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Abstract 

Cardiomyocytes (CMs) are heart cells responsible for heart contraction and relaxation. 

CMs can be derived from human induced pluripotent stem cells (hiPSCs) with high yield 

and purity. Mature CMs can potentially replace dead and dysfunctional cardiac tissue and 

be used for screening cardiac drugs and toxins. However, hiPSCs-derived CMs (hiPSC-

CMs) are immature, which limits their utilization. Therefore, it is crucial to understand 

how experimental variables, especially tunable ones, of hiPSC expansion and 

differentiation phases affect the hiPSC-CM maturity stage. This study applied clustering 

algorithms to day 30 cardiac differentiation data to investigate if any maturity-related cell 

features could be related to the experimental variables. The best models were obtained 

using k-means and Gaussian mixture model clustering algorithms based on the evaluation 

metrics. They grouped the cells based on eccentricity and elongation. The cosine 

similarity between the clustering results and the experimental parameters revealed that 

the Gaussian mixture model results have strong similarities of 0.88, 0.94, and 0.93 with 

axial ratio, diameter, and cell concentration.  
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1. Introduction 

Cardiovascular disease (CVD) is the leading cause of death worldwide (Ahmed et al., 

2020). A heart attack can cause the loss of more than one billion heart cells, initiating 

blood flow overload and overstretching on viable cardiac cells, potentially leading to 

death. Because the human heart has limited regenerative capacity, it cannot replace 

damaged cells. Engineered heart tissue is a potential alternative for heart failure due to 

the difficulties associated with Cardiac Implantable Electronic devices (CIEDs) and heart 

transplants, two available therapies (Kempf et al., 2016). Human-induced pluripotent 

stem cells (hiPSCs) can be differentiated into CMs with the potential to produce 

therapeutic CMs (Tani et al., 2022). However, CMs produced by current differentiation 

protocols are immature. Immature CMs differ substantially from mature ones. For 

example, immature CMs have underdeveloped mitochondria, limited fatty acid oxidation 

capacity, less elongated cells, and disorganized sarcomeres and myofibrils. Research is 

ongoing to develop protocols that lead to mature hiPSC-CMs (Hamledari et al., 2022).  

This paper applied clustering algorithms to group hiPSC-CMs based on maturity-relevant 

features and investigated the relationship between clustering results and tunable 

experimental variables of the differentiation protocol with the aim of identifying variables 

that produce more matured CMs. Clustering, instead of classification, was employed 
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because the hiPSC-CMs cannot be labeled to train a classifier. The CMs were produced 

through hiPSC hydrogel encapsulation and direct differentiation within a 3D-engineered 

tissue microenvironment (Chang et al., 2020). The unbiased data were collected from 17 

different batches, with each batch having different experimental variables, such as axial 

ratio (AR), cell concentration, PEG-fibrinogen (PF) concentration, and microspheroid 

size (i.e., diameter). Eight clustering algorithms from Scikit-learn (Fabian Pedregosa) 

were applied to day 30 cardiac differentiation data. The maturity-relevant features 

considered for clustering were cell area, cell circularity, eccentricity, elongation, 

sarcomere length, sarcomere organization score, and orientation index. The k-means and 

Gaussian mixture clustering algorithms yielded the best clusters based on evaluation 

metrics.  

2. Experimental Procedure for hiPSC-CM Production and Data Collection 

2.1. HiPSC Culture, Encapsulation, and Cardiomyocyte Differentiation 

Un-Arc 16 Facs II (Shinnawi et al., 2015) was cultured on Geltrex (Gibco) with E8 media. 

The hiPSCs were resuspended in PF precursor solution at 30-60 million cells/mL and 

encapsulated within PF by using a novel microfluidic system as described previously 

(Finklea et al., 2021). Microspheroids with different sizes and ARs were produced (Seeto 

et al., 2019). The D-optimal experimental design was used, assuming Gaussian process 

model. Microspheroids were cultured for an additional 2 days in E8 media with daily 

media changes (days -2 and -1). To analyze the initial size and AR of the microspheroids, 

the autofluorescence of the photoinitiator Eosin Y in PF was captured using the FITC 

filter on the Nikon Eclipse Ti fluorescence microscope at low magnification. Standard 

plugins in ImageJ were used for quantification. To initiate cardiac differentiation on day 

0, microspheroids were transferred to chemically defined cardiac differentiation media 

(CDM3) supplemented with CHIR99021 (5 – 7.5 M, STEMCELL Technologies). 

Exactly 24 h later, the media was exchanged for CDM3 supplemented with 5 M IWP2 

(STEMCELL Technologies). Fresh CDM3 was added on days 3, 5, 7, and 10; following 

day 10, microspheroids were cultured in RPMI/B27 (Gibco). The differentiation 

outcomes were assessed using flow cytometry on day 10 using the primary antibodies, 

such as cTnT (Invitrogen) and MF20 (DSHB), and secondary antibody (1:300, 

AlexaFluor 647 goat anti-mouse IgG (ThermoFisher)).  

