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DeepRMethylSite: A Deep Learning based approach for Prediction
of Arginine Methylation sites in Proteins

Meenal Chaudhari®*, Niraj Thapa®*, Kaushik Roy®, Robert H. Newman¢, Hiroto Saigo?, Dukka B. KC¢*

Methylation, which is one of the most prominent post-translational modifications on proteins, regulates many important
cellular functions. Though several model-based methylation site predictors have been reported, all existing methods employ
machine learning strategies, such as support vector machines and random forest, to predict sites of methylation based on a
set of “hand-selected” features. As a consequence, the subsequent models may be biased toward one set of features.
Moreover, due to the large number of features, model development can often be computationally expensive. In this paper,
we propose an alternative approach based on deep learning to predict arginine methylation sites. Our model, which we
termed DeepRMethylSite, is computationally less expensive than traditional feature-based methods while eliminating
potential biases that can arise through features selection. Based on independent testing on our dataset, DeepRMethylSite
achieved efficiency scores of 68%, 82% and 0.51 with respect to sensitivity (SN), specificity (SP) and Matthew’s correlation
coefficient (MCC), respectively. Importantly, in side-by-side comparisons with other state-of-the-art methylation site
predictors, our method performs on par or better in all scoring metrics tested.

1. Introduction

Methylation is a well-studied posttranslational modification
(PTM) that occurs predominantly on arginine (Arg; R) and lysine
(Lys; K) residues and, to a lesser extent, on histidine,
asparagine, and cysteine residues®?3 4, Though traditional
methods used to identify methylation sites, such as tandem
mass-spectrometry> 6, methylation specific antibodies, and
ChIP-Chip, have provided insights into global
methylation profiles, these methods are expensive, time-

important

consuming and require a high level of technical expertise. As the
number of known methylation sites has grown, computational
methods have emerged as an efficient, cost-effective strategy
to complement and extend traditional experimental methods of
methylation site identification.

Various computational models have been built for
prediction of methylation PTMs. There are two major
observations through the PTM predictor. First, compared to the
datasets used to train early methylation site predictors, the
number of known methylation sites has increased dramatically.
Secondly, the performance of predictor models has improved
with the use of machine learning models, such as support vector
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machines (SVM)7? Random Forest® and group-based
algorithms!!. While it is believed that the prediction would do
better by including structural features, there is a huge gap
between the availability of structural information and the
availability of sequence data. This knowledge gap can have a
substantial impact model development and performance. As a
consequence, some models, such as MeMo’, use sequential
features, while others, such as the model developed by Chou et
alé, use structural features. Meanwhile, still others, like GPS-
MSP11, use only primary amino acid sequences. Importantly, in
all cases, feature selection was based on a series of hand-
selected characteristics, such as pseudo acid
composition (PseAAC), Shannon Entropy (SE) and others, that
could introduce bias into model development.

Therefore, in order to reduce bias while simultaneously
decreasing the complexity and time required for model
development!!, we generated a deep learning-based approach
that is able to replace hand-selected features and still
contribute improvements in predictor performance. Though
there have been a few deep learning models used in DNA
methylation site prediction,? 13 all existing protein methylation
site methods are based on feature selection!4 13,

To the best of our knowledge, this work is the first to apply
deep learning to predict methylation sites in proteins.
Moreover, in our work, we provide (1) an improved dataset for
arginine methylation PTMs; (2) an ensemble deep learning
model, based on Keras'® 2D Convolutional layer network, and
Long Short Term Memory (LSTM) models for prediction of PTM
sites; (3) parameter selection based on 10-fold cross-validation
results to test the performance of the model; (4) independent
test results validating the performance of our model with the
state-of-the-art models. Overall, our model, which we termed

amino
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DeepRMethylSite, exhibits improved performance compared to
previously published Arg methylation site predictors!4.

