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Abstract

Even pruned by the state-of-the-art network compression methods, recent research
shows that deep learning model training still suffers from the demand of massive
data usage. In particular, Graph Neural Networks (GNNs) training upon such
non-Euclidean graph data often encounters relatively higher time costs, due to
its irregular and nasty density properties, compared with data in the regular Eu-
clidean space (e.g., image or text). Another natural property concomitantly with
graph is class-imbalance which cannot be alleviated by the massive graph data
while hindering GNNs’ generalization. To fully tackle these unpleasant properties,
(i) theoretically, we introduce a hypothesis about what extent a subset of the train-
ing data can approximate the full dataset’s learning effectiveness. The effectiveness
is further guaranteed and proved by the gradients’ distance between the subset
and the full set; (ii) empirically, we discover that during the learning process of a
GNN, some samples in the training dataset are informative for providing gradients
to update model parameters. Moreover, the informative subset is not fixed during
training process. Samples that are informative in the current training epoch may
not be so in the next one. We refer to this observation as dynamic data sparsity.
We also notice that sparse subnets pruned from a well-trained GNN sometimes
forget the information provided by the informative subset, reflected in their poor
performances upon the subset. Based on these findings, we develop a unified
data-model dynamic sparsity framework named Graph Decantation (GraphDec)
to address challenges brought by training upon a massive class-imbalanced graph
data. The key idea of GraphDec is to identify the informative subset dynamically
during the training process by adopting sparse graph contrastive learning. Ex-
tensive experiments on multiple benchmark datasets demonstrate that GraphDec
outperforms state-of-the-art baselines for class-imbalanced graph classification and
class-imbalanced node classification tasks, with respect to classification accuracy
and data usage efficiency.

1 Introduction

Graph representation learning (GRL) [23] has shown remarkable power in dealing with non-Euclidean
structure data (e.g., social networks, biochemical molecules, knowledge graphs). Graph neural
networks (GNNs) [23, 11, 38, 43], as the current state-of-the-art of GRL, have become essential
in various graph mining applications. To learn the representation of each node reflecting its local
structure pattern, GNN's gather features of the neighbor nodes and apply message passing along edges.
This topology-aware mechanism enables GNNS to achieve superior performances over different tasks.

However, in many real-world scenarios, graph data often preserves two properties: massiveness [36,
18] and class-imbalance [30]. Firstly, message-passing over nodes with high degrees brings about
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heavy computation burdens. Some of the calculations are even redundant, in that not all neighbors
are informative for learning task-related embeddings. Unlike regular data such as images or texts, the
connectivity of irregular graph data causes random memory access, which further slows down the
efficiency of data readout. Secondly, class imbalance naturally exists in datasets from diverse practical
domains, such as bioinformatics and social networks. GNNs are sensitive to this imbalance and can
be biased toward the dominant classes. This bias may mislead GNNs’ learning process, therefore
making the model underfit on samples that are of real importance with respect to the downstream
tasks, and as a result yielding poor performance on the test data.

Accordingly, recent studies [3, 44, 30]
arise to address the issues of massiveness
or class-imbalanced in graph data. To
tackle the massiveness issue, [7, 2] ex-
plore efficient data sampling policies to
reduce the computational cost from the
data perspective. From the model im-
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model simultaneously. To deal with the data samples based on rankings of their gradient scores,
imbalance issue in node classification on and then uses them as the training set in the next epoch.
graphs, GraphSMOTE [44] tries to gener-

ate new nodes for the minority classes to balance the training data. Improved upon GraphSMOTE,
GraphENS [30] further proposes a new augmentation method by constructing an ego network to learn
the representations of the minority classes. Despite progress made so far, existing methods fail to
tackle the two issues altogether. Furthermore, while one of the issues is being handled, extra compu-
tation costs are introduced at the same time. For example, the rewind steps in GLT [3] which search
for lottery subnets and subsets heavily increase the computation cost, although the final lotteries are
lightweight. The newly synthetic nodes in GraphSMOTE [44, 1] and GraphENS [30], although help
alleviate the data imbalance, bring extra computational burdens for the next-coming training process.
Regarding the issues above, we make several observations. Firstly, we notice that a sparse pruned
GNN easily "forgets" the minority samples when trained with class-imbalanced graph data, as it
yields worse performance over the minorities compared with the original GNN [17]. To investigate
the cause of the above observation, we study how each graph sample affects the model parameters
update process by taking a closer look at the gradients it brings to the parameters. Specifically, at early
training stages, we found a small subset of the samples providing the most informative supervisory
signals reflected by the gradient norms. One hypothesis we make is that the training effectiveness of
the full training set can be approximated, to some extent, by that of the subset. We further hypothesize
that this effective approximation is guaranteed by the distance between the gradients of the subset
and the full dataset.

Based on the above observations and the hypothesises, we propose a novel method called Graph
Decantation (GraphDec) to explore dynamic sparsity training from both model and data aspects.
The principle behind our method is illustrated in Figure 1. Given that informative samples bring
about higher gradient values/scores when trained with a sparse GNN, our method is inspired by
contrastive self-supervised learning because it can be modified to dynamically prune one branch of
contrastive backbone for improving its capability of identifying minority samples in class-imbalanced
dataset. In particular, we design a new contrastive backbone with a sparse GNN and enable the
model to identify informative samples in a self-supervised manner. To the best of our knowledge,
other learning processes (e.g., graph auto-encoder, supervised learning) are either unable to identify
informative samples or incapable of learning in a self-supervised manner. Accordingly, the proposed
framework can score samples in the current training set and keep only & most informative samples as
training set for the next epoch. Considering that a currently unimportant sample does not imply that
it will always be unimportant, we further design a data recycling process to randomly recycle prior
discarded data samples (samples that are considered unimportant in previous training epochs), and
add them back to current informative sparse subsets for reuse. The dynamically updated informative
subset supports the sparse GNN to learn more balanced representations. To summarize, our major
contributions in this work are:



* We develop a novel framework, Graph Decantation, which leverages dynamical sparse graph con-
trastive learning on class-imbalanced graph data with efficient data usage. To our best knowledge,
this is the first study to explore the dynamic sparsity property for class-imbalanced graphs.

* We introduce cosine annealing to dynamically control the sizes of the sparse GNN model and graph
data subset to smooth the training process. Meanwhile, we introduce data recycling to refresh the
current data subset to avoid overfitting.

* Comprehensive experiments on multiple benchmark datasets demonstrate that GraphDec outper-
forms state-of-the-art methods for both class-imbalanced graph classification and class-imbalanced
node classification tasks. Additional results show that GraphDec dynamically finds an informative
subset across different training epochs effectively.

