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ABSTRACT

Pruning neural networks at initialization (Pal) has received an upsurge of inter-
est due to its end-to-end saving potential. Pal is able to find sparse subnetworks
at initialization that can achieve comparable performance to the full networks.
These methods can surpass the trivial baseline of random pruning but suffer from
a significant performance gap compared to post-training pruning. Previous ap-
proaches firmly rely on weights, gradients, and sanity checks as primary signals
when conducting Pal analysis. To better understand the underlying mechanism of
Pal, we propose to interpret it through the lens of the Ramanujan Graph - a class of
expander graphs that are sparse while being highly connected. It is often believed
there should be a strong correlation between the Ramanujan graph and Pal since
both are about finding sparse and well-connected neural networks. However, the
finer-grained link relating highly sparse and connected networks to their relative
performance (i.e., ranking of difference sparse structures at the same specific global
sparsity) is still missing. We observe that not only the Ramanujan property for
sparse networks shows no significant relationship to Pal’s relative performance,
but maximizing it can also lead to the formation of pseudo-random graphs with
no structural meanings. We reveal the underlying cause to be Ramanujan Graph’s
strong assumption on the upper bound of the largest nontrivial eigenvalue (/) of
layers belonging to highly sparse networks. We hence propose Iterative Mean
Difference of Bound (IMDB) as a mean to relax the /i upper bound. Likewise, we
also show there exists a lower bound for [, which we call the Normalized Random
Coefficient (NaRC), that gives us an accurate assessment for when sparse but highly
connected structure degenerates into naive randomness. Finally, we systematically
analyze the behavior of various Pal methods and demonstrate the utility of our
proposed metrics in characterizing Pal performance. We show that subnetworks
preserving better the IMDB property correlate higher in performance, while NaRC
provides us with a possible mean to locate the region where highly connected,
highly sparse, and non-trivial Ramanujan expanders exist. Our code is available at:
https://github.com/VITA-Group/ramanujan—-on-pai.

1 INTRODUCTION

Deep neural networks (DNN) have demonstrated remarkable performance as they increase in size, i.e,
test accuracy scales as a power law regarding model size and training data size (Hestness et al., 2017;
Kaplan et al., 2020; Brown et al., 2020; Srivastava et al., 2022). Yet, the memory requirements and
computational costs associated with the increased model size also grow prohibitively. Modern DNNs
are widely recognized to be over-parameterized, and it has been shown that eliminating a significant
number of parameters in a trained DNN does not compromise its performance (Han et al., 2015c;
He et al., 2017). This over-parameterization property enables researchers to continually propose
increasingly effective DNN pruning approaches that can dramatically shrink the model size while
maintaining performance. The resultant sparse models can then be used with software and hardware
that is optimized for sparsity, leading to faster training and inference.

Neural network pruning can generally be divided into three categories: post-training pruning (Mozer
& Smolensky, 1989; Han et al., 2015a), during-training pruning (Gale et al., 2019; Louizos et al.,
2018), and pre-training pruning (Lee et al., 2019; Wang et al., 2020), depending on the timing of


https://github.com/VITA-Group/ramanujan-on-pai

Published as a conference paper at ICLR 2023

the pruning relative to the training phase. For instance, post-training pruning methods are generally
effective when the primary goal is to reduce inference cost. However, these methods require training
the dense model fully first, potentially multiple times if iterative pruning and retraining are used. With
the prevalence of powerful foundation models such as GPT-3 (Brown et al., 2020), PaLM (Chowdhery
et al., 2022), and DALL-E 2 (Ramesh et al., 2022), the prohibitively high cost of training these large
models makes post-training pruning impractical. Therefore, pre-training pruning or pruning at
initialization (Pal) is becoming increasingly attractive due to its potential to save time and resources
end-to-end, by using a sparse DNN architecture from the outset.

The concept of pruning at initialization (Pal) was first introduced in SNIP (Lee et al., 2019), which
removes the structurally unimportant connections at initialization via the proposed connection
sensitivity. Follow-up works (Wang et al., 2020; Tanaka et al., 2020; Patil & Dovrolis, 2021) propose
advanced pruning criteria to improve the performance of Pal. GraSP (Wang et al., 2020) aims to
maintain the weights that can maximize the gradient flow. SynFlow (Tanaka et al., 2020) finds
that previous Pal methods are prone to layer collapse and adopt iterative pruning to address it.
Despite these advances, Pal still lags behind post-training pruning in terms of performance. A study
by Frankle et al. (2021) suggests that connection ambiguity may explain the performance deficit,
based on the finding that Pal exhibits surprising resilience against layer-wise random mask shuffling
and weight re-initialization.

