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Abstract. Open-source code often suffers from mismatched or missing com-
ments, leading to difficult code comprehension, and burdening software devel-
opment and maintenance. In this paper, we design a novel code summariza-
tion model CodeFiD to address this laborious challenge. Inspired by retrieval-
augmented methods for open-domain question answering, CodeFiD first retrieves
a set of relevant comments from code collections for a given code, and then aggre-
gates presentations of code and these comments to produce a natural language
sentence that summarizes the code behaviors. Different from current code sum-
marization works that focus on improving code representations, our model resorts
to external knowledge to enhance code summarizing performance. Extensive
experiments on public code collections demonstrate the effectiveness of CodeFiD
by outperforming state-of-the-art counterparts across all programming languages.
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1 Introduction

Software developers benefit from billions of lines of source code that reside in online
repositories [13,30]. Due to social coding properties, code often suffers from comments
being mismatched or missing [11,29]. This makes code comprehension more difficult,
which could easily increase the burden of software development and maintenance [26].
Hence, correctly summarizing the code behaviors is important and useful. As it is very
expensive to manually acquire high-quality summarization, automatic yet effective code
summarization pipelines are needed to address this laborious challenge.

Automatic code summarization is a rapidly expanding research area. Retrieval
approaches were first proposed as a practice to exploit code keywords and similar-
ity [25,32], which are limited to code formulation and easily fail when identifiers and
methods are poorly named. Inspired by natural machine translation (NMT) from natural
language processing (NLP), sequence-to-sequence (seq2seq) models then came to the
forefront that read in the code as a sequence of tokens and generate a natural language
sentence as a sequence of words [8,19,27]. As source code written in formal program-
ming languages is syntactically structured [2], seq2seq models have recently adapted
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to more advanced graph-to-sequence (graph2seq) models. They leverage code structure
and context through abstract syntax tree or constituency parsing tree [18], to boost the
effectiveness of NMT techniques on code summarization [3,9,17,34].

Though the seq2seq and graph2seq models provide successful principles to solve
the ambiguities and expressiveness in both source code and natural language descrip-
tions, their inputs are inherently self-contained and struggle to leverage any external
knowledge. In other words, while attending to depict source code and learn higher-level
code representations for summarization, this line of research rarely takes advantage of
any other relevant supplementary contexts. Hence our goal here is to investigate how
much code summarization can benefit from retrieving external resources.

Retrieval-augmented pipelines from other fields such as open-domain question
answering explore a retriever-reader framework, where a set of relevant passages are
retrieved to enhance the knowledge coverage for question answering [14, 15]. Inspired
by their huge success, some recent works [22,32] start to shift such retrieval-augmented
paradigms to extract different external resources for code summarization, which, how-
ever, either fail to capture useful connections between code snippets using traditional
Dense Passage Retrieval (DPR) [15], or lead to unsatisfying performance improvement
by introducing noisy information from external resources.

To address these limitations, in this paper, we propose a novel model that resorts
to passage-like contexts from the collected data for code summarization. More specifi-
cally, the extracted supporting contexts refer to available comments paired with source
code in the large training data collections. We argue that these text comments that are
analogous to passages may contain “evidence” to the source code. To this end, on top of
the state-of-the-art reader Fusion-in-Decoder [14], we design a retriever-reader frame-
work for code summarization, called CodeFiD, which is shown in Fig. 1. In our Code-
FiD, a retriever selects top k relevant comments for a given code using dense represen-
tations, where we deploy heterogeneous graph [7] and in-batch negatives training [15]
to fully leverage cross-fertilization of source code and comments. Then an FiD reader
takes the source code along with its retrieved comments as inputs and aggregates their
presentations to produce the final code summary.

2 Notations and Problem Definition

Code Summarization. A given code is denoted as a token sequence r =

(z1,22,...,25). A code summarization model is based on encoder-decoder architec-
ture [10], where the encoder maps the sequence of tokens to a sequence of representa-
tions z = (21, 22, . .., Zy,); the decoder produces the output natural language sentence

y = (y1,Y2,- - -, Ym) by maximizing the conditional probability p(y1,ya, ..., Ym | 2),
such that:
y* = argmax Y _logp(y: | y<¢,z) (1
v t=1
In this paper, instead of introducing syntactic structure to facilitate code representa-
tion learning, we rely on external knowledge with respect to relevant comments from
collections to supplement code and boost its summarizing performance.
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Fig. 1. In CodeFiD, a set of relevant comments are selected by HGNN-based retriever; then reader
takes the code and retrieved comments to generate the summary.

Comment Retrieval. Given a code x and a large set of comments C, comment retrieval
is to compute the similarity between = and C using a similarity measuring function f
in order to retrieve k (K > 1) comments ¢; € C of which representation vectors are the
closest to the code vector:

argmaXcec f(X, C) k=1 (2)
Cr =
argmaxcec, s (x,c)< f (x,cx 1) J(X,€¢) k>1

where x € R? and ¢ € R are representation vectors for the code x and the comment
¢, respectively. In this paper, we define the similarity function f between x and ¢ using
dot product of their vectors, which has been widely used in retrieval research [15].

