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Abstract The prosperity of deep learning and automated machine learning (AutoML) is largely rooted
in the development of novel neural networks — but what defines the “goodness” of networks
in an architecture space? Test accuracy, a golden standard in AutoML, is closely related to
three aspects: (1) expressivity (how complicated functions a network can approximate over
the training data); (2) convergence (how fast the network can reach low training error under
gradient descent); (3) generalization (whether a trained network can be generalized from
the training data to unseen samples with low test error). However, most previous theory
papers focus on fixed model structures, largely ignoring sophisticated networks used in
practice. To facilitate the interpretation and understanding of the architecture design by
AutoML, we target connecting a bigger picture: how does the architecture jointly impact its
expressivity, convergence, and generalization? We demonstrate the “no free lunch” behavior
in networks from an architecture space: given a fixed budget on the number of parameters,
there does not exist a single architecture that is optimal in all three aspects. In other words,
separately optimizing expressivity, convergence, and generalization will achieve different
networks in the architecture space. Our analysis explains a wide range of observations in
AutoML. Experiments on popular benchmarks confirm our analysis. Code is available at:
https://github.com/chenwydj/no_free_lunch_architectures.

1 Introduction

Deep neural networks (DNN5s) are rapidly developed in recent years. To design novel networks,
Neural architecture search (NAS) is recently explored to remedy the human efforts and costs,
benefiting automated discovery of architectures in a given search space (Zoph and Le, 2016; Brock
et al., 2017; Pham et al., 2018; Liu et al., 2018a; Chen et al,, 2018; Bender et al., 2018; Gong et al.,
2019; Fu et al., 2020; Chen et al., 2019). To facilitate the fundamental study of automated design,
many standard architecture spaces and benchmarks are also developed (Liu et al., 2018b; Ying
et al,, 2019; Dong and Yang, 2020). Despite the principled automation, NAS still suffers from heavy
consumption of computation time and resources due to frequent training and evaluation of sampled
architectures, which becomes a severe bottleneck that hinders the search efficiency.

People recently address this problem by proposing training-free NAS. Indicators like covariance
of sample-wise Jacobian (Mellor et al., 2021), Neural Tangent Kernel (Chen et al., 2021), and “synflow”
(Abdelfattah et al., 2021) are found to highly correlate with network’s accuracy even at initialization
(i.e., no gradient descent). These approaches significantly reduce search costs. However, these
works mainly leverage theoretical properties of the general deep neural networks in experiments,
but barely characterize the inductive bias of these indicators on network architectures.

Meanwhile, many deep learning theory papers try to understand deep networks. A typical
pipeline of learning involves three components: 1) data (or task), 2) network training (with gradient
descent), and 3) inference (on unseen data). First, given the training data, the network needs to be
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highly expressive to approximate the target function with a low training error. Second, the network
should converge fast in an affordable training time. Third, the network should not simply memorize
the training samples, but needs to be generalizable to unseen data during inference. Being deficient
in any aspect would lead to the failure of utilizing deep networks (low accuracy, slow convergence,
overfitting, etc.). However, most theory papers focus on analyzing a fixed model structure, largely
ignoring sophisticated networks used in practice, especially for NAS applications and standard
architecture spaces and benchmarks we mentioned above. This leads to a concrete question:

Q1: What are the inductive biases of expressivity, convergence, and generalization on networks in
an architecture space? Do they prefer wide or deep network topologies?

This motivates us to jointly analyze how these three aspects change accordingly when we
design network topologies in an architecture space. In addition, most previous theory works only
study one or two aspects at the same time, which may not reveal the global picture of a network’s
property. Imagining we are searching and optimizing the network architecture for its expressivity,
convergence, and generalization together at the same time, a further question is also unclear:

Q2: When we design networks in an architecture space, can we achieve the best expressivity,
convergence, generalization at the same time? In other words, can we find an architecture that will
“win” all three aspects? Or do we have to sacrifice one or two of them to compensate the others?

Inspired by recent complicated networks de-
signed in NAS, and to facilitate the interpreta-
tion and understanding of architectures design
by AutoML, we rigorously study the impact of a
network’s topology on its expressivity, conver-
gence, generalization in an architecture space.
Network architecture can be viewed as a directed  Figure 1: Is there a network in an architecture space
acyclic computational graph (DAG), where fea- that can achieve the best expressivity, con-
ture maps are represented as nodes and oper- vergence, generalization at the same time?
ations in different layers are directed edges linking features. We discover the “no free lunch”
behavior: given a fixed budget on the number of parameters, there does not exist such an architec-
ture that can maximize all three aspects. We first abstract an architecture’s graph structure into
its topological width and depth. By analyzing the input-output Jacobian, NNGP (Neural Network
Gaussian Process), and NTK (Neural Tangent Kernel) of ReLU networks with a large channel width,
we can characterize the dependence of manifold complexity, convergence rate, and generalization
gap on the network’s graph topology. After finding corresponding architectures that maximize
three aspects, we show that both convergence and generalization have a bias toward networks
with wide and shallow graph topologies, but the expressivity favors deep and narrow ones. Our
analysis can explain a wide range of observations in AutoML and NAS. Experiments on popular
vision benchmarks confirm our theoretical analysis. Our contributions are summarized below:

Expressivity Expressivity

Generalization...
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« We theoretically analyze the dependence of a deep network’s manifold complexity, convergence
rate, and generalization gap on its graph topology.

« We discover the “no free lunch” behavior: given a fixed budget on the number of parameters pre-
defined in an architecture space, no such a network can achieve optimal expressivity, convergence,
and generalization at the same time.

« Our analysis can explain a wide range of observations in AutoML and NAS practices. Experiments
on popular datasets confirm our theoretical analysis.

Related Works

Theory-guided Automated Design of Neural Architectures

Neural architecture search (NAS) is proposed to accelerate the principled and automated discovery
of high-performance networks (Pham et al., 2018; Liu et al., 2018b; Dong and Yang, 2019; Real et al.,
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2019; Tan et al., 2020). However, most works suffer from heavy search cost. Therefore, recent
research on NAS has shifted its focus towards reduced training or even training-free methods. The
aim is to connect theoretical analysis of deep learning to guide the development of innovative
network architectures. The key idea is to identify theoretical indicators that are highly correlated
with the network’s training or testing performance. Mellor et al. (2020) introduced a training-free
NAS approach that uses sample-wise activation patterns to rank architectures empirically. Park et al.
(2020) used the network’s NNGP features to estimate its predictions. Various training-free indicators
were evaluated in (Abdelfattah et al., 2021), and the “synflow” measure was adopted in (Tanaka
et al., 2020) as the primary ranking metric. Chen et al. (2021) incorporated two metrics inspired
by theory, and used supernet pruning as the search method. Li et al. (2023) further discovered the
norm of network’s gradient over the gradient variance as an accurate proxy indicator.

Despite the inspiring result, these works mainly leveraged theoretical properties of the general
deep neural networks in experiments, but barely characterize the inductive bias of these indicators
on network architectures. In our work, we try to connect network topologies (defined in a typical
graph-based architecture space) with decoupled properties of networks (discussed below).

Expressivity, Convergence, and Generalization of Network Architectures

Many works try to theoretically characterize the deep network’s properties, including expressiv-
ity (Poole et al., 2016; Hanin and Rolnick, 2019a,b; Hanin et al., 2021; Fawzi et al., 2018), conver-
gence (Allen-Zhu et al., 2019b; Du et al., 2019; Lu et al., 2020; Zou et al., 2020a; Zhou et al., 2020; Zou
et al., 2020b), and generalization gap (Neyshabur et al., 2015; Bartlett et al., 2017; Arora et al., 2018;
Weli et al., 2019; Xiao et al., 2019; Cao and Gu, 2019; Allen-Zhu et al.,, 2019a; Zhang et al., 2021).