Prior works on Pal mainly focus on “training signals” such as gradient flow (Wang et al., 2020), layer
collapse (Tanaka et al., 2020), or sanity check (random weight shuffling and re-initialization) (Frankle
et al., 2021). Since the limited information (e.g., magnitude, gradient, and Hessian) that Pals have
access to can be very noisy (Frankle et al., 2020), pruning criteria based on such information are
often ineffective. We conjecture that the graph topology of sparse neural networks, being relatively
overlooked, can be an essential source of information for pruning at initialization. Graph theory
has recently emerged as a particularly advantageous tool for analyzing DNN architectures. For
example, You et al. (2020) offers a new efficient graph representation of DNN using relation graphs
to formulate an efficient model generator. Liu et al. (2020) analyzes sparse neural networks with graph
distance and shows a plenitude of sparse sub-networks with very different topologies while achieving
similar performance. Vooturi et al. (2020); Pal et al. (2022); Bhardwaj et al. (2021); Prabhu et al.
(2018) show that maximizing good graph connectivity, i.e. by maximizing a graph’s expansion ratio,
correlates to higher performance in hardware-efficient structured masks and lottery tickets (Frankle &
Carbin, 2019). Unfortunately, prior efforts did not consider the pseudo-randomness that naturally
emerges from very good expander graphs. Therefore by maximizing sparse graph connectivity, they
are unwittingly prioritizing the formation of naive random graphs with no intrinsic structure meaning.

In this paper, we study Pal from the perspective of the Ramanujan bipartite graphs. The Ramanujan
graph is a special graph in the bounded degree expander family, where the eigenbound is maxi-
mal (Nilli, 1991), thus leading to a maximum possible sparsity of a network while preserving the
connectivity. The Ramanujan graph is intuitively well aligned with the main goal of Pal, i.e., finding
sparse and well-connected neural networks. However, we find that there is still a missing link
correlating the degree of connectivity to relative performance ranking at a particular sparsity. In
addition, we also show that in situations where highly sparse and highly connected structures are
demanded, it can be easy to generate pseudo-random graphs with no structural meanings unwittingly.

We reveal the underlying cause for such undesirable situations to be Ramanujan Graph’s strong
assumption on the upper bound of the largest nontrivial eigenvalue (fz) of layers belonging to highly
sparse networks. We hence propose Iterative Mean Difference of Bound (IMDB) as a mean to
relax [ upper bound. Likewise, we also show there exists a lower bound for ji, which we call the
Normalized Random Coefficient (NaRC), that gives us an accurate assessment for when sparse but
highly connected structure deteriorates into randomness. Leveraging our (adjusted) Ramanujan
graph-based framework, we then extensively investigate (1) whether the generated sparse structures
by existing Pal approaches follow the Ramanujan characteristics, (2) if there exists a correlation
between the Ramanujan graph property and the inference performance of the sparse structure, and (3)
if the sparse structure is also a random graph. Ultimately, we aim to shed light on a new perspective
on PAI effectiveness independent of weights, gradients, and losses.

Our contributions are summarized as follows:

* We are the first to reveal that the utility of the Ramanujan property is largely limited in
analyzing irregular graphs at high sparsity, which is often the case in analyzing Pal-generated
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architectures. We identify the root cause to be its strong assumption on the upper bound
of the largest nontrivial eigenvalue ji of the adjacency matrix and propose Iterative Mean
Difference of Bound (IMDB) as an effective fix.

* We devise another novel metric to assess whether a Ramanujan graph is also random, which
becomes increasingly likely with higher sparsity. We prove the existence of this metric
by inferring from the definition of the expander mixing lemma. Our NormAlized Random
Coefficient (NaRC) assesses the randomness of graphs, by characterizing the lower bound
of /i for which we can no longer distinguish expanders from randomly generated graphs.

* Our analysis shows that IMDB correlates strongly with the relative performance for different
Pal’s sparse masks at high sparsity. It further illustrates how NaRC can spot random
structures, and provide interesting observations on the relationship between randomness and
expansion.

2 RELATED WORK

Pruning methods (Mozer & Smolensky, 1989; LeCun et al., 1989; Hassibi et al., 1993; Molchanov
et al., 2016; Han et al., 2015b) traditionally aim to remove the unnecessary components of DNNs,
resulting in a subnetwork that can be efficiently deployed at inference. As the sizes of the modern
DNNSs have exploded, a vast amount of attention has been shifted to pruning them before training,
targeting both training and inference efficiency. Lee et al. (2019) explicitly learn a connectivity
importance score for weights and eliminate weights with the lowest scores. Wang et al. (2020)
leverage the Hessian-gradient product to discover the importance of weight to the gradient flow.
Iterative pruning approaches (Tanaka et al., 2020; de Jorge et al., 2021) show their efficacy to prevent
layer collapse, ending up with pruned networks with very small width (Patil & Dovrolis, 2021).
Although existing Pal methods surpass the naive baseline of random pruning, they are only able to
identify useful layerwise sparsity levels rather than the specific weight patterns (Frankle et al., 2021;
Su et al., 2020). As Pal only accesses very limited and noisy information (e.g., magnitude, gradient,
and Hessian) from initialization, pruning criteria based on such information may not be effective.

