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Abstract— Interval Markov decision processes are a class
of Markov models where the transition probabilities between
the states belong to intervals. In this paper, we study the
problem of efficient estimation of the optimal policies in Interval
Markov Decision Processes (IMDPs) with continuous action-
space. Given an IMDP, we show that the pessimistic (resp.
the optimistic) value iterations, i.e., the value iterations under
the assumption of a competitive adversary (resp. cooperative
agent), are monotone dynamical systems and are contracting
with respect to the `1-norm. Inspired by this dynamical system
viewpoint, we introduce another IMDP, called the action-space
relaxation IMDP. We show that the action-space relaxation
IMDP has two key features: (i) its optimal value is an upper
bound for the optimal value of the original IMDP, and (ii)
its value iterations can be efficiently solved using tools and
techniques from convex optimization. We then consider the
policy optimization problems at each step of the value iterations
as a feedback controller of the value function. Using this system-
theoretic perspective, we propose an iteration-distributed imple-
mentation of the value iterations for approximating the optimal
value of the action-space relaxation IMDP.

I. INTRODUCTION

Motivation and Problem Statement: Markov decision
process (MDP) is a powerful and classical framework for
modeling the stochastic interactions between a system and
its environment [1]. The MDP framework has been success-
fully used to study various problems in dynamic decision-
making [2] and reinforcement learning [3]. A fundamental
assumption in the MDP framework is that the parameters of
the model are known or are learnable. However, in many real-
world applications, the model parameters are typically esti-
mated or inferred using data-driven methods and, thus, they
are far from accurate. In the literature, several different ap-
proaches have been proposed to analyze MDPs with param-
eter uncertainties. In [4], [5], robust dynamic programming
is proposed to study optimal solutions of Markov decision
processes with uncertainty in transition probabilities. In [6],
a set-valued fixed-point equation is proposed to study the
optimal value of Markov decision processes with uncertain
reward functions. In [7], computationally efficient algorithms
are developed to infer the unknown parameters in MDPs.

Interval Markov decision processes (IMDPs) are a class of
Markov models with interval-bounded transition probabilities
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and reward functions [8]. IMDPs can be considered as a
family of MDPS and they appear naturally in the setting
where systems are modeled using MDPs with uncertain
parameters or with parameters obtained from data-driven
sampling approaches. An alternative interpretation for the
IMDP framework comes from a game-theoretic perspective.
In this case, an IMDP models how an MDP interacts with
the environment in the presence of an agent who resolves
uncertain transition probabilities [9]. In the literature, IMDPs
have been used to analyze a various tasks including checking
temporal logic specifications [10] and motion planning in
robotics [11]. Much of the early works on the IMDPs
focus on models with finite number of actions [8], [4],
[5]. Recently, IMDPs with continuous-action spaces have
gained attention due to their role in finite-state abstraction of
stochastic dynamical systems [12], [13] and in reachability
analysis of stochastic systems [14]. Value iterations for
IMDPs with continuous action-spaces are studied in [9] and
in [15].

One of the main challenges in studying IMDPs with
continuous action-space arises in computing their optimal
policies. It turns out that most of the existing iterative al-
gorithms for estimating optimal policy of MDPs and IMDPs
(including value iteration, policy-iteration, and their interval-
valued counterparts) require solving an optimization problem
in the action variables at each iteration step. Unlike finite-
state finite-action IMDPs where the optimization over the
action-space can be implemented efficiently, for IMDPs with
continuous action-spaces, optimization over action variables
can lead to two important challenges. First, in the absence
of any structure for the optimization problem (e.g. convex-
ity/concavity of the cost function), it is generally necessary
to resort to heuristic algorithms to approximate the solutions
of these optimization problems. These heuristic methods can
significantly degrade the quality of the estimated optimal
policies and can ruin any guarantee on the optimality of
the solutions. Secondly, in large-scale IMDPs, solving these
optimization problems at each iteration step is computa-
tionally complicated, potentially leading to intractability of
finding the optimal values. Most of the existing literature
on IMDPs focuses on discretizing the action-space and then
using known results about discrete-action IMDPs. However,
this approximation is sub-optimal and scales poorly with the
dimension of the action-space [9]. The only exception is [13]
which provides a computationally efficient reformulation of
interval value iterations.

Contributions: In this paper, we study IMDPs with con-
tinuous action-spaces from a dynamical system perspective.