« Expressivity. Classic works focus on proving the existence of networks with low approximation
error, demonstrating the benefit of network depths (Telgarsky, 2016; Eldan and Shamir, 2016;
Rolnick and Tegmark, 2017; Park et al., 2021). Layer-wise recursion of the network’s length
distortion and extrinsic curvature in Riemannian geometry is given (Poole et al., 2016). The
network’s depth, spectrum, linear regions, persistent homology are also studied (Bianchini and
Scarselli, 2014; Lu et al., 2017; Rieck et al., 2018; Rahaman et al., 2019; Hanin and Rolnick, 2019a).

« Convergence. The rate to converge to the global minima of MLP and ResNet is given (Du et al.,
2019), and skip-connection can improve (reduce) the requirement on the channel number to
be polynomial of the network depth, without requiring the network to be exponentially wide.
In (Bhardwaj et al., 2021), the network topology, or specifically, the number of skip-connections,
is found to improve the network’s training convergence and layerwise dynamical isometry, from
a network science perspective. In addition, the variance of the network’s output and gradient
are proved to scale as the depth-to-width ratio, i.e., the effective depth, instead of the absolute
network depth (Hanin, 2022). The convergence rates of stochastic neural networks with different
hyper-parameters have been studied in (Huang et al., 2023). The convergence rates of different
network architecture topologies are recently compared (Chen et al., 2022).

+ Generalization. The gap between the training and testing accuracy is empirically found relevant
to network topology. Some common connectivity patterns are discovered by neural architecture
search and can contribute to fast convergence, high test accuracy, and smooth loss landscapes (Shu
etal, 2019). Structures of networks are represented into graphs, and then discovered that networks
of specific graph topology can achieve strong test accuracy (You et al., 2020).

In contrast, we comprehensively unify the analysis of expressivity, convergence, and generalization,
and demonstrate the “no free lunch” behavior of architectures on these three aspects.
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“No Free Lunch”™ in Network Architectures

In this section, we introduce the high-level idea of the “no free lunch” behavior of networks from
an architecture space. We first define the graph topology of networks (Section 3.1), and then give
the high-level results on how architecture impacts its expressivity, convergence, generalization
(Section 3.2). We defer detailed formal statements in (Section 4) for paper organization purpose.

Graph Topology of Neural Architectures Graph-based Architecture Space
Architecture
Graph_based architectures spaces. The Image Stem H Cell H Global Avg. Pool H Readout g‘

computational graph of a neural network

can be viewed as a directed acyclic graph

(DAG). Nodes are inputs or features, and

edges are layers (operations). Features from

multiple edges coming into one node will

be summed up. The graph’s connectivity

pattern is allowed to be arbitrary: any two « >
“Depth” (d,): # “Linear+ReLU” on path p

nodes can be connected by an edge. Recent predefined Operation Set bxamples
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of networks. In our work, we inherit and

simplify these architecture spaces, and con-

sider three types of edges (Figure 2): linear

transformation with ReLU activation, skip

connection, and zero.

W(S,H)

SsE0,H-1]

“Width” (Py):
# end-to-end paths

Figure 2: Graph formulation of architectures. X: in-
put/feature/output (node). W: layers (edge). Top:
shared macro skeleton across architectures. Mid-
dle: graph formulation of cell in architectures.
Bottom left: each edge is an operation from a
predefined set. Bottom right: example architec-

Graph topology. I hitect ,
raph topology. n ourarchtecture space tures with their topological depths and widths.

an end-to-end path is defined as a finite se-
quence of edges that joins the input (X(°)) and the output node (X*)). We denote the number of
end-to-end unique paths as Py, and the number of linear transformation operations on the p-th
path (p € [1,Py]) as dj, € [0, H]. Intuitively, Py stands for the “topological width” of a graph, and
dp, represents the “topological depth” of a graph.

Architecture Biases of Expressivity, Convergence, and Generalization

In automated machine learning (AutoML) and neural architecture search (NAS), what defines and
controls the “goodness” of architectures? In fact, test accuracy, a golden standard by AutoML prac-
titioners, can be disentangled and is closely related to three key properties: functional complexity a
network can approximate (“expressivity”), training speed under gradient descent (“convergence”),
and performance gap between training and unseen data (“generalization”). Here, we introduce our
high-level results on their biases on the network’s architecture and highlight impacts on broad
AutoML applications. For detailed formal statements, please see Section 4.

Expressivity. We characterize the expressivity of a neural network using concepts in Riemannian
geometry (Lee, 2006). Consider the mapping from each point in the input space to the network’s
output (the manifold), the curvature of the manifold indicates how quickly its tangent vector rotates
as one moves across the input space. Intuitively, if a network has highly curved output manifolds, it
may have a higher capacity to learn complex functions and decision boundaries (Poole et al., 2016).

We will show that given a space of architectures, with standard He normal initialized weights (He
et al.,, 2015), the architecture of small P and large d, will have large curvature (for details, see
Theorem 4.1 and Corollary 4.2).

“Originally proposed (Wolpert, 1996) to explain the equivalence of algorithms over learning problems.
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Generalization vs. DAG Topology (Tiny-ImageNet)

DAG Topology vs. Expressivity (Tiny-ImageNet) Convergence vs. DAG Topology (Tiny-ImageNet)
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Figure 3: Given a fixed budget of the number of parameters, networks of deep and narrow topology
have higher expressivity (converged training loss) (left), while wide and shallow ones show
faster convergence (number of epochs to reach 50% training accuracy) (middle) and smaller
generalization gap (gap between converged test and training loss) (right). All 729 networks
(when H = 3) are trained on Tiny-ImageNet. Small values (dark circles) the better. Kendall-
tau correlations (“R”) are reported in legends. Radiuses indicate standard deviations over
networks of the same graph topology (P and % 2521 dy).

Convergence Rate. A network with a fast convergence rate will reach a low training error in fewer
training iterations. Given a space of architectures training with gradient descent, the architecture
of large P and small d;, will have fast convergence rate (for details, see Theorem 4.4).

Generalization. Generalization is defined as the gap between errors on the training set and testing
set, i.e.,, how much a network can learn generalizable predictions on unseen data. A network of
poor generalization (large gap) will just memorize the training data and lead to overfitting.

Given a space of architectures training with gradient descent, the architecture of large P and
small d,, will have small generalization gap (for details, see Theorem 4.5 and 4.6).

Experiments’. To verify our above analysis on the network’s expressivity, convergence, and
generalization, we choose an architecture space of H = 3 (which follows Dong and Yang (2020)),
train all 729 networks* and keep the training dynamics of all networks on Tiny Imagenet (Tin,
2015). Results in Figure 3 confirm our analysis. On all three plots, the darker circles are better:
we want lower training loss, fewer epochs to reach a fair amount of accuracy, and we want
smaller generalization gaps. We can observe that, for the expressivity, all dark circles locate on the
bottom right, meaning that they are deep and narrow graphs. However, for both trainability and
generalization, darker circles are on the top left, indicating the wide shallow graphs. For results on
CIFAR-10 and CIFAR-100 please refer to our Appendix C.1 in the supplement.

“No Free Lunch”. The above results conclude: maximizing the convergence rate and minimizing
the generalization gap will lead to networks of wide and shallow graph topology in an architecture
space. In contrast, maximizing the network’s expressivity (manifold curvature) will reach narrow
and deep topologies. This reveals a “no free lunch” behavior in the network architecture: it cannot
achieve the best in all three aspects, but has to maintain a balance.

Implications. The “no free lunch” behavior can explain important AutoML and NAS applications:

« Architecture bias in differentiable NAS. Differentiable methods are found to have an intrinsic
bias to choose more skip-connections than parameterized layers during the neural architecture
search (Zela et al., 2019; Zhou et al., 2020; Ye et al., 2022; Chu et al., 2020b,a). This bias leads
to the collapse issue, an undesirable phenomenon associated with DARTS (Liu et al., 2018b), as
noted by (Liang et al., 2019): excessive skip-connections in chosen architectures lead to shallower
networks with fewer learnable parameters compared to deeper ones, ultimately resulting in

TSee Appendix A for experiment settings.
*For H = 3, there are in total 6 possible edges in the cell 2, with each edge having 3 possible layer types (see Eq. 2:
“Linear + ReLU”, “Skip-connection”, and “Zero”), thus 36 =729,
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reduced expressive power. This observation is corroborated by common connectivity patterns
identified in (Shu et al., 2019): “architectures generated by popular NAS algorithms tend to have
the widest and shallowest cells among all candidate cells in the same search space.” Based on
our analysis, this is mainly because architecture configurations are optimized concurrently with
shared weights in the bi-level optimization in DARTS. That means architectures and operations
are selected based on network parameters that are not yet fully trained, which reflect more on
their convergence property instead of expressivity or generalization! Therefore, the differentiable
search tends to favor networks that can minimize training loss as quickly as possible. The skip-
connection can increase a network’s topological width (more paths) and reduce its depths, thus
being more favorable to the convergence of the differentiable search.