2 Related Work

Training deep model with sparsity. Despite the fact that deep neural networks work generally well
in practice, they are usually over-parameterized. Over-parameterized models, although usually achieve
good performance when trained properly, are usually associated with enormous computational cost.
Therefore, parameter pruning aiming at decreasing computational cost has been a popular topic and
many parameter-pruning strategies are proposed to balance the trade-off between model performance
and learning efficiency [5, 24]. Among all of the existing parameter pruning methods, most of them
belong to the static pruning category and deep neural networks are pruned either by neurons [14, 13]
or architectures (layer and filter) [15, 6]. Parameters deleted by these methods will not be recovered
later. In contrast to static pruning methods, more recent works propose dynamic pruning strategies
where different compact subnets will be dynamically activated at each training iteration [26, 28, 32].
The other line of computation cost reduction lies in the dataset sparsity [21, 25, 31]. The core idea is
to prune the original dataset and filter out the most salient subset so that an over-parameterized deep
model could be trained upon (e.g., data diet subset [31]). Recently, the property of sparsity is also
used to improve model robustness [4, 10]. In this work, we attempt to accomplish dynamic sparsity
from both the GNN model and the graph dataset simultaneously.

Class-imbalanced learning on graphs. In real-world scenarios, imbalanced class distribution is
one of the natural properties in many datasets, including graph data. Except for conventional re-
balanced methods, like reweighting samples [44, 30] and oversampling [44, 30], different methods
have been proposed to solve the class imbalance issue in graph data given a specific task. For
the node classification task, an early work [45] tries to accurately characterize the rare categories
through a curriculum self-paced strategy while some other previous works [34, 44, 30] solve the
class-imbalanced issue by proposing different methods to generate synthetic samples to rebalance
the dataset. Compared to the node-level task, the re-balanced methods specific to graph-level task
are relatively unexplored. A recent work [39] proposes to utilize additional supervisory signals from
neighboring graphs to alleviate the class-imbalanced problem for a graph-level task. To the best
of our knowledge, our proposed GraphDec is the first work to solve the class-imbalanced for both
node-level and graph-level tasks.

3 Preliminary

In this work, we denote graph as G = (V, E, X ), where V is the set of nodes, E is the set of edges,
and X e R? represents the node (and edge) attributes of dimension d. In addition, we represent the
neighbor set of node v € V' as N,,.

Graph Neural Networks. GNNs [40] learn node representations from the graph structure and node
attributes. This process can be formulated as:

n) = COMBINEY (=), AGGREGATE® ({R(~), vue N, })), (1)

where 1! denotes feature of node v at I-th GNN layer; AGGREGATE(-) and COMBINE(-) are
neighbor aggregation and combination functions, respectively; hgo) is initialized with node attribute
X,. We obtain the output representation of each node after repeating the process in Equation (1) for

L rounds. The representation of the whole graph, denoted as h € R, can be obtained by using a
READOUT function to combine the final node representations learned above:

he = READOUT {h§,L> Vo e v} , 2)

where the READOUT function can be any permutation invariant, like summation, averaging, etc.
Graph Contrastive Learning. Given a graph dataset D = { Gi}N Graph Contrastive Learning

i=1°
(GCL) methods firstly implement proper transformations on each graph G; to generate two views



G}, and G/. The goal of GCL is to map samples within positive pairs closer in the hidden space,
while those of the negative pairs are further. GCL methods are usually optimized by contrastive loss.
Taking the most popular InfoNCE loss [29] as an example, the contrastive loss is defined as:

/ " exp (sim Z;1, 2,
Lop(Gy, GY) = —log = p( (Zi1,%i2)) 3

. )
D1,z €XP (sim (i1, 2;2))

where z; 1 = fp (G}), 22 = fo (GY), and sim denotes the similarity function.

Network Pruning. Given an over-parameterized deep neural network fy(-) with weights 6, the
network pruning is usually performed layer-by-layer. The pruning process of the [y, layer in fy(-)
can be formulated as follows:

elth

pruned

= TopK (8" k), k = a x |§"], 4)

where 6't is the parameters in the I, layer of fo(-) and TopK(-, k) refers to the operation to choose
the top-k largest elements of §'*». We use a pre-defined sparse rate o to control the fraction of
parameters kept in the pruned network Gijr“une 4~ Finally, only the top k = a x |6%" | largest weights
will be kept in the pruned layer. The pruning process will be implemented iteratively to prune the
parameters in each layer of deep neural network [12].

4 Methodology

In this section, we first illustrate our sparse subset approximation hypothesis supported by the theorem,
which means that if the gradients of a data subset approximate well to the gradients of the full data
set, the model trained on subset performs closely to the model trained with full set. Guided by this
hypothesis, we develop GraphDec to continually refine a compact training subset with the dynamic
graph contrastive learning methodology. In detail, we describe procedures about how to rank the
importance of each sample, smooth the refining procedure, and avoid overfitting.

4.1 Sparse Subset Approximation Hypothesis

Firstly, we propose the sparse subset approximation hypothesis to show how a model trained with
a subset data Dg can approximate the effect of a model trained with full data D. This hypothesis
explains why the performance of the model trained with a subset data selected by specific methods
(e.g., data diet [31]) achieves performance close to the one trained on the full dataset.

Theorem 1 For a data selection algorithm, we assume the model is optimized with full gradient
descent. At epoch t where t € [1,T), denote the model’s parameters as ) where He(” H2 < d? and
d is constant, the optimal model’s parameters as 0*, subset data as ‘Dg), and learning rate as «.
Define gradient error Err(Dgt), L, Lirain, 00 = HZZ'ED(;) Vol bin(0®) — VoL(H(t))H, where £

denotes training loss Lirqin over full training data or validation loss L., over full validation data.
L is a convex function. Then we have the following guarantee:

If Lirain is Lipschitz continuous with parameter o and o = %/T’ then min;_1.7 L(Q(t)) —
or
L(0%) < oz 4+ LT Er(DS), £, Livain, 00).

The detailed proof is provided in the Section A of Appendix. According to the above hypothesis, one
intuitive illumination is that reducing the distance between gradients of the subset and the full set,

formulated as HzieD(” VoLl i (1)) — VQL(H(t))H, is the key to minimize the gap between the
S

train

performance of the model trained with the subset and the optimal model, denoted as £(6) — £(6*).

From the perspective of minimizing HZED(Q VoLl i (0) — VoL (0M)], the success of data
S

train

diet [31] (a prior coreset algorithm) is understandable: data diet computes each sample’s error/gradient
norm based on a slight-trained model, then deletes a portion of the full set with smaller values, which

can be represented as fg(t) =D —Ds". The gradient Zjeﬁs“) VoLl (0®) of the removed

train

data samples is much smaller than that of the remaining data samples >}, ., ) VoLl in(0D). As
S

we will show in the experiments (Section 5.5), the static data diet cannot always capture the most
important samples across all epochs during training [31]. Although rankings of all elements in Dg
seemly keep static and unchangeable, the ranking order of elements in full training dataset D changes
much more actively than the diet subset Dg, which implies one-shot subset D g can not provide
gradient 3. ® VoLt .. (M) to approximate the full set D’s gradient VL (01)).

train
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Figure 2: The overall framework of GraphDec: (i) The dynamic sparse graph contrastive learning
model computes gradients for graph/node samples; (ii) The input samples are sorted according to
their gradients; (iii) Part of samples with the smallest gradients are thrown into the recycling bin; (iv)
Part of samples with the largest gradients in the current epoch and some sampled randomly from the
recycling bin are jointly used as training input in the next epoch.

