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Abstract

Sometimes agents care not only about the outcomes of collective decisions but also
about how decisions are made. Both the outcome and the procedure affect whether
agents see a decision as legitimate or acceptable. We focus on incorporating agents’
preferences over decision-making processes into the process itself. Taking whole de-
cisions, including decision rules and outcomes, to be the object of agent preferences
rather than only decision outcomes, we (1) identify natural, plausible preference
structures and key properties, (2) develop general mechanisms for aggregating these
preferences to maximize the acceptability of decisions, and (3) analyze the perfor-
mance of our acceptance-maximizing mechanisms. We apply our general approach
to the setting of dichotomous choice, and compare the worst-case rates of acceptance
achievable among populations of agents of different types. We include the special
case of rule selection, or amendment, and show that amendment procedures proposed
by Abramowitz et al. [2] achieve universal acceptance with certain agent types.

1 Introduction

In the literature on collective decision-making, a mechanism is “a specification of how eco-
nomic decisions are determined as a function of the information that is known by the individ-
uals in the economy” [20]. Social Choice studies the aggregation of preference information
in particular. Kenneth Arrow pioneered the axiomatic approach to Social Choice, studying
the properties of choice rules in terms of how they map various profiles of agent preferences
to singular outcomes [4]. Our motivating observation is that the agents involved in collec-
tive decisions might care about the same properties that any mechanism designer or Social
Choice theorist might. After all, if agents didn’t generally care about such things, there
would be little value in studying Social Choice.

Recently, Procaccia [24] proposed that “the central role of axioms should be to help
explain the mechanism’s outcomes to participants.” The main reason given is that “expla-
nations make the solutions more appealing to users, and, therefore, make it more likely that
users will accept them.” Automated procedures have since been developed for providing
agents with axiomatic justifications for decisions which consist of an explanation and a set
of axioms that serve as a “normative basis” [8].

The generation of axiomatic explanations and justifications faces several issues. The
impossibility theorems endemic to Social Choice show that for some sets of axioms no rule
can satisfy all of them, and therefore trade-offs must be made. Conflict arises if the agents do
not all share a common normative basis of axioms from which acceptable justifications can
be generated. Rather than finding one justification that satisfies as many agents as possible,
we would like to provide as many agents as possible with a personalized justification they
accept, which may differ from those given to other agents. After all, part of what makes
collective decision making possible in practice is that different people can accept the same
decision for different reasons; otherwise contracts would not exist. Another problem is
that the explanations generated in this process may not be proper causal explanations [14].
This is because they may be based on erroneous counterfactuals about what would have
happened had the circumstances been different. Therefore, our approach must address how



counterfactuals are treated by the agents to ensure they are not being deceived.
Our starting point is that if we know what justifications each agent will accept we can

turn the problem on its head and compute decisions justifiable to the maximum number of
agents. We model agent preferences over decisions as consisting of (1) preferences over rules
and outcomes, and (2) treatment of counterfactuals regarding what would have happened
had the preference profile been different. We identify natural, intuitive preference structures
built on these properties and show how to aggregate such preferences to make acceptance-
maximizing decisions. Whether agents report their preferences in terms of rules or axioms
matters in practice, but for our limited purposes they are theoretically equivalent.

We introduce the term Social Mechanism Design to unify the literature that seeks to
incorporate agents’ views on decision-making into the decision-making process itself. Social
Mechanism Design recognizes that every choice made in the course of mechanism design is
fundamentally a social choice about which reasonable people may disagree.

Contributions Our primary contribution is the identification of several natural, plausible,
compact structures for agent preferences over combinations of rules and outcomes. For each
preference type we show how to compute acceptance maximizing decisions in the general
case and evaluate the worst-case acceptance rate for each type for different classes of reality-
aware decision problems. We apply our general framework to asymmetric dichotomous
choice problems, in which a proposal to be voted upon is put up against the status quo.
We then extend our analysis to the procedures for rule updates or amendments proposed
by Abramowitz et al. [2], where each amendment is an asymmetric dichotomous choice.

2 General Model

A set of agents N with |N | = n must make a collective decision. The decision consists
of selecting a single outcome y from some set of conceivable outcomes Ȳ. Each agent
i ∈ N provides some information vi, and these inputs collectively constitute a profile V =
(v1, . . . , vn). The decision will consist of applying a function, or rule, R to the profile to
yield an outcome: R(V ) = y. The set of all conceivable rules is denoted R̄. Rules are
resolute in that they return an outcome on every possible profile.1 We denote a decision
by the tuple (V,R, y) where R(V ) = y. If R(V ) 6= y, then (V,R, y) is not a decision. The
notation (V,R, y) is redundant since R and V imply a unique outcome R(V ), but the more
verbose notation simplifies our presentation.

There is a subset of outcomes Y ⊆ Ȳ that are said to be feasible in each instance.
Similarly, only a subset R ⊆ R̄ of rules are feasible. A decision (V,R, y) is feasible if
and only if its rule and outcome are each feasible; R ∈ R and y ∈ Y. The determinants
of feasibility will be peculiar to the problem instance. In all instances our agents must
collectively make a feasible decision, but we do not assume our agents necessarily know
which rules, outcomes, and decisions are feasible. Neither do we assume that they have full
knowledge of Ȳ or R̄.2

Preferences Over Decisions In our model, agents have preferences over decisions which
are not captured by the profile V . We assume that each agent has binary preferences over
decisions – they either accept or do not accept any decision. We denote the set of all
decisions, including infeasible decisions, by D. For i ∈ N , let Di ⊆ D be the set of all

1This can be achieved by defining them to have a default value for all profiles outside a certain set. An
example of a default would be to maintain the status quo.

2See Appendix A for additional notes on the features of our general model.



decisions that agent i would find acceptable. We refer to Di as the satisfying set of agent i
and let DN = (D1, . . . ,Dn) be the collection of agents’ satisfying sets.

Problem Instances An instance is characterized by a tuple I = (V,R,Y,DN ).3 We make
a single assumption that precludes indeterminacy: For every instance I = (V,R,Y,DN ),
∃R ∈ R such that R(V ) ∈ Y . That is, for all instances we consider, at least one feasible
decision exists.

Acceptance Maximization Given any problem instance with profile V , feasible rules
R, feasible outcomes Y, and collection of satisfying sets DN , how should we select a feasible
decision (V,R, y)? Without making any further assumptions about the agents, profile, rules,
outcomes, or satisfying sets, our answer is to try to select the feasible decision accepted by
the greatest number of agents. If there are multiple acceptance-maximizing decisions, one
can break ties arbitrarily (e.g., randomly). For any class of instances I, we would like
to specify a meta-rule or mechanism M that returns an acceptance-maximizing feasible
decision for all instances in that class.