2. Material and methods

10 fold cross-vaiidation
f Farameter CRimization

DERTM, Uniprot,
PhosphositePius

—

Extract sequences and
remove duplicates

Test Ensemble Mode!

Independent Tasting

Figure 1: Flow Diagram depicting steps carried to create our model. Sequences were
extracted from public databases and the dataset was divided into training, validation
and test sets. 10-fold cross-validation was used in optimizing the parameters on each
model, and then independent testing was used to evaluate the models.CNN:
Convolutional Neural Network; LSTM: Long-term short-term memory.

2.1. Dataset Preparation

To build our training dataset, we used the Arg methylation
dataset provided by DBPTMv3'7, PhosphositePlusv6.5.8'% and
Uniprot!® databases. We queried the Uniprot database to get
experimentally verified methylation sites from publications
published after 2017. Overall, our dataset contained 12,976 Arg
methylation sites from 5,725 unique proteins.

To construct the positive dataset, we generated a window
size of 51 with the methylated Arg site in the center, flanked by
25 amino acids upstream and downstream of the methylation
site. Meanwhile, the negative dataset was similarly generated
around Arg sites not known to be methylated.

Next, we removed any duplicate sequences within the
positive and negative datasets. Also, if we found a duplicate
sequence among the positive and negative datasets, we
removed the duplicate sequence from the negative sequence.
We termed the new positive and negative dataset the “clean”
datasets. Since Arg methylation sequences are often conserved
across species and we are building a general, non-specific
model, we identified many duplicate sequences that were
removed during this procedure. After removing duplicates,
10,429 Arg methylation sites remained in the clean positive set
and 305,700 unmethylated Arg sites remained in the clean
negative dataset. Finally, we used 80% of the clean dataset for
training and validation sets and set aside the remaining 20% of
the clean dataset as the independent test set (Table 1).
Statistical analysis using the two logo chart was carried out to
confirm the methylation dataset followed the trend of
(Figure S1 in

experimental sites

Supplementary Information).

arginine methylation
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Table 1. Number of positive and negative sites in the training and test sets before

(left) and after (right) balancing.

Dataset Positive sites Negative sites
(before/after) (before/after)
Total 10,429/10,429 305,700/10,429
Training 8,344/8,344 244,600/8,344
Train: 6,676 6,676
Val: 1,668 1,668
Test 2,085/2,085 61,150/2,085

Perhaps not surprisingly, we noticed that there is large
imbalance between the positive and negative datasets. This
may be due to the fact that only positive sites are reported
while the negative set is composed of those Arg residues that
have not been found to be methylated. Thus, in order to
balance the positive and negative datasets, used
undersampling from the imblearn package??. Undersampling is
a technique in which the set having the larger number of
samples is pruned to create a balance with the other set. There
are many ways to deal with the unbalanced nature of the
dataset. The unbalanced nature of PTM datasets is prone to
artefacts stemming from limited knowledge about the number
of negatives compared to the number of experimentally verified
positive samples. Broadly, there are two ways of balancing the
dataset, either by manipulating the dataset or by using a cost
function that takes into account the imbalanced nature of the
dataset?!. In the way of manipulating the dataset, the positive
samples can either be synthetically increased to match the size
of the negative dataset, known as oversampling, or the negative
dataset can be reduced to match the size of the positive dataset,
known as undersampling. In our case, we are using Scikit learn
package for undersampling. The resulting dataset is
summarized in Table 1. Compared to Arg methylation dataset
used in PRmePRed, we have increased the dataset 8-fold.

we

2.2. Input encoding

In most machine learning algorithms, features are extracted
from the sequence data and, thus, meaningful numerical
representations of the sequences are fed to the model. In
contrast, in deep learning, the sequences themselves are
numerically represented as encodings, as follows:
1. One hot encoding??, where each amino acid is defined
as a 20 length vector, with only one of the 20 bits as 1,
thus uniquely representing the twenty amino acids. It
has also been used as a feature, twenty bit feature by
Wei et alt°,

This journal is © The Royal Society of Chemistry 20xx
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2. Embedding Integer encoding, where each amino acid
is allocated random integers of d dimensions long,
where d is a parameter6. We used this encoding as an
input to the embedding layer. The embedding layer
helps in transforming the data into specified
dimension, d. Since the encoding changes with each
epoch, this encoding possesses a dynamic nature to its
representation compared to one hot encoding?,
where the encoding is fixed. Thus, the encoding
embeds the representation learned through the deep
architecture/algorithms.

