
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.

April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the

20th USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by

Boggart: Towards General-Purpose Acceleration
of Retrospective Video Analytics

Neil Agarwal and Ravi Netravali, Princeton University

https://www.usenix.org/conference/nsdi23/presentation/agarwal-neil

Boggart: Towards General-Purpose Acceleration of Retrospective Video Analytics

Neil Agarwal, Ravi Netravali

Princeton University

Abstract

Commercial retrospective video analytics platforms have in-

creasingly adopted general interfaces to support the custom

queries and convolutional neural networks (CNNs) that dif-

ferent applications require. However, existing optimizations

were designed for settings where CNNs were platform- (not

user-) determined, and fail to meet at least one of the fol-

lowing key platform goals when that condition is violated:

reliable accuracy, low latency, and minimal wasted work.

We present Boggart, a system that simultaneously meets

all three goals while supporting the generality that today’s

platforms seek. Prior to queries being issued, Boggart care-

fully employs traditional computer vision algorithms to gen-

erate indices that are imprecise, but are fundamentally com-

prehensive across different CNNs/queries. For each issued

query, Boggart employs new techniques to quickly character-

ize the imprecision of its index, and sparingly run CNNs (and

propagate results to other frames) in a way that bounds ac-

curacy drops. Our results highlight that Boggart’s improved

generality comes at low cost, with speedups that match (and

most often, exceed) prior, model-specific approaches.

1 INTRODUCTION

Video cameras are prevalent in our society, with massive de-

ployments across major cities and organizations [4, 10, 11,

22,32,47]. These cameras continually collect video data that

is queried retrospectively to guide traffic/city planning, busi-

ness or sports analytics, healthcare, crime investigation, and

many other applications [5, 14, 23, 26, 31, 33±35, 37, 61, 69,

122]. Queries typically involve running convolutional neural

network (CNN) models that locate and characterize partic-

ular objects in scenes [53, 99, 104, 106, 125]. Applications

tailor the architectures and weights of those CNNs to their

unique requirements (e.g., accuracy, latency, and resource

cost) and target tasks, e.g., via specialization to scenes or ob-

ject types [8,13,116], proprietary training datasets [7,27,28].

To support these diverse applications, commercial video

analytics platforms (e.g., Microsoft Rocket [41,44,45], Ama-

zon Rekognition [39], Google AI [70], IBM Maximo [83])

have steadily transitioned away from exposing only prede-

termined video processing results, towards being platforms

that allow users/applications to register custom, large-scale

video analytics jobs without worrying about infrastructural

details [55,116,118]. To register a query, users typically pro-

vide (1) a CNN model of arbitrary architecture and weights,

(2) a target set of videos (e.g., feeds, time periods), and

(3) an accuracy target indicating how closely the provided

results must match those from running the CNN on every

frame. Higher accuracy targets typically warrant more infer-

ence (and thus, slower responses and higher costs).

From a platform perspective, there exist three main goals

for each registered query. First and foremost, provided re-

sults should reliably meet the specified accuracy target (usu-

ally above 80% [80,92,105,116]). Subject to that constraint,

the platform should aim to consume as few computational

resources as possible (i.e., minimize unnecessary work) and

deliver responses as quickly as possible. The main difficulty

in achieving these goals stems from the potentially massive

number of video frames to consider, and the high compute

costs associated with running a CNN on each one. For exam-

ple, recent object detectors would require 500 GPU-hours to

process a week of 30-fps video from just one camera [77,82].

Unfortunately, despite significant effort in optimizing ret-

rospective video analytics [42,48,80,81,93±95], no existing

solution is able to simultaneously meet the above goals for

the general interfaces that commercial platforms now offer.

Most notably, recent optimizations perform ahead-of-time

processing of video data to build indices that can accelerate

downstream queries [48, 80, 95]. However, these optimiza-

tions were designed for settings where models were known

a priori (i.e., not provided by users), and thus deeply inte-

grate knowledge of the specific CNN into their ahead of time

processing. Porting these approaches to today’s bring-your-

own-model platforms fundamentally results in unacceptable

accuracy violations and resource overheads. The underly-

ing reason is that models with even minor discrepancies (in

architecture or weights) can deliver wildly different results

for the same tasks and frames. Consequently, using different

models for ahead-of-time processing and user queries can

yield accuracy drops of up to 94% (§2.3). Building an index

for all potential models is unrealistic given the massive space

of CNNs [102,107,114,149], and the inherent risk of wasted

resources since queries may never be issued [80, 137].

In this paper, we ask ªcan retrospective video analytics

platforms operate more like general-purpose accelerators to

achieve their goals for the heterogeneous queries+models

provided by users?º We argue that they can, but doing so

requires an end-to-end rethink of the way queries are exe-

cuted, from the ahead-of-time processing used to develop in-

dices, to the execution that occurs only once a user provides

a model and accuracy target. We examine the challenges as-

sociated with each phase, and present Boggart, a complete

video analytics platform that addresses those challenges.

Ahead-of-time processing (indexing). To support our goals,

an index must meet the following criteria: (1) comprehensive

with respect to data of interest for different models/queries ±

any information loss would result in unpredictable accuracy

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 933

drops, (2) links information across frames so CNN inference

results ± the most expensive part of query execution [80, 94]

± can be propagated from one frame to another at low cost,

and (3) cheap to construct since queries may never come in.

We show with Boggart that, if applied in a conservative

manner, traditional computer vision (CV) algorithms [52,88,

100, 127] can be repurposed to generate such an index per

video. Along these lines, Boggart’s ahead-of-time processing

extracts a comprehensive set of potential objects (or blobs)

in each frame as areas of motion relative to the background

scene. Trajectories linking blobs across frames are then com-

puted by tracking low-level, model-agnostic video features,

e.g., SIFT keypoints [110]. Crucially, Boggart’s trajectories

are computed once per video (not per video/model/query tu-

ple) using cheap CV tasks that require only CPUs, and are

generated 58% faster than prior model-specific indices con-

structed using compressed CNNs and GPUs (§6.3).

Query execution. Once a user registers a query and CNN,

the main question is how to use the comprehensive index to

quickly generate results that meet the accuracy target, i.e.,

running inference on as few frames as possible, and aggres-

sively propagating results along Boggart’s trajectories. The

challenge is that Boggart’s index is extremely coarse and im-

precise relative to CNN results. For instance, blob bounding

boxes may be far larger than those generated by CNNs, and

may include multiple objects that move in tandem. Worse,

the imprecision of Boggart’s index varies with respect to dif-

ferent models and queries; prior systems avoid this issue by

using indices that directly approximate specific models.

To handle this, Boggart introduces a new execution

paradigm that first selects frames for CNN inference in a

manner that sufficiently bounds the potential propagation

error from index imprecision and unavoidable inconsisten-

cies in CNN results [97]. The core idea is that such errors

are largely determined by model-agnostic features about the

video (e.g., scene dynamics), and can be discerned via in-

ference on only a small set of representative frames. CNN

results are then propagated using a custom set of accuracy-

aware techniques that are specific to each query type (e.g.,

detection, classification) and robustly handle (and dynami-

cally correct) imprecisions in Boggart’s trajectories.

Results. We evaluated Boggart using 96 hours of video from

8 diverse scenes, a variety of CNNs, accuracy targets, and ob-

jects of interest, and 3 widely-used query types: binary clas-

sification, counting, and detection. Across these scenarios,

Boggart consistently meets accuracy targets while running

CNNs on only 3-54% of frames. Perhaps more surprisingly

given its focus on generality and model-agnostic indices,

Boggart outperforms existing systems that (1) rely solely on

optimizations at query execution time (NoScope [94]) by 19-

97%, and (2) use model-specific indices (Focus [80] running

with knowledge of the exact CNN) by -5-58%.

Taken together, our results affirmatively answer the ques-

tion above, showing that Boggart can support the general in-

terfaces and diverse user models that commercial platforms

face, while delivering reliable accuracy and comparable (typ-

ically larger) speedups than prior, model-specific optimiza-

tions. The source code and experimental data for Boggart

are available at https://github.com/neilsagarwal/boggart.

2 BACKGROUND AND MOTIVATION

In this section, we first present an overview of retrospective

video analytics pipelines and their use cases (§2.1). We then

describe existing optimizations (§2.2), and present measure-

ments highlighting their inability to generalize to the differ-

ent models and queries that users register (§2.3). Additional

related work can be found in §7.

2.1 Primer on Retrospective Video Analytics

Numerous applications leverage (and are guided by) insights

gleaned from analyzing the large amount of video data pre-

viously captured in different environments. For example,

sports analytics tools leverage video analytics on previous

game film to detect players on a field; these detections are fed

into tracking algorithms to determine the efficacy of various

strategies and to evaluate player performance [16, 29]. Sim-

ilarly, retail analysts use video analytics to locate customers

in indoor environments with high accuracy, in order to un-

derstand customer-product interaction and, ultimately, to im-

prove store layout designs and product placement [31, 34].

City planners and traffic engineers employ video analytics to

extract trends from historical footage, e.g., identifying points

of congestion or opportunities for expansion [3, 20, 33, 35].

Despite their diverse use cases, retrospective video an-

alytics generally share two main properties that charac-

terize their computational requirements. First, they typi-

cally process video frames using convolutional neural net-

works (CNNs), a class of deep neural networks that have

become the norm for automated vision processing due to

their success in extracting spatial dependencies within im-

ages [53, 99, 104, 106, 125]. CNNs incorporate 3 kinds of

layers: convolutional (responsible for recognizing pixel-level

features), pooling (responsible for making these features

more abstract), and fully-connected (responsible for using

acquired features for prediction). In a CNN, each successive

layer learns a more complex feature representation. Earlier

layers focus on simple features such as colors and edges,

while later layers aim to recognize specific objects. We re-

fer the reader to prior reports [80, 94, 103] for more details.

Second, retrospective video analytics applications typi-

cally use CNNs to perform object-centric queries, e.g., to

locate, characterize, and label different types of objects in

frames. Indeed, the output of a CNN is a set of bounding

boxes that localize all identified objects in a given frame,

with each box being accompanied by a probability distri-

bution characterizing its potential labels (or types). Such

object-centric queries subsume those reported by both recent

academic literature [55, 64, 92, 94, 105] and industrial orga-

nizations that run video analytics platforms [36, 80, 87, 111,

934 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

116, 140]. Concretely, in this paper, we consider the follow-

ing query types (and accuracy metrics):

• binary classification: return a binary decision as to

whether a specific object or type of object appears in each

frame. Accuracy is measured as the fraction of frames

tagged with the correct binary value.

• counting: return the number of objects of a given type that

appear in each frame. Per-frame accuracy is set to the per-

cent difference between the returned and correct counts.

• bounding box detection: return the coordinates for the

bounding boxes that encapsulate each instance of a spe-

cific object or object type. Per-frame accuracy is measured

as the mAP score [67], which considers the overlap (IOU)

of each returned bounding box with the correct one.

The heterogeneity in use cases also brings important dif-

ferences between manifestations of retrospective video an-

alytics applications. Most notably, applications often apply

specialized CNNs that cater to their specific target environ-

ments, object(s) of interest, required accuracy, task complex-

ity, and available computational resources [75, 80, 94, 113].

Recent analyses of production video analytics workloads

have shown that applications carry out such specialization by

(1) selecting an existing reference model architecture from

a popular family (e.g., ResNet, YOLO) and (2) training that

model using custom and/or proprietary datasets that yield de-

sirable weights for the target use case [116].

2.2 Existing Acceleration Approaches

Query-time strategies. Systems such as NoScope [94] and

Tahoma [42] only operate once a user issues a query. To

accelerate response generation, they first train cascades of

cheaper binary classification CNNs that are specialized to

the user-provided CNN, object of interest, and target video.

The specific cascade to use is selected with the goal of meet-

ing the accuracy target while minimizing computation and

data loading costs. If confidence is lacking with regards to

meeting the accuracy target, the user’s CNN is incrementally

run on frames until sufficient confidence is achieved.

