
GRAPE : Knowledge Graph Enhanced Passage Reader
for Open-domain Question Answering

Mingxuan Ju1∗, Wenhao Yu1∗, Tong Zhao2, Chuxu Zhang3, Yanfang Ye1
1University of Notre Dame, 2Snap Inc., 3Brandeis University

1{mju2,wyu1,yye7}@nd.edu; 2tzhao@snap.com; 3chuxuzhang@brandeis.edu

Abstract

A common thread of open-domain question
answering (QA) models employs a retriever-
reader pipeline that first retrieves a handful of
relevant passages from Wikipedia and then pe-
ruses the passages to produce an answer. How-
ever, even state-of-the-art readers fail to cap-
ture the complex relationships between entities
appearing in questions and retrieved passages,
leading to answers that contradict the facts.
In light of this, we propose a novel knowl-
edge Graph enhanced passage reader, namely
GRAPE , to improve the reader performance
for open-domain QA. Specifically, for each
pair of question and retrieved passage, we first
construct a localized bipartite graph, attributed
to entity embeddings extracted from the inter-
mediate layer of the reader model. Then, a
graph neural network learns relational knowl-
edge while fusing graph and contextual repre-
sentations into the hidden states of the reader
model. Experiments on three open-domain
QA benchmarks show GRAPE can improve
the state-of-the-art performance by up to 2.2
exact match score with a negligible overhead
increase, with the same retriever and retrieved
passages. Our code is publicly available at
https://github.com/jumxglhf/GRAPE.

1 Introduction

Open-domain question answering (QA) tasks
aim to answer questions in natural language
based on large-scale unstructured passages such
as Wikipedia (Chen and Yih, 2020; Zhu et al.,
2021). A common thread of modern open-domain
QA models employs a retriever-reader pipeline, in
which a retriever aims to retrieve a handful of rele-
vant passages w.r.t. a given question, and a reader
aims to infer a final answer from the received pas-
sages (Guu et al., 2020; Karpukhin et al., 2020;
Lewis et al., 2020; Izacard and Grave, 2021). Al-
though these methods have achieved remarkable

* Equal contribution.

Question: What is the primary language of China?
Retrieved Wikipedia passage (ID: 253645):
Language of the People’s Republic of China and of the
Republic of China (Taiwan), and one of the official lang-
uages of Singapore. Standard Mandarin Chinese now do-
minates public life in mainland China. Outside China and
Taiwan, the only varieties of Chinese commonly taught in
university courses are Mandarin and Cantonese.
Answer (SoTA reader): Cantonese
Answer (ours): Standard Mandarin

Factual Triplet from Wikidata:

Question: What does the Missouri river bisect?
Retrieved Wikipedia passage (ID: 19591):
The Missouri River is the longest river in North America.
Rising in the Rocky Mountains of western Montana the
Missouri flows east and south for before entering the
Mississippi River north of St. Louis, Missouri. The river
drains a sparsely populated, … 500,000 square miles,
which includes parts of ten U.S. States
and two Canadian provinces.
Answer (SoTA reader): Missouri
Answer (ours): Mississippi River
Factual Triplet from Wikidata:

language used
ID 19359:

Standard Mandarin

ID 5405:China

ID 19591: Missouri River

ID 19579:
Mississippi River

tributary

Figure 1: The answers produced by the SoTA reader
FiD contradict the facts in the knowledge graph.

advances on various open-domain QA benchmarks,
the state-of-the-art readers, such as FiD (Izacard
and Grave, 2021), still often produce answers that
contradict the facts. As shown in Figure 1, the
FiD reader fails to produce correct answers due to
inaccurate understanding of the factual evidence.
Therefore, instead of improving the retrievers to
saturate the readers with higher answer coverage
in the retrieved passages (Yu et al., 2021; Oguz
et al., 2022; Yu et al., 2022a), in this work, we aim
at improving the readers by leveraging structured
factual triples from the knowledge graph (KG).

A knowledge graph, such as Wikidata (Vran-
dečić and Krötzsch, 2014), contains rich relational
information between entities, many of which can
be further mapped to corresponding mentions in
questions and retrieved passages. To verify the
possible improvements brought by the KG, we con-
duct a simple analysis to examine the percentage
of related fact triples present on the KG in the data,

ar
X

iv
:2

21
0.

02
93

3v
2

 [c
s.C

L]
 1

0
O

ct
 2

02
2

Dataset Fact-related examples Error rate

NQ 736 (20.4%) 31.9%
TriviaQA 3,738 (33.0%) 17.4%
WebQ 1,181 (58.1%) 42.5%

Table 1: The error rate of state-of-the-art reader (i.e.,
FiD base) on the subset of data examples in the test set
that have related fact triplets on the knowledge graph.

i.e., entities in questions are neighbors of answer
entities in retrieved passages through any relation.
We also wonder how many of the above examples
are correctly answered by state-of-the-art readers.
Table 1 shows that a great portion of examples
(e.g., 58.1% in WebQ) can be matched to related
fact triplets on the KG. However, without using the
KG, FiD frequently produces incorrect answers to
questions on these subsets, leaving us significant
room for improvement. Therefore, a framework
that leverages not only textual information in re-
trieved passages but also fact triplets from the KG
is urgently desired to improve reader performance.

In this paper, we propose a novel knowledge
Graph enhanced passage reader, namely GRAPE,
to improve the reader performance for open-
domain QA. Considering the enormous size of KGs
and complex interweaving between entities (e.g.,
over 5 million entities and over 30 neighbors per
entity on Wikidata), direct reasoning on the entire
graph is intractable. Thus, we first construct a lo-
calized bipartite graph for each pair of question and
passage, where nodes represent entities contained
within them, and edges represent relationships be-
tween entities. Then, node representations are ini-
tialized with the hidden states of the corresponding
entities, extracted from the intermediate layer of
the reader model. Next, a graph neural network
learns node representations with relational knowl-
edge, and passes them back into the hidden states
of the reader model. Through this carefully curated
design, GRAPE takes into account both aspects of
knowledge as a holistic framework.

