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Abstract

Are the embeddings of a graph’s degenerate core stable?

What happens to the embeddings of nodes in the degener-

ate core as we systematically remove periphery nodes (by

repeatedly peeling o↵ k-cores)? We discover three patterns

w.r.t. instability in degenerate-core embeddings across a va-

riety of popular graph embedding algorithms and datasets.

We correlate instability with an increase in edge density,

and then theoretically show that in the case of Erdös-Rényi

graphs embedded with Laplacian Eigenmaps, the best and

worst possible embeddings become less distinguishable as

density increases. Furthermore, we present the STABLE algo-

rithm, which takes an existing graph embedding algorithm

and makes it stable. We show the e↵ectiveness of STABLE in

terms of making the degenerate-core embedding stable and

still producing state-of-the-art link prediction performance.

1 Introduction

Previous work has presented varied evidence for the ef-
fectiveness of graph (a.k.a. node) embedding algorithms.
For instance, while some suggest that graph embeddings
improve performance on link prediction and node classi-
fication, others have shown that basic heuristics can out-
perform graph embeddings in community detection [25].
Other work has shown that the low dimensionality of
embeddings prevents them from capturing the triangle
structure of real-world networks [23]. In this work, we
examine the stability of graph embeddings as a means
for better understanding the information they capture
and their utility in di↵erent contexts.

We measure the stability of the graph’s degenerate
core (i.e., its k-core with maximum k) as outer k-
shells (i.e., the “periphery”) are iteratively shaved o↵.
The k-core of an undirected graph G is the maximal
subgraph of G in which every node is adjacent to at
least k nodes. A common approach to understanding
stability is to measure changes to algorithmic output
due to input perturbations. K-core analysis gives
us a principled mechanism for changing graphs. In
analyzing the embedded k-cores, we ask whether the
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embeddings capture the degenerate core’s structure and
if/how its embedding changes as each shell is removed.
For example, previous work showed that degenerate
cores are generally not cliques but contain community
structure [24]. We study whether such patterns are
preserved in the embeddings of the degenerate cores as
k-shells are removed.

It is important to evaluate the stability
of embeddings of nodes in the degenerate-core
(a.k.a. “degenerate-core embeddings”) because dense
subgraphs are the “heart” of the graph. Nodes in
the degenerate core are often the most influential
spreaders. In marketing applications, the removal of a
dense core node can trigger a cascade of node removals
[15, 13]. Yet, as important as the core nodes are,
previous studies on online activism have shown that
core nodes are also dependent on periphery nodes to
amplify messages originating from the core nodes [3].
In this study, we assess the importance of the periphery
nodes in the stability of the core node embeddings –
specifically, the nodes in the degenerate core.

As we present in this work, the embeddings of
nodes in the degenerate core are not stable (as in they
do not persist as the periphery is removed). Thus,
graph embeddings are relative and not absolute. These
possible perturbations are a concern because real-world
networks are noisy [18, 29] and dynamic [12]. As such,
unstable embeddings should push us to place less faith
in any individual set of graph embeddings. Instead, we
must better specify the noise in the network to qualify
the quality of graph embeddings.

Our main contributions are as follows:

1. Across multiple categories of graphs and embed-
ding algorithms, we discover three patterns of insta-
bility in the embeddings of nodes in the degenerate
core. In the process, we introduce a method called
SHARE for measuring the stability of degenerate-
core embeddings.

2. We show that the instability in degenerate-core em-
beddings is correlated with increases in graph edge
density when the periphery is removed. Subse-
quently, we theoretically analyze the specific case
of embedding Erdös-Rényi graphs with Laplacian
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Eigenmaps and show that the performance gap be-
tween the best and worst embeddings narrows as
the graph density increases.

