and
tracked during preprocessing) and its detection bounding box
edges remain largely unchanged over short durations; we
refer to these relative positions as anchor ratios since they
‘anchor’ an object’s content to a relative position within the
bounding box. This stability is illustrated in Figure 6, and is
intuitive: objects tend to remain rigid over short time scales,
implying that the points they are composed of move in much
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Figure 6: Percent difference in anchor ratios for each object’s
keypoints across its trajectory. Lines show medians, with rib-
bons spanning 25-75th percentiles.

the same way as the entire object does (including as the ob-
ject scales in size). Building on this, Boggart propagates de-
tections by using matching keypoints along the trajectories to
which they have been associated, and efficiently solving an
optimization problem in search of bounding box coordinates
that maximally preserve the anchor ratios for each keypoint.
More formally, for each detection on each representative
frame, Boggart considers the set of keypoints K that fall in
the intersection with the associated blob. Each keypoint & in
K has coordinates (xg,yx). Further, let the coordinates of the
detection bounding box be (xj,y1,x2,y2), where (x1,y;) and
(x2,y2) refer to the top left and bottom right corners. The
anchor ratios (axy,ayy) for keypoint k are computed as:

X2 — Xk )’Z*Yk) (1)

(an,ayk): ( )
X2 —=X1 Y2—N1

For each subsequent non-representative frame (until the next
representative frame) that includes the same trajectory, Bog-
gart finds the set of keypoints that match with those in K;
denote the set of matching keypoints as K’, where each kK’
in K’ matches with keypoint k in K. Finally, to place the
bounding box on the subsequent frame, Boggart solves for
the corresponding coordinates (xj,y;,X2,y2) by minimizing
the following function to maximally preserve anchor ratios:

[ 2 (2w 2
Z[(;_;ﬁ—m)%—ayk)] @

P Y2 =1

Note that this optimization (which takes 1 ms for the me-
dian detection) can be performed in parallel across frames
and across detections on the same frame. Further, Boggart
initializes each search with the coordinates of the corre-
sponding detection box on the representative frame, thereby
reducing the number of steps to reach a minima.

Propagating entirely static objects. Thus far, we have only
discussed how to propagate detection bounding boxes that
map to a blob/trajectory, i.e., moving objects. However, re-
call from §4 that certain objects which are entirely static will
be folded into the background. These objects are discovered
by the CNN on representative frames, but they will not be
paired with any blob. Instead, Boggart broadcasts these ob-
jects to nearby frames (until the next representative frame) in
a query-specific manner: such objects add to the per-frame
counts used for classification and count queries, and their
boxes are statically added into frames for detection queries.
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Figure 7: Accuracy (mAP) degradations grow as Boggart prop-
agates detection bounding boxes over longer durations. Results
consider all object trajectories in the median video. Line repre-
sents medians, with ribbons spanning 25-75th percentiles.
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5.2 Selecting Representative Frames

To use the result propagation techniques from §5.1, we must
determine the set of sampled, representative frames to collect
CNN results on. Because CNN execution is the largest con-
tributor to query execution delays (§6.4), we aim to select the
smallest set of representative frames such that Boggart can
sufficiently discern the relationship between its index and the
CNN results, and generate a complete set of accurate results.

A natural strategy for selecting representative frames is to
pick the smallest set of frames such that every trajectory ap-
pears at least once. In theory, executing the CNN on this set
of frames should be sufficient to generate a result (e.g., object
label, bounding box) for each trajectory, and propagate that
result to all of the trajectory’s frames. However, this straight-
forward approach falls short for two reasons:

1. CNNs can be inconsistent and occasionally produce dif-
ferent results for the same object across frames, e.g., a
car in frame i may be ignored in frame i+ 1 [97, 98].
In line with prior analyses, we mostly observe this be-
havior for small or distant objects, e.g., YOLOv3 mAP
scores are 18% and 42% for the small and large objects
in the COCO dataset [120]. The consequence is that, if
such an inconsistent result appears on a representative
frame, Boggart would propagate it to all other frames in
the trajectory, thereby spreading the error.

2. Even for consistent CNN results, propagation errors in-
herently grow with longer trajectories (i.e., as a given
result is propagated to more frames). For instance, me-
dian accuracies are 90% and 30% when Boggart propa-
gates bounding boxes over 10 and 50 frames (Figure 7).