Ahead-of-time (preprocessing) strategies. Other systems

provide speedups by performing some computation ahead of

time, i.e., before a query is issued; for ease of exposition, we

refer to such computations as preprocessing in the rest of the

paper. For example, Focus [80] speeds up binary classifica-

tion queries by building an approximate, high-recall index of

object occurrences using a specialized and compressed CNN

that roughly matches the full CNN on the target video. Ob-

jects are then clustered based on the features extracted by the

compressed model such that, during query execution, the full

CNN only runs on the centroid of each cluster, with labels

being propagated to all other objects in the same cluster.

BlazeIt [93] and TASTI [95] accelerate aggregate versions

of certain query types, e.g., total counts across all frames.

Preprocessing for both systems involves generating sampled

results using the full CNN. TASTI uses the sampled results

to train a cheap embedding CNN that runs on all frames and

clusters those that are similar from the model’s perspective.

During query execution, the full CNN is run only on select

frames in each cluster, with the results propagated to the rest.

In contrast, BlazeIt uses the sampled results to train spe-

cialized CNNs that act as control variates for the remaining

frames: the specialized CNNs run on all frames, and the re-

sults are correlated with sampled results from the full CNN

to provide guarantees in statistical confidence. OTIF [48] fol-

lows a similar strategy, but uses proxy models (trained using

the sampled results) to extract tracks about model-specific

objects that are later used to accelerate tracking queries.

Videozilla [81] aims to extend such indexing optimiza-

tions across multiple video streams. More specifically, it

identifies and exploits semantic similarities across streams

that are based on the features extracted by the full CNN.

2.3 The Problem: Model-Specific Preprocessing

As confirmed by prior work [80, 93, 95] and our results

in §6.3, preprocessing (intuitively) reduces the amount of

computation required during query execution, and is crucial

to enabling fast responses. However, all existing solutions

suffer from the same fundamental issue: they deeply inte-

grate a specific CNN into their preprocessing computations

(e.g., to generate sampled results for training the compressed

models used to build indices or group similarly-perceived

frames), and assume that all future queries will use that

same exact CNN. While such an approach was compatible

with prior platforms that exposed only predetermined results

from platform-selected CNN(s), it is no longer feasible with

the bring-your-own-model interfaces that are now common-

place on commercial platforms. To make matters worse, con-

sider that queries can be made at any point in the future and

the space of potential CNNs is immense and rapidly evolv-

ing [102, 107, 114, 149], with variations in architecture (e.g.,

of layers) or weights (e.g., different training datasets). In

fact, building an index for even today’s reference models

would quickly present intractable resource challenges at the

scale of retrospective video datasets: there exist tens of pop-

ular model families, each with multiple architecture options,

e.g., the ResNet family alone has 8 architectures.

To quantify the issues when this assumption is violated,

we ran experiments asking: how would accuracy be affected

if the CNN provided by users during query execution (i.e.,

query CNN) was different than the CNN used during pre-

processing (i.e., preprocessing CNN)? We consider the three

query types above, videos and objects described in §6.1, and

a wide range of CNNs: Faster RCNN, YOLOv3, and SSD,

each trained on two datasets (COCO and VOC Pascal).

For each possible pair of preprocessing and query CNNs,

we ran both CNNs on the video to obtain a list of object

bounding boxes per frame. In line with Focus’ observation

that classification results from two CNNs may not identically

match but should intersect for the top-k results [80], we ig-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 935

YOLO
(COCO)

YOLO
(VOC)

FRCNN
(COCO)

FRCNN
(VOC)

SSD
(COCO)

SSD
(VOC)

0

50

100

Ac
cu

ra
cy

 (%
)

(a) Binary classification.

YOLO
(COCO)

YOLO
(VOC)

FRCNN
(COCO)

FRCNN
(VOC)

SSD
(COCO)

SSD
(VOC)

0

50

100

Ac
cu

ra
cy

 (%
)

(b) Counting.

YOLO
(COCO)

YOLO
(VOC)

FRCNN
(COCO)

FRCNN
(VOC)

SSD
(COCO)

SSD
(VOC)

0

50

100

Ac
cu

ra
cy

 (%
) YOLO (COCO)

YOLO (VOC)
FRCNN (COCO)
FRCNN (VOC)

SSD (COCO)
SSD (VOC)

(c) Bounding box detection.

Figure 1: Query accuracies when different CNNs are used for preprocessing (bar types) and query execution (X axes). Bars show

results for the median video, and error bars span the 25-75th percentiles. Models are listed as ‘architecture (training dataset)’.

nore the classifications from each CNN. Instead, we consider

all bounding boxes from the preprocessing CNN that have an

IOU of ≥ 0.5 with some box generated by the query CNN;

results were largely unchanged for other IOU thresholds.

This presents the best scenario (accuracy-wise) for existing

preprocessing strategies. Finally, we compute query results

separately using only the remaining preprocessing CNN’s

boxes or all of the query CNN’s boxes, and compare them.

Figure 1 shows that discrepancies between preprocessing

and query CNNs can lead to significant accuracy degrada-

tions, with the errors growing as query precision increases.

For example, median degradations were 0-32% for binary

classifications, but jump to 8-84% and 46-94% for count-

ing and detections. Note that degradations for binary clas-

sification and counting are by definition due to the prepro-

cessing CNN entirely missing objects relative to the query

CNN. Parsed differently, median degradations across query

types were 0-84%, 2-94%, and 1-90% when the preprocess-

ing and query CNNs diverged in terms of only architecture,

only weights, or both. Figure 2 shows that these degradations

persist even for variants in the same family of CNNs.

Takeaway. Ultimately, when run on the general interfaces

of today’s commercial video analytics platforms where users

can provide CNNs, all existing optimizations would sacrifice

at least one key platform goal:

• reliable accuracy: running preprocessing optimizations as

is (using platform-determined CNNs) would yield unpre-

dictable and substantial (up to 94%) accuracy hits;

• minimal wasted work: performing preprocessing for all

potential user CNNs is not only unrealistic given the sheer

number of possibilities, but would also result in substan-

tial wasted work since queries may never be issued;

• low-latency responses: optimizing only once a query is is-

sued will yield higher than necessary response times.

3 OVERVIEW OF BOGGART

This section describes the overall workflow that Boggart uses

to simultaneously meet all three platform goals for general,

user-provided CNNs (Figure 3). §4 and §5 detail its prepro-

cessing and query execution phases, and the project reposi-

tory includes end-to-end visualizations of its operation [9].

Preprocessing. The main goal of Boggart’s preprocessing

phase is to perform cheap computations over a video dataset

such that the outputs (an index) can accelerate query exe-

ResNet50 ResNet100 ResNet50
+FPN

ResNet50
+FPN+SyncBn

0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

ResNet100
ResNet50+FPN

ResNet50+FPN+SyncBn
ResNet50

Figure 2: Accuracies when CNNs for preprocessing (bar types)

and query execution (X axis) are FasterRCNN+COCO with dif-

ferent ResNet backbones. Results are for counting queries; bars

list medians with error bars for 25-75th percentiles.

cution for diverse user CNNs, without sacrificing accuracy.

Crucially, to avoid the pitfalls of prior work (§2.3), Bog-

gart’s preprocessing does not incorporate any knowledge of

the specific CNN(s) that will be used during query execution.

Instead, our insight is that traditional computer vision (CV)

algorithms [88,100,124,127] are well-suited for such prepro-

cessing, as they extract information purely about video data,

rather than how a specific model or query would parse that

data. Using generic CV algorithms enables Boggart to gen-

erate a single index per video, rather than per video/query/-

model tuple. Further, those CV algorithms are computation-

ally cheaper than (even compressed) CNNs, and rely on

CPUs (not GPUs), keeping monetary costs low (§6.3). Both

aspects drastically reduce the potential for wasted work.

However, in contrast to their intended use cases, for our

purposes, CV algorithms must be conservatively tuned to en-

sure that accuracy during query execution is not sacrificed.

Namely, Boggart’s index must comprehensively include all

information that may influence or be incorporated in a query

result (across CNNs), regardless of how coarse or imprecise

that information is. Whereas coarse or imprecise results can

be corrected or filtered out during query execution, missing

information would result in unpredictable accuracy drops.

Accordingly, Boggart carefully uses a combination of mo-

tion extraction and low-level feature tracking techniques to

identify all potential objects as areas of motion (or blobs)

relative to a background estimate, and record their trajecto-

ries across frames by tracking each blob’s defining pixels (or

keypoints). For the former task, only high-confidence pixels

are marked as being part of the background, ensuring that

even minor motion is treated as a potential object; note that

static objects are definitively discovered during query execu-

tion via CNN sampling on the frames across which the ob-

936 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Accura
cy

Target+

Background
Generation

Blob Extraction
& Tracking

Video Chunk
Clustering

Representative Frame(s)
Selection + Inference

Query Result
Propagation

Blob Trajectories

Trajectories w/ Partial Results

Complete Results

CNN

Query ExecutionPreprocessing

Figure 3: Overview of Boggart.

jects are static. For the latter task, any uncertainty in trajec-

tory continuity (e.g., tracking ambiguities) is handled by sim-

ply starting a new trajectory; this ensures that results are not

mistakenly propagated across different objects during query

execution, albeit at the cost of additional inference. Overall,

we did not observe any missed moving objects in Boggart’s

indices across our broad evaluation scenarios (§6.1).

Trajectories are a fundamental shift from the clustering

strategies that prior systems use to group frames or objects

based on how they are perceived by a specific CNN (§2.2). In

contrast, trajectories are computed in a model-agnostic man-

ner, but still provide a mechanism through which to prop-

agate CNN results across frames during query execution ±

the primary source of speedups. Such generality does, how-

ever, come at a cost. Whereas prior efforts cluster on frames

or object classes, Boggart’s trajectories group frames on a

per-object basis. This discrepancy lets Boggart defer the de-

termination of how a user’s CNN perceives each object to

query execution, but it limits potential propagation, i.e., Bog-

gart propagates the result for an object across the frames in

which it appears, while prior approaches can propagate re-

sults across appearances of different objects. Note that this

discrepancy does not apply to detection queries that require

precise object locations (not just labels) to be propagated.

A natural question is: why not cluster objects on the fea-

tures extracted by traditional CV algorithms to enable more

result propagation? The issue is that, if performed without

knowledge of the user-provided CNN, such clustering could

lead to unsafe result propagation. More specifically, objects

that are similar on some set of features but are perceived dif-

ferently by the user’s CNN could end up in the same cluster.

Query Execution. Once a user registers a query (providing a

CNN, accuracy target, and video to consider), Boggart’s goal

is to generate a full set of per-frame results as quickly as pos-

sible, while reliably meeting the target accuracy. This trans-

lates to using the index from preprocessing (i.e., blobs and

trajectories) to run the CNN on a small sample of frames, and

efficiently propagate those results to the remaining frames.

The main challenge is that, owing to their general-purpose

nature (relative to different models/queries) and closeness to

noisy image signals, the CV algorithms used during prepro-

cessing typically produce results that fail to precisely align

with those from a user’s CNN [55, 105]. Consequently, in

being comprehensive, Boggart’s index is coarse and impre-

cise relative to the target results from a user’s CNN, e.g.,

with misaligned bounding boxes or extraneous objects that

are not of interest to the query. Worse, the degree of impre-

cision is specific to the user CNN, and can lead to cascading

errors (and accuracy drops) as results are propagated along

Boggart’s trajectories. All prior efforts avoid these issues by

tuning indices to specific CNNs at the cost of generality.

To bound accuracy degradations (and reliably meet the

specified target) while avoiding substantial inference, Bog-

gart introduces a new query execution approach with two

main components. First, to quickly and judiciously select

the frames to run CNN inference on, our key observation is

that errors from index imprecision and result propagation are

largely dictated by model-agnostic features about the video,

e.g., scene dynamics or trajectory lengths. Accordingly, Bog-

gart clusters chunks of video in the dataset based on those

features, and runs the user’s CNN only on cluster centroids

to determine the best frame selection strategy per cluster for

the query at hand, i.e., the lowest frequency of CNN infer-

ence that meets the user-specified target accuracy. We note

that, since clustering is based on model-agnostic features, it

can be performed during preprocessing; CNN inference on

centroids, however, only occurs once a user registers a query.