3. We present an algorithm STABLE
1 for generating

core-stable graph embeddings. Our algorithm is
flexible enough to augment any existing graph em-
bedding algorithm that minimizes a di↵erentiable
loss function. We show that when instantiated with
Laplacian Eigenmaps [4] and LINE [26], our algo-
rithm yields embeddings that preserve downstream
utility while increasing stability.

2 Defining and Motivating Embedding

Instability

We analyze the stability of graph embedding algorithms
by tracking the embedding of the degenerate core (the
k-core with maximal k), as we progressively shave k-
shells.2 After each shell is removed, we re-embed the
remaining subgraph; we name this method SHave-And-
Re-Embed, or “SHARE”. Figure 1 illustrates the ap-
plication of SHARE on the Zachary Karate Club graph
[30]. In the figure, the degenerate core (k = 4) is high-
lighted in blue in the top row, and the bottom row plots
the Node2Vec embedding for the remaining subgraph,
where the corresponding degenerate-core embeddings
are also plotted in blue. For the Karate Club graph,
the relative proximities of the core embeddings do not
change until the degenerate core is embedded in isola-
tion, which we call the isolated embeddings.

We define stability as the property of being resilient
to perturbation, a definition of stability that is common
in the complex networks literature [28]. This definition
contrasts stability with robustness, which is an insensi-
tivity to microscopic changes across di↵erent settings or
environments. In the case of core embeddings, we define
stability as the resilience of the proximities of degener-
ate core embeddings when the periphery is perturbed.

To quantify the stability of degenerate-core em-
beddings, we use SHARE to measure the evolution of
the distribution of pairwise distances in the embedded
space, which we call the degenerate-core pairwise dis-
tribution (DCPD). Specifically, SHARE begins with the
entire graph (k = 0), embeds the nodes, and calculates
the distribution of pairwise distances among the em-
beddings for the degenerate-core nodes. Next, SHARE

takes the k = 1 core, re-embeds the nodes in the sub-
graph, and re-calculates the pairwise distribution for the
degenerate-core nodes using the updated embeddings.
If the embeddings are stable, the pairwise distributions
should not vary as the k-shells are removed, as a change

1
Our code is available at https://github.com/dliu18/stable

2
Our analysis pertains to undirected graphs without self-loops.

Figure 1: To measure the stability of degenerate-core
embeddings, we use a method that we call SHave-
And-Re-Embed, or “SHARE”. In this figure, we apply
SHARE to the Zachary Karate Club graph [30]. At
each iteration, we shave o↵ the outermost k-shell (top
row) and re-embed the remaining subgraph (bottom
row). We then analyze the stability of the degenerate-
core embeddings. Removed nodes are shown in grey,
remaining subgraph nodes in red, and degenerate-core
nodes in blue. The Node2Vec embedding 2-D projection
plots all use the same scale. The embeddings of the
degenerate core vary widely as the periphery is removed.

in the distribution would suggest perturbations to the
geometric relationships among core embeddings. The
advantage of using the pairwise distribution is that it
captures the relative geometric relationships among the
embeddings as opposed to the absolute positions in the
embedding space. For instance, in Figure 1, the embed-
dings invert after shaving the k = 1 shell, nevertheless,
the relative distances among embeddings are largely un-
changed. An alternative measure of stability would be
the Frobenius norm of the di↵erence in weighted adja-
cency matrices [8]; however, we found that the pairwise
distribution provides a more granular measure of stabil-
ity as opposed to a single norm value. After calculat-
ing the degenerate-core pairwise distribution at each k,
SHARE measures the distance between the distributions
with the Earth Mover’s Distance (EMD).

In Equation 2.1, we define instability (�k) at core k
as the change in the DCPD after removing the previous
k-shell, where Dk is the degenerate-core pairwise distri-
bution for the k-core. Table 1 summarizes our notation.