3 Proposed Model

3.1 Retriever

For the retrieval of supporting comments, a typical way is to train encoders to jointly
embed code and comments into unified vector space by minimizing a ranking loss with
positive and negative (x, ¢) pairs as training instances [4,27]. Two code examples are
given as follows, where code 1’s comment is “Parses the kml file and updates Google
transit feed object with the extracted information”, and code 2’s comment is “Parses
the given kml dom tree and updates Google transit feed object”. Though two blocks of
code are very different, their comments are close to each other, as code 1 invokes an API
defined by code 2 with some sharing identifiers. However, joint embedding paradigm
may not be able to effectively catch such connections between code snippets.

def Parse(self, filename, feed): #code 1
dom = minidom.parse (filename)
self.ParseDom(dom, feed)

def ParseDom(self, dom, feed): #code 2
shape_num = 0
for n in dom.getElementsByTagName (’'Placemark’) :
p = self.ParsePlacemark(n)
if p.IsPoint():
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self.stopNameRe.search (p.name)
elif p.IsLine():
self.ConvertPlacemarkToShape (p, feed)

To solve this issue, here we design a new yet more structured retriever to fully lever-
age cross-fertilization of code and comments: (1) the code data is first abstracted as a
heterogeneous graph to model code interactions; (2) code representations are propa-
gated and updated over this graph, which is completely guided by comment similarity,
and then (3) top k pieces of relevant training code are selected for the given code using
the learned representations, where k comments paired with these selected codes are
finally retrieved to facilitate code summarization.

Encoder Using Heterogeneous Graph. As aforementioned, code pieces are related to
each other through APIs and identifiers. Considering that code, APIs, and identifiers are
of different types, we elaborate a heterogeneous graph (HG) [6,7,28,33] to represent
the code data. To avoid introducing unexpected noises into graph, we intuitively extract
those meaningful APIs and identifiers for HG construction. Specifically, the HG derived
from code data collection is denoted as G = (V, E, X), where V is node set, F is edge
set to connect nodes when APIs/identifiers are included in code, and X € RIVI*d g
node feature matrix initialized using pretrained CodeBERT [8]. Through HG, it is easy
to identify the relationships between any code pairs. Afterwards, we feed the resulting
HG into a heterogeneous graph neural network (HGNN) gg (+) [31] to learn the higher-
level code representations Z = go (X) € RIVI*d" that take advantage of heterogeneous
neighborhood aggregation and code interactions, where d’ is the embedding size.

Training. Training HGNN encoder is a metric learning problem [16], such that the
similarity between code representations can be a good ranking function. To achieve this
goal, we need positive and negative code pairs to minimize the loss, which are unavail-
able explicitly at this stage. As we aim to back-propagate comment similarity to guide
the updates on code representations, we design the following formulation: for each code
z and its comment ¢, any code from the training data whose pairing comments are k
nearest neighbors of c is considered as a positive of x, and any code from the remaining
is a negative of x. In this way, HGNN encoder can create a vector space such that similar
comment pairs will enforce smaller distance between their code representations, while
dissimilar comments will lead to large code representation discrepancy. To enable this
positive and negative formulation, all comments are first mapped to embedding space
using pretrained BERT [5] before fed to nearest neighbor searching.

Let X = {(wi, 2], Ty 1.5 Ty ) Hiey be the training data that consists of n
instances, where each instance includes one code snippet to summarize, one positive
code snippet as well as m negative code snippets. We can thus optimize the HGNN
encoder by minimizing the following loss:

1 f(z,zT)
L£(0) =~ log i 3)

ceX ef(z,z+) +Z;”:1 ef(zaz;>

Since we define f(-,-) as dot product, we can use in-batch negatives [15] to reuse the
computations and expedite the training in a more effective manner.
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Table 1. The performance (BLEU-4) of different summarization pipelines on all datasets.

Model ALL | Ruby |JavaScript | Go | Python | Java | PHP
DistillCodeT5 20.01|15.75| 16.42 20.21{20.59 |20.51|26.58
PolyglotCodeBERT | 19.06 | 14.75 | 15.80 18.77 | 18.71 |20.11|26.23
CoTexT 18.55|14.02 | 14.96 18.86 | 19.73 | 19.06 | 24.68
CodeBERT 17.83 | 12.16 | 14.90 18.07 | 19.06 | 17.65|25.16
Seq2Seq 14.32/9.64 |10.21 13.98 | 1593 |15.09 | 21.08
RENCOS 20.44 | 15.95 | 16.77 21.2620.90 |20.30|27.48
REDCODER 21.36|16.27 | 17.93 21.62|21.01 |22.9428.42
CodeFiD (Ours) 22.2416.97 | 18.52 23.05 2240 |22.14|30.21
w/ random retriver | 17.95|11.61 | 13.26 16.88 | 18.85 | 18.66 | 23.95
w/ codebert retriver | 21.02 | 16.01 | 17.21 22.1721.55 |21.51|28.75
w/o retriver 18.2513.82|14.35 18.4219.35 |19.10|24.08

Comment Retrieval. To retrieve relevant comments for a given code, we proceed with
two steps based on code vectors output by HGNN encoder: (1) select k£ code snippets
whose representations are the closest to the given code in the same way defined in
Sect. 2; and then (2) directly retrieve the pairing comments from these k code snippets
as augmentation to support code summarization.