Deep learning thus bypasses the need for feature extraction.
For comparison, we extracted methylation relevant features!*
24 from the same dataset, and fed them to the tree-based
classifier XGBoost followed by several machine learning
algorithms. Details are provided in supplementary material.

2.3. DeepRMethylSite: Ensemble Model

An Ensemble model aggregates two or more model predictions to
improve the prediction power of a classifier. Here, we created an
ensemble between an LSTM model and CNN model. An LSTM model
learns through cell states, while the CNN model employs different
filters to extract various features. The ensemble aggregates the
predictions learned by the CNN model and the LSTM model, based
on the trust attained by each classifier.

Each of the member predictions was weighted with a weight

factor and the predictions were aggregated to get the ensemble
results. The weights were found for each classifier using a grid search
between (0,1) in steps of 0.1. To obtain proper weights to prevent
overfitting during model development, a validation set was created
to compare the training and validation accuracy of the models2>. This
was accomplished by taking the remaining 8,344 positive and
negative sites after the independent test set was removed and
further dividing them into the training set (composed of 6,676
distinct positive and negative sites) and the validation set (composed
of 1,688 distinct positive and negative sites) (Table 1). The weights
were then normalized using L1 normalization and tensor dot was
used to efficiently implement the weighted vector of predictions.
Thus, the predictions are tensor multiplication of weight with the
predictions (Eq. 1)

Pred=WE X §8+W_x§, o)

where W, is weight given to LSTM weights and W_is weight given to
CNN weights and ¥ and §, are the respective predictions.

2.3.1- CNN Model

The model is based on Keras ¢ Convolutional Neural Network
(CNN). The model consists of 7 layers, including the feature
processing layer and the output layer. The first layer is the
embedding layer, which learns the feature representation to
the input sequences. A lambda layer is then used as a transition
layer to the Convolutional 2D layer, where an extra dimension
is added to match the input shape for the convolutional layer.
Next, two Convolutional 2D layers with Relu activation are
employed. Padding is disabled for the first Convolutional layer

This journal is © The Royal Society of Chemistry 20xx
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Input Layer Input Layer

2D Convolutional Layer
LSTM Input Layer 64 convolutions

128 neurons

20 Convolutional Layer
128 convolutions
LSTM dropout Layer

64 neurons
2x2 Feature Maps
Dense Layer 2 Dense Layers 768 and
32 neurons 256 neurons
Output Layer
Output Layer
C
CNN LSTM
| Grid Serch Weights
Ensemble Model

and enabled for the next layer. Initial filter size for the
Convolutional layer was selected as ((n-1)/2,3), where n is the
window size. The filter size was selected such that the center
residue of window is included in every stride as the center
residue target for our prediction. The dimensions of output
Figure 2: A. parameters used in LSTM model. B. Parameters used in CNN model. C.

Ensemble model generated by combining through grid search weights on CNN and
LSTM models.

from the first convolutional layer changes when padding is
disabled and remains the same when padding is enabled for the
second layer. For example, if the output from the first
convolutional layer has dimensions 17x19, it remains the same
for consecutive layers. Each Convolutional 2D layers was then
followed by a dropout layer of 0.6 to avoid overfitting. A higher
dropout rate was used in order to reduce the overfitting and to
achieve a more generalized model. Dropout mitigates the
overparameterization of the deep learning model by dropping
out a few neurons from computation. Next, a max pooling layer
calculates the maximum value for each patch of the feature
map and provides a down-sampled representation of the input.
Two hidden layers of size 768 and 256 were employed with
each, followed by dropout of 0.5. Finally, a softmax layer with
two neurons, representing the true and false prediction, acted
as an output layer. The architecture is summarized in Figure 2B.

