
Training Your Sparse Neural Network Better with Any Mask

Ajay Jaiswal 1 Haoyu Ma 2 Tianlong Chen 1 Ying Ding 1 Zhangyang Wang 1

Abstract
Pruning large neural networks to create high-
quality, independently trainable sparse masks,
which can maintain similar performance to their
dense counterparts, is very desirable due to the re-
duced space and time complexity. As research
effort is focused on increasingly sophisticated
pruning methods that leads to sparse subnetworks
trainable from the scratch, we argue for an orthog-
onal, under-explored theme: improving training
techniques for pruned sub-networks, i.e. sparse
training. Apart from the popular belief that only
the quality of sparse masks matters for sparse
training, in this paper we demonstrate an alter-
native opportunity: one can carefully customize
the sparse training techniques to deviate from
the default dense network training protocols, con-
sisting of introducing “ghost” neurons and skip
connections at the early stage of training, and
strategically modifying the initialization as well
as labels. Our new sparse training recipe is gener-
ally applicable to improving training from scratch
with various sparse masks. By adopting our
newly curated techniques, we demonstrate sig-
nificant performance gains across various pop-
ular datasets (CIFAR-10, CIFAR-100, TinyIma-
geNet), architectures (ResNet-18/32/104, Vgg16,
MobileNet), and sparse mask options (lottery
ticket, SNIP/GRASP, SynFlow, or even randomly
pruning), compared to the default training proto-
cols, especially at high sparsity levels. Code is at
https://github.com/VITA-Group/ToST.

1. Introduction
Deep neural networks (NN) have achieved significant
progress in many tasks such as classification, detection, and
segmentation. However, most existing models are computa-

1The University of Texas at Austin 2University of Cali-
fornia, Irvine. Correspondence to: Zhangyang Wang <at-
laswang@utexas.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Source of sparse mask

Sparse Mask
Our focus
Sparse 

Training 
"From 

Scratch" 
using ToST

SNIP
GraSP

LTH

SynFlow

Random

Figure 1. We aim to improve training of ANY sparse mask from
scratch using our proposed sparse training toolkit (ToST).

tionally extensive and overparameterized, thus it is difficult
to deploy these models in real-world devices. To address
this issue, many efforts in direction of knowledge distillation
(Hinton et al., 2015b), quantization (Hubara et al., 2018),
and pruning (LeCun et al., 1989), have been devoted to
compressing the heavy model into a lightweight counterpart.
Among them, network pruning (LeCun et al., 1990; Han
et al., 2015a;b; Li et al., 2016; Liu et al., 2019; Frankle &
Carbin, 2018), which identifies sparse sub-networks (aka.
sparse mask) by removing unnecessary connections, stands
as one of the most effective methods.

Recently, a significant amount of research efforts have been
focused towards developing increasingly sophisticated and
efficient pruning algorithms (Lee et al., 2018; Wang et al.,
2020; Frankle & Carbin, 2018; Frankle et al., 2019; Tanaka
et al., 2020), to identify the sparse mask of the original dense
model at the initialization, and then train only the sparse
subnetwork from scratch, such as lottery ticket hypothe-
sis (LTH) (Frankle & Carbin, 2018; Frankle et al., 2019),
SNIP (Lee et al., 2018), GraSP (Wang et al., 2020), Syn-
Flow (Tanaka et al., 2020), and even random pruning (Su
et al., 2020; Frankle et al., 2020). In most (if not all) cases,
sparse masks obtained by various those pruning algorithms
are trained using the same training protocols optimized for
dense neural network training. However, till now it is still
under-explored and unclear if dense training protocols are
optimal for training a sparse mask from scratch too. We
hence ask: Should training a sparse neural network requires
atypical treatment and its own set of training toolkit or not?

Orthogonally to the popular belief that quality of sparse
masks matter the most for sparse training from scratch (good
sparse masks train better), this paper explores an under-
explored and alternative opportunity: towards improving the

https://github.com/VITA-Group/ToST


Training Your Sparse Neural Network Better with Any Mask

Highly Chaotic Training Regime

Figure 2. Top eigenvalues (Hessian) analysis of the training trajec-
tory of a ResNet-18 sparse mask (90% sparsity) identified by LTH
(Frankle & Carbin, 2018) using CIFAR-100.

training protocols of sparse sub-networks training. This pa-
per demonstrate that one can carefully customize the sparse
training protocols to deviate from the default dense network
training protocols, and achieve significantly better perfor-
mance from the same sparse mask. Our work is primarily
motivated by the observation thet sparse training suffers
from poor gradient flow (Tessera et al., 2021), and it has a
highly chaotic optimization trajectory (Figure 2), which can
lead to sub-optimal convergence of sparse masks. To tackle
this problem, it is important to do a meticulous inspection
of the training protocols of sparse training.

Our Contribution We offer a toolkit of sparse retraining
techniques (ToST), and demonstrate that, solely by intro-
ducing our techniques into the training of sparse masks
identified by existing popular pruning algorithms, our meth-
ods substantially reduce training instability, and improve
performance and generalization of trained sub-networks.
Our contributions can be summarized as:

• In contrary to the common belief that quality of masks
matter the most for sparse retraining, we argue for an
orthogonal, and under-explored theme: improving the
training techniques for pruned masks and demonstrate
that it significantly helps the sparse masks identified
by various pruning algorithms to perform better.