Second, to further limit inference overheads, Boggart in-

troduces a new set of result propagation techniques that are

specific to each query type and bolster propagation distances

in spite of imprecisions in the index. For instance, for bound-

ing box detections, Boggart leverages our empirical observa-

tion that the relative position between an object’s keypoints

(from preprocessing) and its bounding box edges remain sta-

ble over time. Building on this, Boggart propagates an ob-

ject’s CNN-produced bounding box to subsequent frames in

its trajectory by efficiently searching for the coordinates that

maximally preserve these spatial relationships.

Query model and assumptions. Boggart currently supports

the large body of object-centric queries whose results are re-

ported at the granularity of individual objects (e.g., label-

ing or locating them) and whose CNNs are run on a per-

frame basis. Thus, currently handled queries include classi-

fications, counting, and detections, as well as queries that

build atop those primitives such as tracking and activity

recognition. Such queries dominate the workloads reported

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 937

by commercial platforms [36,80,87,116,140], and subsume

those supported by prior work (§2.2). We note that Boggart’s

approach is general enough to also accelerate less common,

finer-grained queries, e.g., semantic segmentation [109]. For

such queries, the keypoints (and their matches across frames)

recorded in Boggart’s index can be used to propagate groups

of pixel labels; we leave implementing this to future work.

Boggart does not make any assumptions about or require

any knowledge of the object type(s) that a query targets. In-

stead, as described above, Boggart relies on generic back-

ground estimation and motion extraction to identify poten-

tial objects. The intuition is that a moving object of any kind

will involve (spatially correlated) moving pixels that can be

identified purely based on the scene. Boggart leaves it to the

user’s CNN to determine whether those potential objects are

of interest during query execution. We stress-test Boggart’s

robustness to different object types in §6.4.

Boggart’s preprocessing operates on videos from static

cameras that capture a single scene. Boggart currently does

not support preprocessing for videos with changing back-

grounds, e.g., CGI-generated films or videos from moving

cameras. We note, however, that the CV community has ac-

tively been extending the core techniques that Boggart builds

atop to deliver improved robustness in the face of moving

cameras [65, 128, 135, 142]. We leave an exploration of inte-

grating these efforts into Boggart to future work.

Reliance on Heuristics. Despite its focus on reliably meet-

ing accuracy targets, Boggart’s operation does involve mul-

tiple heuristics, i.e., tracking algorithms (§4), preset video

chunk sizes (§4), thresholds for blob extraction (§4), and

clustering parameters (§5.2). The upcoming sections and re-

sults in §6.4 elaborate on Boggart’s sensitivity to each pa-

rameter. More generally, Boggart’s approach to ensure suffi-

cient accuracy is shared: each heuristic is conservatively con-

figured to err on capturing too much data (resulting in unnec-

essary processing) rather than missing important data, i.e.,

prioritizing accuracy over efficiency. Examples include re-

turning blobs for unlikely (but possible) objects, splitting tra-

jectories upon uncertainty in object tracking, etc. §6 shows

that this approach enables Boggart to consistently and effi-

ciently deliver accurate query responses for diverse camera

feeds, queries, models, objects, and accuracy targets.

4 BOGGART’S PREPROCESSING

Boggart’s target output from preprocessing is a set of blobs

and their trajectories. To efficiently extract this information

and enable parallel processing over the dataset, Boggart op-

erates independently on video chunks (i.e., groups of con-

tiguous frames); the default chunk size is 1 min (profiled

in §6.4), and trajectories are bound to individual chunks to

eliminate any cross-chunk state sharing. The rest of this sec-

tion describes the analysis that Boggart performs per chunk.

Background estimation. Extracting blobs inherently re-

quires a point of reference against which to discern areas of

motion. Thus, Boggart’s first task is to generate an estimate

of the background scene for the current chunk. However,

existing background estimation approaches [46, 101] are ill-

suited for Boggart as they are primarily concerned with gen-

erating a single, coherent background image despite scene

dynamics (e.g., motion) that complicate perfect foreground-

background separation. In contrast, Boggart’s focus is on

navigating the following tradeoff between accuracy and ef-

ficiency, not coherence. On one hand, placing truly back-

ground pixels in the foreground will lead to spurious trajecto-

ries (and query execution inefficiencies). On the other hand,

incorrectly placing a temporarily static object in the back-

ground can result in accuracy degradations. Indeed, unlike

entirely static objects that will surely be detected via CNN

sampling and propagated to all frames in a chunk (during

query execution), temporarily static objects may be missed

and should only be propagated to select frames.

Boggart addresses the above tradeoff in a manner that fa-

vors accuracy. More specifically, Boggart only marks content

as pertaining to the background scene when it has high con-

fidence; all other content is conservatively marked as part of

the foreground and is resolved during query execution. To re-

alize this approach, Boggart eschews recent background esti-

mation approaches in favor of a custom, lightweight strategy.

In its most basic form, background estimation involves

recording the distribution of values assigned to each pixel

(or region) across all frames in the chunk, and then marking

the most frequently occurring value(s) (i.e., the peaks in the

probability density function) as the background [124, 127].

This works well in scenarios where there is a clear peak in the

distribution that accounts for most of the values, e.g., if ob-

jects do not pass through the pixel or do so with continuous

motion, or if an object is entirely static and can thus be safely

marked as the background. However, complications arise in

settings with multiple peaks. For instance, consider a pixel

with two peaks. Any combination of peaks could pertain to

the background: a tree could sway back and forth (both), a

single car could temporarily stop at a traffic light (one), or

multiple cars could serially stop and go at the light (none).

To distinguish between these multi-modal cases and iden-

tify peaks that definitely pertain to the background for a

chunk, Boggart extends (into the next chunk) the duration

over which the distribution of pixel values is computed. The

idea is that motion amongst background components should

persist with more video, while cases with temporarily static

objects should steadily transform into uni-modal distribu-

tions favoring either the background scene or the object (if it

remains static). To distinguish between the object and back-

ground in the latter case, Boggart further extends the distri-

bution of pixel values to incorporate video from the previous

chunk. If the same peak continues to rise, it must pertain to

the background since we know that the object was not static

throughout the entire chunk. Otherwise, Boggart conserva-

tively assigns an empty background for that pixel.

938 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Frame i Frame i+30 Frame i+60

Figure 4: Example screenshots from the Auburn video (Table 1). CNN (YOLOv3+COCO) detections are shown in white, while each

of Boggart’s trajectories (and their constituent blobs) is shown in a different color.

Blob Extraction. Using the background estimate, Boggart

takes a second pass through the chunk in order to extract ar-

eas of motion (blobs) on each frame. More specifically, Bog-

gart segments each frame into a binary image whereby each

pixel is annotated with a marker specifying whether it is in

the foreground or background. Our implementation deems

a pixel whose value falls within 5% of its counterpart(s) in

the background estimate as a background pixel, but we find

our results to be largely insensitive to this parameter. Given

the noise in low-level pixel values [105], Boggart further re-

fines the binary image using a series of morphological oper-

ations [115], e.g., to convert outliers in regions that are pre-

dominantly either background or foreground. Lastly, Bog-

gart derives blobs by identifying components of connected

foreground pixels [71], and assigning a bounding box using

the top left and bottom right coordinates of each component.

Computing Trajectories. Boggart’s final preprocessing task

is to convert the set of per-frame blobs into trajectories that

track each blob across the video chunk. At first glance, it may

appear that sophisticated multi-object trackers (e.g., Kalman

Filters) [50, 91, 134, 138] could directly perform this task.

However, most existing trackers rely on pristine object de-

tections as input. Blobs do not meet this criteria, and instead

are far coarser and imprecise (Figure 4). At any time, a single

blob may contain multiple objects, e.g., two people walking

together. Blobs may split or merge as their constituent ob-

jects move and intersect. Lastly, the dimensions of a given

object’s blob bounding boxes can drastically fluctuate across

frames based on interactions with the estimated background.

To handle these issues, we turn to tracking algorithms that

incorporate low-level feature keypoints (SIFT [110] in par-

ticular) [88, 89], or pixels of potential interest in an image,

e.g., the corners that may pertain to a car windshield. Asso-

ciated with each keypoint is a descriptor that incorporates in-

formation about its surrounding region, and thus enables the

keypoint (and its associated content) to be matched across

images. Boggart conservatively applies this functionality to

generate correspondences between blobs across frames.

For each pair of consecutive frames, Boggart pairs the

constituent keypoints of each blob. This may yield any form

of an N → N correspondence depending on the underlying

tracking event, e.g., blobs entering/leaving a scene, fusion or

splitting of blobs. For instance, if the keypoints in a blob on

frame fi match with keypoints in N different blobs on frame

fi+1, there is a 1 → N correspondence. To generate trajec-

tories, Boggart makes a series of forwards and backwards

scans through the chunk. For each correspondence that is not

1 → 1, Boggart propagates that information backwards to ac-

count for the observed merging or splitting. For example, for

a 1 → N correspondence between frames fi and fi+1, Bog-

gart would split fi’s blob into N components using the rela-

tive positions of the matched keypoints on fi+1 as a guide.

Index Storage. Preprocessing outputs are stored in Mon-

goDB [1]; overheads are profiled in §6.4. Matched keypoints

are stored with the corresponding frame IDs: row = [<((x,y)-

coordinates, frame #)>]. Blob coordinates (and their trajec-

tory IDs) are stored per frame to facilitate the matching of

CNN results and blobs on sampled frames during query exe-

cution (§5.1): row = [<((x,y)-coordinates of top left corner,

(x,y)-coordinates of bottom right corner, trajectory ID)>].

5 FAST, ACCURATE QUERY EXECUTION

During query execution, Boggart’s sole goal is to judiciously

use the user-provided CNN and the index from preprocess-

ing to quickly generate a complete set of results that meet

the specified accuracy target. Doing so involves answering

two questions: (1) what sampled (or representative) frames

should the CNN be run on such that we can sufficiently adapt

to the registered query (i.e., CNN, query type, and accuracy

target) and bound errors from index imprecisions?, and (2)

how can we use preprocessing outputs to accurately propa-

gate sampled CNN results across frames for different query

types? For ease of exposition, we describe (2) first, assuming

CNN results on representative frames are already collected.

5.1 Propagating CNN Results

Regardless of the query type, Boggart’s first task is to pair

the CNN’s bounding box detections on representative frames

with the blobs on those same frames; this, in turn, associates

detections with trajectories, and enables cross-frame result

propagation. To do this, we pair each detection bounding box

with the blob that exhibits the maximum, non-zero intersec-

tion. Trajectories that are not assigned to any detection are

deemed spurious and are discarded. Further, detections with

no matching blobs are marked as ‘entirely static objects’ and

are handled after all other result propagation (described be-

low). Note that, with this approach and in spite of the trajec-

tory corrections from §4, multiple detections could be asso-

ciated to a single blob, i.e., when objects move together and

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 939

0 100 200 300 400 500
Propagation Distance (Frames)

0

25

50

75

100
Ac

cu
ra

cy
 (%

)

Figure 5: Accuracy (mAP) degradations when CNN bounding

boxes are propagated by computing the blob-to-detection coor-

dinate transformation on a representative frame, and applying

it to all other blobs in the trajectory. Line represents median

detections, with ribbons spanning 25-75th percentiles.

never separate. Using these associations, Boggart propagates

CNN results via techniques specific to the target query type.

Binary classification and counting. To support both query

types, each trajectory is labeled with an object count accord-

ing to the number of detections associated with it on repre-

sentative frames. If a trajectory passes through multiple rep-

resentative frames, Boggart partitions the trajectory into seg-

ments, and assigns each segment a count based on the associ-

ations from the closest representative frame. Lastly, Boggart

sums the counts across the trajectories that pass through each

frame, and returns either the raw count (for counting), or a

boolean indicating if count > 0 (for binary classification).

Bounding box detections. Whereas binary classification

and count queries simply require propagating coarse infor-

mation about object presence, bounding box queries require

precise positional information to be shared across frames.