On the other hand, the topology of sparse DNNs - the configuration of nodes and connections among
them - can be another essential source of information. Mocanu et al. (2018) initialize sparse networks
with a Erdds-Rényi graph and dynamically optimize the graph towards a scale-free network. Evci
et al. (2020b) further expand the Erdds-Rényi graph to convolution neural networks, demonstrating
large performance improvements. Liu et al. (2020) analyze sparse DNN with graph edit distance and
show that there exists plenty of sparse sub-networks with distinct topologies that perform equally
well. You et al. (2020) study the relationship between the graph structure and the neural networks
from the relation graphs point of view. Vooturi et al. (2020); Pal et al. (2022); Bhardwaj et al. (2021)
show that maximizing the graph connectivity of sparse networks correlates to higher performance in
the structured masking and lottery tickets (Frankle & Carbin, 2019).

Recently, Ramanujan graphs have been linked to sparse structures (Pal et al., 2022; Vooturi et al.,
2020) as naturally appealing criteria to produce sparse yet well-connected DNN models. We draw
inspiration from two prior works: Vooturi et al. (2020) applies the Ramanujan bipartite graph products
for efficient, structured sparsity. In short, they achieve run-time efficiency by decomposing a dense
matrix into tiled multiplication and utilizing the Ramanujan principle to maximize connectivity
between the decomposed tiled matrices. The more recent work by Pal et al. (2022) evaluates whether
a lottery ticket’s masks exhibit Ramanujan property. If they do not, then sparsity will repeatedly be
halved until the generated masks are all Ramanujan graphs.

Besides the obvious difference that we uniquely work on pruning at initialization with end-to-end
sparsity (no dense pre-training is involved), our work also differs from these prior arts in our tackling
of irregular bi-graphs that arise from practical sparse DNNs: we are the first to identify a crucial
limitation of Ramanujan property in analyzing irregular graphs under high sparsity, which seems to
be overlooked by prior arts. We also highlight the danger of being overly expansive, which risks
graphs deteriorating into randomness. We then propose ways to relax the upper constraint to mitigate
the critical gap between theory and practice and a lower constraint to avoid the danger of randomness,
which leads to a more rigorous analysis of sparse DNNs at initialization.
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3 METHODOLOGY

Before we start, we want to explain some nomenclature that will be used excessively in our definitions.
First, a “regular” graph refers to a graph where all its vertices have the same number of in/out edges;
We refer to the number of edges as d. Analogously, when we talk about regular graphs, we refer to
any dense DNN, such as Linear or Convolutional layers once. An “irregular” graph, on the other
hand, refers to a graph with mixed number of edges for every vertex. Likewise, when speaking of
irregular graphs, we refer to the resulting unstructured pruning of DNN layers with Pal. Later, we
will explain how the DNN’s layers are represented as graphs.

3.1 PRELIMINARY: BIPARTITE EXPANDER GRAPHS

In this work, we focus mainly on the bipartite case of expander graphs. However, before giving a
formal definition, we state the following intuition: expander graphs are graphs where every subset
of vertices is not ’too large” and has “many connections” to other vertices that do not belong to the
same subset. Typically, these graphs are regular; however, we shall extend the definition to consider
finite, connected, and irregular graphs for our DNN analysis purpose.

Definition 1. A bipartite graph or bi-graph G = (L U R, E) is a graph consisting of two disjoint sets
of vertices L and R such that every edge from I connects one vertex of L and one vertex of R.

Many definitions will make use of G = (V, E), where V' = L U R instead. For most cases, it is
trivial to extend them to bipartite graphs. However, in case of extension ambiguity, we will clarify
these definitions specifically for bi-graphs.

Definition 2. Let S C V for G = (V, E); we denote N(S) = {v € V|Tu € S, (u,v) € E} to be
the neighborhood set consisting of all adjacent vertices not in |.S|.

Since we are working with bipartite graphs, S C L and N(S) C R, and there are no edges between
any two vertices in .S.

Definition 3. A (n,m, d,, a)-expander is a d-left-regular' bipartite graph G = (L U R, E), where
IL| = n,|R = m (m < n)and VS C L s.t |S| < « - n the neighborhood set of S satisfies
IN(S)| > a-|S|. Here vy € {0,1} and v € [0, d].