(2.1) Instability �k = EMD(Dk, Dk�1)

2.1 Graph Embedding Algorithms and

Datasets We ran the proposed stability analysis using
a combination of graph embedding algorithms—namely,
HOPE [20], Laplacian Eigenmaps [4], Node2Vec [9],
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Symbol Meaning
n,m number of vertices, edges
kmax degeneracy of a graph
d embedding dimension
Dk the degenerate-core pairwise distribution

(DCPD) for k-core k. See Sec. 2
�k instability at the kth core. See Eqn. 2.1.
wij weight of edge {i, j}
WS adjacency matrix for subgraph induced by

a set of nodes S
D set of nodes in the degenerate core
uuui d-dimensional embedding for node i
YYY n⇥ d matrix where row i is uuuT

i

Lb,Ls base and stability loss functions
↵,� regularization hyperparameters
nb number of training batches
⌘ learning rate

Table 1: Notations used in this paper.

SDNE [27], Hyperbolic GCN (HGCN) [6], and PCA
as a baseline. We picked these graph embedding
algorithms because they span the taxonomy provided
in Chami et al. [5]. To find instability patterns, we
experimented on a variety of graph datasets (listed
in Table 2). The datasets are primarily from SNAP
[14], with the exception of Wikipedia [16], Autonomous
Systems (AS) [17], and the synthetic graphs, which
were generated to be of similar size as the real-world
graphs.

2.2 Perturbations and Downstream Perfor-

mance To motivate the study of stability and graph
embeddings we examine the e↵ect of perturbations on
downstream performance. Specifically, we conduct a
link prediction evaluation where for a pair of nodes, the
prediction score is the cosine similarity between the cor-
responding embeddings, and the ground-truth label is 1
if an edge exists and 0 otherwise. Figure 2 shows the link
prediction AUC-ROC for each subsequent core of the
Facebook network. When Laplacian Eigenmap embed-
dings are generated with the entire network of n = 4039
nodes, the embeddings achieve a link-prediction AUC-
ROC of over 0.95. The performance remains strong un-
til k = 71 when the AUC suddenly drops down to below
0.75. As we will show in Section 3.2.1, few characteris-
tics distinguish the k = 70 and k = 71 cores. After the
drop, performance recovers likely because the size of the
cores is diminishing while the embedding dimension re-
mains constant. Nonetheless, the performance drop at
k = 71 motivates the need to understand the instability
of graph embeddings.

Graph n m kmax %D GD D
Wikipedia 4.8K 185K 49 3.1 0.526
Facebook 4.0K 88K 115 3.9 0.898
PPI 3.9K 77K 29 2.8 0.404
ca-HepTh 9.9K 26K 31 0.3 1.0
LastFM 7.6K 28K 20 0.6 0.614
AS 23K 48K 25 0.3 0.545
ER (p = .002) 5K 25K 7 67 0.002
ER (p = .004) 5K 50K 14 87 0.004
BA (m = 5) 5K 25K 5 100 0.002
BA (m = 10) 5K 50K 10 100 0.004
BTER (PA) 5K 25K 1 1.5 0.234
BTER (Arb.) 4.8K 35K 51 3.3 0.445

Table 2: Graph datasets used in our study. ER, BA,
and BTER are short for Erdös-Rényi [7], Barabási-
Albert [2], and Block Two-Level Erdös-Rényi [22] ran-
dom graphs, respectively. PA is for a degree distribu-
tion that exhibits preferential attachment. Arb. is for
an arbitrary degree distribution. A description of the
synthetic graphs is in Appendix A.1. %D is |D|/|G|

and GD D is the degenerate-core edge density.

3 Unstable Degenerate-Core Embeddings

We provide our results analyzing the stability of
degenerate-core embeddings in three parts. First,
we show that as k-shells are removed, the evolution
of degenerate-core embeddings follows three patterns
across various graph types and embedding algorithms.
Second, we show that instability is correlated with in-
creases in density. Third, we present a theorem show-
ing that for Laplacian-Eigenmap embeddings of Erdös-
Rényi graphs, the performance gap between the best
and worst embeddings narrows with increased density.