Let FI ⊆ D be the set of all feasible decisions in instance I. For each instance I, the
acceptance-maximizing mechanism M essentially performs Approval Voting over the set
of all feasible decisions FI ⊆ D based on the satisfying sets in DN , producing a decision
M(I) ∈ FI .

M(I) = arg max
(V,R,y)∈FI

|{i ∈ N : (V,R, y) ∈ Di}|

We are primarily concerned with the best worst-case acceptance rate achievable by an
acceptance-maximizing mechanism M for a class of instances I.

αI := min
I∈I

|{i ∈ N : M(I) ∈ Di}|
n

2.1 Agent Types

Agent types are characterized by the structure of their satisfying sets. These structures
allow for (relatively) compact representation and correspond intuitively to the way we expect
agents to express preferences over decisions in many settings.

Absolutism We begin by looking at absolutist agents. For an absolutist agent, if we know
their satisfying set, we do not need to observe the profile to determine whether they accept
a decision ( , R, y).

Definition 1 (Absolutism). Agent i ∈ N is absolutist if for all decisions (V,R, y),
(V ′, R, y) ∈ D, we have (V,R, y) ∈ Di ⇒ (V ′, R, y) ∈ Di.

Consequentialists only care about outcomes. All consequentialists are necessarily abso-
lutist. If we know the satisfying set of a consequentialist agent, we can determine whether
they accept a decision ( , , y) without observing the profile or rule. The complement to
consequentialists, who only care about the outcome, are absolute proceduralists, who only
care about the rule. For an absolute proceduralist we can determine from their satisfying
set whether they accept a decision ( , R, ) without observing the profile or outcome.

Definition 2 (Consequentialism). Agent i is a consequentialist if there exists a set of
outcomes Yi such that for all (V,R, y) ∈ D, (V,R, y) ∈ Di if and only if y ∈ Yi.

3Our notation excludes R̄ and Ȳ because the only relevant elements of these sets will be those reflected
in R, Y, and DN .



Definition 3 (Absolute Proceduralism). Agent i is an absolute proceduralist if there exists
a set of rules Ri such that for all (V,R, y) ∈ D, (V,R, y) ∈ Di if and only if R ∈ Ri.

We also define two ways in which agents’ acceptance of a decision may depend on both
the rule and outcome: conjunctivism and disjunctivism.

Definition 4 (Absolute Disjunctivism). Agent i is an absolute disjunctivist if there exists
a set of rules Ri and set of outcomes Yi such that (V,R, y) ∈ Di if and only if R ∈ Ri or
y ∈ Yi

Definition 5 (Absolute Conjunctivism). Agent i is an absolute conjunctivist if there exists
a set of rules Ri and set of outcomes Yi such that (V,R, y) ∈ Di if and only if R ∈ Ri and
y ∈ Yi

Consequentialism and absolute proceduralism are both sub-types of absolute disjunc-
tivism in which Ri = ∅ or Yi = ∅, respectively. If two agents have the same sets Ri and/or
Yi for a given profile, but one is an absolute disjunctivist and the other is an absolute con-
junctivist, the disjunctivist is intuitively easier to satisfy; they will accept a greater number
of decisions. We neglect the unnatural case in which an agent’s acceptance of a decision
does not depend on the rule or outcome.

Implementation-Indifference In a decision (V,R, y) we will say that the rule R is actu-
ally implemented and that all other rules R′ such that R′(V ) = y are effectively implemented
by this decision because had R′ be used instead the outcome would have been the same.
Informally, we refer to an agent as implementation-indifferent if we can determine whether
they accept a decision (V, , y) without observing what rule was actually implemented.

Definition 6 (Implementation-Indifference). Agent i is implementation-indifferent (II) if
for all decisions (V,R, y), (V,R′, y) ∈ D, we have (V,R, y) ∈ Di ⇒ (V,R′, y) ∈ Di.

Consequentialists are always implementation-indifferent, so there would be no difference
between a consequentialist and an “II-Consequentialist.”

Definition 7 (II-Proceduralism). Agent i is an II-proceduralist if there exist a set of rules
Ri such that for all decisions (V,R, y) ∈ D, we have (V,R, y) ∈ Di if and only if ∃R′ ∈ Ri
such that R′(V ) = y.

Definition 8 (II-Conjunctivism). Agent i is an implementation-indifferent conjunctivist if
there exist a set of rules Ri and set of outcomes Yi such that for all decisions (V,R, y) ∈ D,
we have (V,R, y) ∈ Di if and only if y ∈ Yi and ∃R′ ∈ Ri such that R′(V ) = y.

Definition 9 (II-Disjunctivism). Agent i is an implementation-indifferent disjunctivist if
there exist a set of rules Ri and set of outcomes Yi such that for all decisions (V,R, y) ∈ D,
we have (V,R, y) ∈ Di if and only if y ∈ Yi or ∃R′ ∈ Ri such that R′(V ) = y.

All satisfying sets we examine can be represented by a tuple Di = 〈Ri, Yi,Ψi,Φi〉, where
Ψi is a binary variable that labels them as conjunctivist or disjunctivist, and Φi is a binary
variable that denotes whether they are implementation-indifferent or absolutist.

Example Satisfying Sets Suppose a group of friends are deciding where to go for dinner
between restaurants A, B, and C. They usually use Plurality voting - going to whichever
restaurant is preferred by the most people. Here, acceptance means willingness to attend,
and if they do not accept they will not join for dinner.

• Consequentialist: I will go to A or B, but not C.



• Proceduralist: I will only go if I get to choose the restaurant this time.

• Conjunctivist: We should use Plurality voting, but I will never go to restaurant B

• Disjunctivist: I will go wherever the most people want to go, but I am always happy
going to restaurant A regardless of how we vote.

• II-Proceduralist: I will go wherever the plurality wants to go

• II-Conjunctivist: I will go anywhere except for restaurant A, as long as it’s where
most people want to go.

• II-Disjunctivist: I will go anywhere except for restaurant A, unless everyone else wants
to go to A, then I’ll go too.

2.2 Acceptance Maximization

We now construct a general algorithm for maximizing acceptance with absolutist and
implementation-indifferent conjunctivist and disjunctivist agents. For brevity we assume
here that Ri and Yi are finite sets for all agents.

Mechanism 1: Acceptance Maximization for Absolute Disjunctivists

Input: (V,R,Y,DN )
for a ∈ Y do
Na ← {i ∈ N : a ∈ Yi}
Ra ← arg max

R∈R:R(V )=a

|{i ∈ N\Na : R ∈ Ri}|

end for
y = arg max

a∈Y:Ra∈R
|Na ∪ {i 6∈ Na : Ra ∈ Ri}|

return (V,Ry, y)

Theorem 1. Mechanism 1 maximizes acceptance for absolute disjunctivists.