The « and ~y parameters control the expansion ratio of the expander and are dependent on one another.
For example, by letting o = d the regularity of L, then v < é since if |S| > 2, then we violate the

neighborhood constraints namely | N (S)| > « - |S| > n > m. The expansion ratio, @ is related
to the Cheeger constant h(G), whereby a small ratio signifies information bottleneck and a large
h(G) indicates the graph is strongly connected. A good bipartite expander graph should ensure a

large Cheeger constant so that information can flow freely.

Let us denote A € RI™IxIn+m| a5 the adjacency matrix of some d-regular bipartite graph G =
(L U R, E) with eigenvalues u(G) s.t o > ... > py—1, Wwhere d = g = |pty—1/, and corresponding
eigenvectors ¢. We define i(G) = max|,, |4 || to be the largest nontrivial eigenvalue. Due
to the nature of bipartite graphs where |ug| = |ui| = d, we will often refer to i(G) as our
third-largest eigenvalue. The expansion property of any G is represented by its spectral gap 1o —
[i(G) (see Hoory & Linial (2006)). A large gap indicates G is more “spread out” which is the
hallmark trait of the expander graph. Since pip — i > 0, we need to determine a threshold on the
spectral gap for which G can be considered as a good expander. This brings us to the notion of
Ramanujan graph property.

Definition 4. A d-regular graph is said to be a Ramanujan graph if i(G) < 2+/d — 1, where d is
graph regularity. Alternatively, following the previous discussion, Ramanujan graph can also be
expressed as i(G) < 2% /g — 1, since po = d.

Thus, all Ramanujan graphs are good expanders due to the convenient upper bound of /i(G). However,
after Pal not all graphs are regular. Therefore, we need to generalize Definition 4 for all cases. To
do so, we combine two inequalities: The first inequality states that the universal cover graph G of G

satisfies p(é) > 2% y/dgug — 1, where p(é) denotes the spectral radius of G and dqvg represents
the average degrees of GG (for details see Hoory (2005)). The second inequality, following the results

Y d-left-regular means all vertices in L have d number of edges.
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of Hoory & Linial (2006), defines a graph to be Ramanujan iff 4(G) < p(@). We relate these two
inequalities to form /i(G) < 2 % \/dgvg — 1 < p(G).

As a direct result, we can estimate any graph’s expansion property as the difference between [i(G)
and its estimated Ramanujan’s upper bound.

Definition 5. We denote the difference of bound as: Ar = 2% /dgng — 1—(G) . A value Ar < 0.0
indicates a violation of the Ramanujan property and therefore the graph may not be a good expander.

In the case of bi-graphs, we rewrite Definition 5 as Ar = /dg — 1 + v/dy, — 1 — ji(G), where dr
and dj, are the average degree of R and L respectively. Additionally, because [i(G) is the third largest
eigenvalues by magnitude, a Ramanujan graph is only defined when min(dy,,dgr) > 3.

3.2 ITERATIVE MEAN DIFFERENCE OF BOUND

In this subsection, we focus on discussing the value (i of irregular graphs, something we glossed
over in the discussion of the previous subsection and it is also largely overlooked by prior works.
Primarily, we want to address cases where jio # d and assess the effect it can have on determining if
a graph G satisfies the Ramanujan property. Here, we explicitly define the general range of 1 on all
graphs, explain its negative effects on our analysis of high, and propose a way to mitigate the effects.

Lemma 1. The value of p for any adjacency matrix A is said to be dgqvg < o < dpaz. f Gisa
connected graph, (19 = dpq. therefore G is dyqq-regular. We first prove dqg < o by using the
Rayleigh quotient. We have:

W'Ah _ 1741 Y v dy
= pumy v = ) 1
Ho lIlrel%)S hTh = 1T1 n dcmg ( )
To prove (g < dmaz, let ¢o be the corresponding eigenvector of 1o and say that v = arg max,, ¢(u).
Without loss of generality, we have ¢g(v) # 0. So, we show:

(to%o)(v) (Ago)(v) _ Z(u,v)GE bo(u

) < Z 1:dv Sdmaa:- (2)
(v,u)EE

$o(v) $o(v) $o(v)

Finally, we show that if j1g = d,;q4, then W = Z(v’u)eE 1 =d, = dyqz. In this way,

¢y is a constant vector with value d,, for all vertices w that are connected to v. By repeating the way
v was chosen then applied to u for all such vertices u, we yield the result that G is d,,,,-regular.

Ar’s limitation for irregular graphs at high sparsity: Now that we have proven the range of 1,

we can extend it to the following inequality: 4(G) < 2% y/dgug — 1 < 2% /o — 1. This inequality
shows that Ramanujan’s upper-bound estimation for (i(G) is conservatively small.