• We provide a curated and easily adaptable training
toolkit (ToST) for training ANY sparse mask from
scratch: “ghost” skip-connection (injecting additional
non-existent skip-connections in the sparse masks),
“ghost” soft neurons (changing the ReLU neurons
into smoother activation functions such as Swish (Ra-
machandran et al., 2017) and Mish (Misra, 2019)), as
well as modifying initialization and labels.

• We report extensive experiments using variety of
datasets, network architectures, and mask options. In-
corporating our techniques in the sparse retraining im-
mediately boosts the performance of sparse mask. This

prompts to provide equal attention to improving the
sparse retraining protocols rather than only focusing
on designing better mask finding algorithms.

2. Methodology
In this section, we aim to provide a detailed introduction
and motivation behind the tweaks in our sparse mask train-
ing toolkit (ToST). ToST consists of two main tweaks:
“Ghost” Soft Neurons (GSw), and “Ghost” Skip Connections
(Gsk), and some miscellaneous tweaks such as layer-wise
re-scaled initialization, and label smoothing. We emphasize
on highlighting the “Ghostliness” behaviour of GSw and
GSk, i.e, how they can be temporarily incorporated in sparse
mask without making any final architecture changes.

2.1. Revisiting Sparse Training
Given a dense network f(θ, ·), the sparse sub-network of
it is defined as f(θ ⊙m, ·), where m ∈ {0, 1}∥θ∥0 is the
binary mask indicating the sparsity levels, and ⊙ is the
element-wise product. m can be obtained from the pre-
trained weights θd or the random initialization θ0. The
sparse training aims to train f(θ ⊙m, ·) from scratch with
training protocols P . Previous works mainly focus on how
to find a better m with θ0, while still apply the same P as
the dense net f(θ, ·).

Figure 3. ReLU and Swish (Parametric Swish with β = 1) activa-
tion functions along with their derivatives.

2.2. “Ghost” Smooth Neurons and Skip Connection
Sparse Neural Networks and their trainability: Highly
sparse networks easily suffer from the layer-collapse
(Tanaka et al., 2020), i.e., the premature pruning of an entire
layer. This could make the sparse network untrainable, as
the gradient cannot be backpropagated through that layer.
Additionally, in most (if not all) cases during the sparse neu-
ral network training, Rectified Linear Units (ReLU) (Nair
& Hinton, 2010) are adapted as the default activation func-
tion ignoring the fact that ReLU is primarily optimized for
training dense neural networks. However, the gradient of
ReLU changes suddenly around zero (Figure 3), and this
non-smooth nature of ReLU is an obstacle to sparse re-
training because it leads to high activation sparsity into the
subnetwork (with many pruned weights), likely blocking
a healthy gradient flow (Table 1). During the training of
sparse neural networks, we also observed that sparse train-
ing follows a highly chaotic optimization trajectory, which
can lead to sub-optimal convergence of sparse subnetworks.



Training Your Sparse Neural Network Better with Any Mask

Activation Layer 1 Layer 2 Layer 3 Layer 4

ReLU 27.14% 39.33% 39.48% 57.93%
Swish 0.31% 0.26% 0.24% 0.20%
Mish 1.09% 1.14% 1.03% 0.95%

Table 1. Layer-wise Activation sparsity of ResNet-18 sparse mask
(90% sparsity) identified by LTH (Frankle & Carbin, 2018) and
trained with CIFAR-100.

Injecting “GSw” and “GSk” in the sparse mask: The
non-smooth behavior of ReLU leads to high activation spar-
sity in the sparse network, and decreases its trainability by
blocking the gradient flow. To mitigate this issue and en-
courage healthier gradient flow, we propose to temporally
replace the ReLU to Swish (Ramachandran et al., 2017)
and Mish (Misra, 2019) during the training of sparse masks.
Different from ReLU, Swish and Mish are both smooth
non-monotonic activation functions. The non-monotonic
property allows for the gradient of small negative inputs,
which leads to a more stable gradient flow (Tessera et al.,
2021) during the training.

(3
 X
 3
) 

Co
nv
ol
ut
io
n

(3
 X
 3
) 

Co
nv
ol
ut
io
n

Re
LU

Re
LU

Skip-connection

(3
 X
 3
) 

Co
nv
ol
ut
io
n

(3
 X
 3
) 

Co
nv
ol
ut
io
n

Re
LU

Re
LU

Skip-connection

Skip-connection Skip-connection

(a) ResNet-18 Block (b) Modified ResNet-18 Block

Figure 4. Our modified ResNet-18 block to introduce additional
“ghost” skip-connections for the initial stage of sparse training.