+ Good networks are of balanced depth/width. From an architecture space, given a fixed budget of
the number of parameters, networks of moderate depth and width (instead of being too wide or
too deep) show better performance (Figure 5 in (Chen et al., 2022)). This empirical observation
can be explained by our theoretical justification: because of a comprehensive effect of expressivity,
convergence, and generalization (which all contribute to the final performance), their intrinsic
trade-offs require the architecture to balance all three aspects. Since expressivity, convergence,
and generalization have different architecture biases, this further requires the network to balance
its depth and width. This intrinsic trade-off on depth/width can further facilitate AutoML
(Section 5.3 in (Chen et al., 2022)): simply pursuing a balanced network topology can speed up
the training-free neural architecture search.

+ Neural Scaling Law (Kaplan et al., 2020). When people try to scale up large models, we cannot
just simply add more layers or more channel widths, but we have to do both, to balance the
network’s depth/width and thus three properties. This can be attributed to the aforementioned
reason, that expressivity, convergence, and generalization all contribute to the final performance
but have different biases on architectures. As claimed in (Kaplan et al., 2020), “models with fewer
than 2 layers or with extreme depth-to-width ratios deviate significantly from the trend.” This
observation is supported by Figure 6 in their study, which demonstrates that when the number
of parameters is held constant, networks with too few layers underperform, while overly deep
networks converge to a singular loss curve. In a similar vein, Figure S5 in (Bahri et al., 2021)
reveals that when the width factor is fixed at 10, networks with moderate depths (16, 28) exhibit
lower loss than those with extreme depths (10, 40).

Remark 3.1. We shall emphasize that we compare different networks in a complete architecture
space: given a fixed number of nodes (feature maps), the maximally possible number of edges
(layers, or neurons) is also fixed. That means, a network can either allocate its neurons to its
width or its depth, but it cannot be both the widest and deepest in the space. The “no free lunch”
behavior states that given the same number of parameters (for a fair comparison), expressivity and
trainability/generalization pursue different choices of topological depth and width.

Formal Results

In this section, we provide formal definitions and statements of our results on expressivity, con-
vergence, and generalization to explain our core result in Section 3. Full proofs are given in the
Appendix D, E, and F in supplement. Note that, although being at the network’s initialization,
our analysis can reflect the inductive bias of architectures to the expressivity, convergence, and
generalization. Moreover, we also provide experiments to verify our theoretical analysis (Figure 4,
and more in the supplement).

Problem Setup and Architectures Notations (for the Graph Topology in Section 3.1)

We consider the computational graph of a network illustrated in Figure 2. X(©) is the input node,
XH) is the output node, and XM .. XH-D are intermediate nodes (feature maps). W is the
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layer operation (edge). The forward process of the network in Figure 2 can be formulated as below.

t—1
X0 — Zp(W(S’t)X(S)) (t € [1,H]) (1)
s=0

X € R™! where m is the absolute width of a layer. In our analysis, each layer (edge) can choose
from three operations: 1) linear transformation followed by a ReLU activation, 2) a skip-connection
(the identity mapping), 3) a zero mapping (broken edge, no forward and backward allowed):

=0 Zero 0 Zero
W { = mxm skip-connection . plx)=4x skip-connection (2)
~ N(0,I™ ™) linear transformation g (x), linear transformation

N stands for the Gaussian distribution for weight initialization, o represents the ReLU activation,
and we set ¢, = 2 (Hayou et al.,, 2019).

Expressivity Analysis of Architectures (for Section 3.2.1)

We study the functional complexity for deep networks. Our goal is to compare the expressivity of
different networks and establish links to their graph topologies. Following (Poole et al., 2016), we
consider a simple circle input X (6) = VNp [ug cos() + u; sin(6)], where 8 € [0, 277), uy and u,
form an orthonormal basis for a 2-dimensional subspace of the input space R™ (e.g. Ny = 3x32x32
for images in CIFAR-10 dataset).

We first demonstrate how the network’s graph topology impacts its norm of input-output
Jacobian.

Theorem 4.1 (Jacobian in Architectures). For ReLU networks in our architecture space (Figure 2)
of nodes 0,1, - -+, H. The total number of end-to-end paths is Py, and the depth of each path is d,
(p =1,---,Py). Weights are initialized by the standard He normal initialization (He et al., 2015). The
expectation (over the weight distribution) of the Jacobian’s norm of this network is:

; ®)

8m m?2

21 Py d d
[, Bwemdo=c. ) ep|-32 o[ %)
p=1

where C = Trmy(m (i()?;))l 7, m is the hidden layer width (Eq. 2), and I'(-) denotes the Gamma function.
2 2

An important reason why we choose manifold curvature and Jacobian to indicate the network’s
expressivity is to seek an average-case analysis (Theorem 4.1). Classic approximation theories
(which prove the existence of networks that can approximate certain functions with low errors) focus
on the best-case analysis (i.e. the existence of a certain network that satisfies low approximation
error). The best-case analysis considers the maximum complexity of functions that may be expressed
by the network by varying its parameters. In contrast, the average-case analysis considers the
typical complexity of the network with a given distribution of parameters. It is now increasingly
recognized that average-case analysis better reflects a network’s inductive biases (Hanin and
Rolnick, 2019a; Hanin et al., 2021).

Finally, to characterize the expressivity of networks via manifold curvature, we show that a
high curvature requires a small norm of Jacobian in ReLU MLP networks.

Corollary 4.2 (Curvature and Jacobian). For a ReLU network, given a unit circle input (Poole et al.,
2016), we have its curvature as the reciprocal of the norm of the input-output Jacobian:

x(0) = 13O 4
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Our goal is to maximize x(6) (i.e. to minimize ||J(6)||) via morphing the network’s graph
topology. Theorem 4.1 indicates that networks of more short paths (i.e. wide and shallow graphs)
will more likely have a larger norm of input-output Jacobian. This is because the left hand side of
Eq. 3 can be enlarged by increasing Py (wider) and reducing d,, (depth). And based on Corollary 4.2,
we can see that deep and narrow networks will have higher curvature, which is aligned with their
low training error in Figure 3. Besides, our analysis can be further confirmed by:

+ Our analysis can find the network of the highest expressivity: in our architecture space in Figure 2,
when H = 3, the largest depth is 3 with a small width of 1. This architecture indeed has the highest
manifold curvature in our experiment, and also shows the lowest training loss at converge.

« We also visualize k() vs. the graph topology. In Figure 4 left, we can indeed see that deeper and
narrower networks have higher x(6). This trend is aligned with Figure 3 left.

It is worth noting the core difference between the manifold curvature k and Hessian: the curvature
characterizes the sensitivity of the network’s output to its input, whereas the Hessian characterizes
the sensitivity of the network’s output to its parameters. Since the expressivity indicates whether
a network can learn complicated mappings from its input space to output space, the manifold
curvature is a more precise characterization than Hessian.

Convergence Analysis of Architectures (for Section 3.2.2)

We formally link the network’s convergence rate with its graph topology. We first follow the bound
of convergence rate by a network’s least eigenvalue of it NNGP kernel (Chen et al., 2022).