4.2 Graph Decantation

Then, we follow the above Theorem 1 to develop GraphDec for achieving competitive performance
and efficient data usage simultaneously by filtering out the most influential data subset. The overall
framework of GraphDec is illustrated in Figure 2. The training processes are summarized into four
steps: (i) First, compute gradients of all M/(*) graph/node samples in ¢-th epoch from contrastive
learning loss; (ii) The gradients are then normalized and the corresponding graph/node samples are
ranked in a descending order by their magnitudes; (iii) We then decay the number of samples from
M® to M1 with cosine annealing and only keep the top M**1) x (1 — ¢) samples (e is the
exploration rate which controls the ratio of samples randomly resampled from recycle bin). The rest
samples will be throwed into the recycle bin temporarily; (iv) Finally, randomly resample M (+1) x ¢
samples from the recycled bin and these samples union the ones selected in step (iii) will be used for
model training in the ¢ + 1 epoch. In the following, we describe each of these four steps in details.

Compute gradients by dynamic sparse graph contrastive learning model. In the first step,
given a graph training set D = {Gi}f\il as input, our dynamic sparse graph contrastive learning
model (DS-GCL) takes two augmented views G’ and G” of an original graph G € D as inputs.
In detail, for each graph sample, DS-GCL has two GNN branches fy, (-) and fp,(-), which are
pruned on-the-fly from an original GCN fy(-) by a dynamic sparse pruner. For example, at l;j, graph
convolutional layer of fy(-), a fraction of connections with the largest weight magnitudes are kept,
which are chosen by the following formulation:

glen

pruned

= TopK(@l“L k), k= a® x |9l“L\, 5)

where a(®) is the fraction of remaining neural connections, which is controlled under cosine annealing:

(0)
a® = a2 {1 +cos(7;t)} ,te[1,T], (6)

where o9 is initialized as 1. In addition, some new connections are activated using the current
gradient information. Every few epochs, the pruned neural connections are all re-involved in loss
backward by following formulation:

Tgrn = ArgTopK (Vi £, k), k = o x [0'n], (7)

where ArgTopK returns indices of top-k elements and I oun  denotes elements” indices in [, layer

0 pruned

weights A'*». These reactivated weights are then combined with other remaining connections for
model pruning in the next iteration. We save the gradient values for all samples and use them in the
next step. The benefits brought from DS-GCL reflects in two perspectives: (a) it scores the graph
samples without any labeling effort from humans, compared with graph active learning; (b) it is more
sensitive in selecting informative samples, empirically verified in the Section C of appendix.

Rank graph samples according to their gradients’ L, norms. In the second step, since gradients
of all graph samples in @ (@ = D when t = 0) at ¢-th epoch are already saved, we can calculate



their gradients’ Lo norms. For example, a graph input G; € Dg) will be scored by its gradient norm:

9@ ) = Vs BP0 @) Fopranea @) ®)
In this work, we use the popular InfoNCE contrastive loss [37] and the gradient of G is computed as:
vfe £ (f@,,,,«umd (G/)v fepm,,wd(G”)) = p(opruneda G/) - p(aprun,eda G”)a 9

where the p(0pruned, G') and p(Opruned, G”) denote model’s predictions of G’ and G” with pruned

pruned

pruned

parameters 6p,yneq. All graph samples in Dg) are ranked according to their scores. The ranked @g)
will be provided to latter use.

Decay the size of D g by cosine annealing. In the third step, we aim to prune the size of the subset
for the next ¢ + 1 training epoch. To smooth this pruning procedure, we apply cosine annealing to

control the decay rate. Specifically, the size M (**1) is computed as follows:

(0)
MY — ]\42{14-@05(77%—’_1))},156 (1,7]. (10)

It smoothly refines Dg and avoids manually choosing which training epoch for one-shot selection
like data diet [31]. M (+1) sets the number of graph samples in DgH) for the next ¢ + 1 epoch.

As we will show in Figure 3 in the experiments, at early training, some graph samples only have low
scores/importance. However, in the later training epochs, these graph samples yield much higher
scores once given more patience in training. Upon this observation, we believe that it is worthwhile to
not permanently remove samples with low scores at the current training epoch, since some samples in

removal set Dg = D — D(St) might be re-identified as high-scored samples if they can be re-involved
into the training process. In the opposite direction, if a model is only trained with a subset of graph
samples that are highly scored in the early training stage, the training effect of such a model cannot
approximate the full training set’s gradient effects well. Based on this analysis, this step specializes in

this dilemma: we build the above cosine annealing to control the removal rate of ZDg) during training
instead of hastily scoring out a subset in one-shot mode like data diet and then use it to re-train the
neural network model.

Recycle removed graph samples for next training epoch. In the last step, we already have the
ranked Dg) and the subset size M (**1) for ¢ + 1 epoch. Our next aim is to update the elements in

ﬂ(StH) for the next epoch. When updating elements in ’Dgﬂrl) , since we think currently low-scored
samples may still have the potential to be high-scored, removed samples are randomly recovered.

We use an exploration rate € to remove eM (1) lowest-scores graph samples in D(,;) and recycles

t—1)

eM 1) samples from D_S( . At the same time, we keep (1 — e)M (t+1) graph samples with

highest scores from Q(St) to DSH). The overall Dgﬂ) ’s update is worked as follows:

DY = TopK(DY, (1 — )M )| JSampleK (Ds" ™", eM ¢+1), (11)

(t—1) (t—1)

,eM D) returns randomly sampled eM **+1) samples from Dg

Given the compact sparse subset DSH), we use it for model training in the next epoch and repeat to

execute this pipeline until 7" epoch.

where SampleK(Dg

5 Experiments

In this section, we conduct extensive experiments to validate the effectiveness of the proposed model
for both class-imbalanced graph classification and class-imbalanced node classification tasks. We also
conduct ablation study and informative subset evolution analysis to better understand the effectiveness
of the proposed model. Due to space limit, more analyses about GraphDec property are provided in
Section C of Appendix.

5.1 Experimental Setup

Datasets. We use various graph benchmark datasets to evaluate our model for two tasks: graph
classification and node classification in class-imbalanced data scenario. For the class-imbalanced
graph classification task, we consider all seven datasets used in GZGNN paper [39], i.e., MUTAG,



Table 1: Class-imbalanced graph classification results. Numbers after each dataset name indicate
imbalance ratios of minority to majority categories. Best/second-best results are in bold/underline.