With increase in sparsity, sparse neural networks suffers
from layer-collapse (Tanaka et al., 2020) which leads to
blockage of gradient flow during training. The skip connec-
tion ( or named ”residual-addition” ) (He et al., 2016) was
initially proposed to avoid gradient vanishing problem, and
enables the training of a very deep model. Motivated by the
prevalent issue of dying kernels, high activation sparsity, and
gradient blockage in highly sparse neural networks, we pro-
pose to “artificially” inject temporal new skip-connections
during the training. Figure 4 illustrates this architectural
modifications to the traditional Resnet-18 block. Similar to
existing residual connection in traditional ResNet-18 block,
our newly introduced skip-connections add input of each
(3 × 3) convolution block, to their output before the acti-
vation. With high activation sparsity present in sparse sub-
networks, additional skip-connections can facilitate healthy
gradient flow and improve their trainability.

“Ghostliness” behaviour of “GSw” and “GSk”: Deep
neural networks have been identified to learn “low frequency

Figure 5. PSwish Visualization with different β values.

features” initially (Rahaman et al., 2019) roughly before the
first learning rate annealing, followed by the next stage
of learning high frequency features (later part of training).
Both GSk and GSw are considered to primarily help the first
stage, because Swish compared to ReLU alleviates aliasing
at zero-truncation via a smoother decay window, while resid-
ual connections add more DC components and smoothen the
loss landscape (Li et al., 2017b). During the low frequency
learning stage (initial part of training), incorporating GSk
and GSw will help maintain healthy gradient flow while
focusing on the learning the low-frequency features. Con-
sidering their limited role in the second stage, it provide an
opportunity to gracefully remove them while the training
progresses. Note that during our experiments we observe
that either their abrupt removal, or being removed too late
in the training, will hurt the optimization adversely and lead
to poor generalization.

The parametric form of Swish (PSwish) function is f(x) =
x × sigmoid(βx). Note that GSw is a special case of
PSwish, when β = 1. PSwish transitions from identity
function for β = 0, to ReLU for β = ∞ (smoothness de-
creases as β increases). In our effort to keep the sparse mask
architecture unchanged, we gradually increase the β value
of GSw, leading to be alike ReLU, and replace it with ReLU
right before the first learning rate decay where the training
regime changes (Leclerc & Madry, 2020). Following that,
the training resumes as normal.

Similarly, for GSk, we introduced gate functions regulated
by a hyperparameter α, which controls the contribution of
GSk during the training. With α = 1, GSk make full contri-
bution during the training of the sparse mask. We decrease
α in a scheduled way as training progresses, and finally set
α = 0, which completely removes the role of GSk, right
before the first learning rate decay. Note that “Ghostliness”
behaviour of GSw and GSk helps in reducing the additional
training overhead, zeroing the inference overhead, and reha-
bilitating the original architecture of sparse mask.

One natural question which require attention following the



Training Your Sparse Neural Network Better with Any Mask

“Ghostliness” behaviour of GSw and GSk is: If we keep GSw
and GSk throughout sparse training until the end, how that
will impact their performance? During our experiments,
we found that keeping GSw and GSk forever during train-
ing provides slightly better performance. However, it will
change the original backbone structure (hence unfair), and
either nonlinear neurons or denser skip connections will add
additional hardware latency during inference. In practice, it
is viewed as a design trade-off for sparse neural networks;
yet in this paper we stick to the same backbone architecture
(including both neuron and skip pattern) as provided.

2.3. Miscellaneous Tweaks
Layer-wise Re-scaled initialization (LRsI): Carefully
crafted initializations that can prevent gradient explo-
sion/vanishing in backpropagation have been important for
the early success of feed-forward networks (He et al., 2016;
Glorot & Bengio, 2010). Even with recent cleverly designed
initialization rules, complex models with many layers and
branches suffer from instability. For example, the Post-LN
Transformer (Vaswani et al., 2017) can not converge without
learning rate warmup using the default initialization.

In sparse subnetwork training, most existing works use com-
mon initializations (Glorot & Bengio, 2010; He et al., 2016)
directly inherited from dense NN (with the sparse mask ap-
plied). In sparse masks, the number of incoming/outgoing
connections is not identical for all the neurons in the layer
(Evci et al., 2020b) and this raises direct concerns against
the blind usage of dense network initialization for sparse
subnetworks. Yet, (Evci et al., 2020b) also showed that
completely random re-initialization of sparse subnetworks
can lead the sparse masks to converge to poorer solutions.

To balance between these conflicting concerns, we propose
to keep the original initialization of sparse masks intact for
each parameter block and just re-scaled it by a learned scalar
coefficient following recently proposed in (Zhu et al., 2021).
Aware of the sensitivity and negative impact of changing
initialization identified by (Evci et al., 2020c), we point that
that linear scaling will not hurt the original sparse mask’s
initialization, thanks to the BatchNorm layer which will
effectively absorb any linear scaling of the weights. More
specifically, we optimized a small set of scalar coefficients
to make the first update step (e.g., using SGD) as effective
as possible at lowering the training loss. After the scalar
coefficients are learned, the original initialization of sparse
mask is re-scaled and the optimization proceeds as normal.