These issues are more pronounced in busy/dynamic scenes

with significant object occlusions/overlap [79, 132]. More-
over, the implication of both is that solely ensuring that the
set of representative frames covers each trajectory is insuffi-
cient and can result in unacceptable accuracy degradations.
To address this, Boggart introduces an additional constraint
to the selection of representative frames: any blob in a trajec-
tory must be within max_distance frames of a representative
frame that contains the same trajectory. This, in turn, bounds
both the duration over which inconsistent CNN results can be
propagated, as well as the magnitude of propagation errors.

Tying back to our original goal, we seek the largest

max_distance (and thus, fewest representative frames) that

allows Boggart to meet the accuracy target. However, the
appropriate max_distance depends on how the above issues
manifest with the current query, CNN, and video. Digging
deeper, we require an understanding of how Boggart’s prop-
agation techniques (for the query type at hand) and the user’s
CNN interact with each frame and trajectory, i.e., how accu-
rate are Boggart’s propagated results compared to the CNN’s
results. Though important for ensuring sufficient accuracy,
collecting this data (particularly CNN results) for each frame
during query execution would forego Boggart’s speedups.
To achieve both accuracy and efficiency, Boggart clusters
video chunks based on properties of the video and its in-
dex that characterize the aforementioned issues. The idea is
that the chunks in each resulting cluster should exhibit sim-
ilar interactions with the CNN and Boggart’s result prop-
agation, and thus should require similar max_distance val-
ues. Accordingly, Boggart could determine the appropriate
max_distance for all chunks in a cluster by running the CNN
and result propagation only on the cluster’s centroid chunk.
To realize this approach, for each chunk, Boggart extracts
distributions of the following features: object sizes (i.e., pixel
area per blob), trajectory lengths (i.e., number of frames),
and busyness (i.e., number of blobs per frame and trajectory
intersections). These match our observations above: CNN
inconsistencies are most abundant in frames with small ob-
jects, the potential for propagation errors is largest with long
trajectories, and both issues are exacerbated in busy scenes.
With these features, Boggart clusters chunks using the K-
means algorithm. We find that setting the number of target
clusters to ensure that the centroids cover 2% of video strikes
the best balance between CNN overheads and robustness to
diverse and rapidly-changing video chunks; we profile this
parameter in §6.4. Note that since clustering is based on
model-agnostic features (from the extracted trajectories), it
can be performed during preprocessing. Then, during query-
execution, for each resulting cluster, Boggart runs the CNN
on all frames in the centroid chunk. Using the collected re-
sults, Boggart runs its result propagation for a range of pos-
sible max_distance values, and computes an achieved accu-
racy for each one relative to the ground truth CNN results.
More precisely, for each max_distance, Boggart selects the
set of representative frames by greedily adding frames un-
til our criteria is met, i.e., all blobs are within max_distance
of the closest representative frame containing the same tra-
jectory. From there, Boggart selects the largest max_distance
that meets the specified accuracy goal, and applies it to pick
representative frames for all other chunks in the same cluster.
Figure 8 highlights the effectiveness of Boggart’s cluster-
ing strategy in terms of (quickly) adapting to different query
types, accuracy targets, objects of interest, and CNNs. As
shown in Figure 8(top), the median discrepancy between
each chunk’s ideal max_distance value and that of the cor-
responding cluster centroid is only 0-8 frames; this jumps
to 45-898 frames when comparing chunks with the centroid
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Figure 8: Effectiveness of Boggart’s clustering with different
CNNs, (object types), and [accuracy targets]. Results are for
the median video, and compare the ideal max_distance value for
each chunk with those of the centroids in its cluster and the
nearest neighboring cluster. The top graph measures the dis-
crepancies in per-chunk max_distance (bars list medians, with
error bars for 25-75th percentile); the bottom graph evaluates
the corresponding hits on average accuracy (for detections).

of the closest neighboring cluster. Figure 8(bottom) illus-
trates the importance of shrinking these discrepancies. More
specifically, applying each centroid’s ideal max_distance to
all chunks in the corresponding cluster (i.e., Boggart’s ap-
proach) yields average accuracies that are consistently above
the targets. The same is not true when using the ideal
max_distance values from the nearest neighboring cluster.
In summary, Boggart meets accuracy targets through
co-analysis of the video content and specified query, i.e.,
object of interest, model, and query type. Boggart per-
forms query/model-specific profiling of representative video
chunks (where representative is defined by video content/-
dynamics) to identify the frame inference strategy that most
efficiently meets the accuracy target, and then executes this
strategy for the remaining video chunks within each cluster.