Theorem 4.3 (Linear Convergence of Architectures (Chen et al., 2022)). Consider an architecture
of H nodes and Py end-to-end paths. At k-th gradient descent step on N training samples, with MSE

(K
loss L(k) = %Hy — XHE) (k) |2, suppose the learning raten = O (%ZO(H)) and the number of

(NPH)4 NHPy (NPH)Zlog(%)zo(H)
M (KHE) S 2 (KD) , we have

_ UAmin (K(H) )
2

neurons per layer m = Q (max {

k
ly = X ()2 < (1 ) Iy - X (). )

Kl.(]H) = (Xl.(H),XJ(.H)) is the network’s NNGP kernel at node H (i, j € [1, N]), whose expectation is
taken over the network’s random initializations. Py is number of end-to-end paths from X(©) to XH),
This means larger Ay, (KH)) indicates faster convergence. Next, we give the theorem that
bound the NNGP’s least eigenvalue by the network’s graph topology.
Theorem 4.4 (A, (K)) of Architectures). For ReLU networks in our architecture space (Figure 2)

of nodes 0,1, - -+, H. The total number of end-to-end paths is Py, and the depth of each path is d,
(p =1,---,Py). The least eigenvalue of NNGP kernel of this network is:

Py
Py - ZfdP(Kff))] i,j € [1LN]. (©)
p=1

In Eq. 33, f is a function (defined in Appendix F.4) that characterizes how the NNGP kernel K
propagates through layers in a ReLU network. f(Kj;) > K;j and f(K;j) € [0,1). We also define
dP
——
dp-power composition of a function as f° 4 = fofo-- o f(-). We target morphing the network’s

Amin (K(H)) < min
i#j

architecture to maximize Ap;, (K (H )), and we have the following steps:

1. Whenever we add one more path, Py will increase by 1, and Zi vf dp (Kl.(jo)) will increase one

more term. For a single path, {4 (Kl.(jo)) € [0,1). We can thus guarantee to improve Ay, (K1)
by a positive margin by adding more paths. Therefore, we should first maximize Pg.
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NTK vs. DAG Topology (Tiny-ImageNet)

Curvature vs. DAG Topology (Tiny-ImageNet) NNGP vs. DAG Topology (Tiny-ImageNet)
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Figure 4: Given a fixed budget of the number of parameters in an architecture space, networks of
deep and narrow topologies have higher expressivity (manifold curvature) (left), while wide
and shallow ones have both large convergence rate (A, of NNGP) (middle) and smaller
generalization gap (A, of NTK) (right). Larger the values (white circles) the better in all
three plots. Kendall-tau correlations (“R”) are reported in legends. Radiuses indicate standard
deviations over networks of the same graph topology (P and % Zﬁ:l dy). Curvature and Amin
of NNGP/NTK are averaged over three random runs.

2. After fixing Py to be the maximal number of paths in a graph, we should minimize
1}::1 féo (Ki(jo)), i.e., to put as fewer as number of linear transformations on the edgesS.

Only having an upper bound may not be enough to confirm the dependence of Ay, (K)) on the
graph topology. To demonstrate that this upper bound is meaningful, we also visualize Ay, (K1)
vs. graph topology in experiments. In Figure 4 middle, we can see that wider and shallower
networks have higher Ay, (K H )). The theoretical and experimental analysis tells us that networks
that are wider (larger Py) and shallower (smaller Z?Zl f dP(Ki(;)) )) will more likely to converge
earlier, which is aligned with their faster convergence in Figure 3 middle.

Besides, our analysis can find the network of the best trainability: in our architecture space in
Figure 2, when H = 3, the largest number of unique paths is 4, with the smallest averaged depths
as 0.25. This architecture indeed has the fastest convergence speed in our experiment.

Generalization Analysis of Architectures (for Section 3.2.3)

In this section, inspired by recent works (Arora et al., 2019b; Cao and Gu, 2019), we give the
generalization bound of architectures via neural tangent kernel (NTK) (Jacot et al., 2018) and
Rademacher complexity in the over-parameterization regime. We then analyze the architecture’s
impact on this generalization bound.

Theorem 4.5 (Generalization of Architectures). Suppose dataset S = {(x;, yi)}ﬁ\i | are i.i.d. samples
from a non-degenerate distribution D(x,y), and m > poly(N, 2551 dp, A1 (G, §71). Consider

any loss function £ : R X R — [0, 1] that is 1-Lipschitz, then with probability at least 1 — § over the
random initialization, the network trained by gradient descent for K > Q(m log %) iterations
has population risk Lp = E(x,,)~pD(x,y) [£(f(x:K)), y)] that is bounded as follows:

Py _
1o <0(( Y. dp)- \/yT(GUﬂ;V X0 o /logx/m) o
p=1

where GH) = (‘93(‘(;), a§$> ) is the NTK of the network, and W is the collection of all weights. We

use O(+) to hide the logarithmic factors in O(-).
We leave the proof of the above theorem in the Appendix F.1. Since the leading term of the

N . T(GH))-1 . .
generalization bound is (Zﬁfl b) - \/ M and all networks in our architecture space

share the same data and labels, we compare the generalization bound for different networks based
on the following inequality:

$We need to make sure Zf)’:l dp > 0, since a network of no parameterized layers will not learn anything.



Py T(G(H))-1 Pu
(de).\/y © ;\r (X X)y B A pe——— ®)

p=1 p=1 /1mir1<G(H))
We can recursively compute the NTK from the NNGP (Jacot et al., 2018; Arora et al., 2019c¢):
G = k) L kW=D G(O) _ g (0) ©

where K" = (p(Wh=10) x(h=1)) 5w (h-Lh) x(h=1))y and h € [1, H]. Finally, we give the theorem
that bounds the NTK’s least eigenvalue by the network’s graph topology.
Theorem 4.6 (Amin(G1)) of Architectures). For ReLU networks in our architecture space (Figure 2)

of nodes 0,1, - -+ ,H. The total number of end-to-end paths is Py, and the depth of each path is d,,
(p=1,---,Py). The least eigenvalue of NTK kernel of this network is:

Py Py Py 9p e
Py - Zfdp(Ki(;))) Y A= Zfe(Ki(Jf))) l_lfk(Ki(;)))] i,j € [LN]. (10)
p=1 k=1

Amin(G(H)) = mif_l
#J p=1 p=1e=1

In Eq. 55, f is a function (defined in Appendix F.2) that characterizes how fast the NNGP kernel
K propagates through layers in a ReLU network, and f(Kj;) € [0,1) given K;; € [0,1) (Hayou
et al,, 2019). Note that fk(Ki(;))) = 8fk(Ki(]9))/afk_1(Ki(Jp)). We then target on how to morph the
network’s architecture to minimize the leading term in the generalization bound in Eq. 8. Basically,
we need to minimize both 21}351 dp and \/ w (i.e., to maximize A, (GH))):

1. To minimize Zﬁi’l dp in Eq. 8: we prefer shallower graph structures when Py is fixed.

2. To maximize the upper bound of Apin (GH)), we consider two groups in Eq. 55:

o Py- Zi af dp (Kl.(jo) ): this group is the same as NNGP in Eq. 33, which favors wide and shallow
graph structures.

. 211?:11 dp — Z£=1 2321 fe(Kl.(jO)) 5, fk(Ki(jO)): these two are extra terms introduced by NTK.

As d, — oo, we have fdP(Kl.(jO)) — 1land fk(Kl.(jO)) — 1. Therefore, as d,, grows, two terms in
this group compete with each other, and will be canceled in a large limit of d,,.

Only having an upper bound may not be enough to confirm the dependence of Ay, (GH))
on the graph topology. To demonstrate that this upper bound is meaningful, we also visualize
Amin (GU1)) vs. graph topology in experiments. In Figure 4 right, we can see that wider and shallower
networks have higher )Lmin(G(H )). The theoretical and experimental analysis tells us that wider
and shallower networks (larger P, smaller 25:1 dp) will more likely to have lower generalization
gap, which is aligned with their low “test — training error” in Figure 3 right.

Conclusion and Discussions

To facilitate the explanation of the architecture bias in AutoML and NAS applications, in this work,
we jointly analyze a network’s expressivity, trainability, and generalization, and how they are
influenced by the architecture’s graph topology. Given a fixed budget of the number of parameters,
we show that the expressivity favors networks of deep and narrow graph topologies, whereas both
the trainability and generalization prefer wide and shallow ones. We for the first time discover that
these inductive biases lead to a “no free lunch” behavior in deep network architectures: we cannot
achieve the best over all three aspects in one network.