However, as noted in §4, blobs and trajectories are inher-

ently imprecise and fail to perfectly align with detections. A

natural approach to addressing such discrepancies is to com-

pute coordinate transformations between paired detections

and blobs on representative frames, and apply those trans-

formations to the remainder of each blob’s trajectory; equiv-

alently, one could compute transformations for a blob across

its own trajectory, and apply them to add detections to non-

representative frames. Unfortunately, Figure 5 shows that de-

tection accuracy rapidly degrades with this approach, e.g.,

median degradations are 30% when propagating a box over

30 frames. The reason is that blobs and their paired detec-

tions move/resize differently across frames, resulting in me-

dian errors of 84% between the Euclidean distances of blob-

blob and detection-detection coordinate transformations.

To fill the void of stable propagation mechanisms, Bog-

gart leverages our finding that the relative positions between

an object’s constituent keypoints (i.e., those extracted and

tracked during preprocessing) and its detection bounding box

edges remain largely unchanged over short durations; we

refer to these relative positions as anchor ratios since they

‘anchor’ an object’s content to a relative position within the

bounding box. This stability is illustrated in Figure 6, and is

intuitive: objects tend to remain rigid over short time scales,

implying that the points they are composed of move in much

0 20 40 60 80 100
Distance (Frames)

0

50

100

Pe
rc

en
t E

rro
r

X-Dim Y-Dim

Figure 6: Percent difference in anchor ratios for each object’s

keypoints across its trajectory. Lines show medians, with rib-

bons spanning 25-75th percentiles.

the same way as the entire object does (including as the ob-

ject scales in size). Building on this, Boggart propagates de-

tections by using matching keypoints along the trajectories to

which they have been associated, and efficiently solving an

optimization problem in search of bounding box coordinates

that maximally preserve the anchor ratios for each keypoint.

More formally, for each detection on each representative

frame, Boggart considers the set of keypoints K that fall in

the intersection with the associated blob. Each keypoint k in

K has coordinates (xk,yk). Further, let the coordinates of the

detection bounding box be (x1,y1,x2,y2), where (x1,y1) and

(x2,y2) refer to the top left and bottom right corners. The

anchor ratios (axk,ayk) for keypoint k are computed as:

(axk,ayk) =
(x2 − xk

x2 − x1
,

y2 − yk

y2 − y1

)

(1)

For each subsequent non-representative frame (until the next

representative frame) that includes the same trajectory, Bog-

gart finds the set of keypoints that match with those in K;

denote the set of matching keypoints as K′, where each k′

in K′ matches with keypoint k in K. Finally, to place the

bounding box on the subsequent frame, Boggart solves for

the corresponding coordinates (x1,y1,x2,y2) by minimizing

the following function to maximally preserve anchor ratios:

K′

∑
k′

[

(x2 − xk′

x2 − x1
−axk

)2

+
(y2 − yk′

y2 − y1
−ayk

)2

]

(2)

Note that this optimization (which takes 1 ms for the me-

dian detection) can be performed in parallel across frames

and across detections on the same frame. Further, Boggart

initializes each search with the coordinates of the corre-

sponding detection box on the representative frame, thereby

reducing the number of steps to reach a minima.

Propagating entirely static objects. Thus far, we have only

discussed how to propagate detection bounding boxes that

map to a blob/trajectory, i.e., moving objects. However, re-

call from §4 that certain objects which are entirely static will

be folded into the background. These objects are discovered

by the CNN on representative frames, but they will not be

paired with any blob. Instead, Boggart broadcasts these ob-

jects to nearby frames (until the next representative frame) in

a query-specific manner: such objects add to the per-frame

counts used for classification and count queries, and their

boxes are statically added into frames for detection queries.

940 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10 20 30 40 50
Propagation Distance (Frames)

0

50

100
Ac

cu
ra

cy
 (%

)

Figure 7: Accuracy (mAP) degradations grow as Boggart prop-

agates detection bounding boxes over longer durations. Results

consider all object trajectories in the median video. Line repre-

sents medians, with ribbons spanning 25-75th percentiles.

5.2 Selecting Representative Frames

To use the result propagation techniques from §5.1, we must

determine the set of sampled, representative frames to collect

CNN results on. Because CNN execution is the largest con-

tributor to query execution delays (§6.4), we aim to select the

smallest set of representative frames such that Boggart can

sufficiently discern the relationship between its index and the

CNN results, and generate a complete set of accurate results.

A natural strategy for selecting representative frames is to

pick the smallest set of frames such that every trajectory ap-

pears at least once. In theory, executing the CNN on this set

of frames should be sufficient to generate a result (e.g., object

label, bounding box) for each trajectory, and propagate that

result to all of the trajectory’s frames. However, this straight-

forward approach falls short for two reasons:

1. CNNs can be inconsistent and occasionally produce dif-

ferent results for the same object across frames, e.g., a

car in frame i may be ignored in frame i+ 1 [97, 98].

In line with prior analyses, we mostly observe this be-

havior for small or distant objects, e.g., YOLOv3 mAP

scores are 18% and 42% for the small and large objects

in the COCO dataset [120]. The consequence is that, if

such an inconsistent result appears on a representative

frame, Boggart would propagate it to all other frames in

the trajectory, thereby spreading the error.

2. Even for consistent CNN results, propagation errors in-

herently grow with longer trajectories (i.e., as a given

result is propagated to more frames). For instance, me-

dian accuracies are 90% and 30% when Boggart propa-

gates bounding boxes over 10 and 50 frames (Figure 7).

These issues are more pronounced in busy/dynamic scenes

with significant object occlusions/overlap [79, 132]. More-

over, the implication of both is that solely ensuring that the

set of representative frames covers each trajectory is insuffi-

cient and can result in unacceptable accuracy degradations.

To address this, Boggart introduces an additional constraint

to the selection of representative frames: any blob in a trajec-

tory must be within max distance frames of a representative

frame that contains the same trajectory. This, in turn, bounds

both the duration over which inconsistent CNN results can be

propagated, as well as the magnitude of propagation errors.

Tying back to our original goal, we seek the largest

max distance (and thus, fewest representative frames) that

allows Boggart to meet the accuracy target. However, the

appropriate max distance depends on how the above issues

manifest with the current query, CNN, and video. Digging

deeper, we require an understanding of how Boggart’s prop-

agation techniques (for the query type at hand) and the user’s

CNN interact with each frame and trajectory, i.e., how accu-

rate are Boggart’s propagated results compared to the CNN’s

results. Though important for ensuring sufficient accuracy,

collecting this data (particularly CNN results) for each frame

during query execution would forego Boggart’s speedups.

To achieve both accuracy and efficiency, Boggart clusters

video chunks based on properties of the video and its in-

dex that characterize the aforementioned issues. The idea is

that the chunks in each resulting cluster should exhibit sim-

ilar interactions with the CNN and Boggart’s result prop-

agation, and thus should require similar max distance val-

ues. Accordingly, Boggart could determine the appropriate

max distance for all chunks in a cluster by running the CNN

and result propagation only on the cluster’s centroid chunk.

To realize this approach, for each chunk, Boggart extracts

distributions of the following features: object sizes (i.e., pixel

area per blob), trajectory lengths (i.e., number of frames),

and busyness (i.e., number of blobs per frame and trajectory

intersections). These match our observations above: CNN

inconsistencies are most abundant in frames with small ob-

jects, the potential for propagation errors is largest with long

trajectories, and both issues are exacerbated in busy scenes.

With these features, Boggart clusters chunks using the K-

means algorithm. We find that setting the number of target

clusters to ensure that the centroids cover 2% of video strikes

the best balance between CNN overheads and robustness to

diverse and rapidly-changing video chunks; we profile this

parameter in §6.4. Note that since clustering is based on

model-agnostic features (from the extracted trajectories), it

can be performed during preprocessing. Then, during query-

execution, for each resulting cluster, Boggart runs the CNN

on all frames in the centroid chunk. Using the collected re-

sults, Boggart runs its result propagation for a range of pos-

sible max distance values, and computes an achieved accu-

racy for each one relative to the ground truth CNN results.

More precisely, for each max distance, Boggart selects the

set of representative frames by greedily adding frames un-

til our criteria is met, i.e., all blobs are within max distance

of the closest representative frame containing the same tra-

jectory. From there, Boggart selects the largest max distance

that meets the specified accuracy goal, and applies it to pick

representative frames for all other chunks in the same cluster.

Figure 8 highlights the effectiveness of Boggart’s cluster-

ing strategy in terms of (quickly) adapting to different query

types, accuracy targets, objects of interest, and CNNs. As

shown in Figure 8(top), the median discrepancy between

each chunk’s ideal max distance value and that of the cor-

responding cluster centroid is only 0-8 frames; this jumps

to 45-898 frames when comparing chunks with the centroid

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 941

0

500

Er
ro

r I
n

M
ax

Di
st

an
ce

 (F
ra

m
es

)

FRCNN
(Person)
[90.0%]

FRCNN
(Car)

[95.0%]

FRCNN
(Car)

[90.0%]

YOLOv3
(Person)
[80.0%]

YOLOv3
(Car)

[95.0%]

YOLOv3
(Car)

[80.0%]

YOLOv3
(Car)

[90.0%]
Query Variants

0

50

100

Ac
cu

ra
cy

 (%
)

Closest Cluster 2nd Closest Cluster

Figure 8: Effectiveness of Boggart’s clustering with different

CNNs, (object types), and [accuracy targets]. Results are for

the median video, and compare the ideal max distance value for

each chunk with those of the centroids in its cluster and the

nearest neighboring cluster. The top graph measures the dis-

crepancies in per-chunk max distance (bars list medians, with

error bars for 25-75th percentile); the bottom graph evaluates

the corresponding hits on average accuracy (for detections).

of the closest neighboring cluster. Figure 8(bottom) illus-

trates the importance of shrinking these discrepancies. More

specifically, applying each centroid’s ideal max distance to

all chunks in the corresponding cluster (i.e., Boggart’s ap-

proach) yields average accuracies that are consistently above

the targets. The same is not true when using the ideal

max distance values from the nearest neighboring cluster.

In summary, Boggart meets accuracy targets through

co-analysis of the video content and specified query, i.e.,

object of interest, model, and query type. Boggart per-

forms query/model-specific profiling of representative video

chunks (where representative is defined by video content/-

dynamics) to identify the frame inference strategy that most

efficiently meets the accuracy target, and then executes this

strategy for the remaining video chunks within each cluster.

6 EVALUATION

We evaluated Boggart on a wide range of queries, CNNs,

accuracy targets, and videos. Our key findings are:

• Boggart consistently meets accuracy targets while running

the CNN on only 3-54% of frames, highlighting its com-

prehensive (model-agnostic) index and effective adapta-

tion during query execution.

• Despite its goal of generality, Boggart’s response times

are 19-97% lower than NoScope’s. Compared to Focus

(which requires a priori knowledge of the CNN that will

be used during query execution), Boggart’s response times

are 33% and 52% lower on counting and detection queries,

and only 5% higher on classifications.

• Boggart’s preprocessing (and index construction) runs

58% faster than Focus’, while also generalizing to differ-

ent CNNs/queries and requiring only CPUs (not GPUs).

• Boggart’s preprocessing and query execution tasks speed

up nearly linearly with increasing compute resources.

Camera location Resolution

Auburn, AL (University crosswalk + intersection) [12] 1920×1080

Atlantic City, NJ (Boardwalk) [24] 1920×1080

Jackson Hole, WY (Crosswalk + intersection) [17] 1920×1080

Lausanne, CH (Street + sidewalk) [18] 1280×720

Calgary, CA (Street + sidewalk) [2] 1280×720

South Hampton, NY (Shopping village) [15] 1920×1080

Oxford, UK (Street + sidewalk) [21] 1920×1080

South Hampton, NY (Traffic intersection) [25] 1920×1080

Table 1: Summary of our main video dataset.

6.1 Methodology

Videos. Table 1 summarizes the primary video sources used

to evaluate Boggart. Video content across the cameras ex-

hibits diversity in setting, resolution, and camera orientation

(relative to the scene). From each camera, we scraped 12

hours of continuous video (at 30 fps) in order to capture vary-

ing levels of lighting and object densities (i.e., busyness). We

consider additional videos and scene types in §6.4.