In particular, we use monotone system theory and contraction
theory to study convergence of their value iterations for both
pessimistic and optimistic policies, that is, policies under the
assumption of a adversarial agent and a cooperative agent,
respectively. By considering the value iterations in IMDPs as
dynamical systems, we study contractivity and monotonicity
of the pessimistic and optimistic value iterations with respect
to the `1-norm and the standard partial order. Next, given
an IMDP, we introduce another IMDP, called the action-
space relaxation IMDP, obtained by bounding its probability
transition and rewards using suitable convex/concave func-
tions. As our first main result, we use a dynamical systems
perspective to show that the optimal value of action-space
relaxation IMDP provides bound on the optimal value of
the original MDP. As our second main result, given an
action-space relaxation IMDP, we propose to reduce the
computational burden of the interval value iterations by im-
plementing the policy optimization problem in an iteration-
distributed fashion. We consider the value iteration and the
policy optimization problem as an interconnected dynamical
system and leverage the contractivity of the value iterations
to provide guarantees for convergence of the interconnected
system to the optimal value of the action-space relaxation
IMDP.

II. NOTATIONS AND MATHEMATICAL PRELIMINARY

For every p 2 [1,1], we denote the `p-norm on Rn by
k · kp. Given two sets X and Y , the set of all the maps from
X to Y is denoted by Y X . For any compact set X ✓ Rn,
we define kXk1 = {kx � yk1 | x, y 2 X}. Let S be
a finite set with n elements and let v 2 RS . We define
{1v, . . . , nv} as an ordered permutation of elements of the
set S such that v(1v) � v(2v) � . . . � v(nv). The set of all
compact interval subsets of [a, b] is denoted by Interval[a,b]
and the set of all compact interval subsets of R is denoted
by IntervalR, i.e., we have

Interval[a,b] = {[x, y] | a  x  y  b}
IntervalR = {[x, y] | x  y}.

Given an operator f : Rn ! Rn, we say that f is monotone
if, for every x  y, we have f(x)  f(y). Given an operator
f : Rn ! Rn, we say that f is monotone if, for every x  y,
we have f(x)  f(y). Given a norm k · k on Rn, we say
that f is contracting with rate � 2 (0, 1) with respect to the
norm k · k, if

kf(x) � f(y)k  �kx � yk, for every x, y 2 Rn.

Given a compact set X ✓ Rn, the orthogonal projection into
X is denoted by ProjX , i.e., ProjX (y) = argminx2X kx �
yk2, for every y 2 Rn. We also recall the setting of a
discounted infinite-horizon Markov Decision Process (MDP)
with continuous action-space. An MDP with continuous
action-space is a tuple M = (S, A, P, R, �) where

(i) S is a finite set of states.
(ii) A ✓ Rm is a compact action space.

(iii) P : S ⇥ S ⇥ A ! [0, 1] is the transition probability
function, i.e., for every s 2 S and every a 2 A,

P (s0, s, a) is the probability of arriving at state s0

by taking action a in the state s. We assume 0 
P (s0, s, a)  1 for every s, s0 2 S and every a 2 A
and we have

P
s02S P (s0, s, a) = 1.

(iv) R : S ⇥ A ! R is the reward function where R(s, a)
is the cost of taking action a at state s.

(v) � 2 (0, 1) is a discount factor.
A policy for the MDP M is a vector ⇡ 2 AS which assigns

an action a to each state s1. For every policy ⇡ 2 AS , we
define the value function V M

⇡ : S ! R as

V M
⇡ (s) = E

 1X

t=0

�tR(st, ⇡(st))
���s0 = s

!
(1)

where {st}1t=0 is a time sequence of states starting from
s0 = s and following the policy ⇡. The goal is to find a
policy ⇡⇤ 2 AS which maximizes the value function V M

⇡ ,
i.e., a policy ⇡⇤ 2 AS such that

⇡⇤ = argmax⇡2ASV M
⇡ . (2)

In general, it can be shown that the optimization problem (2)
has a unique optimal value V ⇤, which is obtained at a policy
⇡⇤ 2 AS [1, Theorem 6.1.1], i.e., V M

⇡⇤ = V ⇤. It can be
shown that the optimal value V ⇤ satisfies

V ⇤(s) = R(s, ⇡⇤(s)) + �
X

s02S

P (s0, s, ⇡⇤(s))V ⇤(s0).

The Bellman-policy operator F : RS ⇥ AS ! RS is

F(v, ⇡)(s) := R(s, ⇡(s)) + �
X

s02S

P (s0, s, ⇡(s))v(s0) (3)

and the Bellman operator G : RS ! RS is defined by

G(v)(s) := max
a2A

(
R(s, a) + �

X

s02S

P (s0, s, a)v(s0)

)
. (4)

Equivalently, using the vector notation, we have G(v) =
max⇡2AS F(v, ⇡), for every v 2 RS . It is known that the
Bellman operator G is contracting with respect to the `1-
norm, monotone with respect to the standard partial ordering,
and the optimal value V ⇤ is the fixed point of the Bellman
operator, i.e., V ⇤ = G(V ⇤) [1, Theorem 6.2.3].