2.2. Microspheorid dissociation and replating 

Microspheroids on day 30 of differentiation were dissociated by incubating in a 

Collagenase-B (1 mg/mL, Roche) supplemented by DNase (0.05 mg/mL, Worthington) 

in PBS dissociation solution at 37 ºC for about 8 minutes. The cells were plated on a 

Matrigel-coated coverslip in RPMI 20 medium (RPMI 1640 medium with 20% FBS, 

Atlanta Biologicals) supplemented with 5µM RI for 2 days before starting staining. After 

fixation, the cells were washed with PBS, permeabilized with PBS-T containing 0.2% 

Triton X-100 in PBS for 30 minutes, and blocked with 10% FBS in PBS blocking buffer 

for 45 minutes at room temperature. Cells were incubated in primary antibody (aSA) 

overnight at 4 ºC. After washing, cells were incubated in the secondary antibody (Alexa 

Fluor 568, 1:200), and nuclei stained with Bisbenzimide Hoechst 3342 (MilliporeSigma) 

for 1 hour at room temperature. All samples were visualized with Nikon Eclipse TE2000 

Inverted Microscopes equipped with a Nikon A1 plus Confocal Microscope System. To 

assess hiPSC-CMs cell morphology and sarcomere structure, SarcOmere Texture 

Analysis (Sutcliffe et al., 2018) was used for immunofluorescent confocal images.  
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3. Clustering Algorithms 

3.1. K -means Clustering 

Given the number of clusters (|𝐶|), the algorithm (Likas et al., 2003) randomly initializes 

|𝐶| cluster centroids (𝜇𝑗, 𝑗 = 1,2, … , |𝐶|) and assigns a class membership to each point 

(𝑥𝑖 , 𝑖 = 1,2, … , 𝑛) based on its closest centroid. Then, the centroids are reestimated using 

Eq. (1). Each point is reassigned a new class membership based on the new centroids. 

The steps are repeated until class memberships stop changing. 

∑ min
𝜇𝑗∈𝐶

(||𝑥𝑖 − 𝜇𝑗||
2

)

𝑛

𝑖=0

 (1) 

3.2. Gaussian Mixture Model Clustering 

The Gaussian mixture model (Yang et al., 2012) assumes that all data points come from 

a finite number of Gaussian distributions with unknown parameters. The distribution 

parameters are estimated by the expectation maximization (EM) algorithm. The EM 

algorithm first assigns the mean and variance of the distributions either randomly or based 

on the centroids of k-means clustering results. The probability of a point belonging to a 

cluster is calculated using the distribution parameters. Cluster means and variances are 

improved by maximizing the likelihood of the data given those parameters, and the 

procedure is repeated until the mean and variance of each distribution stop changing.  

3.3. Agglomerative Clustering 

Agglomerative clustering (Murtagh & Legendre, 2014) is a hierarchical algorithm that 

uses a bottom-up approach. Each data point is initially considered a “cluster.” The 

algorithm proceeds by successively merging clusters using a selected linkage criterion. 

Criterion using ward, complete, average, and single linkage minimizes the sum of squared 

distances within all clusters, the maximum distance between observations of pairs of 

clusters, the average of the distances between all observations of pairs of clusters, and the 

distance between the closest observations of pairs of clusters, respectively. 

4. Metrics Used for Evaluating Clustering Results 

The three evaluation metrics used to assess the cluster results were Silhouette score, 

Calinski-Harabasz index (CH), and the Davies-Bouldin index (DB). Based on the results 

of these metrics, the best three cluster models were selected. Silhouette score (Shahapure 

& Nicholas) for a data point, 𝑠, is calculated using the distance between that point and all 

other points in the same and nearest clusters. The average silhouette score of all the data 

points gives the Silhouette score for the clusters. Silhouette score is between -1 and 1, 

with 1 indicating that the clusters are well separated. The CH (Maulik & Bandyopadhyay, 

2002) is the ratio of the sum of dispersion between and within clusters for all clusters. 

The CH is higher for dense and separated clusters. The DB (Maulik & Bandyopadhyay, 

2002) is defined as the average similarity between each cluster 𝐶𝑎 and its most similar 

one 𝐶𝑏. The similarity score, 𝑅𝑎𝑏, given in Eq. (2), is calculated between cluster 𝑎 and 𝑏, 

𝑑𝑎 is the average distance between each point in cluster 𝑎 and its centroid, and 𝐷𝑎𝑏  is the 

distance between cluster centroids 𝑎 and 𝑏. The DB is calculated by Eq. (3). Values closer 

to zero indicate better clustering. 

𝑅𝑎𝑏 =
𝑑𝑎 + 𝑑𝑏

𝐷𝑎𝑏
 (2) 

𝐷𝐵 =
1

𝑘
 ∑ 𝑚𝑎𝑥

𝑖≠𝑗
𝑅𝑎𝑏

𝑘

𝑖=1

 (3) 
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5. Results and Discussion 

5.1. Clustering Results 

Five hundred thirteen (513) hiPSC-CMs from 17 batches were analyzed to obtain cell 

morphological features, such as cell area, eccentricity, circularity, elongation, and 

sarcomere properties, such as sarcomere length, orientation index, and organization score.  