Because of our interest in analyzing high sparsity (which is often the pursuit of Pal methods),
dimaz — davg 18 possibly very large. By following Ar, we only qualify those graphs with tiny i(G) as
Ramanujan graphs. We refer to the expander mixing lemma (see detail in Sauerwald & Sun (2011)),
which relates to the relative degree of /i(G) and the smaller /i(G) (the more G appears to be random).
Consequently, in the irregular graph case, we could dismiss valid expanders due to the overly limiting
requirements while retaining only graphs with random sparse-graph structures when analyzing
high sparsity.

IMDB. We propose a new metric called Iterative Mean Difference of Bound (Ar;,,q45) as a way to
relax the Ar’s constraint. Let G be our irregular graph, we define a set K to be {K;(V, E,d;) C
G|d; > 3} the set of d-regular subgraphs in G, Ar;,qp is formally defined as:

|K|

1
Ao = T D2 VA1~ Ky G

Since every graph in K are regular, we do not have to estimate the upper bound of their /. Intuitively,
we say an irregular graph G is a good expander if its regular subgraphs are good expanders. Finally,
we extend Eq 3. for bi-graphs as:

| K|

1
ATimdy = EZ(\/@ — 1+ dr —1- u(K;)) “)
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where d, is the average degree of R since we only care about d-left-regular bi-graphs for our settings.
Our ablation study shows Ar;,,qp effectively correlates relative performance to relative connectivity
for highly connected highly sparse structures.

3.3 NORMALIZED RANDOM COEFFICIENT

In the previous section, we mentioned the expander mixing lemma and its relation to (i(G), but did
not go into much detail about it. In this section, we define this relation and show how it can be used
to prove the existence of our NormAlized Random Coefficient (NaRC).

Definition 6. Given a d-regular G(V, E), the expander mixing lemma is given as:

d|S||T
1ees. 1) - P20 < (@) ISTIT] 0

where S, T CV,SNT = {0}, n = |V|, u1(G) is the second largest eigenvalue of G, and |E(S, T
is the total number of edges between .S and T'. The intuition behind it is that the smaller y; (G), the
more G appears to be random. For more explanations, please refer to Sauerwald & Sun (2011).

For our irregular bi-graph case, we exchange pq and p since they are equivalent, and replace d with
dr, the average left degree. We can also exchange the definition of S to that of Definition 2, with
S C L, likewise replace T' with N(S) C R and n with m = | R|. The expression now reads as:

_ di|S[IN(S)

|E(S, N(5))] || < po(G)VISIIN(S) ©)

m

From Lemma 1, we know that d,,,4 is the smallest possible value 1 can be for G, thus the following

inequality is true:

IE(S, N (8))| — =¥
ISV (S)]

Eq 7 further highlights our earlier argument for IMDB, but we can now take it a step further. With

this inequality, we can rewrite the Ramanujan upper bound to include the random expander graph
subsets. This means:

daug = < po < dimaz @)

A |E(S, N(S))| — ISINE)
G) <2 m -1 8
MG) < STNG) ®

By subtracting the right-hand side, we arrive at our definition for NaRC:

Ar
m|

Y
o= (ML ) ST INE - B NE)] - s« NSl <0 ©)

and we say that GG is a random expander if o < 0, and % denote our normalized degree of
randomness. From now on, when we refer o, we will use its normalized version m. From

the above inequality, we can now clearly see how expander mixing lemma relates to (i(G), and the
smaller it is, the more random the graph becomes.

One reason we do not want our graphs to be reduced to randomness is that it conflicts with our desire
for “specific connections” as stated by Frankle et al. (2021). Compared to trivial random sparsity,
non-random and structurally meaningful masks are expected to provide an interpretation of where
and how performance is derived. Our experiments show under the right circumstance, a network
can learn to overcome randomness, and those with meaningful masks achieve significantly better
performance on average.

3.4 BIPARTITE EXPANDER GRAPHS ON PRUNING AT INITIALIZATION

All models can be viewed as a sequence of computing graphs. Let M denote the set of a [-layer
model, we obtain M = {Gj,...,G;} graphs, where G; = (L U R, E) is the i-th layer’s graph
representation with I and R indicates the input and output layer respectively. M initially starts as
a set of complete bipartite graphs. Pruning is then a process of edge sparsification on M with the
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resulting sub-graphs considered irregular expander graphs. The expander property appeals to network
sparsification analysis because it can approximate a complete graph, as shown in Spielman (2018).
However, approximating complete graphs using irregular graphs is still an open question. For our
study, we consider only the convolution and linear layers of any given model.