Figure 2: The link prediction performance for the
Facebook network is sensitive to the removal of outer k-
shells; notably the AUC-ROC drops by approximately
0.15 at k = 71. Performance rebounds after the dip
likely because the number of nodes is decreasing while
the embedding dimension (d = 10) remains constant.
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Figure 3: A) When we embed the LastFM graph with
HOPE [20], we see that the degenerate-core pairwise
distribution shifts abruptly between k = 9 and k = 13.
This holds true for the various embedding dimensions
that we tried. For brevity, we only show d = 10. B) We
see that the pattern of abrupt shift generalizes across
embedding algorithms for the LastFM graph. The y-
axis is the instability as defined in Eq. 2.1 divided by
the maximum instability value across all k. Across all
algorithms we see high instability for k 2 {11, 12, 13}.

3.1 Patterns in Stability of Degenerate-Core

Structural Representation After running SHARE

(our degenerate core stability method described in Sec-
tion 2) on the 12 graphs and 6 embedding algorithms
(described in Section 2.1), we observed the following
three patterns.

Pattern 1: For many graph data, embed-

ding algorithm combinations, the distribution of

pairwise distances among degenerate core nodes

shifts after removing specific k-shells, but is sta-

ble otherwise.

We observe that not only does the pairwise distribu-
tion change as k-shells are removed but the change often
occurs at abrupt points. In Figure 3A, we show the
degenerate-core pairwise distribution for the LastFM
graph when embedded with HOPE. For readability, we
plot the distribution at intervals of k. The distinguish-
ing feature is that the distributions for k = 1 and
k = 9 are quite similar (left-skewed). However, the
distribution for k = 13 di↵ers dramatically; then for
k > 13, the distribution remains quite similar. To ver-
ify whether this pattern persists across graph embed-
ding algorithms, Figure 3B shows the normalized EMD
for each k-core across all algorithms tested, where we
normalize by dividing by the largest EMD value per al-
gorithm. We can see that across algorithms there is
large instability in k 2 {11, 12, 13}.

Pattern 2: The degenerate-core embeddings for

the ER and BA graphs are stable.

In contrast to the real-world graphs, we found that
the embeddings for the ER and BA graphs are stable.

(a) Erdös-Rényi (b) Barabási-Albert

Figure 4: For Erdös-Rényi and Barabási-Albert graphs,
the degenerate core embeddings were stable as the
k-shells were removed iteratively. The degenerate-
core pairwise distributions above are nearly identical
regardless of the subgraph being embedded, and the
pattern holds for all six embedding algorithms. This
stability is likely due to the degenerate core constituting
a large proportion of the entire graph.

Figure 4 shows the degenerate-core pairwise distribu-
tions for the Erdös-Rényi and Barabási-Albert graphs.
The distributions shown were generated with HOPE,
however, the pattern holds for Node2Vec and Lapla-
cian Eigenmaps as well. The stability for these random
graphs is likely due to the fact that the degenerate core
alone constitutes a large proportion of the entire graph
as shown in Table 2, given the parameters that we se-
lected. For this reason, removing the outer k-shells has
less of an impact on the degenerate core.

Pattern 3: As k-shells are removed, the

degenerate-core pairwise distribution becomes

smoother and more unimodal.

We observe that not only does the degenerate-core
pairwise distribution shift as k-shells are removed, but
the distribution also loses modality. In Figure 5A, we
analyze the HOPE embeddings for the Wikipedia graph.
For larger k, the degenerate-core pairwise distribution
is bimodal. When k = 1, the distribution has a small
peak around the distance of 0.6. For k > 40, the
distribution is nearly unimodal. We quantify this loss
of modality with Hartigan’s dip statistic [11], a value
in [0, 1] that measures the deviation from unimodality.
In Figure 5, we see that across embedding algorithms
for the Wikipedia graph, as k-shells are shaved, the dip
statistic decreases in aggregate.