6 EVALUATION
We evaluated Boggart on a wide range of queries, CNNs,
accuracy targets, and videos. Our key findings are:

e Boggart consistently meets accuracy targets while running
the CNN on only 3-54% of frames, highlighting its com-
prehensive (model-agnostic) index and effective adapta-
tion during query execution.

e Despite its goal of generality, Boggart’s response times
are 19-97% lower than NoScope’s. Compared to Focus
(which requires a priori knowledge of the CNN that will
be used during query execution), Boggart’s response times
are 33% and 52% lower on counting and detection queries,
and only 5% higher on classifications.

e Boggart’s preprocessing (and index construction) runs
58% faster than Focus’, while also generalizing to differ-
ent CNNs/queries and requiring only CPUs (not GPUs).

e Boggart’s preprocessing and query execution tasks speed
up nearly linearly with increasing compute resources.

Camera location Resolution

Auburn, AL (University crosswalk + intersection) [12] 1920 x 1080
Atlantic City, NJ (Boardwalk) [24] 1920 x 1080

Jackson Hole, WY (Crosswalk + intersection) [17] 1920 x 1080
Lausanne, CH (Street + sidewalk) [18] 1280 x 720
Calgary, CA (Street + sidewalk) [2] 1280 x 720

South Hampton, NY (Shopping village) [15] 1920 x 1080
Oxford, UK (Street + sidewalk) [21] 1920 x 1080

South Hampton, NY (Traffic intersection) [25] 1920 x 1080

Table 1: Summary of our main video dataset.

6.1 Methodology

Videos. Table 1 summarizes the primary video sources used
to evaluate Boggart. Video content across the cameras ex-
hibits diversity in setting, resolution, and camera orientation
(relative to the scene). From each camera, we scraped 12
hours of continuous video (at 30 fps) in order to capture vary-
ing levels of lighting and object densities (i.e., busyness). We
consider additional videos and scene types in §6.4.

Queries. We consider the three query types (and their corre-
sponding accuracy definitions) described in §2, i.e., binary
classification, counting, and bounding box detection. For
each type, we ran the query across our entire video dataset,
and considered two objects of interest, people and cars, that
cover drastically different size, motion, and rigidity prop-
erties; §6.4 presents results for additional object types. We
evaluated Boggart with three accuracy targets — 80%, 90%,
and 95% — and report accuracies as averages for each video.
Accuracies are computed relative to running the model di-
rectly on all frames; as in prior systems and commercial plat-
forms [41, 64, 80, 87, 105], Boggart does not aim to improve
the accuracy of the provided model, and instead targets the
same per-frame results at lower resource costs and delays.

CNN models. We consider three popular architectures: (1)
SSD with a ResNet-50 backbone, (2) Faster RCNN with a
ResNet-50 backbone, and (3) YOLOvV3 with a Darknet53
backbone. For each, we used one version trained on the
COCO dataset, and another trained on VOC Pascal. Trends
for any results shown on a subset of CNNs (due to space
constraints) hold for all considered models.

Hardware. Experiments used a server with an NVIDIA
GTX 1080 GPU (8 GB RAM) and 18-core Intel Xeon 5220
CPU (2.20 GHz; 125 GB RAM), running Ubuntu 18.04.3.

Metrics. In addition to accuracy, we evaluate query execu-
tion performance of all considered systems (Boggart, Fo-
cus [80], and NoScope [94]) in terms of the number of GPU-
hours required to generate results. We report GPU-hours for
two reasons: (1) CNN execution (on GPUs) accounts for al-
most all response generation delays with all three systems,
and (2) it is directly applicable to all of the systems, e.g., it
incorporates NoScope’s specialized CNNs. For preprocess-
ing, we report both GPU- and CPU-hours since Boggart only
requires the latter. As in prior work [80, 94], we exclude the
video decoding costs shared by all considered systems.
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Figure 9: Boggart’s query execution performance across CNNs, query types, and accuracy targets; results are aggregated across
object types. Bars summarize the distributions of per-video average result accuracy (top) and percentage of GPU-hours required to
generate results relative to running the CNN on all frames (bottom). Bars list medians with error bars spanning 25-75th percentiles.