Convolution layer. A convolutional weight consists of four dimensions namely the input channels,
output channels, kernel width, and kernel height. To represent the convolution layer as a bipartite
graph, we can unfold the input and kernels dimension to get W € RIZI*XIEl where |L| = Cy, * Ky, *
K}, and |R| = Cjyz. The resulting weighted graph is written as G = (L U R, E, W). Note that the
number of edges |E| = |W].

Linear Layer. A linear weight consists of only the input and output channels, and bipartite conversion
is trivial. We directly express its weight as W € RIZIXIEl where |L| = Cyy, and |R| = Copyy. The
resulting weighted graphs is similarly written as G = (LU R, E, ).

Prunning at initialization. For each network, let W denotes the set of weights {w; € R™|V] €
{1,...,L}} where n; is the number of parameters at layer [. Pruning is the process of generating
binary masks m; € {0,1}"™. A pruned subnetwork has weights w; ®m;, where © is the element-wise
product. Most Pal methods have two stages: First, they issue scores z; € R™ to all weights. Second,
they remove the score into mask m; with overall sparsity s. Pruning may occur iteratively or in one
shot depending on the methods. We study the following representative Pal techniques:

e Random (Liu et al., 2022) is the most basic Pal method that uniformly prunes every layer with
the same pruning ratio assigned globally. Each parameter is randomly assigned a score based on the
normal distribution. @ ERK (Evci et al., 2020a; Mocanu et al., 2018) initializes sparse networks with
a Erdds-Rényi graph where small layers are usually allocated more weights. eSNIP (Lee et al., 2019)
issues scores s; = |g; © w;| where ¢; and w; are gradients and weights respectively. The weights with
the lowest scores after one iteration are pruned before training. eGraSP (Wang et al., 2020) removes
weights that impeded gradient flows, by computing the Hessian-gradient product /; and issue scores
s; = —w ® h;. e SynFlow (Tanaka et al., 2020) iteratively prunes a model with its weights replaced
with |w;|. Each time, it propagates an input of 1’s and computes the gradients based on the task’s loss
function r;. It issues a score s; = |r; © w;| and removes the parameters with the smallest scores.

4 EXPERIMENTS

In this section, we examine our earlier claims with empirical results and see how they fare; furthermore,
with supporting evidence, we answer questions regarding relationships between Ramanujan to
performance, randomness to performance, and Ramanujan to randomness. Finally, we point out
intuitions and what they imply for Pal under the lens of the Ramanujan perspective.

Experimental settings. We conduct our experiments with two different DNN architectures: Resnet-
34 (He et al., 2016) and Vgg-16 (Simonyan & Zisserman, 2014) on CIFAR-10 (Krizhevsky, 2009).
We run our experiments with three random seeds and initialize all Pal methods identically with
three different initial weights generated by each seed to ensure fairness. Table 1 summarizes our
standardized training configurations. We include additional results on CIFAR-100 in the Appendix.

Table 1: Summary of architectures and hyperparameters that we study in this paper.

Model Data | #Epoch Batch Size Optimizer LR LR Decay, Epoch | Weight Decay
Resnet-34  CIFAR-10 | 250 256 SGD 0.1 10x, [160, 180] | 0.0005
VGG-16  CIFAR-10 | 250 256 SGD 0.1 10x, [160, 180] | 0.0005

4.1 OBSERVATIONS, INTUITIONS AND ABLATIONS

Relationship between Ramanujan and performance: In Figure 1, we confirm that Ramanujan
Ar indeed correlates with performance as a function of density (denser equates wider in general).
However, this observation is already known (Pal et al., 2022), so it is not very exciting. The left
column of Figure 1, which visualizes Definition 5, can only show that connectivity correlates strongly
with density, but it cannot claim whether strong connectivity is related to relative performance. We
attribute this missing link to the strong upper bound of i(G). While /i(G) ensures that graphs that
satisfy the inequality are expanders, we see that it holds little correlation with the actual performance
potential of the network. This brings us to our first contribution, which is the Iterative Mean
Difference of Bound Ar;,, 4.
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Figure 1: In these figures, solid lines always refer to the left y-axis, while dash lines refer to the
right y-axis. Here, we illustrate the relationship between network density (x-axis), accuracy (left-y),
and Ramanujan property (Ar (left column) and Ar;,,qp (right column)) for Resnet-34 (top-row)
and Vgg-16(bottom-row). First, we show in all cases Ramanujan graphs correlate strongly with
performance (upward trend). Second, we show that Ar;,,4, also strongly correlates to relative
performance between different Pal methods at different sparsity. Note that for Vgg-16, we dropped
GrASP due to its inability to generate a feasible mask.