Only k-means, Gaussian mixture model, and agglomerative clustering algorithms were 

found to be applicable to the dataset. The agglomerative clustering algorithm grouped 

almost all hiPSC-CMs in one cluster. These clustering results were not further analyzed. 

Because this study aims to investigate the relationship between mature and immature 

hiPSC-CMs and experimental variables, the number of clusters was set to two.  

Based on the evaluation metrics, k-means clustering yielded the best model with a 

Silhouette score of 0.17, CH of 107, and DB of 1.99. Gaussian mixture model clustering 

with spherical, full, and diagonal covariance yielded the following models in that order. 

The evaluation metrics for these models were similar to those for the k-means algorithm. 

Analyzing the two clusters yielded by the k-means and Gaussian mixture model 

algorithms revealed that the hiPSC-CMs were clustered based on eccentricity and 

elongation. Mature CMs typically have an elliptical shape with larger eccentricity and 

elongation values (Karbassi et al., 2020).  

The k-means algorithm grouped hiPSC-CMs with eccentricity values between 0.7 and 1 

and elongation between 2 and 10 in one cluster, which we named the “Mature” cluster, 

and the remaining cells in another, we named the “Immature” cluster. The Gaussian 

mixture model algorithms yielded clusters with the same cell property ranges. The overall 

clustering results suggest that eccentricity and elongation were significant features for 

separating mature hiPSC-CMs from immature cells by unsupervised learning. 

5.2. Relationship between hiPSC-CM Maturity and Tunable Experimental Variables 

To investigate the potential relationship between hiPSC-CM maturity and tunable 

experimental variables, we calculated the percentage of hiPSC-CMs clustered as 

“Mature” in each of the 17 batches. A set of tunable experimental variables, namely AR, 

diameter, cell concentration PEG concentration, and PF concentration, were used in each 

batch.  Then, the Cosine similarity (Xia et al., 2015) between this percentage and each 

tunable experimental variable for each clustering result was calculated. Cosine similarity 

is a measure of similarity between two vectors. Using cosine similarity, we quantify how 

similar the percentage of mature CMs to the experimental variables. The resulting 

similarity values are plotted in Figure 1. The PEG and PF concentration results were not 

considered because there were only three values for these variables. Figure 1 illustrates 

that the strongest similarity metric values were observed for the results obtained using the 

Gaussian mixture model clustering, with a cosine similarity of 0.88 with AR, 0.94 with 

diameter, and 0.93 with the cell concentration. The cosine similarity values for the results 

obtained with the k-means algorithm are similar, with a cosine similarity of 0.86 with AR, 

0.92 with diameter, and 0.91 with cell concentration. 

Figure 2 plots the percentage of “Mature” hiPSC-CMs in each batch calculated using 

Gaussian mixture model clustering results versus AR (Figure 2(a)), diameter (Figure 

2(b)), and cell concentration (Figure 2(c)). Figures 2(a), 2(b), and 2(c) suggest that there 

is a relationship between the percentage of “Mature” hiPSC-CMs and AR, diameter, and 

cell concentration. Three of the five batches with ARs less than two have less than 45 % 

of hiPSC-CMs clustered as “Mature”. In contrast, batches with an AR greater than two 

have at least 45% hiPSC-CMs clustered as “Mature”, except for one. Figure 2(c) shows 

that when the concentration is equal to 60 million cells/mL, the percentage of mature cells 

is greater than 50%. These observations suggest the existence of non-linear and 
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potentially complex relationships between the mature hiPSC-CMs and the ARs, 

diameters, and cell concentration, which should be further investigated.  

 
Figure 1 – Cosine similarity between the percentage of “Mature” hiPSC-CMs in 

batches based on the clustering results and the experimental parameters. K_Means – k-

means clustering, GMM_Diag, GMM_Full, and GMM_Sp – Gaussian mixture model 

with diagonal, full, and spherical covariance function. 

 
Figure 2 - Percentage of mature hiPSC-CMs clustered by k means clustering vs. (a) AR 

(b) Diameter (c) Cell concentration. 𝑆𝑐 – Cosine similarity between the percentage of 

mature CMs and each experimental parameter. 

6. Conclusions and Future Directions 

Using day 30 cardiac differentiation data, we identified eccentricity and elongation as the 

significant features for clustering hiPSC-CMs into two groups via k-means and Gaussian 

mixture model clustering algorithms. The results of the Gaussian mixture and k-means 

models suggested that there is a concurrent relationship between ARs, diameter, and cell 

concentration, all experimentally tunable variables, and hiPSC-CMs with higher 

eccentricity and elongation, which are associated with maturity. Future work will 

investigate using different clustering approaches that relax the compact set assumption 

for determining better “Mature” cell cluster boundaries. Then, the relationships between 

the experimental variables and mature hiPSC-CMs will be modeled to aid in directing 

hiPSC differentiation towards mature CMs.  
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