Proof of Theorem 1. For each feasible outcome a ∈ Y, Mechanism 1 finds the set of agents
Na for whom a ∈ Yi and finds the feasible rule Ra that yields this outcome on the given
profile for which the maximum number of agents not in Na have Ra ∈ Ri. For each outcome
a it therefore maximizes the number of agents who are either in Na or have Ra ∈ Ri. The
rule and outcome Ry and y are then selected to be the ones that maximize the number of
agents who accept the decision based on one of those two reasons. Outcomes for which no
feasible rule is found to select them on the given profile are ignored as Ra does not exist.

Lemma 1. For any fixed profile V ∗, for all agent types Di = 〈Ri, Yi,Ψi,Φi〉, there exists
an absolute disjunctivist satisfying set D̃i that accepts the exact same set of decisions with
this profile: (V ∗, R, y) ∈ Di ⇔ (V ∗, R, y) ∈ D̃i.

Proof of Lemma 1. For II-disjunctivists, for every rule R in Ri we add the outcome R(V )
to their set Yi. We can then set Ri to the empty set. When they are treated as an absolute
disjunctivist the set of decisions they accept is the same because any outcome in Yi was
either in their original set Yi or would have been selected by some rule in their original Ri
on the given profile. For II-conjunctivists, we remove outcomes from Yi if no rule R ∈ Ri
selects that outcome on the given profile. We can then set Ri to the empty set. When they
are treated as an absolute disjunctivist the set of decisions they accept is the same because



Mechanism 2: Acceptance Maximization with All 7 Agent Types

Input: (V,R,Y,DN )
for i ∈ N do
Ỹi ← ∅
R̃i ← ∅
if i is an II-disjunctivist then
Ỹi ← Yi
for R ∈ Ri do
Ỹi ← Ỹi ∪R(V )

end for
else if i is II-conjunctivist then

for R ∈ Ri do
if R(V ) ∈ Yi then
Ỹi ← Ỹi ∪R(V )

end if
end for

else if i is an absolute conjunctivist then
for R ∈ Ri do

if R(V ) ∈ Yi then
R̃i ← R̃i ∪R

end if
end for

end if
Di ← 〈R̃i, Ỹi,Ψi,Φi〉

end for
return Mechanism 1(V,R,Y,DN )

the outcome is in the newly constructed set Yi if and only if it was in the original set Yi and
a rule in the original Ri selects it on the given profile. Lastly, for absolute conjunctivists,
we remove any rule R from Ri if it selects an outcome on the given profile R(V ) that is
not in Yi. We then set Yi to be the empty set. When they are treated as an absolute
disjunctivist the set of decisions they accept is the same because with Yi empty they only
accept a decision if the rule is in Ri, and the rule implemented is in the new set Ri if and
only if it was in their original set Ri and the outcome it selects on V was in their original
set Yi.

Theorem 2. Mechanism 2 maximizes acceptance with all agent types.

Proof of Theorem 2. Mechanism 2 takes the collection of satisfying sets, and for all agents
i ∈ N finds an absolute disjunctivist satisfying set that accepts the exact same set of
decisions on the given profile V , in accordance with the proof of Lemma 1. The satisfying sets
for all agents who are originally absolute disjunctivists remains the same. The mechanism
then calls Mechanism 1 on the new collection of satisfying sets, which maximize acceptance
among absolute disjunctivist agents.

Theorem 3. If all agents are implementation-indifferent, and for each agent, for every
profile, there exists at least one feasible decision they accept, then αI ≥ 1

|Y| .

Proof. When all agents are implementation-indifferent, we know whether they accept a
decision (V, , y) without observing the rule that was implemented. Since V is fixed, the
number of possible unique tuples (V, y) is |Y|. With n agents and |Y| feasible outcomes,
for at least one outcome there must be at least n

|Y| agents who will accept any decision



with that outcome by the pigeonhole principle. This is a fraction 1
|Y| of the total number of

agents.

We note that the type of an agent should properly be defined with respect to some class
of instances. We drop this dependence in our notation for brevity. Next we will examine
asymmetric dichotomous choice problems. Here we will make concrete assumptions about
how the agents’ satisfying sets are structured within this class and how their satisfying sets
may correspond to the profile.

3 Asymmetric Dichotomous Choice

Model For all instances of asymmetric dichotomous choice problems, the feasible outcomes
are Y = {r, p} where r is the status quo and p is a competing proposal. Each agent must
express a vote vi ∈ {r, p}, so the set of possible profiles is {r, p}n with n agents. We also
stipulate that the set of feasible rules R is the set of supermajority rules for all instances.
We define a supermajority rule, denoted Rδ where 1

2 ≤ δ < 1, as a rule that chooses p as the
winning outcome if and only if strictly greater than δn agents vote for it; otherwise selecting
r. For brevity, our definition of (reality-aware) supermajority rules includes majority rule.

Here, R
1
2 is the majority rule which breaks ties in favor of the status quo, and R1− 1

n is
unanimity rule. There are exactly |R| = bn+1

2 c distinct supermajority rules with n agents.
To simplify notation we refer interchangeably to a rule Rδ and its threshold δ. We now look
at acceptance in instances of asymmetric dichotomous choice problems with homogeneous
agents of each type. The proofs of each result in Table 1 follow from counting arguments
and can be found in Appendix B.1.

Agent Type Assumptions ∀i ∈ N αI

Any None 0
Absolute Conjunctivists vi ∈ Yi and |Ri ∩R| ≥ 1 0
Absolute Conjunctivists |Yi ∩ Y| ≥ 1 and ∃R ∈ Ri ∩R : R(V ) ∈ Yi ∩ Y 2/n
Absolute Disjunctivists |Ri ∩R| ≥ 1 2/n

Absolute Disjunctivists |Ri ∩R| ≥ k 1
n ·
⌈

nk

bn+1
2 c

⌉
Absolute Disjunctivists |Yi ∩ Y| ≥ 1 1/2

II-Conjunctivists |Yi ∩ Y| ≥ 1 and ∃R ∈ Ri : R(V ) ∈ Yi ∩ Y 1/2
II-Disjunctivists ∃R ∈ Ri : R(V ) ∈ Y 1/2
II-Disjunctivists |Yi ∩ Y| ≥ 1 1/2
II-Disjunctivists |Yi ∩ Y| = 1 and ∃R ∈ Ri : R(V ) ∈ Y\Yi 1

Table 1: Worst-case acceptance rates for asymmetric dichotomous choice problems when all
agents are of the same type, given additional assumptions about satisfying sets.

Below we show the acceptance maximization algorithms for homogeneous sets of conse-
quentialist, absolute disjunctivist, and II-disjunctivist agents for asymmetric dichotomous
choice problems, and refer the reader to the appendix for the remaining cases and proofs.
The mechanism that maximizes acceptance for the class of all asymmetric dichotomous
choice instances with only consequentialists is given by Mechanism 3. We can already see
that sometimes the outcome will go against the voter majority in V if this maximizes ac-
ceptance.