Rebalance | Basis | MUTAG (5:45) | PROTEINS (30:270) | D&D (30:270) | NCI1 (100:900) | Sparsity (%)
Method | | Fl-ma. Fl-mi. | Fl-ma. Fl-mi. | Fl-ma. Fl-mi. | Fl-ma. Fl-mi. | data model
GIN [41] 52.50 56.77 25.33 28.50 9.99 11.88 18.24 18.94 100 100

vanilla InfoGraph [35] 69.11 69.68 3591 36.81 21.41 27.68 33.09 34.03 100 100
GraphCL [42] 66.82 67.77 40.86 41.24 21.02 26.80 31.02 31.62 100 100

GIN [41] 78.03 78.77 65.64 71.55 41.15 70.56 59.19 71.80 | >100 100

up-sampling InfoGraph [35] 78.62 79.09 62.68 66.02 41.55 71.34 53.38 62.20 | >100 100
GraphCL [42] 80.06 80.45 64.21 65.76 38.96 64.23 49.92 58.29 | >100 100

GIN [41] 77.00 77.68 54.54 55.77 28.49 40.79 36.84 39.19 100 100

re-weight InfoGraph [35] 80.85 81.68 65.73 69.60 41.92 72.43 53.05 62.45 100 100
GraphCL [42] 80.20 80.84 63.46 64.97 40.29 67.96 50.05 58.18 100 100

G2GNN [39] remove edge 80.37 81.25 67.70 73.10 43.25 77.03 63.60 72.97 100 100

mask node 83.01 83.59 67.39 73.30 43.93 79.03 64.78 74.91 100 100
GraphDec | dynamic sparsity | 85.71  85.71

PTC-MR (9:81)

76.92 76.89 7797  77.02 | 7630  76.29 50 50

DHFR (12:108) | REDDIT-B (50:450) | Avg. Rank

Rebalance | Sparsity (%)

|
\
Method | | Fl-ma.  Fl-mi. | Fl-ma. Fl-mi. | Fl-ma. Fl-mi. | Fl-ma. Fl-mi. | data model

Basis
GIN [41] 17.74 2030 | 3596  49.46 | 33.19 36.02 1200  12.00 | 100 100
vanilla InfoGraph [35] 25.85 26.71 50.62 56.28 57.67 67.10 11.00 11.14 100 100
GraphCL [42] 2422 25.16 50.55 56.31 53.40 62.19 10.71 10.57 100 100
GIN [41] 4478 5543 | 5596 5939 | 66.71 83.00 6.00 543 | >100 100
up-sampling | InfoGraph [35] | 44.29 4891 | 59.49  61.62 | 67.01 78.68 6.00 6.00 | >100 100
GraphCL [42] 45.12 53.50 60.29 61.71 62.01 75.84 6.29 6.43 >100 100
GIN [41] 36.96 43.09 55.16 57.78 45.17 51.92 9.86 9.86 100 100
re-weight InfoGraph [35] | 44.09  49.17 | 58.67 60.24 | 65.79 7135 5.43 5.29 100 100
GraphCL [42] 44.75 52.22 60.87 61.93 62.79 76.15 6.00 6.29 100 100
G2GNN [39] remove edge 46.40 56.61 61.63 63.61 68.39 86.35 2.71 2.86 100 100
- mask node 46.61 56.70 59.72 61.27 67.52 85.43 2.71 2.71 100 100
GraphDec | dynamic sparsity | 54.03  61.17 | 64.25  67.91 | 69.70 87.00 | 1.00 .14 | 50 50

PROTEINS, D&D, NCI1, PTC-MR, DHFR, and REDDIT-B in [27]. For the class-imbalanced
node classification task, we use all five datasets used in the GraphENS paper [30], i.e., Cora-LT,
CiteSeer-LT, PubMed-LT [33], Amazon-Photo, and Amazon-Computers. Detailed descriptions of
these datasets are provided in the Section B of Appendix.

Baseline Methods. We compare our model with a variety of baseline methods using different
rebalance methods. For class-imbalanced graph classification, we consider three rebalance methods,
i.e., vanilla (without re-balancing when training), up-sampling [39], and re-weight [39]. For each
rebalance method, we run three baseline methods including GIN [41], InfoGraph [35], and GraphCL
[42]. In addition, we adopt two versions of G2GNN (i.e., remove-edge and mask-node) [39] for
in-depth comparison. For class-imbalanced node classification, we consider nine baseline methods
including vanilla, re-weight [19], oversampling [30], cRT [20], PC Softmax [16], DR-GCN [34],
GraphSMOTE [44], and GraphENS [30]. We use Graph Convolutional Network (GCN) [23] as the
default architecture for all rebalance methods. Further details about the baselines are illustrated in the
Section B of Appendix.

Evaluation Metrics. To fully evaluate the model performance, we adopt F1-micro (F1-mi.) and
Fl-macro (F1-ma.) scores for the class-imbalanced graph classification, as well as accuracy (Acc.),
balanced accuracy (bAcc.), and F1-macro (F1-ma.) score for the class-imbalanced node classification.
Experimental Settings. We adopt GCN [23] as the GNN backbone of GraphDec for both tasks. In
particular, we use a two-layers GCN and a one-layer fully-connected layer for node classification, and
add one extra average pooling operator as the readout layer for graph classification. We follow [39]
and [30] to set the imbalance ratios for graph classification and node classification tasks, respectively.
In addition, we use GraphCL [42] as the graph contrastive learning framework, and use cosine
annealing to dynamically control the sparsity rate in the GNN model and the dataset. We set the
initial sparsity rate the rate o(?) for model to 0.8 and 5(°) for dataset to 1.0. After the contrastive
pre-training, we use the GCN output logits as the input to the Support Vector Machine for fine-tuning.
GraphDec is implemented in PyTorch and trained on NVIDIA V100 GPU.

5.2 Class-imbalanced Graph Classification Performance

We start by comparing GraphDec with the aforementioned baselines on class-imbalanced graph
classification task. The results are reported in Table 1. The best and second-best values are highlighted
by bold and underline. From the table, we find that GraphDec outperforms baseline methods on both
metrics across different datasets, while only uses an average of 50% data and 50% model weights
per round. Although a slight Fl1-micro difference has been detected on D&D when comparing
GraphDec to the best baseline GZ?GNN, this is understandable due to the fact that the graphs in



Table 2: Class-imbalanced node classification results. Best/second-best results are in bold/underline.

Method | Cora-LT | CiteSeer-LT | PubMed-LT | AP(p=82) | AC.(p=244) | Sparsity (%)
| Acc. bAcc. Fl-ma. | Acc. bAcc. Fl-ma. | Acc. bAcc. Fl-ma. | (b)Acc. Fl-ma. | (b)Acc. Fl-ma. | data  model
vanilla 73.66 62.72 63.70 | 5390 47.32 43.00 | 70.76 57.56  51.88 82.86 78.72 68.47 64.01 100 100
Re-Weight [30] 7520 68.79 69.27 | 62.56 55.80 53.74 | 7744 7280 73.66 92.94 92.95 90.04 90.11 100 100
Oversampling [30] | 77.44 7073 7240 | 62.78 56.01 5399 | 76,70 6849 69.50 | 9246 9247 | 89.79  89.85 | >100 100
cRT [20] 76.54  69.26  70.95 | 60.60 54.05 5236 | 75.10 67.52 68.08 91.24 91.17 86.02 86.00 100 100
PC Softmax [16] 7642 7130 7124 | 65.70 61.54 6149 | 7692 75.82 74.19 93.32 93.32 86.59 86.62 100 100
DR-GCN [34] 7390 6430 63.10 | 56.18 49.57 4498 | 7238 5886 53.05 N/A N/A N/A N/A 100 100
GraphSmote [44] 76.76  69.31 70.21 62.58 5594 5409 | 7598 7096 7185 92.65 92.61 89.31 89.39 | >100 100
GraphENS [30] 7776 7294 73.13 | 66.92 60.19 58.67 | 78.12 74.13 74.58 93.82 93.81 91.94 91.94 | >100 100
GraphDec | 7829 7394 7425 | 66.90 61.56 61.85 | 78.20 76.05 76.32 | 93.85 94.02 | 92.19 92.16 | 50 50

Table 3: Ablation study results for both tasks. Four rows of red represent removing four individual
components from data sparsity perspective. Four rows of blue represent removing four individual
components from model sparsity perspective. Best results are in bold.