Correlating relative performance with Ar;,,4,: Figure 1 right column shows that Ar;,,, 4, resolves
the missing link stated early on. We demonstrate that Ar;,, 4, is able to correlate the degree of
connectivity of individual sparse structures with their final ranking in performance at specific density
levels. While its effectiveness lessens with increasing density, it is undeniable that Ar;,, 4, mirrors
the performance trend of various sparse structures. Intuitively speaking, we can extend Ar;,,4p to be
a performance ranker for unstructured sparse masks. Ultimately, the results prove our intuition that
an irregular graph G is a good expander if its regular subgraphs are good expanders too.

Performance V. Density V. RandomCoef of resnet34

On the relationship between performance and o: When -
we show that there exists a ratio o that can provide aran-
domness estimation on the graph, we are naturally curious j——n
about its relationship with performance. But first, we need

to perform a sanity check on ¢ to see if it works. We can
confirm, using our two random methods (Rand and ERK)
on Figure 3, that they always yield o < 0, no matter the !
settings. Now we observe from the left column of Figure i
3 that there seems to be little correlation between perfor-
mance and the randomness of the graph at first glance.
The lack of correlation would support previous observa-
tions made by Frankle et al. (2021); Liu et al. (2022) on
the sufficiency of random pruning given the right sparsity.
However, Figure 2 quickly dispels these notions, which
neatly brings us to our next point.
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Figure 2: The relationship between per-
formance and o for Resnet-34 with and
without skip. We observe o starts to
correlate with performance without skip-
connections.

The value of o: We observe an interesting inverse relationship between o and Ar;,,,4, for Resnet-
34 and Vgg-16. In Figure 3 right columns, we observe Resnet-34 to have a mutual correlation
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Figure 3: Identically formatted as Figure 1, on the left column, we illustrate the relationship between
model’s performance and network’s randomness over global density for Resnet-34 and Vgg-16. On
the right column, we try to correlate the Ramanujan characteristic (Ar;,,45) With our Normalized
Random Coefficient (NaRC) over performance. The observation is interesting because the relationship
are perfectly inverted between our two models.

between its degree of expansion and randomness that somehow yield increasingly better performance.
Meanwhile, for Vgg-16, we see that a higher degree of expansion correlates to a lower degree of
randomness, producing better performance. The second observation follows our specific intuitions,
while the first observation seemingly contradicts them. How can randomness contribute to better
performance? The answer turns out to be straightforward. In Figure 2, we compare the performance
of Resnet-34 with and without skip connections at various densities. We observe that (1) as the model
gets more sparse without skip connections, its masked structure becomes more specific (less random)
to ensure gradient flows; (2) skip connections help carry information and act as a crutch to overcome
the random nature of the model; (3) without skip connections, Resnet-34 becomes more specific;
however, relying on gradients alone is not enough to recover the performance achieved by the model
with skip connections. It all means that o negatively affects performance for both models, and skip
connections can help alleviate the symptoms while exacerbating the problem as they effectively hide
randomness.

Overall, we have shown a way to relax the strong constraint on /i(G) such that the resulting graph’s
connectivity correlates strongly with its final performance. Further checking the lower bound for
[i(G) could indicate whether a sparse structure deteriorates into randomness. Tying all together,
we now have the necessary tool to locate the region where highly connected, highly sparse, and
non-trivial expanders exist. While not our primary objective, we foresee future Pal works utilizing
our metrics as “checkers” to guide the design of their new criteria in selecting sparse structures.

5 CONCLUSION

This work delved into quantifying Pal from the perspective of Ramanujan graphs. Firstly, we
introduced Ar;,,q5 as a novel way to relax the strong upper bound of Ar in cases of highly sparse,
highly connected networks. Secondly, we proved that there existed a random coefficient called NaRC
that could reliably estimate the degree of randomness for any given irregular sparse graph, which
served as a lower bound for /i(G) beyond which a sparse structure deteriorated into randomness.
Ultimately, we provided a new perspective on the effectiveness of PAI that is independent of weights,
gradients, and losses. This work was purely scientific and no negative impact was anticipated.



Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

The authors thank Peihao Wang for his valuable insights offered during the project discussions. Z.
Wang is in part supported by NSF Scale-MoDL (award number: 2133861) and the NSF Al Institute
for Foundations of Machine Learning (IFML).

REFERENCES

Kartikeya Bhardwaj, Guihong Li, and Radu Marculescu. How does topology influence gradient
propagation and model performance of deep networks with densenet-type skip connections? 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13493-13502,
2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Pau de Jorge, Amartya Sanyal, Harkirat Singh Behl, Philip H. S. Torr, Grégory Rogez, and Puneet Ku-
mar Dokania. Progressive skeletonization: Trimming more fat from a network at initialization.
ArXiv, abs/2006.09081, 2021.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. ArXiv, abs/1911.11134, 2020a.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943-2952.
PMLR, 2020b.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJ1-b3RcF7.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pp- 3259-3269. PMLR, 2020.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning neural
networks at initialization: Why are we missing the mark? In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=Ig-VyQc—MLK.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. International Conference on Learning
Representations, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015b.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural network. ArXiv, abs/1506.02626, 2015c.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293-299. IEEE, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

10


https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=Ig-VyQc-MLK

Published as a conference paper at ICLR 2023

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pp. 1389-1397, 2017.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Patwary, Mostofa Ali, Yang Yang, and Yanqgi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Shlomo Hoory. A lower bound on the spectral radius of the universal cover of a graph. J. Comb.
Theory, Ser. B, 93:33-43, 2005.