Mechanism 3: Acceptance Maximization for Asymmetric Dichotomous Choice with Conse-
quentialists

Input: (V,R,Y,DN )
Vr ← |{i ∈ N : vi = r}|
Vp ← |{i ∈ N : vi = p}|
Nr ← |{i ∈ N : r ∈ Yi}|
Np ← |{i ∈ N : p ∈ Yi}|
if Vp = |N | then

return (V,R1− 1
n , p)

else if Nr ≥ Np or Vr ≥ Vp then

return (V,R1− 1
n , r)

else
return (V,R

1
2 , p)

end if

Proposition 1. Mechanism 3 maximizes acceptance for all asymmetric dichotomous choice
instances with consequentialist agents.

Proof. If the status quo r receives at least as many votes as the proposal p, then no su-
permajority rule will select p as the outcome so the only feasible decisions are those that
select r, and the decision can be made according to any supermajority rule. If Nr ≥ Np, a
feasible decision that maintains the status quo as the outcome will satisfy at least as many
agents as a feasible decision that selects the proposal as the outcome. Unanimity rule will
always select the status quo as the outcome unless the agents unanimously voted for the
proposal. If Nr ≥ Np but the agents unanimously voted for the proposal, then no feasible
decision maintains the status quo. The outcome must be p, and the decision can be made
by any supermajority rule. Lastly, if the proposal p receives more votes than the status quo
and Np > Nr, we maximize acceptance with a feasible decision that has p as the outcome.

Majority rule selects p, so the decision (V,R
1
2 , p) is feasible and maximizes acceptance.

Consequentialist satisfying sets pay no attention to the rule, making the choice of rule in
Mechanism 3 entirely ad hoc. Since the outcome is determined by the mechanism M with
no regard for the rule R other than to ensure feasibility, the choice of rule feels superfluous.
With absolute disjunctivists, the choice of rule matters both for the outcome it selects and
for how many of the agents will accept any decision using that rule.

Absolute Disjunctivists Absolute disjunctivist satisfying sets generalize both the conse-
quentialist and absolute proceduralist satisfying sets. Therefore, αI cannot be greater than
the worst-case acceptance rate with only consequentialists or only absolute proceduralists,
but it also cannot be worse than the minimum of these two. With absolute disjunctivists
agents whose satisfying sets are non-empty (|Ri|+ |Yi| > 0), we have αI = 2

n .
Recall that agents may have infeasible decisions in their satisfying sets. For absolutists,

only the feasible rules in their sets Ri were relevant for maximizing acceptance, but this is
not the case for implementation-indifferent agents.

II-Disjunctivists To calculate an acceptance maximizing decision efficiently, we can take
advantage of the fact that if Rδ(V ) = p then Rδ

′
(V ) = p for all δ′ > δ and if Rδ(V ) = r

then Rδ
′
(V ) = r for all δ′ < δ. In Mechanism 5 we use max(Ri) to denote the δ of the rule

Rδ in the set Ri with the largest δ (i.e. the highest threshold to overturn the status quo),
and similarly min(Ri) for the smallest δ.



Mechanism 4: Acceptance Maximization for Asymmetric Dichotomous Choice with Absolute
Disjunctivists

Input: (V,R,Y,DN )

δr = |{i∈N :vi=p}|
|N|

Nr ← {i ∈ N : r ∈ Yi}
Np ← {i ∈ N : p ∈ Yi}
R∗r ← arg max

Rδ∈R:δ≥δr
|{i ∈ N\Nr : Rδ ∈ Ri}|

R∗p ← arg max
Rδ∈R:δ<δr

|{i ∈ N\Np : Rδ ∈ Ri}|

Nr ← Nr ∪ {i ∈ N : R∗r ∈ Ri}
Np ← Np ∪ {i ∈ N : R∗p ∈ Ri}
if |Nr| ≥ |Np| then

return (V,R∗r , r)
else

return (V,R∗p, p)
end if

Mechanism 5: Acceptance Maximization Among II-Disjunctivists for Asymmetric Dichoto-
mous Choices

Input: (V,R,Y,DN )

δr = |{i∈N :vi=p}|
|N|

δp = |{i∈N :vi=p}|−1
|N|

Nr ← {i ∈ N : r ∈ Yi or max(Ri) ≥ δr}
Np ← {i ∈ N : p ∈ Yi or min(Ri) ≤ δp}
if |Nr| ≥ |Np| then

return (V,Rδr , r)
else

return (V,Rδp , p)
end if

4 Supermajority Rule Selection (Amendment)

Model Let R be the set of supermajority rules, including majority, with n agents. To sim-
plify notation we refer interchangeably to a rule Rδ and its threshold δ. For each amendment
problem, there is a supermajority rule r ∈ R currently in use. The agents are to decide
whether or not to change the rule to be p ∈ R, so Y = {r, p}. Each agent casts a vote
vi ∈ {r, p} forming collective profile by Vrp. An amendment is a special case of an asym-
metric dichotomous choice where the potential outcomes are also rules which could be used
to decide on the amendment itself. Since the votes vi are rules, we assume a correspondence
between the profile and the satisfying sets of the agents. Each agent i ∈ N has a strict pref-
erence ordering �i over R. We denote the most preferred rule at the top of i’s ordering by
δi, and assume that agent preferences are single-peaked over the numerical order of R with
the peak at δi. In other words, for any two supermajority rules δ1, δ2 ∈ R, if δ1 < δ2 < δi
then δ2 �i δ1 and if δi < δ1 < δ2 then δ1 �i δ2. Between any two rules, agents naturally
vote for the one they prefer in Vrp. With any status quo r and proposed rule p, if r �i p
then we assume vi = r, and similarly, if p �i r then vi = p. Following [1], our focus is on
II-disjunctivists voting on amendments. We make two natural assumptions about how the
profile corresponds to their satisfying sets: for all i ∈ N , vi ∈ Yi and δi ∈ Ri. In other
words, an agent accepts the outcome of an amendment whenever their preferred outcome
wins and whenever their ideal rule would have selected the same outcome on the profile Vrp.



Universal Acceptance One would hope that if the decision made for choosing a rule
reaches universal acceptance then all future decisions using the chosen rule will be unan-
imously accepted on procedural grounds [13]. Since we have assumed our agents are II-
disjunctivists, we can use Mechanism 5 to compute an asymmetric binary decision that
maximizes acceptance. Unfortunately, for some instances there is no decision that achieves
universal acceptance. Given status quo r, we want to know for what proposal p and amend-
ment rule R ∈ R does the decision (Vrp, R,R(Vrp)) maximize acceptance. Amazingly, given
any status quo r < 1− 1

n , there exists at least one proposal p ∈ R, p 6= r, and amendment
rule R ∈ R, such that (Vrp, R,R(Vrp)) is guaranteed to achieve universal acceptance for
any profile Vrp induced by agents’ underlying single-peaked preferences over supermajority
rules.