To the best of our knowledge, we are the first
work to leverage knowledge graphs to enhance the
passage reader for open-domain QA. Our experi-
ments demonstrate that, given the same retriever
and the same set of retrieved passages, GRAPE

can achieve superior performance on three open-
domain QA benchmarks (i.e., NQ, TriviaQA, and
WebQ) with up to 2.2 improvement on the exact
match score over the state-of-the-art readers. In
particular, our proposed GRAPE nearly doubles

the improvement gain on the subset that can be
enhanced by fact triplets on the KG.

2 Related Work

Text-based open-domain QA Mainstream
open-domain QA models employ a retriever-
reader architecture, and recent follow-up work
has mainly focused on improving the retriever
or the reader (Chen and Yih, 2020; Zhu et al.,
2021). For the retriever, most of them split text
paragraphs on Wikipedia pages into over 20
million disjoint chunks of 100 words, each of
which is called a passage. Traditional methods
such as TF-IDF and BM25 explore sparse retrieval
strategies by matching the overlapping contents
between questions and passages (Chen et al.,
2017; Yang et al., 2019). DPR (Karpukhin et al.,
2020) revolutionized the field by utilizing dense
contextualized vectors for passage indexing.
Furthermore, other research improved the per-
formance by better training strategies (Qu et al.,
2021), passage re-ranking (Mao et al., 2021) or
directly generating passages (Yu et al., 2022a).
Whereas for the reader, extractive readers aimed to
locate a span of words in the retrieved passages as
answer (Karpukhin et al., 2020; Iyer et al., 2021;
Guu et al., 2020). On the other hand, FiD and
RAG, current state-of-the-art readers, leveraged
encoder-decoder models such as T5 to generate
answers (Lewis et al., 2020; Izacard and Grave,
2021). Nevertheless, these readers only used text
corpus, failing to capture the complex relationships
between entities, and hence resulting in produced
answers contradicting the facts.

KG-enhanced methods for open-domain QA
Recent work has explored incorporating knowledge
graphs (KGs) into the retriever-reader pipeline for
open-domain QA (Min et al., 2019; Zhou et al.,
2020; Oguz et al., 2022; Yu et al., 2021; Hu et al.,
2022; Yu et al., 2022b). For example, Unik-QA
converted structured KG triples and merged un-
structured text together into a unified index, so
the retrieved evidence has more knowledge cov-
ered. Graph-Retriever (Min et al., 2019) and GNN-
encoder (Liu et al., 2022) explored passage-level
KG relations for better passage retrieval. KAQA
(Zhou et al., 2020) improved passage retrieval by
re-ranking according to KG relations between can-
didate passages. KG-FiD (Yu et al., 2021) utilized
KG relations to re-rank retrieved passages by a KG
fine-grained filter. However, all of these retriever-

enhanced methods focused on improving the qual-
ity of retrieved passages before passing them to the
reader model. So, they still suffered from factual
errors. Instead, our GRAPE is the first work to
leverage knowledge graphs to enhance the reader,
which is orthogonal to these existing KG-enhanced
frameworks and our experiments demonstrate that
with the same retriever and the same set of retrieved
passages, GRAPE can outperform the state-of-the-
art reader FiD by a large margin.

3 Proposed Method: GRAPE

In this section, we elaborate on the details of the
proposed GRAPE. Figure 3 shows its overall archi-
tecture. GRAPE adopts a retriever-reader pipeline.
Specifically, given a question, it first utilizes DPR
to retrieve top-k relevant passages from Wikipedia
(§3.1). Then, to peruse the retrieved passages,
it constructs a localized bipartite graph for each
pair of question and passage (§3.2.1). The con-
structed graphs possess tractable yet rich knowl-
edge about the facts among connected entities. Fi-
nally, with the curated graphs, structured facts are
learned through a relation-aware graph neural net-
work (GNN) and fused into token-level representa-
tions of entities in the passages (§3.2.2).

3.1 Passage Retrieval
Given a collection of K passages, the goal of
the retriever is to map all the passages in a low-
dimensional vector, such that it can efficiently re-
trieve the top-k passages relevant to the input ques-
tion. Note that K can be very large (e.g., over 20
million in our experiments) and k is usually small
(e.g., 100 in our experiments).

Following DPR (Karpukhin et al., 2020), we em-
ploy two independent BERT (Devlin et al., 2019)
models to encode the question and the passage sep-
arately, and estimate their relevance by computing
a single similarity score between their [CLS] token
representations. Specifically, given a question q
and a passage pi ∈ {p1, p2, ..., pK}, we encode q
by a question encoder EQ(·) : q → Rd and en-
codes pi by a passage encoder EP (·) : p → Rd,
where d is the hidden dimension of the used BERT.
The ranking score riq of pi w.r.t q is calculated as:

riq = EQ(q)
ᵀ · EP (pi). (1)

We select k passages whose ranking scores rq are
top-k highest among all K passages. Before pass-
ing the retrieved passages into the reader model,

Question: <QENT> Swan lake, <QENT> the sleeping beauty
and <QENT> the nutcracker are three famous ballet by?