Once developed, the model was optimized using Adam?®. Adam
is an adaptive moment estimation-based algorithm specifically
used in training deep networks. The ModelCheckpoint function
in Keras was used to save the best model with respect to
validation accuracy. The plot showing change in accuracy across
epochs using a dropout rate of 0.6 has been provided in Figure
S2A. In practice, when the training accuracy just improves

J. Name., 2013, 00, 1-3 | 3
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slightly in comparison to validation accuracy, the model should
stop learning, and thus should avoid overfitting due to a greater
number of epochs. The parameters used in the model are given

in Table 2.

Table 1: Parameters for CNN.
Parameters Settings
Embedding Output Dimension 21
Learning Rate 0.001
Batch Size 256
Epochs 80
Conv2d_1 number of filters 64
Dropout 0.6
Conv2d_1 number of filters 128
Dropout 0.6
MaxPooling2d 2x2
Dense 1 768
Dropout 0.5
Dense_2 256
Dropout 0.5
Checkpointer Best validation accuracy

2.3.2- LSTM Model

Long Short Term Memory?’ models have overcome the
vanishing and exploding gradient problems in RNN and are
known to capture long term dependencies. LSTM consists of
three gates: input, forget, and output gates, which together
define the flow of data governed by the state of the cell. LSTM
helps to memorize the states of the cell and has the ability to
save each of the sequences through layers, with return
sequences option. Further, as the use of hidden states of a cell
is increased, the power of learning through LSTM is known.

Table 3: Parameters used in LSTM Model

Parameters Settings
Embedding Output Dimension 39
Learning Rate 0.01
Batch Size 256
Epochs 100
LSTM_layerl_neurons 128
LSTM_layer2 64
Dropout 0.5
Recurrent Dropout 0.5
Dense_layer_neurons 32

Here we used a stacked LSTM model in comparison with the
CNN approach to model classification for Arg methylation. The
model consists of four layers: 1) the input layer, which consists
of an embedding layer that learns the best representation of the
integer encoded sequences through subsequent epochs. The
embedding layer transforms the sequence information at a

4| J. Name., 2012, 00, 1-3
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dimension. Thus, the output of the layer has shape (window
embedding dimension) in compatibility with input
dimensions of the LSTM layer; 2) an LSTM layer, which consists

size,

of 128 neurons with return sequences kept as true; 3) a dropout
LSTM layer with 64 neurons, with dropout and recurrent
dropout sets at 0.5 each with hyperbolic tangent activation
where recurrent dropouts results in dropping the horizontal
connections within the cell?® and 4) an output layer, with 2
neurons and soft-max activation, where the two neurons
summarize the classification as true or false (Figure 2A). The
model was compiled with the Adadelta optimizer?® and binary
cross-entropy as loss function. Similar to the CNN model, the
ModelCheckpoint function in Keras was used to obtain the best
model with respect to validation accuracy. The plot showing
change in accuracy across epochs has been provided in Figure
S2B.

2.4. Performance and Evaluation

To evaluate the performance of each model, we used a
confusion matrix to determine Sensitivity (SN), Specificity (SP),
Accuracy (ACC) and Receiver Operating Characteristic (ROC)
curve as the performance metrics. We used 10-fold cross-
validation on the benchmark training dataset and an
independent test set to evaluate the models.