3.2 Significance of the Periphery In this section,
we examine the causes of the patterns identified in
the previous section. Using the Facebook and LastFM
graphs as case studies, we see that embedding instability
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Figure 5: A) For the Wikipedia graph, as k-shells are re-
moved, the degenerate-core pairwise distribution trans-
forms from being bimodal to unimodal. We conjecture
that the loss in modality is due to the loss in commu-
nity structure. B) We quantify the loss of modality with
Hartigan’s dip statistic [11], where a value close to zero
suggests unimodality. Aggregating across embedding al-
gorithms, the statistic decreases as k-shells are shaved.

is correlated with subgraph edge density. We then
generalize this result across all graphs by regressing
instability on changes in subgraph features. Together,
these findings show that the stability patterns found are
not simply due to large numbers of nodes being removed
from the graph but rather structural changes.

3.2.1 Case Studies: Facebook and LastFM Fig-
ure 6 shows the k-core embeddings before and after
the point of maximum instability (the k with maximum
�k). For both Facebook and LastFM, before the max-
imum instability point, the degenerate core, colored in
red, is separate from the periphery. In the case of Face-
book, the 70-core exhibits core-periphery structure in
which the degenerate core is the dense center. How-
ever, after one further k-shell removal, the degenerate-
core embeddings become interspersed with the remain-
ing subgraph. Figure 6 shows the results when embed-
ding with Laplacian Eigenmaps for Facebook and with
HOPE for LastFM. We observed that this pattern gen-
eralizes across various embedding dimensions and algo-
rithms. The right-hand side of Figure 6 shows the sub-
graph (edge) density, size, and average clustering coe�-
cient at each k-core. In particular, the point of greatest
increase in edge density is denoted by the dashed red
line. The figure shows that the point of greatest in-
stability, shown on the left, corresponds more with an
increase in density than a decrease in subgraph size.

3.2.2 Regression Analysis We model the relation-
ship between changes in k-core subgraph features and
the corresponding change in the degenerate-core pair-
wise distribution. The subgraph features we measure
are the ratio between the number of nodes in the sub-

Figure 6: The point of maximum instability of embed-
dings for both the Facebook and LastFM graphs is cor-
related with increases in the subgraph density. The left-
side scatter plots show the two-dimensional projection
of the subgraph embeddings before and after the max-
imum instability point. In both plots, the degenerate
core is colored red. The plots on the right-hand side
track subgraph features with each k-shell removal. The
point of highest edge density increase (dashed line) is
also the maximum instability point.

graph and the number of nodes in G (“size”), edge
density, average clustering coe�cient, and transitivity,
which are common features for characterizing subgraphs
[1]. These features are inputs into the regression model
shown in Equation 3.2, in which we correlate the change
in the subgraph features with instability.

�k = �0 + �1�size

+ �2 �edge density

+ �3 �clustering coe�cient

+ �4 �transitivity

(3.2)

The data for the regression model was generated by
examining consecutive k-cores. For the k and k�1 cores
of a given graph, we measure the change in the afore-
mentioned subgraph features as well as the instability,
yielding one training data point. We repeat this process
across all of the graphs to create a single dataset. Be-
cause the relationship between subgraph features and
stability can vary by the embedding algorithm or di-
mension, we ran a regression model for each embedding
algorithm and dimension combination.

Figure 7 shows the results of running the regression
in Equation 3.2. The coe�cients for edge density and
size are grouped by embedding algorithm. We show the
results for d = 10 for brevity. The error bars report
95% confidence intervals. Across all algorithms except
SDNE, edge density is positively and statistically sig-
nificantly correlated with instability. The negative co-
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(a) Edge Density (b) Size