Lemma 2. The amendment decision (Vr,r+ 1
n
, Rr, Rr(Vr,r+ 1

n
)) is universally accepted by

II-disjunctivists with single-peaked preferences over supermajority rules ordered on the real
line such that vi ∈ {r, p}, vi ∈ Yi, and δi ∈ Ri for all agents.

Proof. Let p = r + 1
n . Suppose Rr(Vrp) = r. Then for all i ∈ N such that δi ≥ r,

(Vrp, R
r, r) ∈ Di because Rδi is effectively implemented. For all i ∈ N such that δi < r,

r ∈ Yi. Now suppose Rr(Vrp) = p. Then for all i ∈ N such that δi ≤ r, (Vrp, R
r, p) ∈ Di

because Rδi is effectively implemented. For all i ∈ N such that δi > r, p ∈ Yi.

Based on Lemma 2, we can build an iterative algorithm, Mechanism 6, for considering
sequences of proposals to change the supermajority rule in incrementally increasing order
such that each decision along the way is universally accepted. Mechanism 6 does not consider
all possible proposals. It only considers those greater than r. When r = 1

2 all other
supermajority rules have the potential to be proposed. There are additional benefits to
ensuring the original status quo be 1

2 , or at least that it not be too large. The following
special supermajority rule is labeled h due to its resemblance to the h-index in bibliometrics:

h = arg max
p∈R

|{i ∈ N : δi ≥ p}| ≥ np

Mechanism 6: Supermajority Rule Amendment

Input: (V,R,Y,DN )
p← r + 1

n

while p < 1 do
if Rr(Vrp) = p then
r ← p
p← p+ 1

n

else
return (V,Rr, Rr(V ))

end if
end while

Theorem 4. If r ≤ h, then Mechanism 6 returns (V,Rh, h), otherwise it returns (V,Rr, r).

Proof. Assume r < p ≤ h where p = r + 1
n . If Rr(Vrp) = r, this means that there are fewer

than pn with peaks δi ≥ p, but this violates the definition of h, since there must be at least
hn > pn agents with peaks δi ≥ h ≥ p. Thus, all amendments to increment the status quo
will be successful if r < h. If p > r ≥ h, there are at most rn agents with δi > r by the
definition of h and all other agents must prefer r �i p, so no proposal p > r can possibly
succeed as an amendment.



One of the constitutions proposed by Abramowitz et al. [2], is derived from axioms
that uniquely imply the initial supermajority rule when founding the constitution should be
r = 1

2 , and then Mechanism 6 should be applied. Our analysis shows a different perspective;
when agents are II-disjunctivists with votes and satisfying sets based on δi values, every
amendment decision can be universally accepted under such a constitution.

Implementing Mechanism 6 with its iterative, incremental changes to the status quo
is tedious. Do the agents need to observe every update to the status quo? Suppose we
know all agents’ ideal rules δi, and can therefore infer a partial ordering consistent with
their preference ordering over R based on single-peakedness. Let this collection of partial
orderings be the profile V . If we can compute h directly from V , and r < h, we could
directly implement the decision (V,R, h) with the rule that always selects h. This can be
achieved by implementing the amendment decision (Vrh, R

r, h). We know that any further
proposals to amend h will fail, and the decision to maintain h against any proposal will be
universally accepted. This more efficient algorithm corresponds to the second amendment
procedure proposed by Abramowitz et al. [2], derived from a similar set of axioms to the
first. What happens to the acceptance rate for the amendment decision (Vrh, R, h)?

Theorem 5. If the status quo is r < h, the amendment (Vrh, R
r, h) is universally accepted

by II-disjunctivists with vi ∈ Yi and δi ∈ Ri.
Proof. Assume r < h. Any agent who prefers h �i r will accept the decision (Vrh, R

r, h)
because h ∈ Yi. For all i ∈ N such that r �i h, we know that δi < h due to single-
peakedness. We also know there must be at least hn agents prefer h �i r by the definition
of h. Thus, for any agent for whom r �i h, they accept Rδi(Vrh) = h because Rδi is
effectively implemented.

5 Related Work

In the introduction to The Calculus of Consent, Buchanan and Tullock state, “The selection
of a decision-making rule is itself a group choice, and it is not possible to discuss positively
the basic choice-making of a social group except under carefully specified assumptions about
rules. We confront a problem of infinite regression here.” In Chapter 2, they state the
implication explicitly, “...in discussing decision rules, we get into the familiar infinite regress
if we adopt particular rules for adopting rules. To avoid this, we turn to the unanimity
rule...” [11]. In practice, such infinite regress does not prevent collective decision making.
While disagreements can lead to an impasse, the inexorable passage of time guarantees that
something will happen. Ultimately, there will be an outcome, and whatever leads to that
outcome was a feasible decision all along. This is consistent with the view of Reality-Aware
Social Choice, which recognizes that there is always a status quo, even if implicit [27].

A major source of inspiration for us is the burgeoning research on generating axiomatic
justifications for collective decisions [7, 8, 9, 10, 18, 21, 23, 24, 29] and arguing about vot-
ing rules [12, 15]. Rather than constructing justifications, we consider the dual problem of
making decisions that are justifiable to the maximum number of agents, given that different
agents may accept different justifications. Personalized justifications may be beneficial not
only for collective decisions, but for many applications of “explainable AI.” The personal-
ization of justifications raises important questions about what it means for multiple justifi-
cations to be compatible with one another. Our model formalizes one aspect of how agents
might view the relevant counterfactuals with our notion of implementation-indifference,
which is related to the difference between intra-profile and inter-profile axioms [26].

The literature on constitutional amendments and “voting on the voting rule”, where
agents have preferences over rules, is typically focused on types of stability or idempo-
tency [3, 5, 16] and separated into consequentialist and non-consequentialist approaches [22].



We present a unifying framework capturing both approaches because whether people accept
decisions can depend on both outcomes and procedures [17, 19]. Our framework for ac-
ceptance can be seen as a broad generalization of the nascent idea of “complaint-freeness”
proposed by [1]. From the literature on founding and amending constitutions, Abramowitz
et al. [2] put forward two constitutional mechanisms that yield an idempotent rule, along
with their axiomatic characterizations. In Section 4 we consider the problem of amendments
with supermajority rules in which agents either accept or reject an amendment decision. We
demonstrate that under mild assumptions, which do not require all agents to accept a com-
mon set of axioms, both constitutional mechanisms proposed by Abramowitz et al. [2] can
achieve a form of universal acceptance. Here we also mention Bhattacharya [6] which looks
at voting over voting rules in single-peaked domains.

Lastly, the works perhaps closest to ours in spirit are Dietrich [13] and Schmidtlein [25].
Dietrich argues for maximizing acceptance where all agents are treated as II-proceduralists
with |Ri| = 1 based on a principle of “Procedural Autonomy.” Schmidtlein demonstrates
how decisions can be made by applying different sets of axioms depending on the profile,
which implicitly define a rule.