Q Special Token Q Entity

P Special Token P Entity

Passage: 'The Nutcracker' is an 1892 two-act ballet,
originally choreographed by <PENT> Marius Petipa and
<PENT> Lev Ivanov with a score by <PENT> Pyotr Ilyich
Tchaikovsky (Op. 71). The libretto is adapted from E. T. A.
Hoffmann's story "The Nutcracker and the Mouse King”…

VU

Sleeping beauty

Swan Lake

Nutcracker

Tchaikovsky

Le Ivanov

Localized Bipartite Graph for This Pair

Marius Petipa

Entity in Question

Entity in Passage

Composer/
Notable work
Possessed by spirit

Figure 2: Given a pair of question and passage, the pro-
posed GRAPE constructs a localized bipartite graph.

we process each question and passage by insert-
ing special tokens before each entity. For entities
in each passage, we use the special token <PENT>;
for those in the question, we use another special
token <QENT>, as shown in Figure 2. The special to-
kens play an important role in our proposed reader
model, which is illustrated in more detail in §3.2.2.

3.2 KG-enhanced Passage Reader

3.2.1 Graph Construction
Given the retrieved and processed passages, our
proposed GRAPE utilizes the factual triplets from
KGs to construct localized bipartite graphs for each
question-passage pair. A KG is defined as a set of
triplets KG = {(eh, r, et)}, where eh, et, and r
refer to a head entity, a tail entity, and a correspond-
ing relation between them, respectively. Knowl-
edge graphs represent facts in the simple format
of triplets, which can easily be leveraged to enrich
our knowledge. Taking the question-passage pair
in Figure 2 as an example, without any prior knowl-
edge about the authorship of the ballets, the se-
lection of answers between “Marius Petipa”, “Lev
Ivanov” and “Tchaikovsky” is difficult. Nonethe-
less, factual triplets from the KG show that these
three ballets are only “possessed by spirit” by “Mar-
ius Petipa” and “Lev Ivanov”. And their “com-
poser” relations with “Tchaikovsky” make the an-
swer obvious. By fusing such relational facts from
KG triplets, the reader can better comprehend the
concrete facts between involved entities and hence
improve the performance for open-domain QA.

One naive solution could be fetching a sub-graph

Question: <QENT> Swan lake, <QENT> the sleeping beauty and <QENT> the
nutcracker are three famous ballet by?
Passage #1: Petipa appealed to popular taste with The Pharaoh’s Daughter
(1862), and later The Talisman (1889), and La Bayad (1877). Petipa is best
remembered for his collaborations with <PENT> Tchaikovsky. He used his
music for his choreography of The Nutcracker (1892, though this is open to
some debate among historians), The Sleeping Beauty (1890), and the definitive
revival of Swan Lake (1895, with <PENT> Lev Ivanov) These works were all
drawn from European folklore.

Tokenization
… …

<QENT> Swan lake <QENT>The sleeping beauty <PENT>Tchaikovsky <PENT> Lev Ivanov

…T5-EncoderBot
… …

Graph Construction

VU

sleeping
beauty

Swan
Lake

Nutcracker

Tchaikovsky

Lev
Ivanov

Relation-aware GNN
Node Attribution

… …

Knowledge Fusion

…T5-EncoderTop

Passage #1:
… …

Passage #2:
… …

Passage #k:
… …

…
…T5-

Decoder

Answer:
Tchaikovsky

… …
<QENT> Swan lake <QENT>The sleeping beauty <PENT>Russian <PENT>German

…T5-EncoderBot
… …

Graph Construction

VU

sleeping
beauty

Swan
Lake

Nutcracker

USSR

Relation-aware GNN
Node Attribution

… …

Knowledge Fusion

…T5-EncoderTop

Tchaikovsky

Russian

German

Question: <QENT> Swan lake, <QENT> the sleeping beauty and <QENT> the
nutcracker are three famous ballet by?
Passage #D: Swan Lake became one of the symbols of the August Putsch for
many people in the post-Soviet states, because during this event all <PENT>
USSR TV channels broadcast the ballet repeatedly for three days in a row.
'Swan Lake', Op. 20, is a ballet composed by <PENT> Pyotr Ilyich Tchaikovsky
in 1875. Despite its initial failure, it is now one of the most popular of all
ballets. The scenario, initially in two acts, was fashioned from <PENT> Russian
and <PENT> German folk tales and tells the story of Odette.

…

Mean MeanMean MeanMean Mean

Tokenization

Figure 3: Two documents are independently encoded by our GRAPE with their corresponding localized bipartite
graphs, leveraging both textual and structured information. The relation-aware GNN learns the structured knowl-
edge from the localized bipartite graphs, attributed with entity representations extracted from the T5-EncoderBot.
The node representations are then fused into the T5-EncoderTop, which provides the hidden representations of the
document. Finally, the T5-Decoder takes hidden states from all documents and generates the answer.

from the KG where all entities involved in the ques-
tions and the passages are included. While such
design preserves all potentially relevant informa-
tion, it suffers from dimensionality and noise is-
sues. Therefore, we proposed to construct a lo-
calized bipartite graph for each question-passage
pair, where only relational facts on relevant en-
tities are kept. That is, in order to prune noisy
peripheral relations, only the factual relations be-
tween question entities and passage entities are
included in the localized bipartite graph. Let a bi-
partite graph be denoted as G = (U ,V, E), where
U and V are two disjoint sets of nodes, and E is the
edge set containing edges that connect nodes from
U to V , or vice versa. Specifically, in GRAPE,
U and V are defined as the entity nodes in the
question and the retrieved passage, respectively.
There exists an bi-directional edge (eh, et) between
eh ∈ U and et ∈ V if and only if {(eh, rh,t, et) :
rh,t ∈ R, (eh, rh,t, et) or (et, rt,h, eh) ∈ KG} 6=
∅, whereR denotes the set of all relation types on
KG. Isolated nodes without any neighbors are re-
moved from the graph. An example graph is shown
in Figure 2, and Table 6 (in the appendix) shows
the statistics of the constructed graphs.

3.2.2 Factual Relation Fusion
In this section, we illustrate how the proposed
GRAPE fuses structured knowledge from our con-
structed localized bipartite graphs into the reader.