Label Smoothing (LS): Specifically, given the output
probabilities pk from the network and the target yk, a net-
work trained with hard labels aims to minimize the cross-
entropy loss by LLS = −

∑K
k=1 yk log (pk), where yk is

”1” for the correct class and ”0” for others, and K is the
number of classes. Label smoothing (Szegedy et al., 2016)
changes the target to a mixture of hard labels with a uniform

distribution, and minimizes the cross-entropy between the
modified target LS

k and output pk. The modified target is
defined as yLS

k = yk(1−α)+α/K, where α is the smooth
ratio. This uniform distribution introduces smoothness into
the training and encourages small logit gaps. Thus, label
smoothing results in better model calibration and prevents
overconfident predictions (Müller et al., 2019). In our work,
we propose to incorporate label smoothing during the train-
ing of sparse masks and show that it can effectively help in
improving the performance of sparse masks.

3. Experiments and Analysis
3.1. Settings

Following the recent developments in pruning algorithms,
we have used sparse masks identified from various pruning
techniques: LTH (Frankle & Carbin, 2018), SNIP (Lee
et al., 2018), GraSP (Wang et al., 2020), SynFlow (Tanaka
et al., 2020), as well as Random Pruning. Note that we have
used the offical pytorch implementation of these algorithms
to identify sparse mask, and train them with our ToST to
evaluate the performance gain. For extensive validation
across different datasets and architecture, we selected the
most popular LTH (Frankle & Carbin, 2018), and show how
ToST generalizes across different datasets and architecture.

In our experiments, all of our sparse masks has been trained
using similar settings for simplicity in reproducing our re-
sults. For training, we adopt an SGD optimizer with momen-
tum 0.9 and weight decay 2e−4. The initial learning rate is
set to 0.1, and the networks are trained for 180 epochs with
a batch size of 128. The learning rate decays by a factor
of 10 at the 90th and 135th epoch during the training. We
run all our experiments 3 times to obtain more stable and
reliable test accuracies. Note that apart from the tweaks pro-
posed in ToST, we make no additional modification during
the training process for fair evaluation.

3.2. ToST and ANY MASK

In this section, we conduct a systematic study to under-
stand the performance gain by our proposed sparse training
toolkit (ToST), when they are incorprated in the training
process of ANY sparse identified by various pruning algo-
rithms. Table 2 demonstrate the effectiveness of our pro-
posed toolkit on the sparse masks obtained by recently pro-
posed pruning algorithms: SNIP (Lee et al., 2018), which is
a sensitivity based pruning algorithm, GraSP (Wang et al.,
2020), which is a Hessian based pruning algorithm, SynFlow
(Tanaka et al., 2020), which is an iterative data-agnostic
pruning algorithm, Lottery Ticket (Frankle & Carbin, 2018),
which is based on iterative magnitude pruning, as well as
Random Pruning . We have used CIFAR-10 and CIFAR-
100 during the evaluation of our ToST on various sparse
masks obtained by pruning a substantial amount of param-



Training Your Sparse Neural Network Better with Any Mask

Sparse Mask CIFAR-10 CIFAR-100

90% 95% 98% 90% 95% 98%

ResNet-32 [No Pruning] 94.80 - - 74.64 - -

Random Pruning 89.95±0.23 89.68±0.15 86.13±0.25 63.13±2.94 64.55±0.32 19.83±3.21
Random Pruning + ToST 91.53±0.11 91.44±1.01 88.20±0.89 65.19±1.36 64.61±1.21 33.98±6.64
SNIP (Lee et al., 2018) 92.26±0.32 91.18±0.17 87.78±0.16 69.31±0.52 65.63±0.15 55.70±1.13

SNIP + ToST 92.83±0.15 92.01±0.21 88.12±0.13 70.00±0.09 68.46±0.62 60.21±1.96
GraSP (Wang et al., 2020) 92.20±0.31 91.39±0.25 88.70±0.42 69.24±0.24 66.50±0.11 58.43±0.43

GraSP + ToST 92.98±0.07 92.77±0.14 89.92±0.56 70.18±0.22 67.20±0.74 62.30±1.06
SynFlow (Tanaka et al., 2020) 92.01±0.22 91.67±0.17 88.10±0.25 69.03±0.20 65.23±0.31 58.73±0.30

SynFlow + ToST 93.39±0.59 92.06±0.32 91.82±0.73 70.25±0.06 67.90±1.22 61.72±0.84
LTH (Frankle & Carbin, 2018) 93.14±0.30 92.98±0.12 92.22±0.61 71.11±0.57 70.37±0.19 69.02±0.22

LTH + ToST 94.01±0.23 93.60±0.70 93.34±1.06 72.30±0.61 71.99±0.95 70.22±0.61

ResNet-50 [No Pruning] 94.90 - - 74.91 - -

Random Pruning 85.11±4.51 88.76±0.21 85.32±0.47 65.67±0.57 60.23±2.21 28.32±10.35
Random Pruning + ToST 92.73±0.22 90.95±1.22 87.11±2.21 67.75±1.32 63.60±0.11 41.99±4.51
SNIP (Lee et al., 2018) 91.95±0.13 92.12±0.34 89.26±0.23 70.43±0.43 67.85±1.02 60.38±0.78