YOLO YOLO FRCNN FRCNN SSD  SSD YOLO YOLO FRCNN FRCNN SSD  SSD

Object Type — People Cars
Query Type | Acc. | % GPU-hrs | Acc. | % GPU-hrs
Binary Classif. | 92% 6% 98% 3%
Counting 90% 11% 90% 7%
Bounding Box | 91% 27% 90% 16%

Table 2: Average accuracy and percentage of GPU-hours (rela-
tive to the naive baseline) for different query types and objects
of interest. Results list median per-video values across all CNNs.

6.2 Query Execution Speedups
Figure 9 evaluates Boggart’s query response times relative
to a naive baseline that runs the CNN on all frames. Boggart
always used the same, model-agnostic index per video.
There are three points to take away from Figure 9. First,
across all of the conditions, Boggart consistently meets the
specified accuracy targets. Second, the percentage of GPU-
hours required to meet each accuracy target with Boggart
grows as we move from coarse classification and counting
queries to finer-grained bounding box detections. For exam-
ple, with a target accuracy of 90%, the median percentage of
GPU-hours across all models was 3-6%, 4-11%, and 8-28%
for the three query types, respectively. Third, the percentage
of GPU-hours also grows as the target accuracy increases
for each query type. For instance, for counting queries, the
percentage (across all CNNs) was 3-5% when the target ac-
curacy was 80%; this jumps to 12-30% when the target accu-
racy grows to 95%. The reason is intuitive: higher accuracy
targets imply that Boggart must more tightly bound the dura-
tion over which results are propagated (to limit propagation
errors) by running the CNN on more frames.

Different object types. Table 2 reports the results from Fig-
ure 9 separately per object type. As shown, the high-level
trends from above persist for each. However, for a given
query type, the percentage of required GPU-hours is consis-
tently lower when considering cars versus people. The rea-
son is twofold. First, inconsistencies in CNN results are more
prevalent for people since they appear as smaller objects in
our scenes (§5.2). Second, cars are inherently more rigid than
people, and thus deliver more stability in the anchor ratios
that Boggart relies on for bounding box propagation (§5.1);
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Figure 10: Average accuracy (line) and percentage of GPU
hours (relative to the naive baseline) for different video sam-
pling rates. Results are listed for the median video, and consider
YOLOvV3+COCO and a 90% accuracy target.

consequently, propagation errors for bounding box queries
grow more quickly with people. Boggart handles both issues
by running the CNN on more representative frames.

Downsampled video. Users may issue queries on sampled
versions of each video [80]. We evaluated Boggart with three
different sample rates: {30, 15, 1} fps. Although the num-
ber of considered frames drops, Figure 10 shows that Bog-
gart’s query execution speedups persist when operating over
downsampled videos. For instance, with 1-fps video, Bog-
gart requires only 25-49% of the GPU-hours that the naive
baseline would need across all query types. Figure 10 also
shows that Boggart’s ability to consistently meet accuracy
targets holds across sampling rates. We find that Boggart can
hit accuracy targets without resorting to running the CNN on
all frames because object keypoints — the primitive that Bog-
gart tracks across frames during both trajectory construction
(preprocessing) and detection propagation (query execution)
— typically persist across frames even at these sample rates.
For instance, Boggart matches 85% of the median object’s
keypoints across the 29-frame gap induced by the 1-fps rate.

6.3 Comparison to State-of-the-Art
We compared Boggart with two recent retrospective video
analytics systems: (1) NoScope [94], which only employs
optimizations during query execution, and (2) Focus [80],
which performs model-specific preprocessing by assuming a
priori knowledge of user CNNs. §2.2 details each system.
For these experiments, we set the user-provided CNN to
be YOLOvV3+COCO, and the accuracy target to be 90%. Our
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form preprocessing.
Figure 11: Comparing Boggart, Focus [80], and NoScope [94].
Results use YOLOv3+COCO and a target accuracy of 90%.

Focus implementation used Tiny YOLO [120] as the spe-
cialized/compressed model (i.e., we ran Focus as if it knew
the user CNN a priori), while NoScope used all of its open-
source models. Following the training methodology used in
both papers, we train the specialized/compressed models on
1-fps versions of the first half (i.e., 6 hours) of each video in
our dataset, and run queries on the second half of each video.