Figure 7: The results of running the regression in Equa-
tion 3.2 show that increases in subgraph edge density
are correlated with degenerate-core embedding instabil-
ity. We ran a separate regression for every combina-
tion of embedding dimension and algorithm. The coef-
ficients for edge density (a) and subgraph size (b) are
shown above, where d = 10. For all algorithms except
SDNE, the corresponding edge-density coe�cient is pos-
itive and statistically significant. Reducing the graph
size is also correlated with an increase in instability;
however, for four of the six algorithms, the coe�cient
for size (�size 2 [�1, 0]) is smaller in magnitude than
the coe�cient for density (�edge density 2 [0, 1]). Error
bars are provided for statistical significance (p = 0.05).

e�cients for �size indicate that a reduction in subgraph
size is also correlated with an increase in instability;
however, for four of the six algorithms, the coe�cient
for �size is smaller in magnitude than the coe�cient for
�edge density, noting that both features are normalized.
The coe�cients for clustering coe�cient and transitivity
are predominantly statistically insignificant.

3.3 Theoretical Analysis of Erdös-Rényi

Graphs Motivated by the empirical correlation be-
tween edge density and embedding instability, we
theoretically analyze the quality of Laplacian Eigen-
map embeddings for Erdös-Rényi graphs. Erdös-Rényi
graphs are a natural model to consider because the edge
probability parameter p is also the graph’s expected
edge density. In Theorem 3.1, we show that the
performance gap between the best and worst Laplacian
Eigenmap embeddings narrows as the expected edge
density increases. The loss function for Laplacian
Eigenmaps yields a lower loss for embeddings in which
nodes close to each other in G are embedded closer to
each other, as measured by Euclidean distance. As p,
the expected edge density, increases, the range of loss
values narrows, which implies that for large p, even the
worst set of embeddings performs nearly as well as the
best set.

Theorem 3.1. Let G be an Erdös-Rényi graph with
n nodes and edge probability p, and let lG(X) be the

Laplacian Eigenmap loss for a set of embeddings X 2

Rn⇥d with embedding dimension d. Then, almost surely,
the gap between the best set of embeddings and the worst
set decreases as a function of p, where the ratio is lower-
bounded as:

minX lG(X)

maxX lG(X)
�

p
(n� 1)p� o(1)p
(n� 1)p+ o(1)

Proof. See Appendix A.3 for the proof.

4 STABLE: Algorithm for Stable Graph

Embeddings

We propose a graph embedding algorithm STABLE that
produces core-stable embeddings. STABLE augments
any existing graph embedding algorithm with a dif-
ferentiable objective function (the “base” objective) by
adding an instability regularization. It is important to
note that because STABLE optimizes an augmented ob-
jective function, the base loss for STABLE embeddings
will be at least the base loss for the original, non-stable
embeddings. Below, we outline our generic algorithm
STABLE and show two instantiations of STABLE by aug-
menting Laplacian Eigenmaps and LINE. We use the
notation introduced in Table 1.

4.1 Generic Algorithm

4.1.1 Objective function Our objective function
consists of two components: the base objective Lb and
an instability penalty Ls. STABLE minimizes Equation
4.3 where ↵ is a regularization hyperparameter.

(4.3) YYY ⇤ = argmin
YYY 2Rnxd

Lb (YYY ,W ) + ↵Ls (YYY ,W,D)

The instability penalty is high when the degenerate-core
embedding is di↵erent in the following two cases: (1)
the core is embedded in the context of the entire graph
and (2) the core is embedded in isolation. We define
ŶYY as the |D| x d matrix containing embeddings for the
degenerate core when the core is isolated:

(4.4) ŶYY D = argmin
YYY 2R|D|xd

Lb (YYY ,WD)

Now, stability can be defined as the preservation of
the first-order proximities between pairs of nodes in
the degenerate core, where the first-order proximity p
between embedding uuui and uuuj is:

(4.5) p (uuui,uuuj) =
1

1 + e�uuuT
i uuuj

We define the instability penalty as the sum of squares
over all di↵erences in first-order proximities between
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pairs of degenerate-core nodes, where û̂ûui is the embed-
ding of node i in ŶYY D:

(4.6) Ls =
X

i,j2D
|p (uuui,uuuj)� p (û̂ûui, û̂ûuj)|

2

To optimize STABLE’s objective function, we perform a
batched stochastic gradient descent where each batch is
a set of edges. For an edge {i, j} where i and j are both
in the degenerate core, the gradient for the instability
penalty, with constants omitted, is as follows, where
z = �

�
uuuT
i uuuj

�
:

(4.7)
dLs

duuui
= z [1� z]

⇥
z � �

�
bububuT
i bububuj

�⇤
uuuj

The expression for dLs/duuuj replaces the last term with
uuui. Further, the stability gradient is only used when
both i and j are in the degenerate core. For edges
outside of the degenerate core, the update rule only
utilizes the gradient for the base objective.

Algorithm 1 STABLE

Require: G,W, nb,↵, ⌘
Ensure: YYY ⇤

D  degenerate core(G)
bYYY D  base embed(GD,WD)
YYY  base embed(G,W )
G  degenerate clique(G,D)
i  0
while i < nb do

i  i+ 1
edges  sample edges(G)
for i, j in edges do

if W [i, j] > 0 then

YYY [i]  YYY [i]� ⌘ dLb
duuui

. See Sec. 4.2

YYY [j]  YYY [j]� ⌘ dLb
duuuj

end if

if i 2 D and j 2 D then

YYY [i]  YYY [i]� ⌘↵ dLs
duuui

. See Eqn. 4.7

YYY [j]  YYY [j]� ⌘↵ dLs
duuuj

end if

end for

end while

Algorithm 1 provides pseudocode for STABLE. We
begin by embedding the degenerate core in isolation
(bYYY D) as well as the entire input graph (Y ) to initial-
ize the embeddings. Because the instability penalty
Ls sums over all pairs of nodes in the degenerate
core, not just connected nodes, the degenerate clique

method augments the graph by adding an edge between
{i, j}8i, j 2 D. These edges are assigned weight zero
and when drawn, only the stability update rule is ap-
plied and the base update rule is omitted.

4.2 Instantiations

4.2.1 Stable LINE When instantiated with LINE
(first-proximity) [26], the base loss takes the form:

(4.8) Lb = �

X

i,j2E

wij log (p (uuui,uuuj))

As is common with LINE implementations, for compu-
tational e�ciency we utilize negative sampling such that
for a sampled edge i, j we minimize the following:

(4.9) � log (p (uuui,uuuj))� Ej0⇠Pn [log (p (�uuui,uuuj0))]

The gradient for each vertex uuui,uuuj ,uuuj0 is:

dLb

duuui
= �(1� �(uuuT

i uuuj))uj +
X

j0

�(uuuT
i uuuj0))uuuj0

dLb

duuuj
= �(1� �(uuuT

i uuuj))ui

dLb

duuuj0
= �(uuuT

i uuuj0))uuui

(4.10)

The complexity when instantiated with LINE is
O (ndb+m) where b is the number of negative samples
per edge; d is the number of embedding dimensions; and
n, m are the number of nodes and edges, respectively.
The first term accounts for computing b gradients of
size d for n samples and the second term accounts for
the overhead needed to set up the edge sampling data
structures. Of note, this is the same complexity as LINE
itself, so STABLE does not add to the runtime complex-
ity.

4.2.2 Stable Laplacian Eigenmaps Laplacian
Eigenmaps [4] optimizes the following objective
function f [4]:

(4.11) f (W,YYY ) =
X

i,j

wijk~ui � ~ujk
2

However, the optimization is performed over the feasible
set Y TDY = I, where D is the diagonal matrix such
that Dii is the degree of node i. STABLE initializes
with Laplacian Eigenmaps embeddings. For this reason,
instead of performing a constrained optimization, we
penalize embeddings that deviate from the initial values;
adding a deviation penalty proportional to the norm
of the di↵erence from the initial embeddings Y0. To
balance the orders of magnitude for these two losses, we
introduce a hyperparameter �. Thus, the base objective
when instantiated with Laplacian Eigenmaps is:

(4.12) Lb = f (W,YYY ) + � kY � Y0k
2
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Where the gradient is:

dLb

duuui
= wij (uuui � uuuj) + � (uuui � uuui0)(4.13)

The runtime complexity for the Laplacian Eigmenmap
instantiation is O (nd+m) because negative sampling
is not used.