We identify three limitations in our current methods and results. First, different networks may
not necessarily share the same optimal learning rate, and the comparison under the same training
protocol may be unfair. Second, finding a “golden standard” for characterizing the expressivity of a
neural network is still challenging. Finally, our analysis still focuses on the network’s initialization
stage, and characterizing the training dynamics is still meaningful but challenging.
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7 Broader Impact Statement

Our work has a significant impact on the research community of automated machine learning
and neural architecture search. Overall, our work sheds light on the limitations and challenges
of optimizing neural networks in an architecture space. We challenge the prevailing assumption
that there exists a single optimal network architecture and instead highlight the importance of
balancing these three aspects when optimizing neural networks.

Our research is crucial for improving the performance of automated machine learning and
neural architecture search algorithms, as we provide a theoretical foundation for designing better
architectures. Additionally, our work has the potential to stimulate further research and innovation
in AutoML and NAS, as researchers seek to optimize their algorithms by balancing expressivity,
convergence, and generalization. Moreover, the impact of our work extends beyond AutoML and
NAS to the broader field of deep learning, as it advances our understanding of the underlying
principles of neural networks and could lead to more robust and reliable systems.

The work itself does not have any direct negative societal impacts. However, it is important to
recognize that the broader research area of automated machine learning and neural architecture
search could potentially have unintended negative consequences if not used responsibly.

Potential negative impacts: 1) our work could not directly resolve the risk that the AutoML
algorithms may learn and replicate existing biases in the data, leading to biased decision-making in
applications such as hiring, lending, and criminal justice; 2) our work could not directly resolve
the risk that the automation of tasks that were previously performed by humans, leading to job
displacement and potentially widening economic inequality.

8 Submission Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section 3 and 4.

(b) Did you describe the limitations of your work? [Yes] See Section 3 and 4. [Yes] See Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 7.

(d) Have you read the ethics author’s and review guidelines and ensured that your paper
conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. ..

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 4.

(b) Did you include complete proofs of all theoretical results? [Yes] See our appendix.
3. If you ran experiments. ..

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
tal results, including all requirements (e.g., requirements. txt with explicit version), an
instructive README with installation, and execution commands (either in the supplemental
material or as a URL)? [Yes] See our supplement.

(b) Did you include the raw results of running the given instructions on the given code and
data?
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(c) Did you include scripts and commands that can be used to generate the figures and tables
in your paper based on the raw results of the code, data, and instructions given? [Yes] See
our supplement.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
code is properly documented? [Yes] See our supplement.

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed
hyperparameter settings, and how they were chosen)? [Yes] See our Appendix A.

(f) Did you ensure that you compared different methods (including your own) exactly on
the same benchmarks, including the same datasets, search space, code for training and
hyperparameters for that code? [Yes]

(g) Did you run ablation studies to assess the impact of different components of your approach?
[Yes] See our Appendix C.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]
(i) Did you compare performance over time?
(j) Did you perform multiple runs of your experiments and report random seeds? [Yes]

(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)?

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations?

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUS, internal cluster, or cloud provider)?

(n) Did you report how you tuned hyperparameters, and what time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a NAs approach; and
also hyperparameters of your own method)? [Yes] See our Appendix A.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix A.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a UrRL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(1rB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]
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Experiment Settings

Tiny Imagenet contains 200 classes for training, each class has 500 images, and the test set contains
10,000 images. All images are 64X64 colored ones. Networks are trained for 3000 epochs with
SGD, a batch size of 128, and a constant learning rate of 0.005. No augmentations, regularizations,
weight decay, or momentum are applied. Layer width m = 256 for all networks, which is a typical
choice studied in previous work (Lee et al., 2020). Note that on average, architectures in our
architecture space are of 3.33M parameters (with a standard deviation of 0.076M), versus 0.1M
images on Tiny-ImageNet. This means our networks are in an over-parameterized regime. We use
the converged training loss as expressivity (lower the more expressive). Inspired by (Hanin and
Rolnick, 2018), we measure the convergence as how many epochs a network requires to reach 50%
accuracy (fewer epochs the faster convergence). The gap between test and training loss represents
the generalization (smaller gaps generalize better).
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C.1

Table 1: Ensembling + low-rank regularization can improve expressivity-convergence-generalization
trade-off of architectures. “(:, -)” indicates two architectures to ensemble. By ensembling
two weak architectures (“II” and “III”) with low-rank regularization (random unstructured
pruning), we can achieve better trade-off (“V”) than the best architecture (“I”) in our space.
Experiments done on Tiny-ImageNet (license is publicly available) and V100 GPUs.

‘ Architecture ‘ . ‘Rankings (out of 729 NNs, smaller the better)
Pruning Sum of
L <P Ensemble Ratios % . - Ranki
‘ P X p=1 dp Params. ‘ atios % | Expressivity Convergence Generalization Rankings
L bestof 729NNs | 4 1.5 3.53M | 0 | 7 76 5 152
II. wide shallow 4 1 3.46M 0 217 39 1 257
III. deep narrow 1 3 3.4M 0 538 541 1080
IV. ensemble (IL T | (4,1)  (1,3)  3.66M v 0 46 180 231
V.ensemble (ILTI) |(4,1) (1,3)  3.51M v II:20, 1 50 32 38 109

Better Trade-off by Ensembling and Low-rank Regularization

One would feel discouraged about the “no free lunch” behavior of network architectures. Indeed,
a single architecture cannot improve them all at the same time. However, this motivates us to
further study: given the winner of each aspect, can we integrate them into a stronger one with a better
trade-off in all aspects?

Our first intuition is to ensemble multiple architectures that can cover all three aspects. We
choose a wide shallow architecture (P = 4, & Zi 1dp = 1) for its convergence and the generalization

(similar bias in architectures), and include another deep narrow one (P =1, 3 Z 1dp = 3) for its
expressivity. Inspired by the super-network concept in (Liu et al., 2018b), we make two architectures
share their nodes (features) but with separated edges (keep their own weights). This will improve
both convergence and expressivity, but will jeopardize its generalization (row “IV” in Table 1).
Regularizations, such as weight decay and augmentation, are introduced in Deep Learning to
avoid overfitting. Since our focus is on network architecture, we instead seek implicit regularizations
on the architecture itself, instead of from an optimization perspective. Implicit bias to low-rankness
is observed in both deep linear networks (Arora et al., 2019a) and practical ones (Gur-Ari et al., 2018;
Hu et al., 2021). Therefore, we explore low-rank regularizations on our network architectures.
Recent works demonstrate that pruning can act as an implicit regularization and remove the
model’s redundant intrinsic dimensions (Chen et al., 2020; Xu et al., 2019; Yu et al., 2017). Here
we consider unstructured random pruning, to reduce a network’s redundancy and regularize its
expressivity. We multiply a binary mask to each weight M - W, where M is sparse at a certain
pruning ratio. With an appropriate pruning ratio, in row “V” of Table 1 we show that, an ensemble
of multiple (weak) architectures with low-rank regularizations can achieve a better trade-off among
the three aspects, even higher than the best (single) architecture (row “I”). Specifically, we calculate
three rankings of the expressivity, convergence, and generalization over 729 architectures in our
architecture space (H = 3), and compare the sum of the three rankings. Our ensembling plus
low-rank regularization methods achieve a better sum of rankings, with an even fewer number of
parameters. For more ablation studies, please refer to our Appendix C.2 in the supplement.