ACC defines the correctly predicted residues out of the total
residues (Eqg. 2). SN defines the model’s ability to distinguish
positive residues (Eq. 3) whereas the SP measures the model’s
ability to correctly identify the negative residues (Eq. 4).
Matthews Correlation Coefficient (MCC) is the calculated score
that takes into account the model’s predictive capability with
respect to both positive and negative residues (Eq. 5). Likewise,
the ROC curve provides a graphical representation of the
diagnostic ability of the classifier. The area under the ROC curve
(AUC) is used to compare various models, with the models
having the highest AUC performing better in
classification than those with lower AUC scores.

scores

TP+TN
Accuracy = o N T rp v N
x 100 )
TP
Sensitivity = 5y X 100 3
TN
Specificity = TN + FP x 100 4
TP)(TN) — (FP)(FN
MCC = (TP)(TN) — (FP)(FN) )

/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

3. Results and Discussion.

3.1 Selection of window size

This journal is © The Royal Society of Chemistry 20xx
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An initial 10-fold cross-validation was carried on each of our
models (i.e., LSTM and CNN) to determine the parameters. A
window size of 51 was extracted from the dataset and other
window sizes were generated by flanging the windows from
both ends. This kept the dataset size constant and hence the
comparison fair when determining the window size.
Furthermore, the window size determines the number of
residues exposed to the problem. Methylation sites have been
found buried in the protein core while others have been found
on the protein surface. The potential site is centered in a
window with an equal number of residues on both sides. The
results are tabulated in Table 4. While the model follows the
same trend in different window sizes, different window sizes
were optimized for different models, owing to differences in
their architectures. For instance, a window size of 39 was
optimized for CNN, while a window size of 21 was optimized for
LSTM. Following the strategy outlined in our Succinylation site
prediction work3?, the embedding dimension was fixed at 21.

Table 4: 10-fold cross-validation performance metrics for different window sizes
with an embedding dimension of 21. The highest values in each category are
highlighted in boldface. MCC: Matthew’s Correlation Coefficient; SN: sensitivity,
SP: Specificity; ACC: Accuracy.

Size | CNN LSTM
MCC | SN SP AC MCC | SN SP AC
C C

51 0.52 0.71 | 0.81 | 0.76 | 0.44 0.66 | 0.77 | 0.72
45 0.52 0.72 | 0.80 | 0.76 | 0.44 0.66 | 0.77 | 0.72
39 0.53 0.73 | 0.80 | 0.76 | 0.45 0.66 | 0.78 | 0.72
33 0.52 0.71 | 0.81 | 0.76 | 0.46 0.66 | 0.79 | 0.73
27 0.52 0.70 | 0.81 | 0.76 | 0.46 0.67 | 0.78 | 0.73
21 0.50 0.71 | 0.79 | 0.75 | 0.46 0.65 | 0.80 | 0.73
15 0.49 0.70 | 0.79 | 0.74 | 0.44 0.66 | 0.77 | 0.72
9 0.46 0.69 | 0.77 | 0.73 | 0.42 0.65 | 0.76 | 0.71

3.2 Selection of embedding dimension

The embedding dimension can be summarized as the feature
space that is able to best define the representation of the input
sequences. Therefore, we used various dimensions during 10-
fold cross validation of the models at their optimized window
sizes, as summarized in Table 5. The embedding dimension of
33 was optimized for CNN, while LSTM was optimized at
window size of 39. Nonetheless, despite the fact that we
optimized the embedding dimension, there did not seem to be
a substantial improvement among the dimensions for either
model.

Table 5: 10-fold cross-validation results for different embedding dimensions for
their optimized window size. MCC: Matthew’s Correlation Coefficient; SN:
sensitivity; SP: Specificity; ACC: Accuracy.