III. INTERVAL MARKOV DECISION PROCESS

In this section, we introduce Interval Markov Decision
Processes (IMDPs) as a class of Markov models where the
cost functions and probability transitions are unknown and
belong to suitable intervals. An IMDP is a tuple IM =
(S, A, [P ], [R], �) where

(i) S is a finite set of states.
(ii) A ✓ Rm is a compact action space.

(iii) [P ] 2 S ⇥ S ⇥A ! Interval[0,1] denotes the transition
probability intervals, i.e., for every s 2 S and every a 2
A, [P ](s0, s, a) = [P (s0, s, a), P (s0, s, a)] is the proba-
bility interval of arriving to the state s0 by taking action

1A policy defined this way is usually referred to as a Markovian
deterministic stationary policy in the literature [1].



a in the state s. For the sake of consistency, we assume
that

P
s02S P (s0, s, a)  1 

P
s02S P (s0, s, a).

(iv) [R] : S ⇥ A ! IntervalR denotes the reward function
where [R](s, a) = [R(s, a), R(s, a)] is the reward inter-
val of taking action a at state s.

(v) � 2 (0, 1) is a discount factor.
An MDP M = (S, A, P, R, �) belongs to the IMDP

IM = (S, A, [P ], [R], �), and we write M 2 IM, if

P (s0, s, a)  P (s0, s, a)  P (s0, s, a),

R(s, a)  R(s, a)  R(s, a),

for every s, s0 2 S and every a 2 A. A policy for IM is a
vector ⇡ 2 AS that assigns an action a to each state s.

Remark 3.1: (Comparison with the literature) Our defini-
tion of IMDPs generalizes the classical definitions in [8],
[5] which assume finite action-spaces. This generalization is
motivated by, e.g., applications in robotics [11] and abstrac-
tion of stochastic dynamical systems [14], [9]. Moreover, two
different interpretations for IMDPs have been proposed in the
literature. The first interpretation considers an IMDP as an
MDP with uncertain parameters [8], [5], whereas the second
interpretation considers an IMDP as an MDP interacting with
an agent who resolves uncertain probabilities [6], [9].

Given an IMDP IM and a policy ⇡ 2 AS , we study the
possible ranges of the value function (1) for every M 2 IM.
First, for every (s, a) 2 S ⇥ A, we define �IM

s,a as the set
of all p : S ! [0, 1] such that,

P (s0, s, a)  p(s0)  P (s0, s, a), for all s0 2 S
X

r2S
p(r) = 1. (5)

Using the set �IM
s,a , we define the interval Bellman-policy

operator for IM as the map
h
F

F

i
: RS ⇥ AS ! RS ⇥ RS :

F(v, ⇡)(s) = R(s, ⇡(s)) + � min
p2�IM

s,⇡(s)

X

s02S

p(s0)v(s0),

F(v, ⇡)(s) = R(s, ⇡(s)) + � max
p2�IM

s,⇡(s)

X

s02S

p(s0)v(s0), (6)

and the interval Bellman operator for IM as the map
h
G

G

i
:

RS ! RS ⇥ RS :

G(v)(s) = max
a2A

(
R(s, a) + � min

p2�IM
s,a

X

s02S

p(s0)v(s0)

)
,

G(v)(s) = max
a2A

(
R(s, a) + � max

p2�IM
s,a

X

s02S

p(s0)v(s0)

)
.

(7)

Equivalently, using the vector notation, we have G(v) =
max⇡2AS F(v, ⇡) and G(v) = max⇡2AS F(v, ⇡). for every
v 2 RS . In the next theorem, we show that the interval
Bellman (resp. Bellman-policy) operator is monotone and
contracting with respect to the `1-norm and can be used
to provide upper and lower bounds on the Bellman (resp.
Bellman-policy) operator of every MDP that belongs to IM.
The proof of this theorem is provided in [16, Appendix A].

Theorem 3.2 (Interval Bellman operator): Consider an
IMDP IM = (S, A, [P ], [R], �) with the interval Bellman-
policy operator and the interval Bellman operator in (6)
and (7), respectively. Let M be an MDP such that M 2 IM
with the Bellman-policy operator and the Bellman operator
operator in (3) and (4), respectively. Then,

(i) for every ⇡ 2 AS , the operators v 7! F(v, ⇡) and v 7!
F(v, ⇡) are monotone and contracting with respect to
the `1-norm with rate � and

F(v, ⇡)  F(v, ⇡)  F(v, ⇡), for all v 2 RS . (8)

(ii) the operators G and G are monotone and contracting
with respect to the `1-norm with rate � and

G(v)  G(v)  G(v), for all v 2 RS . (9)

Computing the interval Bellman operator using the equa-
tion (6) requires solving two linear programs in p and
can be computationally intractable for large-scale IMDPs.
We first introduce two useful notations. Consider IM =
(S, A, [P ], [R], �) with (s, a) 2 S ⇥ A and v 2 RS . Then
we define ◆(v, s, a) as the largest integer j 2 {1, . . . , n}
satisfying

P (jv, s, a)  1 �
j�1X

i=1

P (iv, s, a) �
nX

i=j+1

P (iv, s, a)

 P (jv, s, a),

and ◆(v, s, a) as the largest integer k 2 {1, . . . , n} satisfying

P (kv, s, a)  1 �
k�1X

i=1

P (iv, s, a) �
nX

i=k+1

P (iv, s, a)

 P (kv, s, a).