GRAPE uses FiD (Izacard and Grave, 2021) as
the backbone architecture, which utilizes a T5 (Raf-
fel et al., 2019) for encoding and decoding. To an-
swer a question q, the input consists of k retrieved
documents {doc1, doc2, · · · , dock}, where doci de-
notes to the concatenation of the token sequence
of q and the token sequence of i-th retrieved pas-
sage pi. Specifically, doci = {q1, q2, · · · , qt, p1i ,
p2i , · · · , poi }, where t and o are the length of the
question and the passage sequence, respectively1.
Given doci,Gi denotes the localized bipartite graph
constructed from it. And Is(doci), Ie(doci), and
It(doci) denote the indices of the start, end, and
special tokens of all entities in doci, respectively.

To fuse the relational knowledge from our con-
structed graphs, we split the encoder Enc(·) :
doc → R(t+o)×d of the reader (i.e., the encoder
of T5) into two partitions Enctop(·) and Encbot(·).
The bottom part Encbot(·) contains the first L lay-
ers of Enc(·) and the top part Encbot(·) contains
the rest, where L is a hyper-parameter. Given doci,
Encbot(·) delivers its encoded intermediate hidden
states Hb

i ∈ R(t+o)×d, formulated as:

Hb
i = Encbot(doci). (2)

We then extract the node attributes XG
i ∈ R|U∪V|×d

of its corresponding graph Gi from Hb
i according

1For the simplicity of the notation, we assume all questions
and passages have the equal length t and o, respectively.

to the span of its corresponding entity. For each
entity node, its attribute vector is the average of the
corresponding tokens’ representations. Formally,

XG
i =

⊕
StartIdx∈Is(doci)
EndIdx∈Ie(doci)

avg
(
Hb

i [StartIdx:EndIdx]
)ᵀ
, (3)

where
⊕

denotes the vertical concatenation.
We use a relation-aware graph neural network

(GNN) to conduct relation-aware message passing
on the constructed graphGi with attributes XG

i , de-
noted as GNN(·, ·) : G × R|U∪V|×d → R|U∪V|×d,
and the learning process is formulated as:

HG
i = GNN

(
Gi,X

G
i

)
, (4)

where the learned node representations HG
i contain

relational knowledge extracted from the KG as well
as contextualized knowledge from the encoder. For
the coherence of reading, the details of GNN(·, ·)
are described later in this subsection.

With the learned entity node representations HG
i

containing knowledge from the fact relations, we
leverage the special tokens to fuse them back into
the reader. Specifically, we have Hu

i = Hb
i then

Hu
i [It(doci)] = Hb

i [It(doci)] +HG
i , (5)

where [·] is the indexing operation. The updated
contextualized representations Hu

i are then used
as the input of the top part of the encoder to en-
able further information exchanges among regular
tokens and the updated special tokens:

Hi = Enctop(H
u
i). (6)

Given the question q, GRAPE forwards all k re-
trieved documents through the above-described en-
coding process, and acquires the hidden states of
all documents {Hi}ki=1. These hidden states are
then concatenated and sent to the decoder Dec(·)
for answer generation. Formally,

answer = Dec
(k⊕

i=0

Hi

)
. (7)

To sum up, the workflow of our proposed GRAPE

can be concluded as the following four steps: (i) get
the initial contextualized representations via Encbot
(Equation (2)) and the node attributes (Equation
(3)), (ii) fuse fact relation by a relation-aware GNN
(Equations (4) and (5)), (iii) exchange additional
information via Enctop (Equation (6)), and (iv) gen-
erate the answer by the decoder (Equation (7)).

Relation-aware GNN Here we elaborate the de-
tails of the aforementioned GNN(·, ·). Typically,
each GNN layer (Hamilton et al., 2017; Kipf and
Welling, 2017) can be formulated as

h
(n)
v = AGG(n)

(
{TRANS(n)

(
h
(n−1)
u

)
: u ∈ N (v)}

)
,

(8)
where N (v) is the set of neighbors for node v in-
cluding itself, n is the index of the current layer,
and hn

v denotes the representation of node v at
the n-th layer. The transform function TRANS(·)
projects node representations from the previous
layer to a new vector space for message passing.
The aggregation function AGG(·) takes a set of
node representations and aggregates them as a vec-
tor in a unified view (Kipf and Welling, 2017;
Veličković et al., 2018; Zhang et al., 2019; Fan
et al., 2022; Ju et al., 2022). Our proposed GRAPE

uses a multi-layer perceptron as TRANS(·) in each
layer. That is,

A(n) = σ
(
H(n−1) ·W(n)

t + b
(n)
t

)
(9)

where A(n) is the intermediate embedding to be
used by AGG(·), H(0) = XG

i as aforementioned
in Equation (3), W(n)

t ∈ Rd×d and b
(n)
t ∈ Rd

denote the learnable parameters, and σ(·) refers to
the non-linear activation function.

For the aggregation function AGG(·), we ex-
plore a relation-aware attention mechanism. Differ-
ent from GAT (Veličković et al., 2018) that consid-
ers only node representations for the edge attention
weight, GRAPE also incorporates the relation rep-
resentations between nodes. At layer n, for each
node v, its representation h

(n)
v is calculated by

e(n)v,u =
(
a(n)v

⊕
avg
(
Enc(rv,u)

)⊕
a(n)u

)
·W(n)

e ,

αv,u =
e
(n)
v,u∑

m∈N (v) e
(n)
v,m

, h(n+1)
v =

∑
u∈N (v)

αv,u · a(n)v ,

(10)

where a
(n)
v is the node v’s representation in A(n),

W
(n)
e ∈ R3d×1 calculates the importance score

of node u to node v, considering contextualized
representations of the connected two nodes and
language model’s understanding of their relation-
ship (i.e., avg(Enc(ru,v))2. We further extend this