Dim | CNN LSTM

Mcc SN SP ACC Mcc SN SP ACC
9 0.52 [ 0.70 | 0.82 | 0.76 0.43 | 0.67 | 0.76 | 0.71
15 0.52 [ 0.70 | 0.81 | 0.76 0.45 | 0.68 | 0.76 | 0.72
21 0.52 [ 0.73 | 0.79 | 0.76 0.46 | 0.66 | 0.79 | 0.73
27 0.53 [ 0.71 | 0.80 | 0.76 0.46 | 0.67 | 0.77 | 0.73

This journal is © The Royal Society of Chemistry 20xx
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33 0.53 | 0.72 | 0.80 | 0.76 0.46 | 0.66 | 0.79 | 0.73
39 0.52 | 0.70 | 0.81 | 0.76 0.47 | 0.65 | 0.80 | 0.73
45 0.52 | 0.70 | 0.81 | 0.76 0.46 | 0.68 | 0.78 | 0.73

3.3 Comparison with one hot encoding

Since embedding has be shown to increase the dynamic nature
of the sequences, embedding tends to enhance model
performance over one hot encoding. Thus, we conducted 10-
fold cross-validation with the optimum parameters for the One
hot encoding to confirm whether it is still true in our case.
Owing to the dynamic nature of embedding, the training time
was less for embedding. This approach also saved
computational time, as training time is less for embedding
compared to One hot encoding. For these reasons, we
compared One hot encoding at the optimized parameters for
the embedding model (Table 6).

Table 6: Comparison of one hot encoding model to embedding models based on
10-fold cross-validation MCC: Matthew’s Correlation Coefficient; SN: sensitivity;
SP: Specificity; OHE: One hot encoding; Emb: Embedding; ACC: Accuracy.

CNN LSTM
Model MCC SN SP ACC MCC SN SP ACC
OHE 0.47 | 0.69 | 0.78 | 0.73 | 0.45 | 0.69 | 0.76 | 0.73
Emb 0.53 | 0.72 | 0.80 | 0.76 | 0.47 | 0.65 | 0.80 | 0.73

3.4 Evaluating Ensemble Model

We used independent testing to evaluate the ensemble model. Both
LSTM and CNN were trained on the training set and evaluated on the
test set, as defined in Table 1. The ensemble uses a grid search
method to optimize the weights for each model. Thus, the optimized
weights are [0.16,0.83] for LSTM and CNN models, respectively.
Figure 3 shows the receiver operator curve (ROC) for the CNN, LSTM
and ensemble models. The final ensemble model, which we termed
DeepRMethylSite, performed well with respect to SP, SN and MCC
(Table 7). We also evaluated the ensemble model against CNN and
LSTM models using Student’s t-test (Table S3).

Table 7: Independent Test Results using the CNN, LSTM and Ensemble models. MCC:
Matthew’s Correlation Coefficient; SN: sensitivity; SP: Specificity’ ACC: Accuracy; AUC:
Area under the receiver operator curve.

Model MCC SN SP ACC AUC

LSTM 0.46 0.80 0.65 0.73 | 0.796
CNN 0.50 0.68 | 0.81 | 0.75 | 0.816
DeepRMethylSite | 0.51 0.68 | 0.82 | 0.75 | 0.821

3.5 Comparison with existing models.

Next, we wanted to compare the performance of DeepRMethylSite
to existing Arg methylation site predictors. The SVM-based predictor,
PrmePred!4, is currently the best performing method in the field
based on MCC, which is often used as an indicator of overall method
performance. Therefore, to evaluate our model, we used the training
set and validation test set used by Kumar et al during the
development of PRmePred! to retrain our model and then used

J. Name., 2013, 00, 1-3 | 5
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Figure 2: ROC Curve for LSTM, CNN and Ensemble model.

their independent test set to evaluate model performance. The
independent test results of DeepRMethylSite, along with those from
other predictors using the PRmePred independent set, is tabulated
in Table 8. Likewise, the performance of either the CNN model or the

10
0.8
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i
=4
lg 0.&
i
&£
u 0.4
=
oz 4 g — CNN (area = 0.82)
.2 2
| - = L5TM {area = 0.80)
_,.»" DeepRMethylSite (area = 0.82)
0.0 : ; ' '
0.0 0z 0.4 0.6 0.8 10

False Positive Rate

LSTM model alone using the independent test set from PRmePred is
provided in Table S1.