SNIP + ToST 92.89±0.53 92.56±0.12 90.56±0.19 70.79±0.22 68.06±0.09 61.51±1.41
GraSP (Wang et al., 2020) 92.10±0.21 91.74±0.35 89.97±0.25 70.53±0.32 67.84±0.25 63.88±0.45

GraSP + ToST 92.64±0.17 92.33±0.09 90.94±0.35 70.89±0.21 68.09±0.12 65.01±0.33
SynFlow (Tanaka et al., 2020) 92.05±0.20 91.83±0.23 89.61±0.17 70.43±0.30 67.95±0.22 63.95±0.11

SynFlow +ToST 92.55±0.10 92.57±0.18 90.27±0.29 70.86±0.21 68.83±0.15 65.40±0.13
LTH (Frankle & Carbin, 2018) 93.69±0.31 93.18±0.17 92.79±0.14 71.89±0.11 71.05±0.13 70.41±0.28

LTH + ToST 94.37±0.06 94.01±0.32 92.94±0.21 73.69±0.13 72.20±0.15 71.93±0.34

Table 2. Classification accuracies of various pruning algorithm for varying sparsities s ∈ {90%, 95%, 98%} and network architectures
(ResNet-18 and 32) with and without our sparse training toolkit (ToST).

eters of ResNet-18 and ResNet-50 with varying sparsities
s ∈ {90%, 95%, 98%}.

The results are summarized in Table 2. We first observe
that among all the pruning methods, sparse masks obtainned
by LTH (Frankle & Carbin, 2018) perform the best at high
sparsity for both CIFAR-10 and CIFAR-100. In comparison,
sparse mask trained with ToST stays stable in performing
significantly better across all pruning methods, datasets,
and network architectures. Very interestingly, we observe
that ToST can help randomly pruned masks at 98% sparsity
to achieve up to ∼ 14% and ∼ 13% (CIFAR-100) better
results, for ResNet-32 and ResNet-50 respectively. This
provided a strong indication towards the training stability
provided by ToST during the sparse training even the mask
quality is not great. Similarly for GraSP mask with 98%
sparsity, ToST provides ∼ 4% improvement.

We additionally evaluated SNIP and LTH sparse masks
with sparsities s ∈ {85%, 90%, 95%} on TinyImageNet
(Deng et al., 2009). Table 3 presents the summary of our
results. Similar to our results on CIFAR-10 and CIFAR-100,
ToST provided sufficient performance boost to ResNet-50
sparse masks identified by SNIP and LTH, on the larger
TinyImageNet dataset. At 95% sparsity, it provides > 2%
improvement for SNIP, and > 1.5% improvement for the
LTH mask. These benefits prompt a greater potential to re-
consider the exploration and provide attention to improving
sparse retraining strategies.

3.3. Performance Breakdown of ToST
Our toolkit (ToST) consists of two main tweaks: “Ghost”
Soft Neurons (GSw), and “Ghost” Skip Connections (Gsk),
and some miscellaneous tweaks such as layer-wise re-
scaled initialization, and label smoothing. While these
tweaks when jointly applied in the training of sparse masks,
significantly provides huge performance gain (Table 2,
3), an obvious question is: How our proposed tweaks
helps in performance of sparse masks, when they are
applied in isolation? To answer this question, we se-
lected LTH masks (considering it high popularity and bet-
ter performance at high sparsity) with varying sparsities
s ∈ {75%, 80%, 85%, 90%, 95%} for detailed evaluation
of our individual tweaks.

Table 4 summarizes the performance comparison of our
individual tweaks when they are applied in isolation during
the training of sparse masks. We can observe that “GSk”
standalone is the most effective tweak in improving the
performance at very high sparsity with a performance gain
of 2.15% at 95% sparsity. “GSw” stands out to be the
second most effective tweak in our toolkit for high sparsity,
with performance gain of 1.36% and 1.28% at sparsity level
85% and 95% respectively. It is worth noticing that “LRsI”
achieve highest performance gain at 75% sparsity which
hints that each tweak helps in the trainability of sparse
networks in its own unique way. When we combine these
tweaks together to train the sparse LTH tickets, we observe



Training Your Sparse Neural Network Better with Any Mask

Algorithm 85% 90% 95%

SNIP (Lee et al., 2018) 58.91±0.23 56.15±0.31 51.19±0.47
SNIP + ToST 59.44±0.09 57.19±0.21 53.21±0.08
LTH (Frankle & Carbin, 2018) 60.11±0.13 58.46±0.17 53.19±0.31
LTH + ToST 61.52±0.32 58.96±0.08 54.76±0.22

Table 3. Classification accuracies on TinyImageNet for varying sparsities s ∈ {90%, 95%, 98%} using ResNet-50.