Class-imbalanced Graph Classification (F1-ma.) \ Class-imbalanced Node Classification (Acc.)
Variant MUTAG PROTEINS D&D NCII PTC-MR DHFR REDDIT-B | Cora-LT CiteSeer-LT PubMed-LT A. Photos A. Computer
GraphDec  85.71 76.92 7797 7630 54.03 64.25 69.70 | 78.29 66.90 78.20 93.85 92.19
w/o GS 80.10 72.49 63.16 72.83 4848 48.57 61.40 68.96 60.33 56.22 73.22 67.84
w/o SS 80.95 72.44 7226 7385  52.96 63.99 70.61 77.15 64.67 76.15 79.09 91.33
w/o CAD 7841 65.79 68.33 71.05 52.13 50.00 67.15 74.87 62.62 75.35 90.71 83.23
w/o RS 83.21 67.21 70.75 71.08  39.29 60.99 67.61 7327 61.32 72.02 87.11 90.38
w/o RM 44.37 38.41 6530 3439 3214 4375 64.82 70.97 54.58 70.16 79.01 65.38
w/o SG 82.63 74.54 75.75 70.13  39.29 62.44 69.16 77.54 67.43 72.43 91.25 90.05
w/o CAG 83.50 61.02 69.23 72.83 41.18 62.41 64.14 75.78 63.43 73.07 92.77 87.40
w/o RW 79.25 65.54 67.37 7299  45.90 61.53 63.16 76.46 65.36 75.54 90.54 89.10
w/o S.S. 80.07 71.90 7379 69.72  45.58 64.56 65.67 | 74.82 65.28 74.00 86.14 86.40

D&D are significantly larger than those in other datasets, necessitating specialized designs for graph
augmentations (e.g., the average graph size in terms of node number is 284.32 for D&D, but 39.02 and
17.93 for PROTEINS and MUTAG, respectively). However, in the same dataset, G2GNN can only
achieve 43.93 on F1-macro while GraphDec achieves 77.97, which complements the 2% difference
on F1-micro and further demonstrates GraphDec’s ability to learn effectively even on the dataset with
large graphs. Specifically, models trained with vanilla setting perform the worst due to the ignorance
of class imbalance. Up-sampling strategy improves the performance, but it introduces additional
unnecessary data usage by sampling the minorities multiple times. Similarly, re-weight strategy tries
to address the class-imbalanced issue by assigning different weights to different samples. However, it
still requires the label data to calculate the weight and thus may not perform well when labels are
missing. G2GNN, as the best baseline, obtains decent performance by considering the usage of rich
supervisory signals from both globally and locally neighboring graphs. Finally, the proposed model,
GraphDec, achieves the best performance with the ability to capture dynamic sparsity on both GNN
model and graph datasets. In addition, we rank the performance of GraphDec with regard to baseline
methods on each dataset. GraphDec ranks 1.00 and 1.14 on average, which further demonstrates the
superiority of GraphDec. Noticed that all existing methods utilize the entire datasets and the model
weights. However, GraphDec uses only half of the data and weights to achieve superior performance.

5.3 Class-imbalanced Node Classification Performance

To demonstrate the effectiveness of GraphDec in handling class-imbalanced node data, we further
evaluate GraphDec in the task of class-imbalanced node classification. We first evaluate GraphDec
on three long-tailed citation networks (i.e., Cora-LT, CiteSeer-LT, PubMed-LT) and report the results
on Table 2. We find that GraphDec obtains the best performance compared to baseline methods with
different metrics. Specifically, GraphSmote and GraphENS achieve satisfactory performance by
generating virtual nodes to enrich the information involved in the representations of minority category.
However, GraphDec does not rely on synthetic virtual nodes to learn balanced representations, thereby
avoiding the unnecessary learning costs on additional data. Similarly to the class-imbalanced graph
classification task in Section 5.2, GraphDec leverages only half of the data and model weights,
but achieves state-of-the-art performance, whereas all baselines require the full dataset and model
weights but perform worse. To validate the efficacy of the proposed model on the real-world data, we
also evaluate GraphDec on naturally class-imbalanced benchmark datasets (i.e., Amazon-Photo and
Amazon-Computers). We can see that GraphDec yields the best performance on both datasets, which
further demonstrates the effectiveness of our model in handling node imbalance.

5.4 Ablation Study

Since GraphDec is a unified learning framework composed of multiple components (steps) and
explores dynamic sparsity training from both model and dataset perspectives, we conduct ablation
study to evaluate the performance of different model variants. Specifically, GraphDec contains four
components to address data sparsity and imbalance, including pruning samples by ranking gradients
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Figure 3: Evolution of data samples’ gradients computed by data diet [31] (upper figures) and our
GraphDec (lower figures) on NCI1 data.

(GS), training with sparse dataset (SS), using cosine annealing to reduce dataset size (CAD), and
recycling removed samples (RS), and another four components to address model sparsity and data
imbalance, including pruning weights by ranking magnitudes (RM), using sparse GNN (SG), using
cosine annealing to progressively reduce sparse GNN’s size (CAG), and reactivate removed weights
(RW). In addition, GraphDec employs self-supervision to calculate the gradient score. The details of
model variants are provided in the Section B of Appendix. We analyze the contributions of different
components by removing each of them independently. We conduct experiments for both tasks to
comprehensively inspect each component. The results are shown in Table 3.

From the table, we find that the performance drops after removing any component, which demon-
strates the effectiveness of each component in enhancing the model performance. In general, both
mechanisms for addressing data and model sparsity contribute significantly to the overall performance,
demonstrating the necessity of these two mechanisms in solving sparsity problem. Self-supervision is
also essential, contributing similarly to dynamic sparsity mechanisms. Besides, it enables us to iden-
tify informative data samples without human labels and capture graph knowledge in a self-supervised
manner. In the dataset dynamic sparsity mechanism, GS and CAD contribute the most as sparse
GNN’s discriminability identifies hidden dynamic sparse subsets from the entire dataset accurately
and efficiently. Regarding the model dynamic sparsity mechanism, removing RM and SG lead to a
significant performance drop, which demonstrates that they are the key components in training the
dynamic sparse GNN from the full GNN model. In particular, CAG enables the performance stability
after the model pruning and helps capture information samples during decantation by assigning
greater gradient norm. Among these variants, the full model GraphDec achieves the best result in
most cases. This demonstrates the effectiveness of dataset dynamic sparsity mechanism, model
dynamic sparsity mechanism, and self-supervision strategy in our model.