Note that existence of ◆(v, s, a) and ◆(v, s, a) follows from
the inequality

P
s02S P (s0, s, a)  1 

P
s02S P (s0, s, a).

We also define the operators ⌦IM : RS ⇥ S ⇥ A ! R and
⇤IM : RS ⇥ S ⇥ A ! R as follows:

⌦IM(v, s, a) =
jX

i=1

(v(iv) � v(jv))P (iv, s, a)

+
nX

i=j

(v(iv) � v(jv))P (iv, s, a) + v(jv),

⇤IM(v, s, a) =
kX

i=1

(v(iv) � v(kv))P (iv, s, a)

+
nX

i=k

(v(iv) � v(kv))P (iv, s, a) + v(kv), (10)

where j = ◆(v, s, a) and k = ◆(v, s, a). The next proposition
provides a closed-from expression for the interval Bellman-
policy using the lower and upper probability transition
bounds. The proof is provided in [16, Appendix B].



Proposition 3.3 (Bellman-policy operator): Consider the
IMDP IM = (S, A, [P ], [R], �) with the interval Bellman-
policy operator

h
F

F

i
defined in (6). Then

F(v, ⇡)(s) = R(s, ⇡(s)) + �⌦IM(v, s, ⇡(s)),

F(v, ⇡)(s) = R(s, ⇡(s)) + �⇤IM(v, s, ⇡(s)),

where ⌦IM and ⇤IM are defined in (10).
It is known that the notion of optimal policy, as defined

in (2) for MDPs, is not well-defined for IMDPs [8]. This is
due to the fact that the value functions of IMDPs are interval-
valued and the set of intervals do not have a standard partial
order. However, given an IMDP IM = (S, A, [P ], [R], �),
one can define two policies, namely the pessimistic optimal
policy and the optimistic optimal policy, which provide cer-
tain type of optimally for the value function. The pessimistic
optimal policy ⇡⇤

p 2 AS is the unique policy defined by

⇡⇤
p = argmax⇡2AS

✓
min

M2IM
V M
⇡

◆
,

and the pessimistic value function is given by V ⇤
p =

minM2IM V M
⇡⇤
p

. The optimistic optimal policy ⇡⇤
o 2 AS

is the unique policy defined by

⇡⇤
o = argmax⇡2AS

✓
max

M2IM
V M
⇡

◆
,

and the optimistic value function is given by V ⇤
o =

maxM2IM V M
⇡⇤
o

. From a game-theoretic perspective, the
pessimistic optimal policy can be considered as the optimal
policy of the IMDP IM in presence of a competitive adver-
sary who resolves uncertain probabilities, and the optimistic
optimal policy can be considered as the optimal policy of the
IMDP IM the presence of a cooperative agent who resolves
uncertain probabilities. Given an IMDP IM, we define the
pessimistic value iteration by

vk+1 = G(vk) = max
⇡2AS

F(vk, ⇡), (11)

and we define the optimistic value iteration by

vk+1 = G(vk) = max
⇡2AS

F(vk, ⇡). (12)

where
h
G

G

i
and

h
F

F

i
are the interval Bellman operator and the

interval Bellman-policy operator of IM, respectively. The
next theorem establishes that the pessimistic and optimistic
value iterations (11) and (12) can be used to compute the
pessimistic and optimistic optimal policies of IMDPs. We
refer to [16, Appendix C] for the proof.

Theorem 3.4 (Value iterations as dynamical systems):
Consider the IMDP IM = (S, A, [P ], [R], �) with the
pessimistic and optimistic policies ⇡⇤

p, ⇡
⇤
o 2 AS with

the interval Bellman-policy operator (6) and the interval
Bellman operator (7). Then, the following statements hold:

(i) the pessimistic value iteration (11) is a monotone
contracting dynamical system with the unique glob-
ally exponentially stable equilibrium point V ⇤

p and the
pessimistic optimal policy ⇡⇤

p is obtained by ⇡⇤
p =

argmax⇡2ASF(V ⇤
p , ⇡).