Queries. We consider the three query types (and their corre-

sponding accuracy definitions) described in §2, i.e., binary

classification, counting, and bounding box detection. For

each type, we ran the query across our entire video dataset,

and considered two objects of interest, people and cars, that

cover drastically different size, motion, and rigidity prop-

erties; §6.4 presents results for additional object types. We

evaluated Boggart with three accuracy targets ± 80%, 90%,

and 95% ± and report accuracies as averages for each video.

Accuracies are computed relative to running the model di-

rectly on all frames; as in prior systems and commercial plat-

forms [41, 64, 80, 87, 105], Boggart does not aim to improve

the accuracy of the provided model, and instead targets the

same per-frame results at lower resource costs and delays.

CNN models. We consider three popular architectures: (1)

SSD with a ResNet-50 backbone, (2) Faster RCNN with a

ResNet-50 backbone, and (3) YOLOv3 with a Darknet53

backbone. For each, we used one version trained on the

COCO dataset, and another trained on VOC Pascal. Trends

for any results shown on a subset of CNNs (due to space

constraints) hold for all considered models.

Hardware. Experiments used a server with an NVIDIA

GTX 1080 GPU (8 GB RAM) and 18-core Intel Xeon 5220

CPU (2.20 GHz; 125 GB RAM), running Ubuntu 18.04.3.

Metrics. In addition to accuracy, we evaluate query execu-

tion performance of all considered systems (Boggart, Fo-

cus [80], and NoScope [94]) in terms of the number of GPU-

hours required to generate results. We report GPU-hours for

two reasons: (1) CNN execution (on GPUs) accounts for al-

most all response generation delays with all three systems,

and (2) it is directly applicable to all of the systems, e.g., it

incorporates NoScope’s specialized CNNs. For preprocess-

ing, we report both GPU- and CPU-hours since Boggart only

requires the latter. As in prior work [80, 94], we exclude the

video decoding costs shared by all considered systems.

942 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

50

100

Ac
cu

ra
cy

 (%
)

YOLO
(COCO)

YOLO
(VOC)

FRCNN
(COCO)

FRCNN
(VOC)

SSD
(COCO)

SSD
(VOC)

0

50

100

%
 o

f G
PU

-H
ou

rs Binary Class. Counting Bounding Box

(a) 80% Accuracy Target

0

50

100

Ac
cu

ra
cy

 (%
)

YOLO
(COCO)

YOLO
(VOC)

FRCNN
(COCO)

FRCNN
(VOC)

SSD
(COCO)

SSD
(VOC)

0

50

100

%
 o

f G
PU

-H
ou

rs Binary Class. Counting Bounding Box

(b) 90% Accuracy Target

0

50

100

Ac
cu

ra
cy

 (%
)

YOLO
(COCO)

YOLO
(VOC)

FRCNN
(COCO)

FRCNN
(VOC)

SSD
(COCO)

SSD
(VOC)

0

50

100

%
 o

f G
PU

-H
ou

rs Binary Class. Counting Bounding Box

(c) 95% Accuracy Target

Figure 9: Boggart’s query execution performance across CNNs, query types, and accuracy targets; results are aggregated across

object types. Bars summarize the distributions of per-video average result accuracy (top) and percentage of GPU-hours required to

generate results relative to running the CNN on all frames (bottom). Bars list medians with error bars spanning 25-75th percentiles.

Object Type → People Cars

Query Type ↓ Acc. % GPU-hrs Acc. % GPU-hrs

Binary Classif. 92% 6% 98% 3%

Counting 90% 11% 90% 7%

Bounding Box 91% 27% 90% 16%

Table 2: Average accuracy and percentage of GPU-hours (rela-

tive to the naive baseline) for different query types and objects

of interest. Results list median per-video values across all CNNs.

6.2 Query Execution Speedups

Figure 9 evaluates Boggart’s query response times relative

to a naive baseline that runs the CNN on all frames. Boggart

always used the same, model-agnostic index per video.

There are three points to take away from Figure 9. First,

across all of the conditions, Boggart consistently meets the

specified accuracy targets. Second, the percentage of GPU-

hours required to meet each accuracy target with Boggart

grows as we move from coarse classification and counting

queries to finer-grained bounding box detections. For exam-

ple, with a target accuracy of 90%, the median percentage of

GPU-hours across all models was 3-6%, 4-11%, and 8-28%

for the three query types, respectively. Third, the percentage

of GPU-hours also grows as the target accuracy increases

for each query type. For instance, for counting queries, the

percentage (across all CNNs) was 3-5% when the target ac-

curacy was 80%; this jumps to 12-30% when the target accu-

racy grows to 95%. The reason is intuitive: higher accuracy

targets imply that Boggart must more tightly bound the dura-

tion over which results are propagated (to limit propagation

errors) by running the CNN on more frames.

Different object types. Table 2 reports the results from Fig-

ure 9 separately per object type. As shown, the high-level

trends from above persist for each. However, for a given

query type, the percentage of required GPU-hours is consis-

tently lower when considering cars versus people. The rea-

son is twofold. First, inconsistencies in CNN results are more

prevalent for people since they appear as smaller objects in

our scenes (§5.2). Second, cars are inherently more rigid than

people, and thus deliver more stability in the anchor ratios

that Boggart relies on for bounding box propagation (§5.1);

30 FPS 15 FPS 1 FPS0

50

100

%
 o

f G
PU

-H
ou

rs
30 FPS 15 FPS 1 FPS 0

50

100

Ac
cu

ra
cy

 (%
)

Binary Class. Counting Bounding Box

Figure 10: Average accuracy (line) and percentage of GPU

hours (relative to the naive baseline) for different video sam-

pling rates. Results are listed for the median video, and consider

YOLOv3+COCO and a 90% accuracy target.

consequently, propagation errors for bounding box queries

grow more quickly with people. Boggart handles both issues

by running the CNN on more representative frames.

Downsampled video. Users may issue queries on sampled

versions of each video [80]. We evaluated Boggart with three

different sample rates: {30, 15, 1} fps. Although the num-

ber of considered frames drops, Figure 10 shows that Bog-

gart’s query execution speedups persist when operating over

downsampled videos. For instance, with 1-fps video, Bog-

gart requires only 25-49% of the GPU-hours that the naive

baseline would need across all query types. Figure 10 also

shows that Boggart’s ability to consistently meet accuracy

targets holds across sampling rates. We find that Boggart can

hit accuracy targets without resorting to running the CNN on

all frames because object keypoints ± the primitive that Bog-

gart tracks across frames during both trajectory construction

(preprocessing) and detection propagation (query execution)

± typically persist across frames even at these sample rates.

For instance, Boggart matches 85% of the median object’s

keypoints across the 29-frame gap induced by the 1-fps rate.

6.3 Comparison to State-of-the-Art

We compared Boggart with two recent retrospective video

analytics systems: (1) NoScope [94], which only employs

optimizations during query execution, and (2) Focus [80],

which performs model-specific preprocessing by assuming a

priori knowledge of user CNNs. §2.2 details each system.

For these experiments, we set the user-provided CNN to

be YOLOv3+COCO, and the accuracy target to be 90%. Our

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 943

NoScope Focus Boggart0
2
4
6
8

GP
U-

Ho
ur

s

Binary Class. Counting Bounding Box

(a) Query execution efficiency. Bars list values for the me-

dian video, with error bars spanning 25-75th percentiles.

0 2 4 6 8 10 12 14
Preprocessing Computation (Hours)

Boggart

Focus

CPU
GPU

(b) Preprocessing efficiency. Bars list GPU/CPU-hours

for the median video. Note that NoScope does not per-

form preprocessing.

Figure 11: Comparing Boggart, Focus [80], and NoScope [94].

Results use YOLOv3+COCO and a target accuracy of 90%.

Focus implementation used Tiny YOLO [120] as the spe-

cialized/compressed model (i.e., we ran Focus as if it knew

the user CNN a priori), while NoScope used all of its open-

source models. Following the training methodology used in

both papers, we train the specialized/compressed models on

1-fps versions of the first half (i.e., 6 hours) of each video in

our dataset, and run queries on the second half of each video.

Query Execution. Figure 11a compares the query response

times of all three systems. As shown, Focus requires 5%

fewer median GPU-hours than Boggart for binary classifica-

tion queries. The main reason is that Focus’ model-specific

preprocessing (i.e., clustering of objects) enables more result

propagation than Boggart’s general, model-agnostic trajecto-

ries, i.e., Focus can propagate labels across objects, whereas

Boggart can propagate labels only along a given object’s tra-

jectory (§3). Median propagation distances for results from

the full CNN are 58 and 44 frames with Focus and Boggart.

Summing Focus’ classifications to generate per-frame

counts was insufficient for our 90% target. Thus, for count-

ing queries, we performed favorable sampling until Focus

hit 90% in each video: we greedily select a set of contiguous

frames with constant count errors, run the CNN on a single

frame, and correct errors on the remaining ones in the set.

Even with such favorable sampling, Boggart required 33%

fewer GPU-hours than Focus for counting queries.

Bounding box detections paint a starker contrast, with

Boggart needing 52% fewer GPU-hours than Focus. Unlike

with classification labels, Focus cannot propagate bounding

boxes across frames. Instead, to accelerate these queries, Fo-

cus relies on binary classification, and runs the full CNN on

all frames with an object of interest (to obtain their bound-

ing boxes); for our videos, this translates to running the full

CNN on 63-100% of frames. In contrast, Boggart propagates

bounding boxes along each trajectory (median propagation

distance of 23 frames) and reduces CNN tasks accordingly.

1 2 3 4 5
Factor Increase in Compute Resources

2

4

Fa
ct

or
Sp

ee
d-

up

Preprocessing
Query Execution

Figure 12: Boggart’s performance with increasing compute re-

sources. Resource factors are multiples of the 18-core CPU and

single GPU listed in §6.1. Results consider YOLOv3+COCO, a

90% accuracy target, and the median video.

Compared to NoScope, Boggart’s query execution tasks

consume 19-97% fewer GPU-hours across query types. Bog-

gart’s speedups are largely due to three limitations with No-

Scope. First, NoScope does not perform preprocessing, and

instead must train and run inference with its specialized and

compressed CNNs during query execution. Second, results

are not propagated across frames. Third, bounding box de-

tections are sped up only via binary classification; note that

NoScope performs binary classification on each frame (not

object, like Focus), so we cannot simply sum the classifi-

cation results to answer a counting query, and instead must

execute counting queries as bounding box queries.

Preprocessing. Figure 11b shows that Boggart’s preprocess-

ing tasks take 58% fewer computation hours than Focus’.

The discrepancy is from the training and inference costs that

Focus incurs by using a specialized/compressed model. Note

that all of Boggart’s preprocessing is CPU-based, while Fo-

cus’ costs are dominated (79%) by GPU operations. Further,

Boggart’s preprocessing runs once per video to support all

future CNNs. To avoid accuracy drops (§2.3), Focus would

have to run preprocessing for each CNN it wishes to support,

leading to higher costs and potential for wasted work.

6.4 Profiling Boggart

Dissecting Boggart’s performance. Boggart’s preprocess-

ing delays are dominated (83% on the median video) by the

extraction of SIFT keypoints across frames; background es-

timation, trajectory construction, and clustering together ac-

count for only 17% of the time. Query execution profiles are

similar, with CNN inference on centroid chunks and repre-

sentative frames contributing 7% and 91% of runtime; result

propagation (mostly for detections) takes the remaining 2%.

Resource scaling. Figure 12 shows that Boggart’s prepro-

cessing and query execution performance scale nearly lin-

early with increasing CPU and GPU resources, respectively.

The reason is that feature extraction and CNN inference, the

tasks that dominate delays in the two phases, inherently op-

erate on a per-frame basis and can thus naturally be paral-

lelized across frames. Note that these results only consider

parallel processing within each chunk; Boggart can also par-

allelize across chunks since trajectories are bound to single

chunks, i.e., there is no cross-chunk state sharing (§5).