Because we were using the same datasets used by PRmePred,
direct comparisons between the models can be made.
However, results are confined to the window size of 19.
Nonetheless, the results were informative. For instance, in side-
by-side comparisons with PRmePred, DeepRMethylSite
achieved SP, ACC, and MICC scores that were ~13.8%, ~5.8% and
~6.8% higher, respectively, than those exhibited by PRmePred®*
(Table 8). On the other hand, DeepRMethylSite exhibited SN
scores that were ~19.4% lower than those observed for
PRmePred. Likewise, DeepRMethylSite achieved the highest
MCC and ACC scores across all existing methods (Table 8).
Likewise, DeepRMethylSite exhibited SP and SN scores that
were on par with or better than those of the existing models™
10, 14, 3133 (Table 8). Taken together, these data suggest that
DeepRMethylSite is a robust predictor of Arg methylation sites
in proteins.

Table 8: Comparison of DeepRMethylSite with other prediction methods.

Method Algo MCC | SN SP ACC
MeMo 7 SVM 0.46 0.38 0.99 0.68
MASA32 SVM 0.41 0.31 0.99 0.65
BPB-PPMS33 SVM 0.25 0.12 1.00 0.56
PMeS ° SVM 0.16 0.43 0.73 0.58
iMethyl- SVM 0.30 0.18 1.00 0.59
PseAAC 8

PSSMe 31 SVM 0.44 0.60 0.83 0.72
MePred-RF10 RF 0.46 0.41 0.97 0.69
PRmePred 14 SVM 0.74 0.87 0.87 0.87

6 | J. Name., 2012, 00, 1-3

| DeepRMethylSite | CNN | 0.79 | 0.71 | 0.99 | 0.92 |

5 Conclusion
Here, we describe the development and analysis of an Arg

methylation site prediction tool, DeepRMethylSite, based on a
deep learning strategy. An ensemble model was used to
combine the better sensitivity of our LSTM-based model with
the specificity of our CNN-based model. Interestingly, while the
ensemble model exhibited significant improvements in MCC
and SN compared to the LSTM model and generally
outperformed the CNN model with respect to MCC and SP, it
did not achieve significant performance
compared to CNN (Table S3).

Unlike other machine learning algorithms, deep learning
does not require feature extraction. Not only does this reduce

improvements

the potential for intrinsic bias in feature selection, but it also
substantially reduces the computational cost required for
model development. Importantly, in side-by-side comparisons,
our model outperforms PRmePred—the current gold standard
in Arg methylation site prediction—with respect to SP, ACC and
MCC using their independent test set. Therefore, the use of a
deep learning-based model has not only avoided the need for
feature extraction, but it has also improved the prediction
performance for arginine site prediction. These predictions,
which will complement the list of experimentally identified Arg
methylation sites, will be useful for understanding how Arg
methylation affects cellular processes such as transcriptional
regulation, RNA metabolism, apoptosis and DNA repair3*.
Currently, our model does not distinguish between mono-
methylated, symmetrically-dimethylated and asymmetrically-
dimethylated residues, which can have important implications
for the cellular consequences of a given Arg methylated site3>.
In the future, it will be interesting to explore whether our model
can be enhanced to distinguish between these methylation
states, as well. Also, it is important to note that, in this study,
we increased the size of the dataset used for training and
evaluation by ~8-fold compared to the dataset used during the
development of PRmePred. We hope that these datasets, which
we have made freely available to the community at
https://github.com/dukkakc/DeepRMethylSite, will facilitate
the development of improved methylation site prediction
methods?2. Likewise, to facilitate the use of our predictor by the

cell signaling and bioinformatics communities, the method and
all code used for its development are freely available at
https://github.com/dukkakc/DeepRMethylSite.
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