More experiments

Empirical expressivity, convergence, generalization vs. graph topology on CIFAR-10/100

We include more experimental results here. First, we show correlations between expressivity,
convergence, generalization and graph topologies on CIFAR-10 and CIFAR-100. Figure 5 again
demonstrates that the expressivity favors deep wide networks, whereas the convergence and
generalization prefer wide shallow networks.
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Figure 5: Deep narrow networks have higher expressivity (left), while wide shallow networks converge
faster (middle) and generalize better (right). All 729 networks (H = 3) are trained on CIFAR-
10 and CIFAR-100. Smaller values (dark circles) the better in all three plots. Kendall-tau
correlations (“R”) are reported in legends. Radius of circles indicates standard deviations over
networks of the same graph topology (P and 1% 25:1 dp). Left: expressivity by training loss
at convergence. Middle: convergence by number of epochs required to reach 50% training
accuracy. Right: generalization gap between test and training loss at convergence.
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C.2 Ablation study of ensembling and pruning

We conduct a systematic study of different pruning ratios on two ensembled graphs in Figure 7.
architecture 1 (row II in Table 1) is wide shallow and contributes to the convergence and general-
ization (with poor expressivity). architecture 2 (row III in Table 1) is deep narrow and contributes
to the expressivity (with poor convergence and generalization).

In Figure 7, lower (dark) sum of three rankings indicate better trade-off. We can see that more
aggressive pruning ratios on architecture 2 (negative correlation with the sum of rankings) will
mitigate its overfitting issue, improving its generalization and leading to better trade-off. In contrast,
we should not impose heavy pruning ratios on architecture 1, which will further jeopardize its
expressivity. Meanwhile, higher pruning ratios (top right) will lead to smaller model sizes (circle

radiuses).
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Figure 7: Different pruning ratios on two ensembled architectures. X-axis: wide shallow graph (row II in Tab. 1).
Y-axis: deep narrow graph (row III in Tab. 1). Circle radiuses indicate model sizes (number of parameters)
after pruning. Kendall-tau correlations between pruning ratios and the sum of rankings are reported in
legend.

C.3 Training with Optimal Learning Rates Tailored for Architectures

D

D.1

Standard architecture benchmarks (Ying et al.,, 2019; Dong and Yang, 2020) train networks with a
shared training recipe. As architecture topologies are very diverse in these benchmarks, blindly
using the same training setting for all networks may not be optimal. In this section, we further
study the empirical expressivity, trainability, and generalization by training networks with their
optimal learning rates tuned by grid search. As shown in Figure 8, even with architecture-wise
optimal learning rates, our conclusion still holds: in a complete architecture space, given a fixed
budget of network parameters, deep narrow networks have higher expressivity, while wide shallow
networks converge faster and generalize better.
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Figure 8: Deep narrow networks have higher expressivity (left), while wide shallow networks converge
faster (middle) and generalize better (right). Networks (H = 3) are trained on Tiny-ImageNet,
with optimal learning rates tuned for each network. Smaller values (dark circles) the better
in all three plots. Kendall-tau correlations (“R”) are reported in legends. Radius of circles
indicates standard deviations over networks of the same graph topology (P and % 25:1 dp).
Left: expressivity by training loss at convergence. Middle: convergence by number of epochs
required to reach 50% training accuracy. Right: generalization gap between test and training
loss at convergence.

Expressivity

In this section, we study the functional complexity for deep networks. Our goal is to compare the
expressivity of different networks and establish links to their graph topologies. Below, we consider
a simple circle input X (6) = VN [ug cos(d) + uy sin(6)], where 6 € [0, 27), uy and u; form an
orthonormal basis for a 2 dimensional subspace of the input space R™ (e.g. Ny = 3 X 32 x 32 for
images in CIFAR-10 dataset).

Proof of Theorem 4.1

Before we prove Theorem 4.1, we first give a general fact about the number of paths in a graph.
Suppose a graph of nodes 0,1, --- , H — 1, it has Py_; end-to-end paths. Then, if we add one more
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node (H) to this graph, it will have Py = Zf:_ol 1(WrH) £ 0). P, paths, where 1(WH) £ 0) = 1
if WAH) % 0 otherwise is 0. We set Py = 1. Intuitively, we can create a new edge from each
previous node to the new node H. Therefore, for node h € [0, H — 1], we first have a number of Py,
path choices to go from node 0 to A, then have one choice to go from h to H. Therefore, Py simply
equals to the sum of all previous paths, with any zero operators (disabled edges) removed.

Theorem 4.1 (Jacobian in Architectures). For ReLU networks in our architecture space (Figure 2)
of nodes 0,1, - -+ ,H. The total number of end-to-end paths is Py, and the depth of each path is d,
(p=1,---,Py). Weights are initialized by the standard He normal initialization (He et al., 2015). The
expectation (over the weight distribution) of the Jacobian’s norm of this network is:

8 m m2

27 Pr d d
L E[IJ(0)1d0=C- > exp [—5—" +0 (—")] (11)
p=1

where C = %, m is the hidden layer width (Eq. 2), and T'(-) denotes the Gamma function.
2T

Proof of Theorem 4.1. For a ReLU MLP of L layers, based on the chain rule, we can write its Jacobian
as

Jxo = DOWEH pE-Dyw -1 .. pOy 1)

where W) is the matrix of weights from layer £ — 1 to layer £ and D) is an m x m diagonal matrix:

D) = Diag 1{ i=1,...,m

(0) 5
z; 20}

(

whose diagonal entries are 0 or 1 depending on whether the pre-activation zi[) of neuron i in layer

¢ is positive at our fixed input.

4OH)
Next, we use induction to show that the Jacobian of a network as Jx = gfl I [ﬁ 0 DOWWO,

where dl(,O’H) indicates the depth of p-th path that starts from node 0 and ends at node H.

1. Suppose for a network of H — 1 nodes, it has Py_; paths and its Jacobian is
4OH-D)
Jxo = S0, DOWO.
2. Now we add one more node H. We can add one edge from each of previous nodes 0,--- ,H — 1

to this new node H.

3. For example, for the node H — 1, the newly added edge contributes to the Jacobian with
L(WH-LH) £ g) . (D(H_l’H)W(H_l’H))d<H_I’H), where the depth from node H — 1 to H is
dH=LH) = 1 if this edge is a “linear + ReLU” layer, or d#=1H) = ¢ if this edge is a skip-
connection.

4. Thus, after adding the new edge, the Jacobian from the node H - 1 is
_ d(O,H—l) B _ (H-1H)
Jxo = ]l(W(H 1,H) £ 0) - 21131;({1 ( H[i’l DZWF) (D(H LH)y (H 1,H))d H-1H .

We can merge dl(,O’H_l) and d#~1H) to complete a new path that starts at node 0 and ends at
node H, whose depth is d[(,O’H).
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Now, consider all nodes 1,--- , H — 1, we can write the new Jacobian as:

Jxo = (12)
Py d]()O,H—l)
—1
1(W(H—1,H) + 0) Z ( l_l D[W[) (D(H_I’H)W(H_I,H))d<H_lvH) (node H— 1) (13)
p=1 =1
Py dI(JU,H—Z)
—2
AW 5 0) 3 ([ ] DW)(DHIWH-2E) AT (node i - 2) (14)
p=1 =1
P (15)
Py d;m)
+1WD = 0) 3T ([ ] pW)(DEHW ) (node 1) (16)
p=1 =1
+TWOH % g) (DOH W OH))d (node 0) (17)
Py dl(:,o’H_l)+d[(,H_l'H)
—1
= LWHLH) » ) Z ( 1_[ D‘”W‘”) (node H — 1) (18)
p=1 =1
Py di(JO,H—Z)_'_dI(’H—Z,H)
—2
+L(WH-2H) 4 ) Z ( ]—[ D<">W<">) (node H — 2) (19)
p=1 =1
.. (20)
P, d1(70,1)+d1()1,H)
+1(WEH 2 q) Z ( ]_[ D“)W(”) (node 1) (21)
p=1 =1
+ L(WOH 2 0)(DOHy OH))d™ (node 0) (22)
Zf:_ﬁl ]l(W(h,H) £0)P, d;)o,H)
_ D ( [ D<f>w<f>) (23)
p=1 =1
Py d;OYH)
= l_[ DOWWO (24)
p=1 =1
Next, based on the Proposition C.2 in (Hanin et al., 2021), we know that
27 5
J E|DYWOXED|do =1 - — + O(m™?),
0 8m
where the expectation is taken over the weight distribution. Therefore, we can conclude:
(0.H)
2 2 Pa %p
| ztm@mas =" [T EIOWOxD)ag
0 0 =
p—l =1 (25)
Py
5d d
=C- exp [———p+0(—p)],
8m m?
p=1
m+1
where C = %(Zm))l/z m is the hidden layer width (Eq. 2), and I'(-) denotes the Gamma function.
2%

O
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D.2 Proof of Corollary 4.2
We first give the general definition of manifold curvature.