Storage costs. Boggart’s preprocessing generates, on aver-

age, 306 MB of data per 1 hour of video. For context, (1) the

944 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

average video in our dataset consumes 1 GB when encoded

with H.264, and (2) Focus’ preprocessing generates 70 MB

of data for the same video. Recall that NoScope does not in-

volve video preprocessing, and thus does not incur storage

costs for indices. Note that 98% of Boggart’s storage over-

heads are for keypoints used to propagate bounding boxes;

blobs and trajectories consume only 2%.

Sensitivity to parameters. Boggart includes parameters for

video chunk size (default: 1 min) and target number of clus-

ters (default: centroids cover 2% of video). On average, we

find that Boggart’s performance is largely insensitive to both:

varying chunk sizes from 0.2-10 min and the videos covered

by centroids from 0.5-5% altered Boggart’s performance by

less than 5% (note that accuracy never dropped below the

targets). However, the effects of each parameter are more

pronounced on short amounts of video and are dependent

on the content being considered. More specifically, smaller

chunk sizes reduce the potential result propagation, but also

shrink cluster centroids and increase the potential for paral-

lel processing. Similarly, more clusters implies fewer subop-

timalities in the selection of representative frames, but also

additional centroids on which to run the CNN.

Generalizability. To further evaluate Boggart’s ability to

generalize, we ran experiments with three additional videos

(3 hours each) and new object types specific to those scenes:

birds in nature [19], boats in a canal [30], and people, cups,

chairs, and tables in a restaurant [6]. For these experiments,

we ran Boggart in the same way as above, i.e., it is not tuned

in any way to the video or objects of interest. We also ran ex-

periments considering different object types (trucks and bi-

cycles) in the traffic videos from Table 1; these experiments

used the same indices as in our main evaluation. All results

exhibit similar trends as above, with Boggart always meet-

ing accuracy targets (80%, 90%, 95%) and running CNNs

on only 11.7-34.2%, 11.7-53.4%, and 12.6-56.7% of frames

for binary classification, counting, and detection.

7 ADDITIONAL RELATED WORK

Live video analytics. Multiple systems accelerate queries

on live video, with optimizations along the following axes:

(1) profiling pipeline knobs to identify cheaper (but accu-

rate) configurations [87, 140], (2) integrating on-camera or

edge server resources for partial inference, frame filtering,

or reusing results from prior frames [43,54,58,63,66,73,74,

105,129,136,141,148], (3) content/model-aware encoding to

reduce data transfers [64, 133], and (4) spatiotemporal coor-

dination for efficient multi-camera queries [86, 111]. These

systems target an entirely different computational model

(stream processing vs. ªafter-the-factº querying) and thus

face a different set of goals, optimization knobs, and con-

straints, e.g., by not having the entire dataset up front, live

analytics can only propagate results to later frames.

Accelerating GPU tasks. One line of work optimizes DNNs

for accelerated inference via distillation [78], quantiza-

tion [60, 84, 144], or pruning [51, 108]. Another direction

targets faster inference for a model, either through better

scheduling of GPU resources across inference tasks [85,123,

126], or hardware acceleration [38,68,90,117]. These works

are complementary to Boggart, which focuses on reducing

the number of frames on which inference must be performed.

Video Object Detection. In addition to those in §4, Boggart

builds on a line of work in the CV community that leverages

the spatiotemporal aspect of video to accelerate detection

and classification tasks. These techniques swap inference on

sampled frames with optical flow networks that extend re-

sults from earlier frames [49, 56, 57, 59, 62, 72, 76, 98, 112,

130,131,145±147], and are thus similar in spirit to Boggart’s

result propagation strategy. However, unlike Boggart, these

approaches are model-specific, in that the networks used for

propagation must be trained according to the specific CNN

(e.g., its feature extractor) used in the target query.

Video storage and indexing. Many systems balance video

storage and lookup costs for specific query types [121, 139,

143] or CNNs [40, 96, 119, 137]. Boggart is complementary

to these works in that its focus is on performing generaliz-

able preprocessing and accelerating response generation af-

ter video frames are loaded into memory.

8 CONCLUSION

This paper described Boggart, a system for retrospective

video analytics that supports the general ªbring your own

modelº interfaces that are now commonplace in commer-

cial platforms. To meet the core accuracy, speed, and effi-

ciency goals of those platforms, Boggart holistically rethinks

the query execution process, introducing cheap techniques to

generate comprehensive (but imprecise) indices during pre-

processing, and later use those indices to limit costly infer-

ence while bounding accuracy drops from imprecisions. Our

results show that such generality can come at low cost, as

Boggart outperforms prior, model-specific approaches.

Ethics. The focus of this work is on making the ethical pro-

cessing of videos (public or private, according to the law)

more efficient. We do not advocate for the processing of

video for illicit purposes, unlawful tracking, etc. Moreover,

Boggart is developed to improve the resource efficiency of

existing retrospective video analytics platforms in a man-

ner that does not change the interfaces they expose, i.e., the

videos, models/queries, and customers they handle remain

unchanged. In sum, Boggart does not alter the set of infor-

mation exposed to applications ± the videos that an applica-

tion can query and the queries that the application can run

on those videos are unchanged, and Boggart’s internal state

(e.g., preprocessing results) is not exposed.

Acknowledgements. We thank Ganesh Ananthanarayanan,

Amit Levy, Jennifer Rexford, the NSDI reviewers, and our

shepherd, Siddhartha Sen, for their valuable feedback and

constructive comments. This work was supported by a Sloan

Research Fellowship, a Cisco grant, and NSF CNS grants

2152313, 2153449, 2147909, and 2140552.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 945

REFERENCES

[1] https://www.mongodb.com/.

[2] 11 Street SW Calgary. https://www.youtube.com/wa

tch?v=iGxFLjqhkSA.

[3] 3 Reasons Why City Planners Need Video Analytics.

https://www.briefcam.com/resources/blog/3-reasons-

why-city-planners-need-video-analytics/.

[4] Absolutely everywhere in beijing is now covered by

police video surveillance. https://qz.com/518874/.

[5] Are we ready for ai-powered security cameras? https:

//thenewstack.io/are-we-ready-for-ai-powered-secur

ity-cameras/.

[6] Beach Bar St. John Webcam. https://www.youtube.co

m/watch?v=2wqpy036z24.

[7] Betterview Combines Computer Vision and Post-

Event Imagery to Map Tornado Damage. https:

//blog.betterview.com/betterview-combines-comp

uter-vision-and-post-event-imagery-to-quickly-ma

p-tornado-damage.

[8] Bird Cams Lab. https://www.zooniverse.org/organiz

ations/cornellbirdcams/bird-cams-lab.

[9] Boggart Repository. https://github.com/neilsagarwal/

boggart.

[10] British transport police: Cctv. http://www.btp.police

.uk/advice and information/safety on and near the r

ailway/cctv.aspx.

[11] Can 30,000 cameras help solve chicago’s crime prob-

lem? https://www.nytimes.com/2018/05/26/us/chicag

o-police-surveillance.html.

[12] City of Auburn Toomer’s Corner Webcam 1. https:

//www.youtube.com/watch?v=wVDtzDwo-1Q.

[13] Computer Vision AI. https://techsee.me/computer-vi

sion/.

[14] Global Sports Analytics Market Size Report, 2021-

2028. https://www.grandviewresearch.com/indust

ry-analysis/sports-analytics-market.

[15] Hamptons.com Southampton Village Cam, Hildreth’s

Home Goods LIVE. https://www.youtube.com/watc

h?v=9IbruokZzx0.

[16] How to Be Ahead of Your Competition with Data. ht

tps://www.hudl.com/blog/how-to-be-ahead-of-your-

competition-with-data.

[17] Jackson Hole Wyoming USA Town Square Live

Cam. https://www.youtube.com/watch?v=1EiC9

bvVGnk.

[18] Lausanne, pont Bessières. https://www.youtube.com/

watch?v=TyElel0QjCI.

[19] Live BACKYARD Animal Cam in Ohio! . https://ww

w.youtube.com/watch?v=OIqUka8BOS8.

[20] One traffic framework. Any video source. All traffic

tasks. https://datafromsky.com/.

[21] Oxford Martin School Webcam - Broad Street, Ox-

ford. https://www.youtube.com/watch?v=St7aTfoId

YQ.

[22] Paris hospitals to get 1,500 cctv cameras to combat

violence against staff. https://bit.ly/2OYiBz2.

[23] Powering the edge with ai in an iot world. https://ww

w.forbes.com/sites/forbestechcouncil/2020/04/06/po

wering-the-edge-with-ai-in-an-iot-world/.

[24] Resorts Casino Hotel Beach Camera. https://www.yo

utube.com/watch?v=vVyBOU9Huvo.

[25] SouthHampton Traffic Cam. https://www.youtube.co

m/watch?v=Z9P 2pCgfBA.

[26] The Hudl Algorithm: Turning Video into Player

Tracking Data. https://www.maryecollins.com/h

udl-tracking.

[27] Toyota Research Institute accelerates safe automated

driving with deep learning. https://www.wired.com/

brandlab/2018/08/tri-accelerates-safe-automated-dr

iving-deep-learning-2/.

[28] Unique web-based facial recognition tool enhances

security and fights crime. https://www.securityin

fowatch.com/access-identity/biometrics/facial-reco

gnition-solutions/article/21261325/unique-webbased

-facial-recognition-tool-enhances-security-and-fight

s-crime.

[29] Using Deep Learning to Find Basketball Highlights.

https://www.hudl.com/bits/using-deep-learning-to-f

ind-basketball-highlights.

[30] Venice Italy Live Camera - Grand Canal. https://ww

w.youtube.com/watch?v=P393gTj527k.

[31] Video analytics applications in retail - beyond secu-

rity. https://www.securityinformed.com/insights/co-2

603-ga-co-2214-ga-co-1880-ga.16620.html/.

[32] Video Analytics Market - Growth, Trends, COVID-19

Impact, and Forecasts (2022 - 2027). https://www.mo

rdorintelligence.com/industry-reports/video-analytic

s-market.

[33] The vision zero initiative. http://www.visionzeroinit

iative.com/.

[34] How retail stores can streamline operations with video

content analytics. https://www.briefcam.com/resourc

es/blog/how-retail-stores-can-streamline-operations-

with-video-content-analytics/, 2020.

[35] Video analytics traffic study creates baseline for

change. https://www.govtech.com/analytics/Vide

o-Analytics-Traffic-Study-Creates-Baseline-for-Ch

ange.html, 2020.

[36] Ekya: Continuous learning of video analytics models

on edge compute servers. In 19th USENIX Sympo-

sium on Networked Systems Design and Implemen-

tation (NSDI 22), pages 119±135, Renton, WA, Apr.

2022. USENIX Association.

[37] Video analytics market. https://www.fortunebusinessi

nsights.com/industry-reports/video-analytics-marke

t-101114, 2022.

[38] J. Albericio, A. DelmÂas, P. Judd, S. Sharify,

G. O’Leary, R. Genov, and A. Moshovos. Bit-

946 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pragmatic deep neural network computing. In Pro-

ceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO-50 ’17,

page 382±394. Association for Computing Machin-

ery, 2017.

[39] Amazon. Rekognition. https://aws.amazon.com/rek

ognition/.

[40] Amazon. AWS DeepLens. https://aws.amazon.com/d

eeplens/, 2019.

[41] G. Ananthanarayanan, Y. Shu, M. Kasap, A. Kewal-

ramani, M. Gada, and V. Bahl. Live video analyt-

ics with microsoft rocket for reducing edge compute

costs, July 2020.

[42] M. R. Anderson, M. J. Cafarella, G. Ros, and T. F.

Wenisch. Physical representation-based predicate op-

timization for a visual analytics database. In 35th

IEEE International Conference on Data Engineering,

ICDE 2019, Macao, China, April 8-11, 2019, pages

1466±1477, 2019.