6 Discussion

Through an approach we term Social Mechanism Design, we demonstrate how one can
incorporate agents’ views about collective choice into the identification, design, selection,
and implementation of collective choice mechanisms. We have identified plausible preference
structures expressed as combinations of rules and outcomes and shown how structured
preferences can be used to maximize acceptance. We examined worst-case acceptance in
two settings; one in which the agents must make a generic single asymmetric binary choice,
and the other in which agents must make decisions about amending a supermajority rule.
In the case of amendments with implementation-indifferent disjunctivists, we showed that
universal acceptance is possible and achieved by mechanisms in the existing literature.

Implicitly, the structure of agents’ preferences over decisions determines what justifi-
cations they will accept. When agents are implementation-indifferent they can be given
different justifications, separate from causal explanations of how the decision was actually
made, without issue. However, offering agents multiple justifications based on conflicting
counterfactuals leaves room for deception. Such deception has not been addressed in the
literature on generating axiomatic explanations and justifications for collective decisions.

There are several promising directions for future work. Once a profile is fixed, an
acceptance-maximizing mechanism M effectively performs approval voting over the fea-
sible decisions using the satisfying sets as approval ballots, so agents cannot benefit by
misreporting whether they accept any decision. However, agents may be strategic in re-
porting information in the profile. It is an open question how to develop mechanisms that
incentivize agents to report only truthful information in both the profile and satisfying sets.
Moreover, the general mechanisms we have provided are not particularly efficient for all
instance classes. Computing the outcomes of many different rules on a single profile can be
computationally expensive. Developing more efficient application-specific mechanisms is an
important open challenge.

Lastly, agents may have preferences over decisions reflecting the fact that rules are
algorithms, potentially implemented as programs, and not just functions. Agents might care
about the computational complexity of rules, whether rules are easy to understand, whether
the rules preserve privacy, the probability distribution over outcomes with randomization,
etc.
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A Details of the General Model

A.1 Acceptance

Our notion of acceptance is entirely generic. It is fundamentally a binary classification of
possible decisions by agents. We do not address what it means for an agent to accept a
decision or the consequences if one or more agents do not accept a decision. We relate
acceptance to the existence of an axiomatic justification for a decision that would satisfy an
agent. This could mean that they see the decision as legitimate, just, fair, proper, or morally
permissible. Acceptance could also mean, for example, that an agent will not dispute or
appeal a decision.

A.2 Feasibility

Feasibility is a restriction on what rules and outcomes might be part of the decision output
by a mechanism. Feasibility is not a constraint on what agents can report in the profile or
in their satisfying sets. Similarly, whether an agent accepts a decision cannot depend on
knowledge of what rules and outcomes are feasible. We do not assume that agents know
what rules and outcomes are feasible. We do not need to assume the agents know R and Y,
much less the broader of all possible rules and outcomes R̄ and Ȳ from which the elements
of their sets Ri and Yi are drawn.

The feasibility of rules and outcomes are not assumed to be dependent. A feasible rule
may not yield a feasible outcome when applied to the given profile; R(V ) 6∈ Y for some
R ∈ R. Likewise, a feasible outcome may not be selected as the winning outcome by any
feasible rule. A decision (V,R, y) is feasible if and only if its rule and outcome are both
feasible.

One might wonder why, once a profile V is fixed in some instance, we do not narrow
the set of feasible rules to only those that select feasible outcomes and narrow the set of
feasible outcomes to only those selected by feasible rules on that profile. In practice, this
computation may be inefficient, unnecessary, and impractical when there are many agents,
many possible rules, and many possible outcomes. We want to be able to make decisions
without this step, though sometimes it is the most straightforward approach.

Our model is agnostic to the determinants of feasibility, and there are many possibilities
that differ from application to application. For example, feasibility might be constrained by
budget limits and resource availability, willingness of participants, time constraints, privacy
and security requirements, or what rules are currently implemented programmatically in a
computerized voting system being used.

In future work it will be important to consider what information agents have about
feasibility, as this can impact the profile, the structure of their satisfying sets, and their use
of counterfactual reasoning.

A.3 Rules and Outcomes

It is to be expected that the structure of agent preferences depends on the object of their
preference. Much of the literature on voting and social choice considers abstract alternatives.
Here, preferences over rule are preferences over functions, while preferences over outcomes
are preferences over abstract alternatives. Rules are functions they are defined with respect
to how they map a domain of inputs (profiles) to a range of possible outputs (outcomes).
Since only one profile is observed in any instance, the very definition of a rule depends on
counterfactuals about what outcome it would have yielded had the profile been different.
In our problems every agent observes the same outcome, but the rule cannot generally be



observed, leading to the distinction between what singular rule is actually implemented and
all the other rules that are effectively implemented in a given instance.

We have assumed that the rules are “resolute” in the sense that for all possible profiles
V , every rule returns some outcome y. This is easily justified by assuming that all rules
have some subset of profiles in their relevant domain and return a default outcome for all
profiles outside of their domain. This default could be to maintain the status quo or some
designated null value.

We also note that we have not assumed the rules in our model to be anonymous. There-
fore our model is sufficiently general to include, say, delegative voting rules and satisfying
sets where acceptance of outcomes depends on which agents prefer that outcome.

A.4 Implementation

In our framework, the mechanism M selects a single rule R to be actually implemented to
produce a decision R(V ) = y. One can view the feasible rules in R as subroutines of the
algorithm M and the rule R in the decision corresponds to which subroutine gets called.
Recall that M selects the rule and outcome (R, y) based on the profile V and the collection
of satisfying sets DN . If the mechanism M selects the rule R based on the agents’ satisfying
sets independent of the profile V observed, then the mechanism is only capable of reflecting
the proceduralist aspects of the agents’ satisfying sets. One might argue that it is M that
is actually implemented, and any rule R is only effectively implemented, because had the
profile V been different, M may have selected a decision with some other rule R′ actually
implemented. This gets at the heart of how the mechanism operates and how counterfactuals
are treated.

If agents base their acceptance on the single rule R output by the mechanism M rather
than the mechanism M itself, this is a form of higher-level implementation-indifference. For
example, when decisions are made by a Parliament or Congress according to some voting
rule R determined by a constitution, the constitution provides the mechanism M , but
whenever it is impractical, infeasible, or unlikely for the rule to be changed for a particular
decision, whether agents’ accept the decision might be based on whether they accept R.
Their acceptance of a decision may not need to appeal to the broader legitimacy of the
constitutional mechanism and history of how that rule was selected. For all decisions, when
we construct a model of what actually caused the decision to be what it was, we must
decide what variables are exogenous and endogenous to the causal model [14]. Accepting
that there are necessarily some exogenous variables is a form of implementation-indifference
at some level. The willingness to accept exogenous variables as part of the causal model is
a fundamental component of preventing the problem of infinite regress, which we reflect in
the concept of implementation-indifference. In practice, agents whose preferences are based
on coherent normative principles are necessarily implementation-indifferent at some level.