2In our implementation, we calculate and buffer
{avg(Enc(r)) : r ∈ R} before every batched forward and
simply query the representation of any relation as needed.

schema to the multi-head attention pipeline by hav-
ing multiple operations as described in Equation
(10) running in parallel. That is,

H(n) =
∑M

m=0
H(n,m), (11)

where M denotes the number of heads, and H(n,m)

refers to the learned representations of the m-th
head at n-th layer. Finally, the node representations
H

(N)
i are used as the output of GNN(·, ·), where

N is the number of layers in the GNN.
In summary, our relation-aware GNN combines

the current reader’s understanding of the factual
relationships among nodes (i.e., avg(Enc(r)) with
the intermediate hidden states XG

i from Encbot(·).
Enriched by structured fact relations, entity node
representations are then fused back into the reader’s
encoder so that our GRAPE can comprehend facts
between entities during the encoding process.

4 Experiments

In this section, we conduct comprehensive exper-
iments on three community-acknowledged public
open-domain QA benchmarks: Natural Questions
(NQ) based on Google search queries, TriviaQA
based on questions from trivia and quiz-league
websites, and Web Questions (WebQ) based on
questions from Google Suggest API (Kwiatkowski
et al., 2019; Joshi et al., 2017; Berant et al., 2013).
We explore the same train / dev / test splits and
preprocessing techniques as used by (Izacard and
Grave, 2021; Karpukhin et al., 2020).

4.1 Experimental Setup
Retrieval Corpus We followed the same process
as used in (Karpukhin et al., 2020; Lewis et al.,
2020) for preprocessing Wikipedia pages. We split
each Wikipedia page into disjoint 100-word pas-
sages, resulting in 21 million passages in total. As
for the knowledge graph used to construct our lo-
calized bipartite graphs, we used English Wiki-
data (Vrandečić and Krötzsch, 2014). The total
number of aligned entities, relations, and triplets
on Wikidata is 2.7M, 630, and 14M respectively3.
We used ELQ (Li et al., 2020) to identify mentions
in the question and retrieved passages, and link
them to corresponding entities on Wikidata.

Implementation Details In GRAPE, involved
hyper-parameters are the number of retrieved pas-
sages k, the number of GNN layers N , the number

3The Wikipedia and Wikidata were all collected in Decem-
ber of 2019. We only used the most visited top 1M entities.

of GNN head M , and the encoder layer index L,
where Enctop and Encbot are partitioned). We ex-
plore k = 100, N = 2, L = 3 and M = 8 as the
default setup. The hidden dimension of the GNN
in GRAPE are set to the dimension of its language
model (i.e., d = 768 for the base configuration
and d = 1024 for the large configuration). Since
N = 2 and M = 8 are the standard values for
most GNNs with the attention mechanism, able to
capture 2-hop neighbor information while being
stable (Veličković et al., 2018), we simply follow
the same principle.

For the encoder layer index L, we search the op-
timal value in the range of {3, 4, 6, 8, 9}. Accord-
ing to our experiment, we observe that different
selections of L don’t have much impact on the per-
formance, indicating that the infusion of structured
knowledge doesn’t correlate with the contextual-
ization of the entity embedding. However, we do
observe a faster convergence rate for lower L val-
ues. So for faster convergence, we set L to 3. Other
hyper-parameter selections related to training with
best performance across all datasets are shown in
Table 5 in §A.1. The software and hardware infor-
mation can be found in §A.1 in the appendix.

Evaluation Metrics We use the standard evalua-
tion metric for open-domain QA: exact match score
(EM) (Rajpurkar et al., 2016; Zhu et al., 2021). An
answer is considered correct if and only if its nor-
malized form4 has a match in the acceptable answer
list. For all experiments, we conduct 3 runs with
different random seeds and report the average.

4.2 Baseline Models

We compare GRAPE with four groups of baselines:
(i) The first group includes closed-book models,
where no Wikipedia document is provided dur-
ing training and inference: T5-11B (Raffel et al.,
2019) and GPT-3 (Brown et al., 2020). (ii) The sec-
ond contains extractive models, which utilize pas-
sages extracted by enhanced retrievers and find the
span of the answer: DPR (Karpukhin et al., 2020),
RIDER (Mao et al., 2021), RECONSIDER (Iyer
et al., 2021). (iii) The third includes approaches
that utilize KG for retrieving: Graph-Retriever
(Min et al., 2019), Path-Retriever (Asai et al., 2019),
and KAQA (Zhou et al., 2020). (iv) The last group
contains advanced generative readers: RAG (Lewis
et al., 2020), REALM (Guu et al., 2020), Top-K

4We use the same normalization procedure as introduced
in (Karpukhin et al., 2020).

Group Model #params NQ TriviaQA WebQ

(i)
T5-11B 11B 32.6 42.3 37.2
GPT-3 (64-shot) 175B 29.9 - 41.5

(ii)
DPR 110M 41.5 56.8 41.1?

RIDER 626M 48.3 - -
RECONSIDER 670M 45.5 61.7 -

(iii)
Graph-Retriever 110M 34.7 55.8 36.4
Path-Retriever 445M 31.7 - -
KAQA 110M - 64.1 -

(iv)

REALM 330M 40.4 - 40.7
RAG 626M 44.5 56.1 45.2?

Joint Top-K 990M 48.1 59.6 -

FiD (base) 440M 48.2 65.0 46.5
FiD (large) 990M 51.4 67.6 50.5

(v)
GRAPE (base) 454M 48.7 (0.5↑) 66.2 (1.2↑) 48.1 (1.6↑)
GRAPE (large) 1.01B 53.5 (2.1↑) 69.8 (2.2↑) 51.7 (1.2↑)

Table 2: Exact match scores over the test sets of Natural Questions, TriviaQA and Web Questions. We put the
training details (such as learning rate, batch size, dev performance, etc) corresponding to the performance of our
GRAPE in Table 5. Numbers in parenthesis are improvements of GRAPE over the corresponding best-performing
baseline. Note that ? means model is warmed with external training data from Natural Questions.