[43] K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishna-

murthy, and A. K. Roy-Chowdhury. Frugal following:

Power thrifty object detection and tracking for mobile

augmented reality. In Proceedings of the 17th Confer-

ence on Embedded Networked Sensor Systems, Sen-

Sys ’19, page 96±109, New York, NY, USA, 2019.

Association for Computing Machinery.

[44] M. Azure. Computer vision api. https://azure.micros

oft.com/en-us/services/cognitive-services/computer

-vision/, 2021.

[45] M. Azure. Face api. https://azure.microsoft.com/en-u

s/services/cognitive-services/face/, 2021.

[46] O. Barnich and M. Van Droogenbroeck. Vibe: A uni-

versal background subtraction algorithm for video se-

quences. IEEE Transactions on Image processing,

20(6):1709±1724, 2010.

[47] D. Barrett. One surveillance camera for every 11 peo-

ple in Britain, says CCTV survey. https://www.telegr

aph.co.uk/technology/10172298/\One-surveillance-

camera-for-every-11-people-in-Britain\-says-CCTV

-survey.html, 2013.

[48] F. Bastani and S. Madden. Otif: Efficient tracker pre-

processing over large video datasets. In Proceedings

of the 2022 International Conference on Management

of Data, SIGMOD ’22, 2022.

[49] G. Bertasius, L. Torresani, and J. Shi. Object detec-

tion in video with spatiotemporal sampling networks.

In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 331±346, 2018.

[50] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft.

Simple online and realtime tracking. In 2016 IEEE

international conference on image processing (ICIP),

pages 3464±3468. IEEE, 2016.

[51] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag.

What is the state of neural network pruning? arXiv

preprint arXiv:2003.03033, 2020.

[52] S. Brutzer, B. Hoferlin, and G. Heidemann. Evalu-

ation of background subtraction techniques for video

surveillance. In Proceedings of the 2011 IEEE Con-

ference on Computer Vision and Pattern Recognition,

CVPR ’11, pages 1937±1944, Washington, DC, USA,

2011. IEEE Computer Society.

[53] Z. Cai, M. Saberian, and N. Vasconcelos. Learning

complexity-aware cascades for deep pedestrian de-

tection. In Proceedings of the 2015 IEEE Interna-

tional Conference on Computer Vision (ICCV), ICCV

’15, pages 3361±3369, Washington, DC, USA, 2015.

IEEE Computer Society.

[54] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. An-

dersen, M. Kaminsky, and S. R. Dulloor. Scaling

video analytics on constrained edge nodes. In 2nd

SysML Conference, 2019.

[55] F. Cangialosi, N. Agarwal, V. Arun, J. Jiang,

S. Narayana, A. Sarwate, and R. Netravali. Privid:

Practical, privacy-preserving video analytics queries.

In Proceedings of the 19th USENIX Conference

on Networked Systems Design and Implementation,

NSDI’22, Berkeley, CA, USA, 2022. USENIX Asso-

ciation.

[56] Y. Chai. Patchwork: A patch-wise attention net-

work for efficient object detection and segmentation

in video streams. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages

3415±3424, 2019.

[57] K. Chen, J. Wang, S. Yang, X. Zhang, Y. Xiong, C. C.

Loy, and D. Lin. Optimizing video object detection

via a scale-time lattice. In CVPR, 2018.

[58] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and

H. Balakrishnan. Glimpse: Continuous, real-time ob-

ject recognition on mobile devices. In Proceedings of

the 13th ACM Conference on Embedded Networked

Sensor Systems, pages 155±168, 2015.

[59] Y. Chen, Y. Cao, H. Hu, and L. Wang. Memory en-

hanced global-local aggregation for video object de-

tection. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages

10337±10346, 2020.

[60] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv,

and Y. Bengio. Binarized neural networks: Train-

ing deep neural networks with weights and acti-

vations constrained to+ 1 or-1. arXiv preprint

arXiv:1602.02830, 2016.

[61] S. R. E. Datondji, Y. Dupuis, P. Subirats, and

P. Vasseur. A survey of vision-based traffic monitoring

of road intersections. Trans. Intell. Transport. Sys.,

17(10):2681±2698, Oct. 2016.

[62] J. Deng, Y. Pan, T. Yao, W. Zhou, H. Li, and T. Mei.

Relation distillation networks for video object detec-

tion. In Proceedings of the IEEE/CVF International

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 947

Conference on Computer Vision, pages 7023±7032,

2019.

[63] U. Drolia, K. Guo, J. Tan, R. Gandhi, and

P. Narasimhan. Cachier: Edge-caching for recognition

applications. In 2017 IEEE 37th International Con-

ference on Distributed Computing Systems (ICDCS),

pages 276±286, 2017.

[64] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang,

H. Hoffmann, and J. Jiang. Server-driven video

streaming for deep learning inference. In Proceed-

ings of the Annual Conference of the ACM Special

Interest Group on Data Communication on the Ap-

plications, Technologies, Architectures, and Protocols

for Computer Communication, SIGCOMM ’20, page

557±570, New York, NY, USA, 2020. Association for

Computing Machinery.

[65] A. Elqursh and A. Elgammal. Online moving camera

background subtraction. In A. Fitzgibbon, S. Lazeb-

nik, P. Perona, Y. Sato, and C. Schmid, editors, Com-

puter Vision ± ECCV 2012, pages 228±241, Berlin,

Heidelberg, 2012. Springer Berlin Heidelberg.

[66] J. Emmons, S. Fouladi, G. Ananthanarayanan,

S. Venkataraman, S. Savarese, and K. Winstein.

Cracking open the dnn black-box: Video analytics

with dnns across the camera-cloud boundary. In Pro-

ceedings of the 2019 Workshop on Hot Topics in Video

Analytics and Intelligent Edges, HotEdgeVideo’19,

pages 27±32, New York, NY, USA, 2019. Association

for Computing Machinery.

[67] M. Everingham, L. Gool, C. K. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes

(voc) challenge. Int. J. Comput. Vision, 88(2):303±

338, June 2010.

[68] J. Fowers, K. Ovtcharov, M. Papamichael, T. Mas-

sengill, M. Liu, D. Lo, S. Alkalay, M. Haselman,

L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek,

G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M.

Caulfield, E. S. Chung, and D. Burger. A config-

urable cloud-scale dnn processor for real-time ai. In

Proceedings of the 45th Annual International Sympo-

sium on Computer Architecture, ISCA ’18, page 1±14.

IEEE Press, 2018.

[69] I. Ghodgaonkar, S. Chakraborty, V. Banna, S. All-

croft, M. Metwaly, F. Bordwell, K. Kimura, X. Zhao,

A. Goel, C. Tung, et al. Analyzing worldwide social

distancing through large-scale computer vision. arXiv

preprint arXiv:2008.12363, 2020.

[70] Google. Cloud vision api. https://cloud.google.com/v

ision, 2021.

[71] C. Grana, D. Borghesani, and R. Cucchiara. Op-

timized block-based connected components labeling

with decision trees. IEEE Transactions on Image Pro-

cessing, 19(6):1596±1609, 2010.

[72] C. Guo, B. Fan, J. Gu, Q. Zhang, S. Xiang, V. Prinet,

and C. Pan. Progressive sparse local attention

for video object detection. In Proceedings of the

IEEE/CVF International Conference on Computer Vi-

sion, pages 3909±3918, 2019.

[73] P. Guo, B. Hu, R. Li, and W. Hu. Foggycache: Cross-

device approximate computation reuse. In Proceed-

ings of the 24th Annual International Conference on

Mobile Computing and Networking, MobiCom ’18,

page 19±34, New York, NY, USA, 2018. Association

for Computing Machinery.

[74] P. Guo and W. Hu. Potluck: Cross-Application Ap-

proximate Deduplication for Computation-Intensive

Mobile Applications, page 271±284. Association for

Computing Machinery, New York, NY, USA, 2018.

[75] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wol-

man, and A. Krishnamurthy. MCDNN: An

approximation-based execution framework for deep

stream processing under resource constraints. In Pro-

ceedings of the 14th Annual International Confer-

ence on Mobile Systems, Applications, and Services,

MobiSys ’16, pages 123±136, New York, NY, USA,

2016. ACM.

[76] F. He, N. Gao, Q. Li, S. Du, X. Zhao, and K. Huang.

Temporal context enhanced feature aggregation for

video object detection. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34,

pages 10941±10948, 2020.

[77] K. He, G. Gkioxari, P. DollÂar, and R. B. Girshick.

Mask R-CNN. CoRR, abs/1703.06870, 2017.

[78] G. Hinton, O. Vinyals, and J. Dean. Distilling

the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[79] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnos-

ing error in object detectors. In European conference

on computer vision, pages 340±353. Springer, 2012.

[80] K. Hsieh, G. Ananthanarayanan, P. Bodik,

S. Venkataraman, P. Bahl, M. Philipose, P. B.

Gibbons, and O. Mutlu. Focus: Querying large video

datasets with low latency and low cost. In 13th

USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18), pages 269±286,

Carlsbad, CA, 2018. USENIX Association.

[81] B. Hu, P. Guo, and W. Hu. Video-zilla: An indexing

layer for scalable live video analytics. In Proceedings

of the 2022 International Conference on Management

of Data, SIGMOD ’22, 2022.

[82] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadar-

rama, and K. Murphy. Speed/accuracy trade-offs

for modern convolutional object detectors. CoRR,

abs/1611.10012, 2016.

[83] IBM. Maximo remote monitoring. https://www.ibm.

com/products/maximo/remote-monitoring, 2021.

[84] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang,

948 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A. Howard, H. Adam, and D. Kalenichenko. Quan-

tization and training of neural networks for efficient

integer-arithmetic-only inference. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2704±2713, 2018.

[85] P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Dur-

rani, A. Tumanov, J. Gonzalez, and I. Stoica. Dy-

namic space-time scheduling for gpu inference. arXiv

preprint arXiv:1901.00041, 2018.

[86] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan,

J. Jiang, Y. Shu, V. Bahl, and J. Gonzalez. Spatula: Ef-

ficient cross-camera video analytics on large camera

networks. In ACM/IEEE Symposium on Edge Com-

puting (SEC 2020), November 2020.

[87] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and

I. Stoica. Chameleon: Scalable adaptation of video

analytics. In Proceedings of the 2018 Conference of

the ACM Special Interest Group on Data Communica-

tion, SIGCOMM ’18, pages 253±266, New York, NY,

USA, 2018. ACM.

[88] J. Jodoin, G. Bilodeau, and N. Saunier. Urban tracker:

Multiple object tracking in urban mixed traffic. In

IEEE Winter Conference on Applications of Computer

Vision, pages 885±892, 2014.

[89] J. Jodoin, G. Bilodeau, and N. Saunier. Tracking all

road users at multimodal urban traffic intersections.

IEEE Transactions on Intelligent Transportation Sys-

tems, 17(11):3241±3251, 2016.

[90] N. P. Jouppi, C. Young, N. Patil, D. Patterson,

G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,

A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,

J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.

Ghaemmaghami, R. Gottipati, W. Gulland, R. Hag-

mann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,

J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khai-

tan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,

J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,

A. Lundin, G. MacKean, A. Maggiore, M. Mahony,

K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,

K. Nix, T. Norrie, M. Omernick, N. Penukonda,

A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadi-

ani, C. Severn, G. Sizikov, M. Snelham, J. Souter,

D. Steinberg, A. Swing, M. Tan, G. Thorson,

B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,

W. Wang, E. Wilcox, and D. H. Yoon. In-datacenter

performance analysis of a tensor processing unit.

SIGARCH Comput. Archit. News, 45(2):1±12, June

2017.

[91] C. Ju, Z. Wang, C. Long, X. Zhang, G. Cong,

and D. E. Chang. Interaction-aware kalman neu-

ral networks for trajectory prediction. CoRR,

abs/1902.10928, 2019.

[92] D. Kang, P. Bailis, and M. Zaharia. Blazeit: Fast ex-

ploratory video queries using neural networks. CoRR,

abs/1805.01046, 2018.

[93] D. Kang, P. Bailis, and M. Zaharia. Blazeit: Optimiz-

ing declarative aggregation and limit queries for neu-

ral network-based video analytics. Proc. VLDB En-

dow., 13(4):533±546, Dec. 2019.