A.5 Elicitation

We have left aside for now how agents report their information vi and satisfying sets Di,
and assume that they report sufficient information for our mechanism. Our mechanism only
requires enough information from the agents about their satisfying sets to determine whether
they accept various decisions for a specific profile V . Since each instance only contains one
profile V , only decisions in their satisfying sets with that profile (V, , ) will be relevant
for that instance. In practice, agents may reveal their satisfying sets with reference to the
specific profile or independent of it. An agent might express that the rule used should belong
to a certain class like scoring rules, or list axioms such that they will accept a decision if
and only if it obeys those axioms.



Notice that in principle, the sets Ri and Yi for each agent and feasible sets R and Y
can be finite or infinite, continuous or discrete. For example, an agent might accept any
outcome that lies within a particular interval on the real line. The set of scoring rules is
infinite, although the set of unique scoring rules is finite in any instance with a finite number
of alternatives. The mechanisms we have provided assume finite sets of discrete elements,
and may need to be varied to suit different applications.

Sometimes information about the full preferences and satisfying sets of agents must be
inferred. When preferences have structure it enables them to be elicited more efficiently.
For example, with supermajority rule amendments, we assumed we can infer an agent’s
vote vi and entire satisfying set just by knowing their ideal rule, or peak, δi and the fact
that they are II-disjunctivists. When there are many possible decisions that can be made,
efficient elicitation becomes increasingly important, and it may be necessary to implement
mechanisms with incomplete and imperfect information about agent satisfying sets.

Since the mechanisms we have given effectively implement Approval Voting over deci-
sions using agent satisfying sets, a form of strategyproofness is necessarily inherited: Once
the profile is fixed, no agent can lead the mechanism to yield a decision they accept by
misreporting their satisfying set Di when reporting their true satisfying set would have ren-
dered a decision they do not accept. The same holds with group strategyproofness for sets
of agents. There are many important open questions about how to design strategyproof
mechanisms when agents can misreport their information vi.

A.6 Reality-Awareness

In Reality-Aware Social Choice, ‘Reality’ is, “an ever-present, always-relevant, and evolving
social state, distinguished from hypothetical social states” [27, 28]. Before a decision is made
there is some status quo or state of the world constituting Reality. We take this view to it’s
logical conclusion – in the future, there will also be a Reality. That future reality, regardless
of whether it is explicitly identifiable in advance, is always a feasible outcome. Whatever
process leads from the current reality to that future reality constitutes a decision of some
kind, as long as any choices were made or actions taken or avoided along the way. Hence,
the existence at least one feasible decision in every problem instance is necessarily implied
by reality-awareness, even if it cannot be identified because the set of feasible outcomes is
not fully known.



B Acceptance Maximization for Homogeneous Agents

We provide here simpler mechanisms for settings in which all agents are consequentialists
or absolute proceduralists which can be implemented more efficiently than our more general
Mechanism 1. Maximizing acceptance with consequentialists is straightforward (Mecha-
nism 7). We choose the feasible outcome that appears in the most satisfying sets such that
there exists a feasible rule which selects this outcome on the given profile. Maximizing
acceptance with proceduralists is similar (Mechanism 8). We choose the feasible rule that
appears in the most satisfying sets such that it selects a feasible outcome on the given profile.

Proposition 2. Mechanism 7 maximizes acceptance when all agents are consequentialists.

Proof. Mechanism 7 begins by taking the set of feasible outcomes and removing from it any
outcomes that do not appear in the set Yi of any agent because those will be accepted by
no one. If the resulting set is empty, the mechanism returns any feasible decision, though
it will not be accepted by any agent. If the set is non-empty, then the algorithm counts for
each remaining feasible outcome how many agents have it in their set Yi. The outcome of
every feasible rule on the given profile is then computed, and the outcome among them that
appeared in the most sets Yi is returned.

Mechanism 7: Acceptance Maximization with Consequentialists

Input: (V,R,Y,DN )
Y ← {

⋃
i∈N Yi}

⋂
Y

if Y 6= ∅ then
for a ∈ Y do
Na ← |{i ∈ N : a ∈ Yi}|
Ra = ∅

end for
end if
for R ∈ R do
a← R(V )
if Y = ∅ then

return (V,R, a)
else if a ∈ Y and Ra = ∅ then
Ra ← R

end if
end for
Y ← {a ∈ Y : Ra 6= ∅}
y ← arg max

a∈Y
Na

return (V,Ry, y)

Mechanism 8: Acceptance Maximization with Proceduralists

Input: (V,R,Y,DN )
R← {R ∈ R : R(V ) ∈ Y}
R ← {

⋃
i∈N Ri}

⋂
R

R← arg max
R′∈R

|{i ∈ N : R′ ∈ Ri}|

return (V,R,R(V ))

Proposition 3. Mechanism 8 maximizes acceptance when all agents are absolute procedu-
ralists.



Proof. The optimality of Mechanism 8 follows from its use of brute-force search to find the
feasible rule that yields a feasible outcome on the given profile and appears in the most sets
Ri. It includes a small optimization to only consider feasible rules that appear in at least
one set Ri.

We can also implement a more direct mechanism when all agents are absolute conjunc-
tivists.

Proposition 4. Mechanism 9 maximizes acceptance when all agents are absolute conjunc-
tivists.

Proof. Mechanism 9 begins by removing all rules from Ri that do not select an outcome in
Yi on the given profile. Thus, a rule R is in Ri for agent i if and only if i would accept the
decision (V,R,R(V )). The mechanism then finds the rule that is in the set Ri of the largest
number of agents.

Mechanism 9: Acceptance Maximization for Absolute Conjunctivists

Input: (V,R,Y,DN )
Ri ← {R ∈ Ri : R(V ) ∈ Yi}
R = arg max

R′∈R
|{i ∈ N : R′ ∈ Ri}|

return (V,R,R(V ))

B.1 Asymmetric Dichotomous Choice

Proposition 5. For any set of agents, if we make no assumptions about Yi or Ri, then
αI = 0 for the class of asymmetric dichotomous choice problems.

Proof. Proposition 5 follows simply because if |Ri| = |Yi| = 0 for all agents i, then we have
a degenerate case where no agent accepts any decision. So in the worst case αI = 0, and of
course it cannot be less than 0.

Proposition 6. For any set of absolute conjunctivist agents, if vi ∈ Yi and |Ri ∩ R| ≥ 1
for all i ∈ N , then αI = 0 for the class of asymmetric dichotomous choice problems.

Proof. Even if we assume that for all absolute consequentialist agents there is at least one
feasible rule in Ri, and that their set Yi contains their vote vi, it is still possible that no
agent accepts any feasible decision on a given profile because there is no feasible rule R ∈ Ri
such that R(V ) ∈ Yi.