(Sachan et al., 2021) and FiD (Izacard and Grave,
2021). For FiD, we compare both its base and large
versions, and for other baselines we compare their
best-performing versions.

We note that our method is the first work us-
ing the knowledge graph to improve the reader
performance for open-domain QA. Hence, this is
orthogonal to existing works using the knowledge
graph to improve passage retrieval (Liu et al., 2022)
or re-ranking (Yu et al., 2021). Our experiments
show that with the same retriever and the same set
of retrieved passages, GRAPE can outperform the
state-of-the-art reader FiD by a large margin.

4.3 Experimental Results

4.3.1 Comparison with Baselines
Table 2 shows the model performance of 13 base-
lines as well as our GRAPE. We can observe that
our proposed GRAPE can significantly outperform
the best performing baselines across all datasets
over both base and large configurations. Specifi-
cally, GRAPE improves FiD by 0.5, 1.2, and 1.6
EM score on the base model, and 2.1, 2.2, and 1.2
EM scores on the large model on NQ, TriviaQA
and WebQ, respectively. Albeit being competitive
on all datasets, GRAPE brings more improvements
on TriviaQA and WebQ than NQ. We believe the
reason is that on NQ, the percentage of questions

favorable from factual KG relations among all ques-
tions, as shown in Table 1 and Table 4, is relatively
lower, compared to TriviaQA and WebQ. On the
large configuration, even though some questions
are not directly favored by structured facts, the ad-
ditional information re-routing from GRAPE still
benefits with additional learning capability, which
outperfoms FiD large for 2.1 EM score. We also
note that the performance of RAG on WebQ is bet-
ter than FiD base and close to GRAPE base, which
is caused by a tremendous amount of additional
training on other open-domain QA datasets.

4.3.2 Ablation Study

We design two variants for our GRAPE. The first
is GRAPE without considering relations between
entity nodes, i.e., avg(Enc(ru,v)) in Equation (10)
is deleted. The goal is to validate the improvements
brought by relational knowledge, which is denoted
as w/o Rel in Table 3. The second is GRAPE

without considering the relations as well as neigh-
bor differences. The goal is to validate if GRAPE

can differentiate the important neighbor without
the attention mechanism, which is denoted as w/o
Att. As shown in Table 3, we can observe that the
performance drops when removing any of the two
mechanisms, demonstrating their effectiveness and
further validating the rich inductive bias brought

Datasets FiD GRAPE w/o Rel w/o Att

NQ
48.2 48.7 48.6 48.3
51.4 53.5 53.4 53.1

TriviaQA
65.0 66.2 65.7 65.8
67.6 69.8 69.5 69.6

WebQ
46.5 48.1 48.4 48.2
50.5 51.7 51.5 51.0

Table 3: Ablation study of GRAPE without relation
knowledge or attention mechanism. The first line refers
to the performance on the base model; whereas the sec-
ond line refers to the large model.

Dataset Subset%
Model EM among subset

size FiD GRAPE

NQ 20.3%
base 68.1 70.7 (2.6↑)
large 69.3 71.9 (2.6↑)

TriviaQA 33.0%
base 82.6 86.4 (3.8↑)
large 85.6 88.9 (3.3↑)

WebQ 58.1%
base 57.5 61.2 (3.7↑)
large 62.7 65.1 (2.4↑)

Table 4: Exact match score on the subset of questions
that can be enhanced by factual triplets from the KG.

by the factual relations between entities. Besides,
we also notice that the incorporation of relation is
more important than the attention mechanism.

4.3.3 Improvement Analysis by KG Relation

Since GRAPE utilizes the factual relational knowl-
edge from KG, to validate the legitimacy of our
assumption, we analyze the performance gain on
the subset of questions that can be directly solved
by a factual triplet on KG (i.e., constructed graphs
for these questions contain at least one edge that
links the answer entity to entities in questions).
From Table 4, we observe that GRAPE significantly
improves performance on this subset that factual
relations from KG naturally favors. For example,
on the base model, GRAPE improves the overall
performance by 0.5, 1.2, and 1.6 EM score respec-
tively on these three datasets, and almost doubles
the performance margin (i.e., 2.6, 3.8, and 3.7) on
their subsets. This phenomenon demonstrates that
GRAPE tends to utilize the inductive bias we in-
troduce through graphs and the major performance
gain can be rooted in the factual relational knowl-
edge from KG, which further validates the legiti-
macy of GRAPE.

5 10 25 50 100
Passages56

58

60

62

64

66

EM

Number of Passage vs. Exact Match

Model
FiD
GRAPE

Figure 4: The performance on the test set of TriviaQA
w.r.t. the number of passages.

4.3.4 Scaling with Number of Passages
We further evaluate the performance of GRAPE

with respect to the different numbers of retrieved
passages (i.e., D = {5, 10, 25, 50, 100}), as shown
in Figure 4. We observe that given the same num-
ber of passages, GRAPE consistently outperforms
FiD, with greater performance gains given more
passages. Specifically, GRAPE performs on par
with FiD with only the half amount of retrieved
passages, starting from 25 retrieved passages. This
phenomenon demonstrates that, when the answer
is well presented in the retrieved passages, facts
introduced by our curated graphs constructed from
KG significantly help the reader answer questions.