(ii) the optimistic value iteration (12) is a monotone con-
tracting dynamical system with the unique globally
exponentially stable equilibrium point V ⇤

o and the
optimistic optimal policy ⇡⇤

o is obtained by ⇡⇤
o =

argmax⇡2ASF(V ⇤
o , ⇡).

Remark 3.5 (A dynamical system perspective): The fact
that pessimistic (resp. optimistic) value iterations is con-
tracting and the pessimistic (resp. optimistic) optimal policy
is its fixed points is known in the literature [8, Theo-
rems 10,11,12]. However, Theorem 3.4 provides a discrete-
time dynamical system perspective to the pessimistic (resp.
optimistic) value iterations (11) (resp. equation (12)) and
highlights their less-studied property of monotonicity.

IV. EFFICIENT ESTIMATION OF OPTIMAL POLICIES

Theorem 3.4 provides iterative algorithms for computing
the optimal policies in IMDPs. It turns out that implementing
the pessimistic value iterations (11) (resp. optimistic value
iterations (12)) requires solving the following |S| nonlinear
optimization problems at each iteration step:

⇡k = argmax⇡2ASF(vk, ⇡) (13)

(resp. ⇡k = argmax⇡2ASF(vk, ⇡)). This can cause two main
challenges for computing the optimal policies:

(i) in the absence of any structure for the optimization
problems (13), one needs to resort to heuristic algo-
rithms to approximate the optimal solutions of (13).
These heuristic algorithms can introduce sizable error
in estimating the optimization problem and can signifi-
cantly degrade the performance of the value iterations.

(ii) even when the optimization problems (13) is convex, it
is still necessary to solve |S| optimization problems with
m variables at each iterations of the value iterations.
Thus, it is computationally challenging to implement
the interval value iterations for large-scale IMDPs.

In order to address the above mentioned challenges, we study
IMDPs through the lens of dynamical systems. In the rest
of this section, we focus on the pessimistic value iterations
and pessimistic optimal policies. A parallel framework can
be developed for optimistic value iterations and optimistic
optimal policies but we omit it for the sake of brevity.

A. Action-space relaxation IMDP
In this subsection, we introduce a relaxation of a given

IMDP in its action variables by providing suitable bounds on
its reward functions and its probability transition functions.

Definition 4.1 (Action-space pessimistic relaxation):
Consider an IMDP IM = (S, A, [P ], [R], �). An
action-space pessimistic relaxation of IM is an IMDP
IMcv = (S, Acv, [P cv], [Rcv], �) such that

(i) A ✓ Acv ✓ Rm and Acv is convex and compact in Rm,
(ii) for every s0, s 2 S and every a 2 A.

P (s0, s, a)  P cv(s0, s, a), P
cv

(s0, s, a)  P (s0, s, a),

R(s, a)  Rcv(s, a),

(iii) for every s 2 S, a 7! Rcv(s, a) is concave on Acv,



(iv) for every s0, s 2 S, a 7! P
cv

(s0, s, a) is convex and
a 7! P cv(s0, s, a) is concave.

Given an action-space pessimistic relaxation IMcv for
IM, one can define its associated interval Bellman-policy
operator

h
Fcv

F
cv

i
: RS ⇥ (Acv)S ! RS ⇥ RS and the interval

Bellman operator
h
Gcv

G
cv

i
: RS ⇥ (Acv)S ! RS ⇥ RS as in

equations (6) and (7), respectively. Then, the pessimist value
iterations for IMcv is given by

vk+1 = Fcv(vk, ⇡k),

⇡k = argmax⇡2(Acv)SF
cv(vk, ⇡), (14)

and the pessimistic optimal value and the pessimistic optimal
policy of IMcv is denoted by V cv,⇤

p and ⇡cv,⇤
p , respectively.

Given an IMDP IM, the next theorem shows that the
Bellman operator of the action-space pessimistic relaxation
IMcv is an upper bound for the Bellman operator of IM.
Using the classical comparison theorem for the pessimistic
value iterations (14), it can be shown that the pessimistic
optimal value of IMcv is an upper bound for the pessimistic
optimal value of IM.

Theorem 4.2 (Bellman operator of pessimistic relaxation):
Consider the IMDP IM = (S, A, [P ], [R], �) with an
associated action-space pessimistic relaxation IMDP
IMcv = (S, Acv, [P cv], [Rcv], �). Then,

(i) for every v 2 RS and ⇡ 2 AS , F(v, ⇡)  Fcv(v, ⇡),
(ii) for every s 2 S and every v 2 RS , ⇡ ! Fcv(v, ⇡)(s),

is a concave function on Acv.
(iii) for every v 2 RS , G(v)  Gcv(v).
(iv) we have V ⇤

p  V cv,⇤
p .