Lemma D.1 (Curvature of Curves (Lee, 2006)). Consider a curve in Riemannian manifold M, that is a
map XH) () : I — M, whereI C R is some interval. Define J(0) = 99X 1) (0), i.e. the input-output
Jacobian of the map X H). We have the curvature of the curve as

k(0) = IIJ((9)|I_3\/IIJ(9)||2||<?¢9J(9)||2 = (J(0) - 9J(0))2. (26)
Lemma D.1 is also used in (Poole et al., 2016) to characterize the expressivity of networks.

Corollary 4.2 (Curvature and Jacobian). For a ReLU network, we have its curvature as the reciprocal
of the norm of the input-output Jacobian:

x(0) = 1J(O)™ (27)

Proof of Corollary 4.2. Note that we have Jy) = H%Zl DWW and 9o x = 0. Therefore:

ax (0
Jo=Jxwo - P Ny [—ug sin(0) + u;g cos(0)] - Jxwo
Axo X0 X
o0]s = i Nl
oJo= 30 "op TIx0 g (28)
2x(0)
=0- > + vV Ny [—ug cos(0) —u; sin(0)] - Jxo

= =Ny [ug cos(0) +uy sin(0)] - Jx
Given uy and u; are orthonormal bases, and based on the definition in D.1, we have:
x(0) = IO >VITO) 121163 (0112 = (J(O) - 9] (6))?
= (@)1 Nolly o I - NollTxco 12 — (No(sin(6) cos(6) — cos(8) sin(O)) w122 (29)
=[JOII™

E Convergence

We first follow the definition of f in (Chen et al., 2022) that characterizes how NNGP kernel
propagates through ReLU layers:

Lemma E.1 (Propagation of K (Chen et al., 2022)). Let ReLU activation o(x) = max{0, x} and c, = 2.
Define the propagation as K = f(K'=V) and b") = g(b!"=1)). When the edge operation is a linear
transformation, we have:

) _ (-1 _ (-1
K" =f(K; ) =K;
! I-1 -1 D) (1
K\ = (k) = h(cKP KD
2Ci(j_1) arcsin Ci(}_l) +24/1 - (Cl.(jl_l))2 + nCi(j_l)
2 (30)

[c® & ®
K;; ij

W _ g0 [
Cij’ = Kij INKyi Kj;

_ Co
b = g(b/™") = g
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E.1

We re-state some facts:
+ h(-) is a monotonically increasing function in [0, 1), and lim -1 _,, - h(Ci(;_l)) =1 (Hayou et al,,
ij
2019).
. f (Kl.(;))) reflects how NNGP propagates through a path, and f(Kl.(jl_l)) > Ki(jl_l).

Proof of Theorem 4.4

We first give a condition where the propagation of the sum of multiple NNGP kernels equals to the
sum of individual propagations of NNGP kernels.

Corollary E.1. Given a graph of nodes 0,1,--- ,H, assume Vpy,p2 € [1,Pyl,p1 # p2, we have
dp, = dp,, then we have:

Py Py
FOFE ) = F(F%K)). (31)
p=1 p=1

Proof of Corollary E.1. Denote d = d, for p € [1, Py]. Based on Lemma F.4, we have:

Py
f(Z; Fo &) = £(Pu - fUKD)
=

Py - fAK)

= h(
Jou - P P - UKD

IWF(Pa - fHE ) f(Pa- 4K

FUKS) )
= h( -/ )VPr - P
VAR - k)
Py
=Py f(FUE)) = D P (R))
p=1
O

Remark E.2. Below, we assume that all paths that end at any intermediate node have the same depth
(i.e., have the same number of ReLU layer), where the Corollary E.1 will hold at any intermediate
node h € [0,H].

Theorem 4.4 (A, (K™)) of Architectures). For ReLU networks in our architecture space (Figure 2)
of nodes 0,1, - -+ ,H. The total number of end-to-end paths is Py, and the depth of each path is d,,
(p =1,---,Py). The least eigenvalue of NNGP kernel of this network is:

Amin(KH)) < min
i#j

Py
Py — :E:‘fdp(IKi?))] i,j e [1N]. (33)
p=1

Proof of Theorem 4.4. We adopt the similar idea in our proof in Section D.1.
We first use induction to prove that given a graph of nodes 0, 1, - - - , H, its NNGP kernel at X /)
is:

KH) f%jfd“f”(l(m>)
= P .
p=1

1. Suppose for a network of H — 1 nodes, its NNGP kernel at X®#~1 has
(0.H-1)
K(H—l) — 251;11—1 fdpo 1(K(0))
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2. Now we add one more node H. We can add one edge from each of previous nodes 0,--- ,H — 1
to this new node H.

3. For example, for the node H — 1, the newly added edge contributes to the NNGP kernel with
L(WWH-LH) % gy . pd" (K(H-1) Where the depth from node H — 1 to H is d#-1H) = 1 if
this edge is a “linear + ReLU” layer, or dH~1H) = 0 if this edge is a skip-connection (we define

fUK) = 1).
4. Thus, after adding the new edge, the NNGP kernel from the node H — 1 to node H is
KH = ((WH-LH) % ¢ _fd(H‘1’H>( Priy fd( (K(O))).

5. Based on Corollary E.1, we have:

Pg—1
K = qw#H 5 g) . K pd (" (k).
p=1

(0,H-1)
dp

6. We can merge and dH~H) to complete a new path that starts at node 0 and ends at node

(0.H)
H, whose depth is di(,O’H).Therefore, we have K1) = L(WH-LH) % ¢) . Zi:fl fdpo (K).

Now, consider all nodes 1,--- , H — 1, we can write the new NNGP kernel as:
Py
K = 1w 0 5 0) 3 %™ (K©)(node H - 1) (34)
p=1
Ph-;
FAWH2H 5 g) 3 4" (K©) (node H - 2) (35)
p=1
Py
LW % 0) 3 4 (KO) (node 1) (37)
p=1

(0.H)

+1T(WOH) 2 g) £ (K©) (node 0) (38)

S L (W RE) £ 0) Py,

_ Z (f ;OH) (K(O))) (39)

p=1

_ Zf Pt (K(O)) (40)

Note that for diagonal elements (inner product of features from the same sample), since Kl.(l.o) =1
and fd(Ki(iO)) =1 for any d > 0, we have Kl.(l.H) = Py (i € [1, N]). Therefore, we have:

. H
Amin(Kz(xz)) = Y?;EIJDPH - Ki(j )

(41)
= min
i#j

Py
(0,H)
Py — ZfdPH K(o))] i,j €[1,N],
p=1

where Kz(xz) denotes any 2 X 2 submatrix of K () From Lemma 3.3 in (Chen et al., 2022), we also

have Amin(K) < min;z; Amin (Kzx2). This complete the proof. O
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F Generalization

F.1 Proof of Theorem 4.5
Proof. Here we provide a high-level proof for the generalization bound of architecture. Before
giving the proof of Theorem 4.5, we first introduce several lemmas inspired by Cao and Gu (2019).
Lemma F.1. There exists an absolute constant x such that, with probability at least 1 — O(nL?) -
exp[-Q(mw?3L)] over the randomness of W), where L = 2551 dy, foralli € [n] and W,W’ €
BWW, w) with o < kL™%[log(m)] =3/, it holds uniformly that

L—

[ () = v (x0) = (¥ fir (), W' = W)| < O[0! *L*Yimlog(m)) - 3 IW ") =W D

1

—_

~
I

Note that L = 2551 dy, considers all the operations of trainable parameters. Since the cross-
entropy loss #(+) is convex, given Lemma F.1, we can show in the following lemma that near
initialization, L; (W) is also almost a convex function of W for any i € [n].