Method 75% 80% 85% 90% 95%

LTH (Frankle & Carbin, 2018) 73.21±0.17 72.94±0.12 71.91±0.22 71.12±0.30 69.57±0.19
LTH + GSk 73.77±0.11 73.69±0.25 72.86±0.30 72.17±0.23 71.72±0.22
LTH + GSw 73.45±0.13 73.22±0.43 73.27±0.31 72.03±0.12 70.85±0.52
LTH + LRsI 73.93±0.15 73.12±0.13 72.30±0.19 71.83±0.32 69.98±0.29
LTH + LS 73.58±0.28 73.70±0.32 72.65±0.25 71.93±0.20 70.19±0.14

LTH + ToST 74.29±0.31 74.03±0.14 73.90±0.49 73.23±0.27 72.08±0.10

Table 4. Breakdown of the performance of individual tweaks in ToST tweaks when applied on training ResNet-18 sparse masks (LTH)
with varying sparsities s ∈ {75%, 80%, 85%, 90%, 95%} and trained on CIFAR-100.

the overall performance boost is significantly better than
the individual tweaks. We get 1.08%− 2.51% performance
gain within the sparsity range of s ∈ [75 − 95]%. This
clearly highlights the orthogonal benefits of our tweaks in
sparse mask training.

3.4. “Ghostliness” of GSw and GSk
As discussed in Section 2.2, “GSk” and “GSw” primarily
help in first stage of learning, we are motivated to remove
them gradually during the course of time (aka. “ghostli-
ness”). Gradual removal will help in reducing the additional
training overhead, zeroing the inference overhead, and re-
habilitating the original architecture of sparse mask. To
investigate the impact of “ghostliness” behaviour, and how
it may impact in unleashing the true strength of “GSk” and
“GSw”, when they are kept throughout sparse training until
the end, we attempted to compare the performance with and
without “ghostliness” of our tweaks.

Figure 6 summarizes the performance comparison of
the “Ghostiliness” behaviour of GSk and GSw with the
default prolonged injection of swish and skip connec-
tions for LTH sparse masks with varying sparsities s ∈
{80%, 85%, 90%, 95%}. We observed that keeping the skip
connections, and swish throughout sparse training until the
end provides some additional performance benefit (marginal
for swish), but it comes up at the cost of additional hardware
latency during the inference time. In practice, we identify
this as a design trade-off for the sparse neural networks. To
complete the analysis, we attempted to analyse mask per-
formance if we ghost GSk and GSw after the first learning
rate decay, and we found that the performance decreases by
−0.917% and −0.429% (95% sparsity) for GSk and GSw

respectively, compare to our proposed settings. Addition-
ally, abrupt removal of GSk and GSw towards the end of
training, leads to significant performance drop of > 1.2%
(sparsity 95%) for both GSk and GSw.

4. Ablation and Analysis
4.1. Generalization across Datasets and Architectures
In this section, we additionally evaluate the performance of
ToST on VGG-16 (Simonyan & Zisserman, 2014) and Mo-
bileNet (Howard et al., 2017) using CIFAR-10 and CIFAR-
100. Note that we have mainly studied LTH (Frankle &
Carbin, 2018) masks hereinafter for ablations, considering
their superior performance in comparison to SNIP, SynFlow,
GraSP, and Random Pruning. Figure 7 summarizes the per-
formance comparison of our sparse training toolkit when it
is used to train the LTH sparse tickets with sparsity ranging
from s ∈ [20%−97%]. In the plot, the red line indicates the
performance of sparse tickets when they are trained using
default setting proposed in (Frankle & Carbin, 2018; Frankle
et al., 2019) while the blue line indicates the sparse tickets
when trained using our ToST without any other additional
modification for fair comparison. Clearly, our proposed
tweaks help significantly in improving the performance of
sparse tickets across all sparsities. Moreover, it is important
to observe that the performance benefits of our tweaks in-
creases significantly with increase in the sparsity level. This
observation augment the necessity of ToST, while training
sparse subnetworks with high sparsity.

4.2. Smoothness of Loss Landscape
In this section, we try to understand the implications of our
techniques during training of sparse subnetworks, through



Training Your Sparse Neural Network Better with Any Mask

80% 85% 90% 95%
Sparsity Ratio (LTH)

ResNet18 + CIFAR-100

69

70

71

72

73

74

75

Ac
cu

ra
cy

LTH
LTH + Ghost Skip
LTH + Skip

80% 85% 90% 95%
Sparsity Ratio (LTH)

ResNet18 + CIFAR-100

69

70

71

72

73

74

75

Ac
cu

ra
cy

LTH
LTH + Ghost Swish
LTH + Swish

Figure 6. Performance comparison of the “Ghostiliness” behaviour of GSk and GSw with the default prolonged injection of swish and
skip connections for LTH sparse masks with varying sparsities s ∈ {80%, 85%, 90%, 95%}.