Query Execution. Figure 11a compares the query response
times of all three systems. As shown, Focus requires 5%
fewer median GPU-hours than Boggart for binary classifica-
tion queries. The main reason is that Focus’ model-specific
preprocessing (i.e., clustering of objects) enables more result
propagation than Boggart’s general, model-agnostic trajecto-
ries, i.e., Focus can propagate labels across objects, whereas
Boggart can propagate labels only along a given object’s tra-
jectory (§3). Median propagation distances for results from
the full CNN are 58 and 44 frames with Focus and Boggart.
Summing Focus’ classifications to generate per-frame
counts was insufficient for our 90% target. Thus, for count-
ing queries, we performed favorable sampling until Focus
hit 90% in each video: we greedily select a set of contiguous
frames with constant count errors, run the CNN on a single
frame, and correct errors on the remaining ones in the set.
Even with such favorable sampling, Boggart required 33%
fewer GPU-hours than Focus for counting queries.
Bounding box detections paint a starker contrast, with
Boggart needing 52% fewer GPU-hours than Focus. Unlike
with classification labels, Focus cannot propagate bounding
boxes across frames. Instead, to accelerate these queries, Fo-
cus relies on binary classification, and runs the full CNN on
all frames with an object of interest (to obtain their bound-
ing boxes); for our videos, this translates to running the full
CNN on 63-100% of frames. In contrast, Boggart propagates
bounding boxes along each trajectory (median propagation
distance of 23 frames) and reduces CNN tasks accordingly.

4 Preprocessing
—+— Query Execution

N

Factor
Speed-up

1 2 3 4 5
Factor Increase in Compute Resources

Figure 12: Boggart’s performance with increasing compute re-
sources. Resource factors are multiples of the 18-core CPU and
single GPU listed in §6.1. Results consider YOLOv3+COCO, a
90% accuracy target, and the median video.

Compared to NoScope, Boggart’s query execution tasks
consume 19-97% fewer GPU-hours across query types. Bog-
gart’s speedups are largely due to three limitations with No-
Scope. First, NoScope does not perform preprocessing, and
instead must train and run inference with its specialized and
compressed CNNs during query execution. Second, results
are not propagated across frames. Third, bounding box de-
tections are sped up only via binary classification; note that
NoScope performs binary classification on each frame (not
object, like Focus), so we cannot simply sum the classifi-
cation results to answer a counting query, and instead must
execute counting queries as bounding box queries.

Preprocessing. Figure 11b shows that Boggart’s preprocess-
ing tasks take 58% fewer computation hours than Focus’.
The discrepancy is from the training and inference costs that
Focus incurs by using a specialized/compressed model. Note
that all of Boggart’s preprocessing is CPU-based, while Fo-
cus’ costs are dominated (79%) by GPU operations. Further,
Boggart’s preprocessing runs once per video to support all
future CNNs. To avoid accuracy drops (§2.3), Focus would
have to run preprocessing for each CNN it wishes to support,
leading to higher costs and potential for wasted work.

6.4 Profiling Boggart

Dissecting Boggart’s performance. Boggart’s preprocess-
ing delays are dominated (83% on the median video) by the
extraction of SIFT keypoints across frames; background es-
timation, trajectory construction, and clustering together ac-
count for only 17% of the time. Query execution profiles are
similar, with CNN inference on centroid chunks and repre-
sentative frames contributing 7% and 91% of runtime; result
propagation (mostly for detections) takes the remaining 2%.

Resource scaling. Figure 12 shows that Boggart’s prepro-
cessing and query execution performance scale nearly lin-
early with increasing CPU and GPU resources, respectively.
The reason is that feature extraction and CNN inference, the
tasks that dominate delays in the two phases, inherently op-
erate on a per-frame basis and can thus naturally be paral-
lelized across frames. Note that these results only consider
parallel processing within each chunk; Boggart can also par-
allelize across chunks since trajectories are bound to single
chunks, i.e., there is no cross-chunk state sharing (§5).

Storage costs. Boggart’s preprocessing generates, on aver-
age, 306 MB of data per 1 hour of video. For context, (1) the
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average video in our dataset consumes 1 GB when encoded
with H.264, and (2) Focus’ preprocessing generates 70 MB
of data for the same video. Recall that NoScope does not in-
volve video preprocessing, and thus does not incur storage
costs for indices. Note that 98% of Boggart’s storage over-
heads are for keypoints used to propagate bounding boxes;
blobs and trajectories consume only 2%.