5.5 Analyzing Evolution of Sparse Subset by Scoring All Samples

To show GraphDec’s capability in dynamically identifying informative samples, we show the visual-
ization of sparse subset evolution of data diet and GraphDec on class-imbalanced NCI1 dataset in
Figure 3. Specifically, we compute 1000 graph samples with their importance scores. These samples
are then ranked according to their scores and marked with sample indexes. From the upper figures in
Figure 3, we find that data diet is unable to accurately identify the dynamic informative nodes. Once a
data sample has been removed from the training list due to the low score, the model forever disregards
it as unimportant. However, the fact that a sample is currently unimportant does not imply that it will
remain unimportant indefinitely. Especially when the model cannot detect the true importance of
each sample in the early stage, it may lead to the premature elimination of vital nodes. Similarly, if a
data sample is considered as important at early epochs (i.e., marked with higher sample index), it
cannot be removed during subsequent epochs. Therefore, we observe that data diet can only increase
the scores of samples within the high index range (i.e., 500—1000), while ignoring samples within
the low index range (i.e., <500). However, GraphDec (Figure 3 (bottom)) can capture the dynamic
importance of each sample regardless of the initial importance score. We see that samples with
different indexes all have the opportunity to be considered important and therefore be included in the
training list. Correspondingly, GraphDec takes into account a broader range of data samples when
shrinking the training list, meanwhile maintaining flexibility towards the previous importance scores.

6 Conclusion

In this paper, to address the graph data imbalance challenge, we propose an efficient and effective
method named Graph Decantation (GraphDec). GraphDec leverages a dynamic sparse graph
contrastive learning model to dynamically identified a sparse-but-informative subset for model
training , in which the sparse GNN encoder is dynamically sampled from a dense GNN, and its



capability of identifying informative samples is used to rank and update the training data in each
epoch. Extensive experiments demonstrate that GraphDec outperforms state-of-the-art baseline
methods for both node classification and graph classification tasks in the class-imbalanced scenario.
The analysis of the sparse informative samples’ evolution further explains the superiority of GraphDec
catching the informative subset in different training periods effectively.
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A Proof of Theorem 2

Theorem 2 For a data selection algorithm [22, 31], we assume model training is optimized with
full gradient descent. At t € [1,T] epoch, we denote the model’s parameter as 0@ (satisfy-

2
ing Hﬁ(t) || < d?, d is constant), the optimal model’s parameter as 0*, subset data as ZDS),

learning rate as o. We also introduce the gradient error term as Err(Dg), L, Lirain, 00 =
HZiED“) vo[’irm’n(o(t)) - VQL(Q(t)) "
S

or validation loss L4 over full validation data and L is a convex function. Then we have following
guarantee:

If Lirain 1S Lipschitz continuous with parameter o and a = . Ci/T’ then mint:LTL(H(t)) —
T

L£(6%) < ‘f?z + T t 1 Err(D() L Ltrawue( )>

Proof 1 The gradients of L4 and Lirqin are supposed to be o-bounded by oy and or respectively.
According to gradient descent, we have:
T

L g — guny

v@£train<9(t))T(0(t) - 9*) = t
alt)

O — %), (12)

2
* ) (13)

Since one update step ) — 0+ can be optimized by gradient multiplying with learning rate
AV Lirain (1), we have:
)

(14)

VaCnan0)" 00 ~0%) = gy ([0 000 [ o= Joeen -

VoLirain(0©) (00 — 0%) = (t) (O‘(t)veﬁtmm (t))HQ +[6; — 6%|* - H‘Q(M) -

Since Vthmm(G(t))T(H(t) — 0%*) can be represented as follows:
VoLirain(0®) (00 = 0%) = VoLirain(0©) (00 — 0%)

- " (15)
—VL(0®) (00 —6%) + VoL (D) (61 — 9%),

then based on the combination of the Equation (14) and Equation (15), we have:

Vo Lorain(@O) (00 — 0%) — V£ (0®) (00 — 0%) + Vo (8D)" (0 — g*

B (R S

> (16)
)
a7

T
- (Ve'ctrain(a(t)) - VQL(G(t))) (H(t) — 9*)

VoL (o) (00~ 6%) = () 0OV Ltrain (0| + 0 — 0% —00+) — o7

We assume learning rate o) |t € [0, T — 1] is a constant value, then we have:

T—-1 © T ® 1 ) ) T-1 1 ® 9
t t) _ p¥\ __— _ p* _ _p* = . t
;:o: Vol (0V) (0 —0%) =60 — 0*|” — |07 — 0% +t§=0}(2 Havgzmm(e )H)

+ Z ((ngtmm (0®) — voz(9<t>))T(9<f> - 9*)) .
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Since we assume |0 — 0% = 0, then we have:

) )T _ gy < - P (L oN e
2 Val(0) (0 = 0%) < 5l = 0°1" + 3 (5 |aVaLinan(0 )]

=0 (18)

+ Z ((veztmm o)~ Vet (0)) (@ —9*>>

We assume L is convex and Liyqin is lipschitz continuous with parameter op. Then for convex

function £(6), we have L(0®)) — L(6%) < V@L(H(t))T(H(t) — 0*). By combining this result with
Equation 18, we get:

Z L) — £(6%) < fue 02 4 Z —Haveﬁmm (6®) H

19
(t) N T a(t) )
+ § ((wztmm (01) — VoL (6 )) (6 —9*)).
Since | L1(0)] < o1, [aVLirain(01)| < o1, and we assume |0 — 0% | < d, then we have:
— 2 Tacz &
* T gy _ ®)
; LOM < -+ —5 L+ ;:0 4 (| FoLurain(@®) = ToL(6®)]), 20
— d? a — d
— < —— 4+ T =z gy _ (t)
T ; ) 2aT 2 g T (HVG[Jtrazn(e ) VGL(G )H) . (21)
Since min (£(0)) — L(6%)) < % tT;Ol L(0®) — L£(6%), based on Equation 21, we have:
P ack TS d
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We set learning rate o = p— and then have:
dor A d
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B Experimental Details

B.1 Datasets Details

In this work, seven graph classification datasets and five node classification datasets are used to
evaluate the effectiveness of our proposed model, we provided their detailed statistics in Table 4.
For graph classification datasets, we follow the imbalance setting of [39] to set the train-validation
split as 25%/25% and change the imbalance ratio from 5:5 (balanced) to 1:9 (imbalanced). The rest
of the dataset is used as the test set. The specified imbalance ratio of each dataset is clarified after
its name in Table 5. For node classification datasets, we follow [33] to set the imbalance ratio of
Cora, CiteSeer and PubMed as 10. Besides, the setting of Amazon-Photo and Amazon-Computers
are borrowed from [30], where the imbalance ratio p is set as 82 and 244, respectively.

B.2 Baseline Details

We compare our model with a variety of baseline methods using different rebalance methods:
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Table 4: Original dataset details for imbalanced graph classification and imbalanced node classifica-
tion tasks.