3.2 Reader

As this paper focuses on the investigation of the retrieval-augmented benefit for code
summarization, we directly use FiD [14] to perform this task, which is based on a T5
model pretrained on unsupervised data [24]. More specifically, each retrieved comment
is concatenated with the code, and then fed to the encoder independently from other
comments to derive k different embedding outputs. These outputs are all concatenated
to be processed by the decoder using attention mechanism to generate the final code
summary. Similar to open domain question answering implemented in FiD, though it is
simple, this reader yields two significant advantages [14]: (1) scalable to large number
of comments, and (2) effective to learn from multiple comments.

4 [Experiments

4.1 Experimental Setup

Data. We test our CodeFiD model on the CodeSearchNet dataset [12], which includes
908,224 training corpus, 44,689 validation corpus and 52,561 test corpus. This dataset
has six programming languages, including Go, Java, JavaScript, PHP, Python and Ruby.

Implementation Details. We set for the number of retrieved comments per code as
k = 10. We also evaluate its impact in Sect. 4.3. The parameter settings of HGNN and
FiD are directly taken from [14,31]. All the experiments are performed under servers



444 S. Hou et al.

Iteration vs. BLEU-4

ime.time ( ) )
start > self.expires:
K-)

.data or start > se
.data = self[ get_context]
a

BLEU-4

Predicted Comment:
t from Go

Wrap getting context fro
simple caching mech:

Retrieved Comment: m
on sheets in a

Iteration
0 5000 10000 15000 20000 25000 30000 35000
A

Real Comment:
Create a Jinja2 context fron a Google sp
(B)

Fig. 2. Performance of CodeFiD regarding the number of retrieved comments and a case study.

equipped with one RTX A6000 48GB GPU. As for software, we use the public reposi-
tory of FiDp,s.' for reader, and DGL? for HGNN-based retriever.

Evaluation Metrics. We use BLEU-4 score [21] to measure the quality of generated
code summaries, which calculates the similarity (i.e., cumulative 4-gram precision)
between the generated sequence and reference sequence.

4.2 Comparisons with Baselines

We evaluate our proposed model CodeFiD by comparisons with recent code summa-
rization models, including DistillCodeT5 [20], PolyglotCodeBERT [1], CoTexT [23],
CodeBERT [8], Seq2Seq [20], and two retrieval-augmented models RENCOS [32]
and REDCODER [22]. The results are reported in Table 1. We can observe that using
retrieval yields significant performance gains. Despite using TS network as encoder and
decoder, CodeFiD enables retrieved comments augmented to code input to outperform
existing state-of-the-art models. The best performing baselines are DistillCodeT5 (non-
retrieval) and REDCODER (retrieval-augmented), where CodeFiD delivers an average
improvement of 2.23 BLEU-4 score from DistillCodeT5 and further 0.88 BLEU-4 score
from REDCODER across all programming languages.

4.3 Impact of Number of Retrieved Comments

We conduct the sensitivity analysis of how different choices of number of retrieved
comments k choices will affect the code summarization performance of CodeFiD. This
evaluation is performed on single Python corpus. As illustrated in Fig. 2(A), when we
enlarge k£ from 5 to 50, the performance difference is trivial at lower steps, while the
BLEU-4 score tends to rise to a higher level for larger retrieved comment number, espe-
cially at latter epochs. Considering that larger k requires higher training computational
budget, k = 10 seems a good trade-off between effectiveness and efficiency, whose
average runtime for a batch (40 instances) costs 3.25 s.

! github.com/facebookresearch/FiD.
2 www.dgl.ai.
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4.4 Ablation Study

We also conduct ablation study to investigate the component contributions to CodeFiD
performance. We formulate three alternative models, which are illustrated in Table 1.
We can see HGNN retriever plays a crucial role in our model, which improves an aver-
age 3.99 BLUE score against the model without retriever. Random retriever underper-
forms by introducing irrelevant contexts that degrades code representations. CodeBERT
retriever is promising, but fails to process the cases that rely on code interactions. Such
a case is shown in Fig. 2(B), where CodeFiD benefits from structured retriever to locate
the related code and retrieve its comment, which in turn provides the necessary evidence
to produce the correct summary.

5 Conclusion

In this paper, we propose CodeFiD with a retriever-reader framework for code summa-
rization. Specifically, our HGNN-based retriever selects a set of highly relevant com-
ments, and then an FiD reader takes the source code along with its retrieved comments
as inputs and aggregates their presentations to produce the final code summary. Exten-
sive experiments on public code collections demonstrate the effectiveness of CodeFiD
which outperforms state-of-the-art baselines. The improvement entailed by CodeFiD
indicates that external knowledge, such as relevant comments from other code exploited
in this paper, is beneficial for code summarization, which sheds light on a new direction
for improving code summarization performance.
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