[94] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and

M. Zaharia. Noscope: Optimizing neural network

queries over video at scale. Proc. VLDB Endow.,

10(11):1586±1597, Aug. 2017.

[95] D. Kang, J. Guibas, P. Bailis, T. Hashimoto, and

M. Zaharia. Task-agnostic indexes for deep learning-

based queries over unstructured data, 2020.

[96] D. Kang, A. Mathur, T. Veeramacheneni, P. Bailis, and

M. Zaharia. Jointly optimizing preprocessing and in-

ference for dnn-based visual analytics. Proc. VLDB

Endow., 14(2):87±100, Oct. 2020.

[97] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao,

C. Zhang, Z. Wang, R. Wang, X. Wang, and

W. Ouyang. T-CNN: Tubelets With Convolu-

tional Neural Networks for Object Detection From

Videos. IEEE Trans. Cir. and Sys. for Video Technol.,

28(10):2896±2907, Oct. 2018.

[98] K. Kang, W. Ouyang, H. Li, and X. Wang. Object de-

tection from video tubelets with convolutional neural

networks. In CVPR, 2016.

[99] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-

agenet classification with deep convolutional neural

networks. Commun. ACM, 60(6):84±90, May 2017.

[100] B. Kueng, E. Mueggler, G. Gallego, and D. Scara-

muzza. Low-latency visual odometry using event-

based feature tracks. In 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

pages 16±23, Oct 2016.

[101] B. Laugraud, S. PiÂerard, and M. Van Droogenbroeck.

Labgen: A method based on motion detection for gen-

erating the background of a scene. Pattern Recogni-

tion Letters, 96:12±21, 2017.

[102] J. Le. Part 1: An overview of dataops for computer

vision. https://www.superb-ai.com/blog/part-1-an-o

verview-of-dataops-for-computer-vision, 2021.

[103] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.

Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278±2324,

1998.

[104] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A

convolutional neural network cascade for face detec-

tion. In 2015 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 5325±5334,

June 2015.

[105] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu,

and R. Netravali. Reducto: On-Camera Filtering for

Resource-Efficient Real-Time Video Analytics. SIG-

COMM ’20, page 359±376, New York, NY, USA,

2020. Association for Computing Machinery.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 949

[106] T. Lin, P. DollÂar, R. Girshick, K. He, B. Hariharan,

and S. Belongie. Feature pyramid networks for ob-

ject detection. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 936±

944, July 2017.

[107] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen,

X. Liu, and M. PietikÈainen. Deep learning for generic

object detection: A survey, 2019.

[108] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang.

Learning efficient convolutional networks through

network slimming. In Proceedings of the IEEE In-

ternational Conference on Computer Vision, pages

2736±2744, 2017.

[109] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-

tional networks for semantic segmentation. In 2015

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3431±3440, Los Alami-

tos, CA, USA, jun 2015. IEEE Computer Society.

[110] D. G. Lowe. Distinctive image features from

scale-invariant keypoints. Int. J. Comput. Vision,

60(2):91±110, Nov. 2004.

[111] Y. Lu, A. Chowdhery, and S. Kandula. Optasia: A

relational platform for efficient large-scale video ana-

lytics. In Proceedings of the Seventh ACM Symposium

on Cloud Computing, SoCC ’16, pages 57±70, New

York, NY, USA, 2016. ACM.

[112] H. Mao, T. Kong, and W. J. Dally. Catdet: Cascaded

tracked detector for efficient object detection from

video. arXiv preprint arXiv:1810.00434, 2018.

[113] A. Mhalla, T. Chateau, H. Maamatou, S. Gazzah, and

N. E. B. Amara. Smc faster r-cnn: Toward a scene-

specialized multi-object detector. Computer Vision

and Image Understanding, 164:3±15, 2017.

[114] A. Moschitti. Updating neural networks to recognize

new categories, with minimal retraining. https://www.

amazon.science/blog/updating-neural-networks-to-

recognize-new-categories-with-minimal-retraining,

2019.

[115] OpenCV. Morphological Transformations. https://do

cs.opencv.org/master/d9/d61/tutorial py morpholog

ical ops.html, 2020.

[116] A. Padmanabhan, N. Agarwal, A. Iyer, G. Anantha-

narayanan, Y. Shu, N. Karianakis, G. H. Xu, and

R. Netravali. Gemel: Model merging for memory-

efficient, real-time video analytics at the edge, 2022.

[117] S. Park, J. Park, K. Bong, D. Shin, J. Lee, S. Choi,

and H. Yoo. An energy-efficient and scalable deep

learning/inference processor with tetra-parallel mimd

architecture for big data applications. IEEE Transac-

tions on Biomedical Circuits and Systems, 9(6):838±

848, 2015.

[118] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos,

and R. A. Popa. Visor: Privacy-preserving video ana-

lytics as a cloud service. In S. Capkun and F. Roesner,

editors, 29th USENIX Security Symposium, USENIX

Security 2020, August 12-14, 2020, pages 1039±1056.

USENIX Association, 2020.

[119] A. Poms, W. Crichton, P. Hanrahan, and K. Fata-

halian. Scanner: Efficient video analysis at scale.

ACM Trans. Graph., 37(4), July 2018.

[120] J. Redmon and A. Farhadi. Yolov3: An incremen-

tal improvement. arXiv preprint arXiv:1804.02767,

2018.

[121] W. Ren, S. Singh, M. Singh, and Y. S. Zhu. State-

of-the-art on spatio-temporal information-based video

retrieval. Pattern Recogn., 42(2):267±282, Feb. 2009.

[122] A. Rizzoli. 7 Game-Changing AI Applications in the

Sports Industry. https://www.v7labs.com/blog/ai-in-

sports, 2022.

[123] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Phili-

pose, A. Krishnamurthy, and R. Sundaram. Nexus: A

gpu cluster engine for accelerating dnn-based video

analysis. In Proceedings of the 27th ACM Symposium

on Operating Systems Principles, SOSP ’19, pages

322±337, New York, NY, USA, 2019. Association for

Computing Machinery.

[124] C. Stauffer and W. E. L. Grimson. Adaptive back-

ground mixture models for real-time tracking. In Pro-

ceedings. 1999 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (Cat. No

PR00149), volume 2, pages 246±252 Vol. 2, 1999.

[125] Y. Sun, X. Wang, and X. Tang. Deep convolu-

tional network cascade for facial point detection.

In Proceedings of the 2013 IEEE Conference on

Computer Vision and Pattern Recognition, CVPR

’13, pages 3476±3483, Washington, DC, USA, 2013.

IEEE Computer Society.

[126] Y. Ukidave, X. Li, and D. Kaeli. Mystic: Predic-

tive scheduling for gpu based cloud servers using ma-

chine learning. In 2016 IEEE International Paral-

lel and Distributed Processing Symposium (IPDPS),

pages 353±362. IEEE, 2016.

[127] P. D. Z. Varcheie, M. Sills-Lavoie, and G.-A.

Bilodeau. A multiscale region-based motion detec-

tion and background subtraction algorithm. Sensors,

10(2):1041±1061, 2010.

[128] A. Viswanath, R. K. Behera, V. Senthamilarasu, and

K. Kutty. Background modelling from a moving cam-

era. volume 58, pages 289±296, 2015. Second In-

ternational Symposium on Computer Vision and the

Internet (VisionNet’15).

[129] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pil-

lai, S.-W. Yang, and M. Satyanarayanan. Bandwidth-

efficient live video analytics for drones via edge com-

puting. pages 159±173, 10 2018.

[130] S. Wang, H. Lu, and Z. Deng. Fast object detection in

compressed video. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages

950 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7104±7113, 2019.

[131] S. Wang, Y. Zhou, J. Yan, and Z. Deng. Fully motion-

aware network for video object detection. In Proceed-

ings of the European conference on computer vision

(ECCV), pages 542±557, 2018.

[132] X. Wang, T. Xiao, Y. Jiang, S. Shao, J. Sun, and

C. Shen. Repulsion loss: Detecting pedestrians in

a crowd. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages

7774±7783, 2018.

[133] Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen.

Bridging the edge-cloud barrier for real-time ad-

vanced vision analytics. In 11th USENIX Workshop

on Hot Topics in Cloud Computing (HotCloud 19),

Renton, WA, July 2019. USENIX Association.

[134] N. Wojke, A. Bewley, and D. Paulus. Simple online

and realtime tracking with a deep association metric,

2017.

[135] S. Xie, W. Zhang, W. Ying, and K. Zakim. Fast detect-

ing moving objects in moving background using orb

feature matching. In 2013 Fourth International Con-

ference on Intelligent Control and Information Pro-

cessing (ICICIP), pages 304±309, 2013.

[136] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu. Deep-

cache: Principled cache for mobile deep vision. In

Proceedings of the 24th Annual International Confer-

ence on Mobile Computing and Networking, Mobi-

Com ’18, page 129±144, New York, NY, USA, 2018.

Association for Computing Machinery.

[137] T. Xu, L. M. Botelho, and F. X. Lin. Vstore: A data

store for analytics on large videos. In Proceedings

of the Fourteenth EuroSys Conference 2019, EuroSys

’19, pages 16:1±16:17, New York, NY, USA, 2019.

ACM.

[138] Q. Xue, X. Li, J. Zhao, and W. Zhang. Deep kalman

filter: A refinement module for the rollout trajectory

prediction methods. CoRR, abs/2102.10859, 2021.

[139] J. Yuan, H. Wang, L. Xiao, W. Zheng, J. Li, F. Lin,

and B. Zhang. A formal study of shot boundary de-

tection. IEEE Trans. Cir. and Sys. for Video Technol.,

17(2):168±186, Feb. 2007.

[140] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Phili-

pose, P. Bahl, and M. J. Freedman. Live video

analytics at scale with approximation and delay-

tolerance. In Proceedings of the 14th USENIX Con-

ference on Networked Systems Design and Implemen-

tation, NSDI’17, pages 377±392, Berkeley, CA, USA,

2017. USENIX Association.

[141] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and

S. Banerjee. The design and implementation of a

wireless video surveillance system. pages 426±438,

09 2015.

[142] D. Zhou, L. Wang, X. Cai, and Y. Liu. Detection of

moving targets with a moving camera. In 2009 IEEE
International Conference on Robotics and Biomimet-

ics (ROBIO), pages 677±681, 2009.

[143] X. Zhou, X. Zhou, L. Chen, and A. Bouguettaya.

Efficient subsequence matching over large video

databases. The VLDB Journal, 21(4):489±508, Aug.

2012.

[144] C. Zhu, S. Han, H. Mao, and W. J. Dally.

Trained ternary quantization. arXiv preprint

arXiv:1612.01064, 2016.

[145] X. Zhu, J. Dai, L. Yuan, and Y. Wei. Towards high

performance video object detection. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7210±7218, 2018.

[146] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei. Flow-

guided feature aggregation for video object detection.

In Proceedings of the IEEE International Conference

on Computer Vision, pages 408±417, 2017.

[147] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei. Deep

feature flow for video recognition. In Proceedings of

the IEEE conference on computer vision and pattern

recognition, pages 2349±2358, 2017.

[148] Y. Zhu, A. Samajdar, M. Mattina, and P. Whatmough.

Euphrates: Algorithm-soc co-design for low-power

mobile continuous vision. In Proceedings of the 45th

Annual International Symposium on Computer Archi-

tecture, ISCA ’18, page 547±560. IEEE Press, 2018.

[149] Z. Zou, Z. Shi, Y. Guo, and J. Ye. Object detection in

20 years: A survey, 2019.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 951

	Introduction
	Background and Motivation
	Primer on Retrospective Video Analytics
	Existing Acceleration Approaches
	The Problem: Model-Specific Preprocessing

	Overview of Boggart
	Boggart's Preprocessing
	Fast, Accurate Query Execution
	Propagating CNN Results
	Selecting Representative Frames

	Evaluation
	Methodology
	Query Execution Speedups
	Comparison to State-of-the-Art
	Profiling Boggart

	Additional Related Work
	Conclusion