Task | Dataset | # Graphs | # Nodes | # Edges | # Features | # Classes
MUTAG 188 ~17.93 | ~19.79 - 2
PROTEINS 1,113 ~39.06 | ~72.82 - 2
D&D 1,178 | ~284.32 | ~715.66 - 2

Graph | NCI1 4,110 | ~29.87 | ~32.30 - 2
PTC-MR 344 ~14.29 | ~14.69 - 2
DHFR 756 ~42.43 | ~44.54 - 2
REDDIT-B 2,000 | ~429.63 | ~497.75 - 2
Cora - 2,485 5,069 1,433 7
Citeseer - 2,110 3,668 3,703 6

Node | Pubmed - 19,717 | 44,324 500 3
A-photo - 7,650 | 238,162 745 8
A-computers - 13,381 | 245,778 767 10

I. For imbalanced graph classification [39], four models are included as baselines in our work, we
list these baselines as follow:

(1) GIN [41], a popular supervised GNN backbone for graph tasks due to its powerful expressiveness
on graph structure;

(2) InfoGraph [35], an unsupervised graph learning framework by maximizing the mutual informa-
tion between the whole graph and its local topology of different levels;

(3) GraphCL [42], learning unsupervised graph representations via maximizing the mutual informa-
tion between the original graph and corresponding augmented views;

(4) G2GNN [39], a re-balanced GNN proposed to utilize additional supervisory signals from both
neighboring graphs and graphs themselves to alleviate the imbalance issue of graph.

II. For imbalanced node classification, we consider nine baseline methods in our work, including
(1) vanilla, denoting that we train GCN normally without any extra rebalancing tricks;

(2) re-weight [19], denoting we use cost-sensitive loss and re-weight the penalty of nodes in different
classes;

(3) oversampling [30], denoting that we sample nodes of each class to make the data’s number of
each class reach the maximum number of corresponding class’s data;

(4) cRT [20], a post-hoc correction method for decoupling output representations;
(5) PC Softmax [16], a post-hoc correction method for decoupling output representations, too;

(6) DR-GCN [34], building virtual minority nodes and forces their features to be close to the
neighbors of a source minority node;

(7) GraphSMOTE [44], a pre-processing method that focuses on the input data and investigates the
possibility of re-creating new nodes with minority features to balance the training data.

(8) GraphENS [30], proposing a new augmentation method to construct an ego network from all
nodes for learning minority representation.

We use Graph Convolutional Network (GCN) [23] as the default architecture for all rebalance
methods.

B.3 Details of GraphDec Variants

The details of model variants are provided as follows:

L. Specifically, GraphDec contains four components to address data sparsity and imbalance: (1) GS is
sampling informative subset data according to ranking gradients; (2) SS is training model with the
sparse dataset, correspondingly; (3) CAD is using cosine annealing to reduce dataset size; (4) RS is
recycling removed samples, correspondingly. To investigate their corresponding effectiveness, we
remove them correspondingly as:
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Table 5: Imbalanced graph classification results. The numbers after each dataset name indicate the
imbalance ratios of minority to majority categories. We report the macro F1-score and micro F1-score
with the standard errors as Results are reported as mean + std for 3 repetitions on each dataset. We
bold the best performance.

Rebalance ‘ Basis ‘ MUTAG (5:45) ‘ PROTEINS (30:270) ‘ D&D (30:270) ‘ NCII (100:900)
Method | | Fl-ma. Fl-mi. | Fl-ma. Fl-mi. | Fl-ma. Fl-mi. | Fl-ma. F1-mi.
GIN [41] 52.50 + 18.70  56.77 + 14.14 | 25.33 £ 7.53 28.50 £5.82 | 9.99 + 7.44 11.88 +£9.49 | 1824+ 7.58 18.94+7.12
vanilla InfoGraph [35] 69.11+9.03  69.68+7.77 | 35.91 +7.58 36.81+6.51 | 21.41 +4.51 27.68+7.52 | 33.09+3.30 34.03 + 3.68
GraphCL [42] 66.82 +11.56 67.77+9.78 | 40.86 £6.94 41.24 +£6.38 | 21.02+3.05 26.80+4.95 | 31.02+2.69 31.62+3.05
GIN [41] 78.03 £7.62 78.77 £ 7.67 | 65.64 £2.67 71.55+3.19 | 41.15+3.74 70.56 +10.28 | 59.19 +4.39  71.80 + 7.0:
up-sampling InfoGraph [35] 78.62+6.84 79.09+6.86 | 62.68+2.70 66.02+3.18 | 41.55 +2.32 71.34+6.76 | 53.38 £1.88  62.20 + 2. 63
GraphCL [42] 80.06 + 7.79 80.45+ 7.86 | 64.21 £2.53 65.76 £2.61 | 38.96 +3.01 64.23 £8.10 | 49.92+2.15 58.29 + 3.30
GIN [41] 77.00 £9.59 77.68 £9.30 | 54.54+6.29 55.77 £ 7.11 | 28.49 +5.92 40.79 + 11.84 | 36.84 +8.46 39.19 + 10.05
re-weight InfoGraph [35] 80.85 + 7.75 81.68 + 7.83 | 65.73 £3.10 69.60 +£3.68 | 41.92+2.28 7243 +6.63 | 53.05+1.12 62.45+ 1.89

GraphCL [42] 80.20 +7.27  80.84+7.43 | 63.46 +2.42 64.97+241 | 40.29+3.31 67.96 +8.98 | 50.054+2.09 58.18 + 3.08

80.37 £6.73  81.25+6.87 | 67.70 £2.96 73.10£4.05 | 43.25+3.91 77.03+9.98 | 63.60 & 1.57 72.97 +1.81
83.01+£7.01 8359+ 7.14 | 67.39+£299 73.30+419 | 43.93+346 79.03+10.78 | 64.78 +2.86 7491+ 2.14

GraphDec | dynamic sparsity | 85.71+10.20  85.71+11.10 | 76.92+6.15  76.89+6.80 | 77.97+6.75 77.02+6.26 | 76.30+5.12 76.29+6.27

cawsl | e |

Rebalance ‘ Basis ‘ PTC-MR (9:81) ‘ DHEFR (12:108) ‘ REDDIT-B (50:450)
Method | | Fl-ma. F1-mi. | Fl-ma. Fl-mi. | Fl-ma. F1-mi.
GIN [41] 17.74 +£6.49 20.30 £+ 6.06 35.96 + 8.87  49.46 £4.90 | 33.19 +14.26 36.02 + 17.38
vanilla InfoGraph [35] 25.85 +6.14 26.71 4+ 6.50 50.62 + 8.33  56.28 £4.58 | 57.67 £+ 3.80 67.10 + 4.91
GraphCL [42] 24.22 +6.21 25.16 + 5.25 50.55 +10.01 56.31 +£6.12 53.40 £+ 4.06 62.19 £+ 5.68
GIN [41] 44.78 £ 8.01  55.43 +£14.25 | 55.96 +£10.06 59.39 +6.52 | 66.71 £+ 3.92 83.00 £+ 5.18

up-sampling InfoGraph [35] 44.29 +4.69  48.91 +£7.49 59.49 +£5.20 61.62+4.18 | 67.01 +3.34 78.68 + 3.71
GraphCL [42] 45.12+7.33 53.50+£13.31 | 60.29+9.04 61.71+£6.75 | 62.01 £3.97 75.84 +3.98

GIN [41] 36.96 + 14.08  43.09 +£20.01 | 55.16 £9.47 57.78 £6.69 | 45.17+8.46 51.92+12.29
re-weight InfoGraph [35] 44.09 +£5.62 49.17+8.78 | 58.67+5.82 60.24+4.80 | 65.79+3.38  77.35+3.96
GraphCL [42] 44.75+7.62 52.22+13.24 | 60.87+6.33 61.93+5.15 | 62.79+6.93  76.15+9.15

remove edge 46.40 +7.73 56.61 +13.72 | 61.63 +10.02 63.61 +6.05 | 68.39 +2.97  86.35 + 2.27
mask node 46.61 +£8.27 56.70 +14.81 | 59.72+6.83 61.27+5.40 | 67.52+2.60 85.43 +1.80

GraphDec | dynamic sparsity | 54.03£8.22  61.17+10.24 | 64.25+9.54 67.91+7.10 | 69.70+7.20 87.00+9.36

G2GNN [39]

Table 6: Imbalanced node classification results. We report the accuracy, balanced accuracy and macro
F1-score with the standard errors as mean =+ std for 3 repetitions on each dataset. We bold the best
performance.