Proof: Regarding part (i), recall the definition of
⌦IMcv

(v, s, a) in equation (10) for the IMDP IMcv. Then,

⌦IMcv

(v, s, ⇡(s)) =
jX

i=1

(v(iv) � v(jv))P
cv(iv, s, a)

+
nX

i=j

(v(iv) � v(jv))P
cv

(iv, s, a) + v(jv)

�
jX

i=1

(v(iv) � v(jv))P (iv, s, a)

+
nX

i=j

(v(iv) � v(jv))P (iv, s, a) + v(jv),

where j = ◆cv(v, s, a) is as defined in (10). Note that the
first inequality above holds because, for every i 2 {1, . . . , j},
we have v(iv) � v(jv) � 0 and P cv(iv, s, a) � P (iv, s, a)
and, for every i 2 {j, . . . , n}, we have v(iv) � v(jv)  0
and P

cv
(iv, s, a)  P (iv, s, a). Given ⇡ 2 AS , we define

p⇤ : S ! R by

p⇤(iv) =

8
><

>:

P (iv, s, ⇡(s)) i 2 {1, . . . , j � 1}
⇠ i = j

P (iv, s, ⇡(s)) i 2 {j + 1, . . . , n}.

where ⇠ = 1�
Pj�1

i=1 P (iv, s, ⇡(s))�
Pn

i=j+1 P (iv, s, ⇡(s)).
It is easy to check p⇤ 2 �IM

s,⇡(s) and

⌦IMcv

(v, s, ⇡(s)) �
X

s02S

p⇤(s0)v(s0).

As a result, using Proposition 3.3, we get

Fcv(v, ⇡)(s) = Rcv(s, ⇡(s)) + �⌦IMcv

(v, s, ⇡(s))

� R(s, ⇡(s)) + � min
⇡2�IM

s,⇡(s)

X

s02S

p(s0)v(s0) = F(v, ⇡)(s).

where the last equality holds by the definition of F. Regard-
ing part (ii), first note that, for every i 2 {1, . . . , j}, we
have v(iv) � v(jv) � 0 and a 7! P cv(iv, s, a) is concave
and, for every i 2 {j, . . . , n}, we have v(iv) � v(jv)  0
and a 7! P

cv
(iv, s, a) is convex. This implies that ⇡ 7!

⌦IMcv

(v, s, ⇡(s)) is an concave function. Moreover,

Fcv(v, ⇡)(s) = Rcv(s, ⇡(s)) + �⌦IMcv

(v, s, ⇡(s))

Since a 7! Rcv(s, a) is concave, we can deduce that ⇡ 7!
Fcv(v, ⇡)(s) is a concave function. Regarding part (iii), the
fact that G(v)  Gcv(v) follows from definition of G in (7).
Regarding part (iv), by Theorem 3.4(i), the discrete-time dy-
namical systems (11) and (14) are monotone and contracting
with respect to `1-norm. Note that G(v)  Gcv(v), for every
v 2 RS . Therefore, we can use the comparison theorem [17,
Theorem 3.8.1], to get V ⇤

p  V cv,⇤
p .

Remark 4.3: The following remarks are in order.
(i) (Computational efficiency): using the action-space pes-

simistic relaxation IMcv, Theorem 4.2 develops the
iteration scheme (14) for over-approximating the pes-
simistic optimal value function of the original IMDP
IM. Since the interval Bellman-policy operator is
concave in ⇡, standard convex optimization algorithms
(see [18]) can be employed to solve the optimization
problem at each iteration of (14).

(ii) (Novelty): to the best of our knowledge, [9] is the first
paper that proposes to use the concave/convex bounds
on the parameters of the IMDPs to approximate its
optimal policies. Compared to [9], Definition 4.1 and
Theorem 4.2 develop a rigorous framework to bound
the parameters of the IMDP and provide guarantees for
over-approximation of their optimal values. Moreover,
our framework is capable of dealing with IMDPs with
action-dependent reward functions.

B. Iteration-distributed optimization

In practice, estimating the optimal policies using the
pessimistic value iterations (14) requires solving |S| concave
optimization problems with m variables at each iteration
step, which can become computationally intractable for
IMDPs with large state-space. In this subsection, we consider
the pessimistic value iterations (14) as the interconnection of
a dynamical system described by the value iterations:

vk+1 = Fcv(vk, ⇡k), (15)



and an optimization-based feedback controller described by:

⇡k = argmax⇡2(Acv)SF
cv(vk, ⇡). (16)

Using this system-theoretic perspective toward interval value
iterations (14), we propose to implement the optimization-
based feedback controller in a distributed fashion. We first
need to introduce the following assumption on the IMDPs.