Sensitivity to parameters. Boggart includes parameters for
video chunk size (default: 1 min) and target number of clus-
ters (default: centroids cover 2% of video). On average, we
find that Boggart’s performance is largely insensitive to both:
varying chunk sizes from 0.2-10 min and the videos covered
by centroids from 0.5-5% altered Boggart’s performance by
less than 5% (note that accuracy never dropped below the
targets). However, the effects of each parameter are more
pronounced on short amounts of video and are dependent
on the content being considered. More specifically, smaller
chunk sizes reduce the potential result propagation, but also
shrink cluster centroids and increase the potential for paral-
lel processing. Similarly, more clusters implies fewer subop-
timalities in the selection of representative frames, but also
additional centroids on which to run the CNN.
Generalizability. To further evaluate Boggart’s ability to
generalize, we ran experiments with three additional videos
(3 hours each) and new object types specific to those scenes:
birds in nature [19], boats in a canal [30], and people, cups,
chairs, and tables in a restaurant [6]. For these experiments,
we ran Boggart in the same way as above, i.e., it is not tuned
in any way to the video or objects of interest. We also ran ex-
periments considering different object types (trucks and bi-
cycles) in the traffic videos from Table 1; these experiments
used the same indices as in our main evaluation. All results
exhibit similar trends as above, with Boggart always meet-
ing accuracy targets (80%, 90%, 95%) and running CNNs
on only 11.7-34.2%, 11.7-53.4%, and 12.6-56.7% of frames
for binary classification, counting, and detection.

7 ADDITIONAL RELATED WORK

Live video analytics. Multiple systems accelerate queries
on live video, with optimizations along the following axes:
(1) profiling pipeline knobs to identify cheaper (but accu-
rate) configurations [87, 140], (2) integrating on-camera or
edge server resources for partial inference, frame filtering,
or reusing results from prior frames [43,54,58,63,66,73,74,
105,129,136,141,148], (3) content/model-aware encoding to
reduce data transfers [64, 133], and (4) spatiotemporal coor-
dination for efficient multi-camera queries [86, 111]. These
systems target an entirely different computational model
(stream processing vs. “after-the-fact” querying) and thus
face a different set of goals, optimization knobs, and con-
straints, e.g., by not having the entire dataset up front, live
analytics can only propagate results to later frames.
Accelerating GPU tasks. One line of work optimizes DNN's
for accelerated inference via distillation [78], quantiza-
tion [60, 84, 144], or pruning [51, 108]. Another direction

targets faster inference for a model, either through better
scheduling of GPU resources across inference tasks [85,123,
126], or hardware acceleration [38,68,90,117]. These works
are complementary to Boggart, which focuses on reducing
the number of frames on which inference must be performed.
Video Object Detection. In addition to those in §4, Boggart
builds on a line of work in the CV community that leverages
the spatiotemporal aspect of video to accelerate detection
and classification tasks. These techniques swap inference on
sampled frames with optical flow networks that extend re-
sults from earlier frames [49, 56, 57, 59, 62,72,76,98, 112,
130,131, 145-147], and are thus similar in spirit to Boggart’s
result propagation strategy. However, unlike Boggart, these
approaches are model-specific, in that the networks used for
propagation must be trained according to the specific CNN
(e.g., its feature extractor) used in the target query.

Video storage and indexing. Many systems balance video
storage and lookup costs for specific query types [121, 139,
143] or CNNs [40,96, 119, 137]. Boggart is complementary
to these works in that its focus is on performing generaliz-
able preprocessing and accelerating response generation af-
ter video frames are loaded into memory.

8 CONCLUSION

This paper described Boggart, a system for retrospective
video analytics that supports the general “bring your own
model” interfaces that are now commonplace in commer-
cial platforms. To meet the core accuracy, speed, and effi-
ciency goals of those platforms, Boggart holistically rethinks
the query execution process, introducing cheap techniques to
generate comprehensive (but imprecise) indices during pre-
processing, and later use those indices to limit costly infer-
ence while bounding accuracy drops from imprecisions. Our
results show that such generality can come at low cost, as
Boggart outperforms prior, model-specific approaches.

Ethics. The focus of this work is on making the ethical pro-
cessing of videos (public or private, according to the law)
more efficient. We do not advocate for the processing of
video for illicit purposes, unlawful tracking, etc. Moreover,
Boggart is developed to improve the resource efficiency of
existing retrospective video analytics platforms in a man-
ner that does not change the interfaces they expose, i.e., the
videos, models/queries, and customers they handle remain
unchanged. In sum, Boggart does not alter the set of infor-
mation exposed to applications — the videos that an applica-
tion can query and the queries that the application can run
on those videos are unchanged, and Boggart’s internal state
(e.g., preprocessing results) is not exposed.
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