20 36 49 59 67 74 79 83 87 89 91 93 94 95 96 97
Sparsity

(a) VGG-16 + CIFAR10

92.00

92.25

92.50

92.75

93.00

93.25

93.50

93.75

94.00

Te
st

 A
cc

ur
ac

y

LTH
LTH + ToST

20 36 49 59 67 74 79 83 87 89 91 93 94 95 96 97
Sparsity

(c) MobileNet + CIFAR10

82

83

84

85

86

87

88

89

90

Te
st

 A
cc

ur
ac

y

LTH
LTH + ToST

20 36 49 59 67 74 79 83 87 89 91 93 94 95 96 97
Sparsity

(b) VGG-16 + CIFAR100

66

67

68

69

70

71

72

73

74

Te
st

 A
cc

ur
ac

y

LTH
LTH + ToST

20 36 49 59 67 74 79 83 87 89 91 93 94 95 96 97
Sparsity

(d) MobileNet + CIFAR100

35

40

45

50

55

60

Te
st

 A
cc

ur
ac

y

LTH
LTH + ToST

Figure 7. Performance comparison of sparse masks by LTH at varying sparsities s ∈ [20%− 97%] on CIFAR-10 and CIFAR-100.

some common lens. Our methods can be viewed as a form
of learned smoothening (Chen et al., 2021b) which is incor-
porated at an early training stage. Smoothening tools can be
applied on the logits (naive label-smoothening (Müller et al.,
2019), knowledge distillation (Hinton et al., 2015a)), on
the weight dynamics (stochastic weight averaging (Izmailov
et al., 2018)), or on regularizing the end solution.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Distance

0

500

1000

1500

2000

2500

Lo
ss

LTH + Default Training
LTH + GSw
LTH + GSk
LTH + LS
LTH + LrSI

Figure 8. The change in testing loss as a function of perturbed
weight distance, in the direction of top eigenvector of Hessian
matrix (Yao et al., 2020) of LTH ticket (90% sparsity) for ResNet-
18 trained on CIFAR-100.

We expect tweaks in ToST to find flatter minima for sparse
mask training to improve its generalization, and we show it
to indeed happen by visualizing the loss landscape w.r.t both
input and weight spaces. Figure 10 shows the comparison of

loss landscape of LTH ticket (90% sparsity) from Resnet-18
trained using default dense training protocols proposed in
(Frankle & Carbin, 2018; Frankle et al., 2019) and individual
tweaks in our sparse toolkit ToST. It can be observed that
each one of our tweaks notably flatten the sharp landscape
w.r.t. the input space, compare to the default baseline of
using (Frankle & Carbin, 2018; Frankle et al., 2019), which
aligns with our hypothesis that our tweaks can be viewed as
some form of “learned smoothening”.

Figure 8 follows (Yao et al., 2020) to perturb the trained
LTH sparse mask (90% sparsity) in weight space, to show
the flattening effect of our tweaks. It shows the change in
testing loss as a function of perturbed weight space, in the
direction of top eigenvector of Hessian obtained by (Yao
et al., 2020). Our methods present better weight smoothness
around the achieved local minima, which suggests improved
generalization (Dinh et al., 2017; Petzka et al., 2019).

Dense NN (0%) 20% 75% 95%

“GSk” -0.77% +0.03% +0.56% +2.15%
“GSw” +0.11% +0.29% +0.24% +1.28%

Table 5. Performance benefit of “GSk” and “GSW” when applied
to dense networks (0%) sparsity, low sparsity (20%), mid-level
sparsity (75%), and high sparsity (95%). We have used LTH sparse
mask of ResNet-18 trained on CIFAR-100.



Training Your Sparse Neural Network Better with Any Mask

0 50 100 150
Epoch count

Figure 1

103

104

105

To
p 

Ei
ge

n 
Va

lu
e 

(H
es

sia
n) With ToST

Without ToST
LR Decay (x0.1)

0 50 100 150
Epoch Count

Figure 2

0.200

0.225

0.250

0.275

0.300

0.325

Av
er

ag
e 

Gr
ad

ie
nt

 F
lo

w

Without ToST
ToST
LR Decay (x0.1)

Figure 9. (a) Comparison of Top eigenvalues (Hessian) of training trajectory of a ResNet-18 sparse mask (90% sparsity by LTH) on
CIFAR-100 with and without ToST. (b) Comparison of Average Gradient Flow (Tessera et al., 2021) ResNet-18 sparse mask (90% sparsity
by LTH) on CIFAR-100 during training with and without ToST.

0.10
0.05

0.00
0.05

0.10 0.10
0.05

0.00
0.05

0.10

0.0
0.1
0.2

0.3

0.4

0.5

(a) LTH + Default Training

0.10
0.05

0.00
0.05

0.10 0.10
0.05

0.00
0.05

0.10

0.0
0.1
0.2

0.3

0.4

0.5

(b) LTH + GSw

0.10
0.05

0.00
0.05

0.10 0.10
0.05

0.00
0.05

0.10

0.0
0.1
0.2

0.3

0.4

0.5

(c) LTH + GSk

0.10
0.05

0.00
0.05

0.10 0.10
0.05

0.00
0.05

0.10

0.0
0.1
0.2

0.3

0.4

0.5

(d) LTH + LS

0.10
0.05

0.00
0.05

0.10 0.10
0.05

0.00
0.05

0.10

0.0
0.1
0.2

0.3

0.4

0.5

(e) LTH +  LRsI

Figure 10. Comparison of loss landscape of LTH ticket (90% sparsity) from Resnet-18 trained using default dense training protocols
proposed in (Frankle & Carbin, 2018; Frankle et al., 2019) and individual tweaks in our sparse toolkit ToST. Loss plots are generated with
the same original images randomly chosen from CIFAR-100 test dataset using (Li et al., 2017a). z-axis denote the loss value.