Assumption 4.4: For the IMDP IM = (S, A, [P ], [R], �),

(i) (Bounded rewards): there exists m 2 R�0 such that
sups2S,a2A R(s, a)  m,

(ii) (Regularity in action variables): the map a 7! R(s, a)
is twice continuously differentiable and c-strongly con-
cave and L-smooth, uniformly in s 2 S, and the maps

a 7! P (s0, s, a), a 7! P (s0, s, a),

are twice continuously differentiable and L-smooth, for
every s0, s 2 S.

Given an IMDP IM with an action-space pessimistic
relaxation IMcv, we replace the feedback controller de-
scribed by the optimization problem (16) with ` 2 Z�0

iteration of the projected gradient descent operator Tcv :
RS ⇥ (Acv)S ⇥ R�0 ! RS ,

Tcv(v, ⇡, �) := Proj(Acv)S
�
⇡ + � @

@⇡F
cv(v, ⇡)

�
,

where � � 0 is a learning rate. As a result, we define the
pessimistic value-policy iteration by

vk+1 = Fcv(vk, ⇡k), ⇡k+1 = (Tcv)`(vk+1, ⇡k, �). (17)

In order to analyze the pessimistic value-policy iteration, we
introduce the map ⇡⇤ : RS ! (Acv)S ! (Acv)S by

⇡⇤(v) = argmax�2(Acv)SF
cv(v, �). (18)

The next theorem shows that the interconnection between
the pessimistic value iterations and the iteration-distributed
optimization described in (17) can be used to approximate
the pessimistic optimal value of IMcv.

Theorem 4.5 (Value-policy iterations): Consider
the IMDP IM = (S, A, [P ], [R], �) with an
action-space pessimistic relaxation IMDP IMcv =
(S, Acv, [P cv], [Rcv], �) that satisfies Assumption 4.4. Then,

(i) the compact set X = {(v, ⇡) 2 RS
�0 ⇥ (Acv)S | v ⇣

m
1��

⌘
1|S|} is a forward invariant set for pessimistic

value-policy iterations (17),
(ii) let {(vk, ⇡k)}1k=0 be the solution of the pessimistic

value-policy iteration (17) starting from (v0 = 0, ⇡0) 2
X with learning rate � = 1

L . Then, for every k 2 Z�1,

vk  V cv,⇤
p  vk +

⇣
�kkv0 � V cv,⇤

p k1 + (1��k)"
1��

⌘
1|S|,

where " = sup(v,⇡)2X

���@Fcv

@⇡ (v, ⇡)
���
1

(1� c
L )`kAcvk1.

Proof: Regarding part (i), it is easy to show that X
is closed and bounded. So it is compact. Now we assume

vk 2 X and we show that vk+1 2 X . Using Proposition 3.3,
for every s 2 S,

vk+1(s) = Rcv(s, ⇡k(s)) + �⌦IMcv

(vk, s, ⇡k(s))

 m + �
j�1X

i=1

vk(iv)P
cv(iv, s, a)

+ �
nX

i=j+1

vk(iv)P
cv

(iv, s, a) + �⇠vk(jv),

where ⇠ = 1 �
Pj�1

i=1 P (iv, s, a) �
Pn

i=j+1 P (iv, s, a) and
j = ◆cv(v, s, a). Using the fact that vk(s)  m

1�� , for every
s 2 S, we get vk+1(s)  m+ �m

1��  m
1�� . This implies that

vk+1  m
1�� 1|S|. This means that vk+1 2 X and thus X is

a forward invariant set for the discrete-time system (17).
Regarding part (ii), for every k 2 Z�0,

vk+1 = Fcv(vk, ⇡k)  Fcv(vk, ⇡⇤(vk)) = Gcv(vk).

By Theorem 3.2(ii), the map v 7! Gcv(v) is monotone and
V cv,⇤
p is the unique fixed point of v 7! Gcv(v). Moreover,

we have v0 = 0  V cv,⇤
p . Thus, by the classical monotone

comparison theorem [17, Theorem 3.8.1], we have vk 
V cv,⇤
p , for every k 2 Z�0. We can rewrite the pessimistic

value-policy iterations (17) as follows:

vk+1 = Fcv(vk, ⇡k) = Fcv(vk, ⇡⇤(vk))

+

Z 1

0

@Fcv

@⇡ (vk, ⇡⇤(vk) + syk)yds.

where yk := ⇡k � ⇡⇤(vk), for every k 2 Z�0. Thus,

vk+1 � V cv,⇤
p = Gcv(vk) � Gcv(V cv,⇤

p )

+

Z 1

0

@Fcv

@⇡ (vk, ⇡⇤(vk) + syk)yds.

By Theorem 3.2(ii), the map v 7! Gcv(v) is contracting with
respect to the `1-norm with rate �. This implies that

kvk+1 � V cv,⇤
p k1  �kvk � V cv,⇤

p k1

+

����
Z 1

0

@Fcv

@⇡ (vk, ⇡⇤(vk) + syk)ykds

����
1

.