4.3.5 Case Studies on KG Relations
To further validate the improvement gain induced
by GRAPE, we analyze samples that are incor-
rectly answered by FiD but correctly answered
by GRAPE, and visualize the constructed graphs
for these samples, as shown in Figure 5. From
these samples, we can observe the performance
gain indeed comes from the strong enhancement
brought by fact relations from their constructed
graphs. For example, in the first example, with
the fact relations, GRAPE understands that “Arges”
is a member of “Cyclopes”, which perfectly en-
hances answering for the given problem. In the the
third example, we can observe that FiD delivers a
answer that is only partially correct. Whereas, en-
hanced by fact relation from KG, GRAPE correctly
answers the question, because of the triplet (“UK”,
“applies to jurisdiction”, “Parliament of UK”). This
design is tractable yet effective. Because only en-
tities highly correlated with useful facts will be
included. Specifically, passage entities unrelated to
question entities are very likely to be marginal and
hence removed, and only the factual triplets help-
ful for answering the problems are kept. Relations

Figure 5: Case studies on samples that are incorrectly answered by FiD but correctly answered by GRAPE. Rela-
tions in green arrow indicate the factual relations from KG that enhance the question answering.

within passage entities are most likely peripheral
and hence neglected in the bipartite graph.

5 Conclusion
In this work, we study the problem of open-domain
QA. We discover that state-of-the-art readers fail
to capture the complex relationships between enti-
ties appearing in questions and retrieved passages,
resulting in produced answers that contradict the
facts. To this end, we propose a novel knowledge
Graph enhanced passage Reader (GRAPE) to im-
prove the reader performance for open-domain QA.
Specifically, for each pair of question and retrieved
passage, we construct an informative localized bi-
partite graph and explore an expressive relation-
aware GNN to learn entity representations that con-
tain contextual knowledge from passages as well as
fact relations from the KG. Experiments on three
open-domain QA benchmarks show that GRAPE

significantly outperforms state-of-the-art readers
by up to 2.2 exact match score. In the future, we

plan to enrich the structured information contained
in our graphs from other external resources.

6 Limitations
GRAPE only solves errors from fact-related exam-
ples. Besides, GRAPE explores fact relations from
Wikidata, and hence we might omit fact relations
from other sources such as Freebase.

Acknowledgement

We appreciate Neil Shah and Yozen Liu from Snap
Inc. and Zhihan Zhang from University of Notre
Dame for valuable discussions and suggestions.
This work is partially supported by the NSF un-
der grants IIS-2209814, IIS-2203262, IIS-2214376,
IIS-2217239, OAC-2218762, CNS-2203261, CNS-
2122631, CMMI-2146076, and the NIJ 2018-75-
CX-0032. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of any funding agencies.

References
Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,

Richard Socher, and Caiming Xiong. 2019. Learn-
ing to retrieve reasoning paths over wikipedia
graph for question answering. arXiv preprint
arXiv:1911.10470.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Procs. of EMNLP.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Procs. of NeurIPS.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In Procs. of ACL.

Danqi Chen and Wen-tau Yih. 2020. Open-domain
question answering. In ACL 2020: tutorial ab-
stracts.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Procs. of NAACL.

Yujie Fan, Mingxuan Ju, Chuxu Zhang, and Yanfang
Ye. 2022. Heterogeneous temporal graph neural net-
work. In Procs of SDM.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs.
Procs. of NeurIPS.

Ziniu Hu, Yichong Xu, Wenhao Yu, Shuohang Wang,
Ziyi Yang, Chenguang Zhu, Kai-Wei Chang, and
Yizhou Sun. 2022. Empowering language models
with knowledge graph reasoning for open-domain
question answering. In Procs. of EMNLP.

Srinivasan Iyer, Sewon Min, Yashar Mehdad, and Wen-
tau Yih. 2021. Reconsider: Improved re-ranking
using span-focused cross-attention for open domain
question answering. In Procs. of NAACL-HLT.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Procs. of EACL.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Procs. of ACL.

Mingxuan Ju, Shifu Hou, Yujie Fan, Jianan Zhao, Yan-
fang Ye, and Liang Zhao. 2022. Adaptive kernel
graph neural network. In Procs of AAAI.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval
for open-domain question answering. In Procs. of
EMNLP.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Procs. of ICLR.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin,
Kenton Lee, et al. 2019. Natural questions: A bench-
mark for question answering research. TACL.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Procs. of
NeurIPS.

Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar
Mehdad, and Wen-tau Yih. 2020. Efficient one-pass
end-to-end entity linking for questions. In Procs. of
EMNLP.

Jiduan Liu, Jiahao Liu, Yang Yang, Jingang Wang,
Wei Wu, Dongyan Zhao, and Rui Yan. 2022. Gnn-
encoder: Learning a dual-encoder architecture via
graph neural networks for passage retrieval. arXiv
preprint arXiv:2204.08241.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong
Shen, Jianfeng Gao, Jiawei Han, and Weizhu Chen.
2021. Reader-guided passage reranking for open-
domain question answering. In Findings of ACL-
IJCNLP.

Sewon Min, Danqi Chen, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Knowledge guided text re-
trieval and reading for open domain question answer-
ing. arXiv preprint arXiv:1911.03868.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin,
Stan Peshterliev, Dmytro Okhonko, Michael
Schlichtkrull, Sonal Gupta, Yashar Mehdad, and
Scott Yih. 2022. Unik-qa: Unified representa-
tions of structured and unstructured knowledge
for open-domain question answering. Procs. of
NAACL-HLT.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2021. Rocketqa: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering. In Procs. of NAACL.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. In Procs. of
EMNLP.

Devendra Sachan, Mostofa Patwary, Mohammad
Shoeybi, Neel Kant, Wei Ping, William L Hamilton,
and Bryan Catanzaro. 2021. End-to-end training of
neural retrievers for open-domain question answer-
ing. In Procs. of ACL-IJCNLP.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In Procs. of ICLR.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. In NAACL 2019 (demo).