Shlomo Hoory and Nathan Linial. Expander graphs and their applications. Bulletin of the American
Mathematical Society, 43:439-561, 2006.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Single-shot network pruning based on
connection sensitivity. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=B1lVZgjAcYX.

Shiwei Liu, TT van der Lee, Anil Yaman, Zahra Atashgahi, D Ferrar, Ghada Sokar, Mykola Pech-
enizkiy, and DC Mocanu. Topological insights into sparse neural networks. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, ECMLPKDD, 2020.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang,
and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the most
naive baseline for sparse training. In Infernational Conference on Learning Representations, 2022.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
-0 regularization. International Conference on Learning Representations, 2018.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9(1):2383, 2018.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. International Conference on Learning Represen-
tations, 2016.

Michael C Mozer and Paul Smolensky. Using relevance to reduce network size automatically.
Connection Science, 1(1):3-16, 1989.

Alon Nilli. On the second eigenvalue of a graph. Discrete Mathematics, 91(2):207-210, 1991.

Bithika Pal, Arindam Biswas, Sudeshna Kolay, Pabitra Mitra, and Biswajit Basu. A study on the
ramanujan graph property of winning lottery tickets. In ICML, 2022.

Shreyas Malakarjun Patil and Constantine Dovrolis. Phew : Constructing sparse networks that learn
fast and generalize well without training data. In /CML, 2021.

Ameya Prabhu, G. Varma, and Anoop M. Namboodiri. Deep expander networks: Efficient deep
networks from graph theory. In ECCV, 2018.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Thomas Sauerwald and He Sun. Lecture 3: Expander mixing lemma, October
2011. URL https://resources.mpi—-inf.mpg.de/departments/dl/teaching/
wsll/SGT/Lecture3.pdf.

11


https://openreview.net/forum?id=B1VZqjAcYX
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ws11/SGT/Lecture3.pdf
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ws11/SGT/Lecture3.pdf

Published as a conference paper at ICLR 2023

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556. ICLR., 2014.

Daniel A. Spielman. Properties of expander graphs, October 2018. URL https://www.cs.
yale.edu/homes/spielman/561/lectl17-18.pdf.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Jingtong Su, Yihang Chen, Tianle Cai, Tianhao Wu, Ruiqi Gao, Liwei Wang, and Jason D Lee.
Sanity-checking pruning methods: Random tickets can win the jackpot. Advances in Neural
Information Processing Systems. arXiv:2009.11094, 2020.

Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. ArXiv, abs/2006.05467, 2020.

Dharma Teja Vooturi, G. Varma, and Kishore Kothapalli. Ramanujan bipartite graph products for
efficient block sparse neural networks. ArXiv, abs/2006.13486, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SkgsACVKPH.

Jiaxuan You, Jure Leskovec, Kaiming He, and Saining Xie. Graph structure of neural networks. In
ICML, 2020.

12


https://www.cs.yale.edu/homes/spielman/561/lect17-18.pdf
https://www.cs.yale.edu/homes/spielman/561/lect17-18.pdf
https://openreview.net/forum?id=SkgsACVKPH

Published as a conference paper at ICLR 2023

A ADDITIONAL EXPERIMENTS ON CIFAR-100
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Figure 4: On these figures, solid lines always refer to the left y-axis, while dash lines refer to the
right y-axis. Here we are illustrating the relationship between network density (x-axis), accuracy
(left-y), and Ramanujan property (Ar (left column) and Ar;,,4p (right column)) for Resnet-34 (top-
row) and Vgg-16(bottom-row). First, we show in all cases Ramanujan graphs correlate strongly
with performance (upward trend). Second, we show Ar;,,,q, also strongly correlates to relative
performance between different Pal methods at different sparsity.
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Figure 5: Identically formatted as Figure 1, on the left column, we illustrate the relationship between
model’s performance and network’s randomness over global density for Resnet-34 and Vgg-16. On
the right column, we try to correlate the Ramanujan characteristic (Ar;,,45) With our Normalized
Random Coefficient (NaRC) over performance. The observation is interesting because the relationship
are perfectly inverted between our two models.
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