Proposition 7 says that if all agents are absolute conjunctivists, then even if every agent
accepts at least one feasible decision, there still might be no feasible decision that more than
2 agents accept.

Proposition 7. For any set of absolute conjunctivist agents, if |Yi ∩ Y| ≥ 1 and ∃R ∈
Ri ∩R : R(V ) ∈ Yi ∩Y for all i ∈ N , then αI = 2

n for the class of asymmetric dichotomous
choice problems.

Proof. Let R̃i = {R ∈ Ri∩R : R(V ) ∈ Yi∩Y} be the subset of feasible rules in Ri that select
a feasible outcome on the given profile V that is within Yi. Thus, the absolute conjunctivist
agent i will accept a decision (V,R,R(V )) if and only if R ∈ R̃i. Are assumption states that
R̃i is non-empty for all agents. With |R| =

⌊
n+1
2

⌋
feasible rules and n agents, our bound

of αI ≥ 2
n follows by the pigeonhole principle (with n pigeons and

⌊
n+1
2

⌋
holes). So there

must be at least two agents who accept a decision that uses the same rule.



Proposition 8. For any set of absolute disjunctivist agents, if |Ri ∩ R| ≥ 1 for all i ∈ N ,
then αI = 2

n for the class of asymmetric dichotomous choice problems.

Proof. With n absolute disjunctivist agents, all of whom have at least one feasible rule in
their set Ri, and |R| =

⌊
n+1
2

⌋
feasible rules, there must be at least 2 agents i, j ∈ N such

that |Ri ∩Rj | ≥ 1 by the pigeonhole principle (with n pigeons and
⌊
n+1
2

⌋
holes). Therefore

αI ≥ 2
n , because we can always find some decision (V,R,R(V )) accepted by at least two

agents. However, there may be no rule accepted by 3 or more agents, and so αI <
3
n .

Proposition 9. For any set of absolute disjunctivist agents, if |Ri ∩ R| ≥ k for all i ∈ N ,

then αI = 1
n ·
⌈

nk

bn+1
2 c

⌉
for the class of asymmetric dichotomous choice problems.

Proof. With n absolute disjunctivist agents all with at least k feasible rules out of the
⌊
n+1
2

⌋
possible feasible rules in their sets Ri, the bound follows from the pigeonhole principle (with
nk pigeons and |R| =

⌊
n+1
2

⌋
holes) which sets a tight lower bound on the minimum number

of agents that must have the same rule in their sets Ri.

Corollary 1. For any set of absolute disjunctivist agents, if |Yi ∩Y| ≥ 1 for all i ∈ N , then
αI = 1

2 for the class of asymmetric dichotomous choice problems.

Proof. The proof follows directly from the proof of Proposition ??, because consequentialists
are a sub-type of absolute disjunctivists. If the agents’ rule sets Ri are non-empty, this could
only increase αI .

The following four corollaries follow directly from Theorem 3, which applies to all sets
of II agents, because Y = 2 in asymmetric dichotomous choice problems.

Corollary 2. For any set of II-conjunctivist agents, if |Yi ∩Y| ≥ 1 ∃R ∈ Ri : R(V ) ∈ Y for
all i ∈ N , then αI = 1

2 for the class of asymmetric dichotomous choice problems.

Corollary 3. For any set of II-disjunctivist agents, if ∃R ∈ Ri : R(V ) ∈ Y for all i ∈ N ,
then αI = 1

2 for the class of asymmetric dichotomous choice problems.

Corollary 4. For any set of II-disjunctivist agents, if |Yi∩Y| ≥ 1 for all i ∈ N , then αI = 1
2

for the class of asymmetric dichotomous choice problems.

Corollary 5. For any set of II-disjunctivist agents, if |Yi ∩ Y| ≥ 1 and ∃R ∈ Ri : R(V ) ∈
Y\Yi for all i ∈ N , then αI = 1

2 for the class of asymmetric dichotomous choice problems.

Consequentialists Suppose all agents are consequentialists and their satisfying sets are
consistent with their votes vi ∈ {r, p} such that vi ∈ Yi and Di = {(V,R, y) ∈ D : y ∈ Yi}
for all i ∈ N . Universal acceptance with consequentialists is only possible if there is an
outcome everyone accepts:

⋂
i∈N

Yi 6= ∅. The worst-case acceptance rate is determined by the

minimum size of the majority, which is half the agents.

Proposition 10. For asymmetric dichotomous choice with all consequentialist agents such
that vi ∈ Yi, the worst-case acceptance rate is αI = 1

2 , which is achieved by the simple

mechanism M that applies majority rule R
1
2 to the profile V in every instance.

Proof. The proof of the lower bound of 1
2 on αI in Proposition 10 follows from the pigeonhole

principle. One of the two potential outcomes, r or p, must be accepted by at least half of
the agents because we forbid abstention and empty satisfying sets. This follows from the
requirement that vi ∈ Yi. With n pigeons and 2 holes there must be at least

⌈
n
2

⌉
pigeons in



one of the holes. Therefore, for any instance, we can always achieve an acceptance rate of
at least 1

2 by making the decision according to majority rule: (V,R
1
2 , R

1
2 (V )).

In the worst case, Yi = {vi} for every agent i ∈ N , the number of agents n is even, and
exactly half of the agents vote for each alternative. Any feasible decision satisfies exactly half
of the agents, so we know αI ≤ 1

2 because no mechanism can achieve a higher acceptance
rate on this instance. This gives us our upper bound of 1

2 .

Notice that the mechanism M in Proposition 10 does not maximize acceptance for every
instance. A decision with the alternative that receives fewer votes as its outcome might
still be acceptable to a greater fraction of the agents. However, the proof above shows that
the mechanism M that maximizes acceptance must also have αI = 1

2 . The same value of
αI = 1

2 is obtained for the smaller class of instances with the stronger requirement that
Yi = {vi} for all agents. The proof is essentially the same as the one above. If agents can be
inconsistent, where vi 6∈ Yi, then αI = 0 because of the degenerate instances where vi = r
and Yi = {p} for all i ∈ N .

Absolute Proceduralists Suppose every agent has a vote vi ∈ {r, p} and a set of one
or more supermajority rules Ri ⊆ R such that (V,R, y) ∈ Di if and only if R ∈ Ri. The
optimal mechanism counts for each supermajority rule R the number of sets Ri that contain
R and then picks among these rules the one with the highest count. The outcome is uniquely
determined by the choice of rule and the profile. For there to be universal acceptance, it
would have to be that

⋂
i∈N

Ri 6= ∅.

II-conjunctivists An acceptance maximizing mechanism for II-conjunctivists can be cre-
ated by changing the ‘or’ to ‘and’ in lines 3 and 4 of Mechanism 5 defining Nr and Np.
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