Now, we bound the second term on the RHS of the above
inequality. Using the triangle inequality, for every k 2 Z�0,
����
Z 1

0

@Fcv

@⇡ (vk, ⇡⇤(vk) + syk)ykds

����
1


Z 1

0

���@Fcv

@⇡ (vk, ⇡⇤(vk) + syk)
���
1

kykk1ds

 sup
(v,⇡)2X

���@Fcv

@⇡ (v, ⇡)
���
1

kykk.

Note that, for every s 2 S, we have
@2

@⇡2F
cv(v, ⇡)(s) ⌫ @2

@⇡2 R(s, ⇡(s)) ⌫ cI|S|, (19)

where the first inequality in equation (19) holds by Proposi-
tion 3.3 and the fact that, for every i 2 {1, . . . , j}, we have
v(iv) � v(jv) � 0 and a 7! P cv(iv, s, a) is concave and,



for every i 2 {j, . . . , n}, we have v(iv) � v(jv)  0 and
a 7! P

cv
(iv, s, a) is convex. The second inequality in equa-

tion (19) holds by Assumption 4.4. Therefore, equation (19)
implies that the map ⇡ 7! Fcv(v, ⇡)(s) is c-strongly concave.
Similarly, one can show that ⇡ 7! Fcv(v, ⇡)(s) is L-smooth,
for every s 2 S. Therefore,

kykk = k⇡k � ⇡⇤(vk)k1 
�
1 � c

L

�` k⇡k�1 � ⇡⇤(vk)k1

�
1 � c

L

�` kAcvk1,

for every k 2 Z�1, where the first inequality holds by the fact
that ⇡ 7! Fcv(v, ⇡)(s) is c-strongly concave and L-smooth
and using the known results about convergence of projected
gradient descent [19, §5.1]. The second inequality holds
since ⇡k�1, ⇡⇤(vk) 2 (Acv)S and k(Acv)Sk1 = kAcvk1.
As a result, for every k 2 Z�1 kvk+1 � V cv,⇤

p k1 
�kvk � V cv,⇤

p k1 + ". This means that, for every k 2 Z�0

kvk � V cv,⇤
p k1  �kkv0 � V cv,⇤

p k1 + (1��k)"
1��

and, as a result, we get V cv,⇤
p  vk +⇣

�kkv0 � V cv,⇤
p k1 + (1��k)"

1��

⌘
1|S|, for every k 2 Z�1.

Example 4.6 (A two-state continuous-action IMDP): We
consider an IMDP IM = (S, A, [P ], [R], �) with two states
S = {1, 2} and the continuous action-space A = [0, 1] ⇢ R
as shown in Figure 1. For every s, s0 2 {1, 2}, and every
a 2 [0, 1], we define the upper and lower bounds for
probability transitions as follows:

P (s0, s, a) = 0.5a, P (s0, s, a) = 0.7 + 0.3a.

For every a 2 [0, 1], we define the lower and the upper
bounds for the reward functions as follows:

R(1, a) = 1 + 4a
p

a � a3, R(2, a) = 5 � a
p

a.

and we set the discount factor � = 0.9. For IM, we consider
the IMDP IMcv = (S, Acv, [P cv], [Rcv], �) with Acv =
A = [0, 1] and with the probability transition bounds [P cv] =
[P ]. Also the reward bounds are given by

Rcv(1, a) = 1 + 4a � a4, Rcv(2, a) = 5 � a2.

The map a 7! Rcv(s, a) is concave, for every s 2 {1, 2}.
Moreover, we have R(s, a)  Rcv(s, a), for every s 2 {1, 2}
and every a 2 [0, 1]. Thus, IMcv is an action-space pes-
simistic relaxation of IM. We use the distributed optimiza-
tion implementation of the pessimistic value iterations (17)
and Theorem 4.5(ii) with � = 0.01, ` = 1, and k = 1000
iterations to obtain [ 35.200039.2000 ]  V cv,⇤

p  [ 52.700056.7000 ]. Using the
value iterations (15) with the optimization problem (16), one
can compute V cv,⇤

p = [ 43.182043.8891 ].

V. CONCLUSIONS

In this paper, we study IMDPs with continuous action-
spaces. We introduce the pessimistic and the optimistic value
iterations for IMDPs and show that they are monotone and
contracting dynamical systems. Using these observations, we
introduce an action-space relaxation of the IMDP and use
its value iterations to estimate the optimal policies of the
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Fig. 1: The state-transition diagram for Example 4.6

original IMDP. Finally, we propose an iteration-distributed
implementation of the value iterations and study its conver-
gence to the optimal values.
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