Lemma F.2. There exists an absolute constant x such that, with probability at least 1 — O(nL?) -
exp[-Q(mw?3L)] over the randomness of W), for any e > 0,i € [n] and W,W’ € BWW), v)
with @ < kL~°m™%/%[log(m)]~3/2€/4, it holds uniformly that
Li(W’) > Li(W) +(VwL;(W),W —W) —e.
We then derive a bound of the cumulative loss. The result is given in the following lemma.

Lemma F.3. For anye,§,R > 0, there exists
m*(e,8,R, L) = é(poly(R, L)) - e ™ -log(1/9)

such that if m > m* (e, 6, R, L), then with probability at least 1 — § over the randomness ofW(l),for
anyW* € BWW, Rm~12), w . WD) withn = ve/(Lm), n = L?R?/(2ve?) for some small
enough absolute constant v has the following cumulative loss bound:

mLiW®) < B Li(W™) + 3ne.

With the above lemmas at hand, we can apply Corollary 3.10. in (Cao and Gu,
2019), which states that: For any § € (0,e”!], there exists (5, L, n Amin(GH)) =
5(poly(L, 1/Amin(G)))n7 log(1/8) that only depends on &, L, n and Ay (G), such that if
m > m(5,L,n, Amin(G(H ))). Then with probability at least 1 — § over the randomness of W, the out-
put of SGD with step size § = k - \/yT (GH))~ly/(m+/n) for some small enough absolute constant

K satisfies,
Io() < 5(L . \/yT(G(H)):(X, X)y) N O( llog(:/c?)) (42)

where L = 2,551 d, is the total depth in a graph, G denotes the NTK of the architecture. We use

O(-) to hide the logarithmic factors in O(-).
We can apply the above bound to the graph structure, in which the depth is defined as the

number of linear transform operations, i.e., L = Zi’jl dp,and R = \/yT(G(H N-1(X, X)y. Therefore,
we can achieve the following final result:

Py T _
>y \/y <G<H>)n1<x,X)yD+ O( /bg(:/é)). @)
p=1

O

Lp(f) < 5(
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F.2 Propagation of NTK of Architectures

In the last section, we present a generalization bound of an architecture through NTK, here we
illustrate how to obtain the NTK recursively and provide the essential definitions.
The definition of NTK of an architecture is given as follows:

Gl _ < oX H) ax(H)>

, (44)
W oW

where W is the collection of all weights. Then we can recursively compute the NTK from the NNGP
(Jacot et al., 2018; Arora et al., 2019c):
G = k™  KWG*h=D  (he [1,H)), G =k (45)

where K™ = (p(W(h_l’h)X(h_l)),p(W(h_l’h)X(h_l)».
By Eq. 45, we can recursively compute the NTK G from K© through K and K.
Finally, we provide the definition of f given in the main text by the follow lemma.

Lemma F.4 (Propagation of K). Let ReLU activation o(x) = max{0,x} and c; = 2. Define the
propagation as K1Y = f(K=V). When the edge operation is a linear transformation, we have:

() = ppe=1)y
K =f(K; 7)=1

arcsmC(I 2 1

K = f(KU) = + (46)
) _ (D () (D)
Cij - Kij / Kii ij
Proof. According to NNGP propagation formulation (Lee et al., 2017), we have

l l
K\ = J coDoo({[K2)
(47)

Ki(jl) = J ceD;,Dyy0(u)o(v)

(-1, (=D (-1, (-1 : ) _ (D () (D)
where u = \[K;; z1and o = [K}; (C 1+4/1-(Cj; )222),w1thCl.j =K;;'/\K; K},

where z; and z, are independent differential variables. Besides, f D, = ‘/%7” I dze~ 1% is the measure

for a normal distribution.
Then we take the condition that o(x) = max{0, x} and ¢, = 2 into equations above and obtain

Kk = J ¢ D:6* (YK 2) = L 2D, = 1 (48)

Besides, for diagonal elements, we have

(I-1) . (=1) (-1 (I-1)
2C;; aresinCy; U+ 24J1— (Cl.j )2+ nC;;

) _ -1y _
Cij = h(Cl.j ) = o (49)
It is known that f is differentiable and satisfies,
f(K(l 1)) = h(C(l 1)) = arcsm(C(l 1)) + 5 (50)
O

The lemma above provides the definition for f, and indicates that f(K; i) € [0,1) given K;; €
[0,1).
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F.3 Proof of Theorem 4.6

Theorem 4.6 (Amin (G?)) of Architectures). For ReLU networks in our architecture space (Figure 2)
of nodes 0,1, - -+ ,H. The total number of end-to-end paths is Py, and the depth of each path is d,,
(p=1,---,Py). The least eigenvalue of NTK kernel of this network is:

Py Py Py dp e
Anin(G™) < min [PH S R+ - Zf (k") ﬂf"aqg”)] ije[LN].  (51)
e =1 p=1 p=1 e=1 k=1

Proof. In the proof, we follow Corollary E.1. According to the propagation function presented in
Section F.2, we know that NTK at X ) is based on NNGP:

Py
GH = gH) | gH GH-1) _ Z fd;,"’H)( K©) 4 KU GH- (52)
p=1

The first equation is expanded from the recursive expression for NTK and the second equation
is obtained by plugging the result for K) in the proof of Theorem 4.4. Note that the first

25 " dy” )(K () is fixed when the parameters of the architecture {dy, Py} are given. However,
the second term varies with the specific configuration of the architecture. In particular, the explicit
form of /lmm(K (H)GH _1)) will vary in different combinations of skip connections and “linear +
ReLU” layers.

The next step is to calculate the exact contribution of the second term in the recursive formula Eq.
52. Our goal is to find an upper bound for the smallest eigenvalue of all graph structures that satisfy
the given parameters {d,, Py }. Intuitively, to preserve more contributions from KWGh-1 (he
[1, H]), we need to put “linear + ReLU” operation in deeper layers, while leaving skip connections in
shallower layers. To this end, we follow a proof strategy from deep to early layers in an architecture:

1. According to Lemma F.4, we have Ki(iH) = 1 > Ki(JH) > 0, which implies that

Amin ((K (H)GH _1))2x2) > 0 when the edge in an architecture is a “linear + ReLU” layer, oth-
erwise K1) = 0. Thus, to maximize the Amin((K(H)G(H_l))ZXz), the edge from node H — 1 to
node H should be a “linear + ReLU” layer.

. (0H .
2. Now consider G~ = KH-! + KH-1GH=2 = PH Hot fdp (K(O)) + KH=1GH=2 Again, to

maximize the Ay ((KP~DGH-2),. ,), the edge from node H — 1 to node H should be “linear
+ ReLU” layer.

3. Repeat the above step d, — 1 times until GH~%*!, which satisfies G1~4+! = KH-d*1 4

KH-dpt1GgH-dp  — Z;Zl"d"” fdx()o'H_l) (K©®) + KH-d+1GH=dp  Again, to maximize the
Amin ((KH-dp*D GUH=dp)), .) the edge from node H — d,, to node H — d, + 1 should be “linear +
ReLU” layer.

As aresult, we obtain the structure of the architecture that can maximize the smallest eigenvalue
of NTK. Finally, we have

Py dp e
Jmin (K G, ) < Z dp= > > FED | ] A& (53)
p=1 e=1 k=1

The first term of right hand side is from diagonal element of K)GH~1) and second term of right
hand side comes from non-diagonal element of KH)G#=1) where there is d,, terms for summation
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and the product is due to the recursive formula. Plug this result back to Eq. 52, we have

Py Py Py dp e
huin (i) < P = ), £ (K7 + Do = 3 D () | [ £
p=1 p=1 p=1e=1 k=1

From Lemma 3.3 in (Chen et al., 2022), we finally have,

Py dp

Py Py e
. (H) ; _ d (0) _ e 1-(0) tk ;7-(0) ..
Aunin(G )s:g;l[PH ;fP(KUHPZ_;dp ZZf(Kij)k[lf(Kij )] ij e [LN].

p=1 e=1

(54)

(55)
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