PC Softmax [16] 76.4240.34  71.30+£0.45 71.24+0.52 | 65.70+£042 61.54+045 61.49+0.49 | 76.92+0.26 75.82+0.25 74.19+0.25 | 93.324£0.25  93.32+0.25 | 86.59+0.92  86.62+0.91

DR-GCN [34] 73.90+0.2¢ 44.98+1.29 19 58.86+0.15 53.05+0.13

GraphSmote [44] 76.76+ 69.31+£0.37  70.21+0.64 | 62.58+ 54.09+0.37 70.96+0.36  71.85+0.32 | 92.65+0.31  92.61+0.32 | 89.31+0.34  89.39+0.35
13

.31
GraphENS [30] 77.764£0.09 72.94+0.15 73.13+0.11 | 66.92+ 0 71 58.67+0.25 74.134£0.22 93.8240.13  93.8140.12 | 91.94+0.17  91.94+0.17
GraphDec | 78.29+0.40 73.94+0.67 74.25+0.83 | 66.90+0.65 61.56+0.72 61.85+0.96 | 78.20+0.45 76.05+0.66 76.32:+0.66 | 93.85+0.72  94.02+0.67 | 92.19+0.73  92.16+0.75

9 64.30+0.39  63.10+0.57 | 56.1 llO 72.38

Method | Cora-LT | CiteSeer-LT | PubMed-LT | AP (p =82) | AC. (p =244)

| Ac bAce. Flma. | Acc. bAce. Fl-ma. | Acc bAcc. Flma. | (bAcc. Flma. | (bAce. Fl-ma.
vanilla TA66028 2724039 3705043 | S3NL0T0 47324061 400£0.70 | T076£074 5756050 SLESH0S3 | 82864030 TET2E0S2 | GBATIID  GA0LE3IE
Re-Weight(30] | 7S20010 GBI9H018 27026 | 62561032 SS80H028 SLE028 | 77441021 72801038 92.94+0.13  929540.13 | 90.04£029  90.11%0.28
Oversampling [30] | 77.44£0.09 70.73+0.10 72.40+0.11 | 62.78+0.37 56014035 53994037 | 76.70+048 68.49+0.28 92464047 92474048 | 89.79+0.16  89.85+0.17
CRT [20] 76544022 69.26+048  70.95+0.50 | 60.60+0. % 5 054022 52364022 | 75104023 67.52+0.72  68.08+0. 3 | o1 244028 91174029 | 86.02+0.55  86.00+0.56

(1) w/o GS is that we randomly sample subset from the full set;

(2) w/o SS is that we train GNN with the full set;

(3) w/o CAD is that we directly reduce dataset size to target dataset size and it is same as data diet;
(4) w/o RS is not recycling any removed samples.

II. Another four components to address model sparsity and data imbalance: (1) RM samples model
weights according to ranking magnitudes; (2) SG is using sparse GNN, correspondingly; (3) CAG is
using cosine annealing to progressively reduce sparse GNN’s size; (4) RW is reactivating removed
weights. To investigate their effectiveness, we remove them correspondingly as:

(1) w/o RM is that we randomly sample activated weights from full GNN model;
(2) w/o SG is that we train full GNN during forward and backward;
(3) w/o CAG is that we directly reduce the model size to target sparsity rate;

(4) w/o RW is not reactivating any removed weights during sparse training.
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Figure 4: Results of data samples’ gradients computed by full GNN model and our dynamic sparse
GNN model on NCI1 data. Red dashed line: on the left side, points on the x-axis [0, 900] are majority
class; on the right side, points on the x-axis [900, 1000] are minority class.

Table 7: Computational time (second) comparisons.

Model | Method | PubMed-LT | Cora-LT | CiteSeer-LT | PROTEINS | PTC_MR | MUTAG
vanilla 2436 |2.154 2129 |12.798 4295 |2.989
re-weight 2330|2282 2.150  [12.903 4410 |3.125

GCN |re(/over)-sample | 3241  |2.860 2794 | 15.996 5734 |4.022
GraphCL 3747|3412 3399 | 14.981 5049 |3.215
GraphDec 2243 |1.995 1952 |10.614 4212 |2.090

B.4 Full Results with Error Bars

We provide the F1-macro and F1-micro scores along with their standard deviation for our model and
other baselines across both graph classification and node classification tasks in Table 5 and Table 6.
We report their results as mean + std for 3 repetitions on each metric for each dataset.

C Finding Informative Samples by Sparse GNN

Compared with the full GNN model, our dynamic sparse GNN model is more sensitive to recognizing
informative data samples which can be empirically verified by Figure 4. As we can see in the
figure, our dynamical pruned model can assign larger gradients for minority-class samples than
majority-class samples during contrastive training, while the full model generally assigns relatively
uniform gradients for both minority-class and majority-class samples. Thus, the proposed dynamically
pruned model demonstrates its discriminatory ability on minority-class and can thereby sample more
minority-class data according to computed unsupervised gradients.

D Computational Cost

To evaluate the proposed GraphDec’s computational cost on a wide range of datasets, results in
Table 7 that include three different class-imbalanced node classification datasets (PubMed-LT, Cora-
LT, CiteSeer-LT), three different class-imbalanced graph classification datasets (MUTAG, PROTEINS,
PTC_MR), and four baselines (vanilla GCN, re-weight, re(/over)-sample, GraphCL). We run 200
epochs for each method to measure their computational time (second) for training. On NVIDIA
GeForce RTX 3090 GPU device, we get the running time, as reported in Table 7. All models are
implemented in PyTorch Geometric [8]. According to the results, our GraphDec has less computation
cost than prior methods. The following explains why augmentation doubles the input graph without
increasing overall computation costs: (i) The augmentations we use (e.g, node dropping and edge
dropping) reduces the size of input graphs (i.e., node number decreases 25%, edge number decreases
25-35%); (i) During each epoch, our GraphDec prunes datasets so that only approximately 50% of
the training data is used. (iii) our GraphDec prunes GNN model weight, resulting in a lighter model
during training. (iv) Despite the fact that augmentation doubles the number of input graphs, the
additional new views only consume forward computational resources without requiring a backward
step or weight update step, thereby only marginally increasing computation.
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