Donghan Yu, Chenguang Zhu, Yuwei Fang, Wenhao
Yu, Shuohang Wang, Yichong Xu, Xiang Ren, Yim-
ing Yang, and Michael Zeng. 2021. Kg-fid: In-
fusing knowledge graph in fusion-in-decoder for
open-domain question answering. arXiv preprint
arXiv:2110.04330.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu,
Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. 2022a. Gen-
erate rather than retrieve: Large language mod-
els are strong context generators. arXiv preprint
arXiv:2209.10063.

Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu,
Qingyun Wang, Heng Ji, and Meng Jiang. 2022b.
A survey of knowledge-enhanced text generation.
ACM Computing Surveys (CSUR).

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram
Swami, and Nitesh V Chawla. 2019. Heterogeneous
graph neural network. In Procs. of KDD.

Mantong Zhou, Zhouxing Shi, Minlie Huang, and
Xiaoyan Zhu. 2020. Knowledge-aided open-
domain question answering. arXiv preprint
arXiv:2006.05244.

Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming
Zheng, Soujanya Poria, and Tat-Seng Chua. 2021.
Retrieving and reading: A comprehensive survey on
open-domain question answering. arXiv preprint
arXiv:2101.00774.

A Supplementary Appendix

A.1 Software and Hardware Environment
The software that GRAPE uses includes Hugging-
face Transformers 4.18.0 , Deep Graph Library
(DGL) 0.8.2 and PyTorch 1.11.0 . And all our ex-
periments are conducted on servers with 8 Tesla
V100 32GB GPUs, with the RAM occupation less
than 50GB. On average, updating GRAPE’s param-
eters costs 72 GPU hours for 10K training steps at
the base configuration and 170 GPU hours at the
large configuration, including intermediate valida-
tions, under the settings reported in Table 5.

A.2 Hyper-parameter Sensitivity
In GRAPE, hyper-parameters related to our relation-
aware GNN are the number of retrieved passages
k, the number of GNN layers N , the number of
GNN head M , and encoder layer index L, where
Enctop and Encbot are partitioned). We explore
k = 100, N = 2, L = 3 and M = 8 as the de-
fault setup. The hidden dimension of the GNN in
GRAPE are set to the dimension of its language
model. N = 2 and M = 8 are the standard val-
ues for most GNNs with attention mechanism, able
to capture 2-hop neighbor information while be-
ing stable (Veličković et al., 2018); and we simply
follow the same principle. For the encoder layer
index L, we search the optimal value in the range

of {3, 4, 6, 8, 9}. According to our experiment, we
observe that different selection of L doesn’t have
much impact on the performance, indicating that
the infusion of structured knowledge doesn’t rely
much on the contextualization of entity embedding.
However, we do observe a faster convergence rate
for lower L values. So for faster convergence, we
set L to 3. Other hyper-parameter selections re-
lated to training with best performance across all
datasets are shown in Table 5.

A.3 Dataset and Graph Statistics
We explore the same training/dev/testing split as
used by FiD and RAG (Izacard and Grave, 2021;
Lewis et al., 2020). We further analyze the geome-
try of our constructed graphs for each pair of ques-
tion and its corresponding retrieved passage, from
the perspective of the number of available graphs,
average node count and node degree, shown in Ta-
ble 6. We notice that the number of constructed
graphs per question is proportional to the percent-
age of questions favorable from factual KG triplets,
and further proportional to the performance gain
introduced by GRAPE. The statistics of our graphs
align with the source of explored datasets: Trivi-
aQA and WebQ are more entity-focused compared
with NQ. Besides the number of graphs per ques-
tion, we do not observe other difference in graphs
among these three datasets.

Methods
GRAPE (base) GRAPE (large)

NQ TriviaQA WebQ NQ TriviaQA WebQ

Computing resources 8x32GB Nvidia Tesla V100 8x32GB Nvidia Tesla V100
Peak memory cost Around 30.08GB (94%) Around 26.56GB (83%)
Peak learning rate 1e-4 6e-5 1e-4 3e-5 3e-5 6e-5
learning optimizer AdamW with 2,000 warmup AdamW with 2,000 warmup
Batch size (per device) 3 3 3 1 1 1
Total training steps 50K 30K 20K 50K 30K 20K
Best dev iterations 19,500 16,500 20,000 45,000 30,000 27,500
Best dev performance 48.17 65.67 51.00 50.73 69.46 57.00

Table 5: Best training hyper-parameters for results reported in Table 2.

Dataset Split # Graphs per Q # Q Entity Node # P Entity Node # Nodes per Graph

NQ
Train 29.5 ± 25.9 1.2 ± 0.4 2.7 ± 2.8 3.9 ± 3.0
Dev 29.0 ± 25.8 1.2 ± 0.4 2.7 ±2.8 3.8 ± 2.9
Test 28.4 ± 26.0 1.2 ± 0.5 2.7 ± 2.9 3.9 ±3.0

TriviaQA
Train 34.8 ± 28.3 1.4 ± 0.7 2.7 ± 2.8 4.1 ± 3.1
Dev 34.6 ± 28.7 1.3 ± 0.7 2.8 ± 2.8 4.2 ± 3.0
Test 34.0 ± 28.3 1.4 ± 0.7 2.7 ± 2.8 4.2 ± 3.1

WebQ
Train 42.2 ± 27.8 1.1 ±0.3 2.8 ± 2.7 3.9 ± 2.8
Dev 43.9 ± 27.9 1.1 ±0.4 2.9 ± 2.9 4.0 ± 3.0
Test 41.2 ± 26.9 1.1 ±0.3 2.7 ± 2.7 3.8 ± 2.8

Table 6: Statistics of our constructed graphs for all datasets. Mean and standard deviation are calculated for each
attribute. 100 passages are retrieved for each questions.