5 Experiments

Our experiments show that STABLE produces embed-
dings that are both core-stable and accurate for link
prediction, using the methodology described in Section
2.2. We have included the details of our experimental
setup in Appendix A.5. Table 3 lists the results from
our link prediction experiments. For each graph and al-
gorithm configuration, we ran five trials using random
edge sets and report the mean and confidence interval.
STABLE’s graph embeddings preserve and at times im-
prove upon the link-prediction accuracy of the original
embeddings. For Laplacian Eigenmaps, relative to the
base AUCs, the STABLE AUCs are lower by 0.031 on
average across the six real-world graphs. For the Au-
tonomous Systems and Wikipedia graphs, STABLE yields
marginally higher AUCs. With LINE, STABLE preserves
performance even more closely as the STABLE AUCs are
lower by only 0.003 on average. In Appendix A.6 we ver-
ify that preserving performance occurs in tandem with
decreasing the stability penalty Ls.

6 Related Work

We review related work on k-core analysis and the lim-
itations of graph embeddings. k-core Analysis. k-
core structure has been important for understanding
spreading processes on graphs, in particular identify-
ing the most-influential spreaders [19]. Common pat-
terns related to k-core structure have been identified
such as correlations between a node’s degree and core-
ness (largest k such that the node is in the k-core) as
well as community structure in dense cores [24]. Re-
cent work has also broadened the study of k-cores to
consider the addition of “anchor nodes” that prevent
large cascades when individual core nodes are removed
[13]. Finally, it has been shown that not all degenerate
cores are equally important; the most salient degener-
ate cores, called “true cores”, are those that are well
interconnected with outer shells [15]. Limitations of

Graph Embeddings. Practitioners are tasked with
choosing from a large selection of algorithms [31] and
even once an algorithm has been chosen, hyperparame-
ters such as the embedding dimension can greatly af-
fect performance [10]. Further, in the case of com-
munity detection, expensive algorithms do not always
perform traditional algorithms [25]. Recent work has

also established more theoretical limits to graph embed-
dings, showing that at low dimensions it is impossible
for graph embeddings to capture the triangle richness of
real-world networks. Stability has also been identified
as an issue [21], however, this study defined stability in
a di↵erent sense: the consistency of embeddings when
the algorithm is re-run multiple times.

7 Conclusion

The degenerate core of a graph is seen as the most in-
fluential part of that graph. In this work, we exam-
ined the stability of embeddings for the nodes in the
degenerate core. We defined stability as the property
of being resilient to perturbations. We defined pertur-
bations as removing k-shells iteratively from the graph.
We observed three patterns of instability across a vari-
ety of popular graph embedding algorithms and numer-
ous real-world and synthetic data sets. We also corre-
lated abrupt points of instability with increases in edge
density. Subsequently, we introduced STABLE: an algo-
rithm that takes an existing graph embedding algorithm
and adds a stability objective. We showed how STABLE

works on two popular graph embedding algorithms and
reported experiments that showed the value of STABLE.
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[3] P. Barberá, N. Wang, R. Bonneau, J. T. Jost,
J. Nagler, J. Tucker, and S. González-Bailón,
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K. Murphy, Machine learning on graphs: A model and
comprehensive taxonomy, 2021, https://arxiv.org/
abs/2005.03675v2.

[6] I. Chami, Z. Ying, C. Ré, and J. Leskovec, Hyper-
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