4.3. Are “GSk” and “GSw” same helpful in Dense NNs?
In this section we attempt to answer one important question:
How does “GSw” and “GSk” impact the performance of
dense network? Are they equally beneficial to training dense
networks too? Table 5 illustrates the performance benefits
of GSw and GSk when they are applied at various level of
sparsity ranging from 0% (corresponds to dense network)
to low-level (20%), mid-level (75%), and finally high-level
(95%). It clearly answer aforementioned question that both
“GSk” and “GSw” significantly help the sparse networks
more than the dense network and the performance benefits
enlarges with increasing sparsity.

Remark: The recently proposed RepVGG (Ding et al.,
2021) cleverly adds skip-connections (SKs) to dense
networks of VGG-like plain topology (no SKs) by re-
parameterization during training, and later removing SKs
at inference. In contrast, our “GSk” is applied to training
sparse networks of arbitrary topology, mostly ResNets with
pre-existing native SKs. Our experiments further reveal that
adding extra SKs can even hurt the performance of dense
ResNets with pre-existing SKs (e.g., “-0.77%” in Table 5
for ResNet-18). Meanwhile, adding SKs during sparse train-
ing of those ResNets, using our proposed soft alternative,
benefits their performance consistently, especially at high
sparsity. Our lesson is: sparsity has an overlooked impor-
tant role in influencing whether more skip connections will

benefit, potentially due to the trade-off between network
representation capacity and optimization easiness.

4.4. Effect of ToST on Hessian and Gradient Flow
Hessian eigenvalue/spectral density (Yao et al., 2020) can be
used to analyze the the topology of the loss landscape, and
its magnitude indicates the “degree of smoothness in loss
landscape” and the ease for Stochastic Gradient Descent to
converge to a good solution. Higher value of top eigenvalue
indicate poorer quality of loss landscape and difficult opti-
mization. Figure 9(a) illustrates the effect of ToST on top
eigenvalues of Hessian for the training trajectory of ResNet-
18 sparse LTH mask with 90% sparsity. Furthermore, to
effectively measure the gradient changes before and after
ToST, we calculated the Average Gradient Flow for the
unpruned weights during training (Tessera et al., 2021). Fig-
ure 9(b) presents the comparison of the gradient flow with
and without ToST when training ResNet-18 sparse LTH
mask with 90% sparsity. Clearly, ToST facilitates healthier
gradient flow during the training of sparse neural networks.

5. Related Work
Network Pruning Pruning is fruitful in reducing network
inference costs. In general, there are two types of prun-
ing: One is unstructured pruning, which usually removes



Training Your Sparse Neural Network Better with Any Mask

redundant weights. The important score of weights can be
obtained from magnitude (Han et al., 2015a;b), gradient
(Molchanov et al., 2017; 2019) or Hessian (LeCun et al.,
1990). The other is structured pruning, which prunes the
entire channels or layers (Liu et al., 2017; Li et al., 2016;
Wen et al., 2016; He et al., 2017). All of them starts with the
fully trained dense model, and finetune the sparse network
to achieve similar accuracy.

Sparse Training Sparse training aims to train a sparse net-
work from scratch. It can be categorized into two groups: 1⃝
Static sparse training, which prunes the network at the ini-
tialization and maintains the pruning mask throughout train-
ing. Lottery Ticket Hypothesis (LTH) (Frankle & Carbin,
2018; Frankle et al., 2019; Evci et al., 2019; Savarese et al.,
2020; Chen et al., 2020a; Gale et al., 2019; Chen et al.,
2020b) suggests that a dense network contains several sparse
sub-network that can match the accuracy of the original
model when trained in isolation from scratch. Later on, the
Single-Shot Network Pruning (SNIP) (Lee et al., 2018) uses
the gradients of the training loss at initialization to prune
the network. The Gradient Signal Preservation (GraSP)
(Wang et al., 2020) prune connections based on the gradi-
ent flow. The Iterative Synaptic Flow Pruning (SynFlow)
(Tanaka et al., 2020) preserves the total flow of synaptic
strengths through the network to handle the layer-collapse
issue. (Sung et al., 2021) selects the sparse mask via Fisher
information. 2⃝ Dynamic sparse training, which allows
the pruning mask to be updated during the training. They
usually prunes weights based on the magnitude and grows
weights back (Mocanu et al., 2018) at random or based on
the gradient (Evci et al., 2020a; Liu et al., 2021; Chen et al.,
2022; 2021a). All of these works imply that the quality of
pruning mask is vital in sparse training.

(Lee et al., 2019) analyzed sparse subnetworks from the sig-
nal propagation perspective and proposes a new technique
of re-fitting initialization to improve their trainablity. More
specifically, provided with sparse topology C and initial
random weights W , (Lee et al., 2019) optimizes W → W ∗

such that the combination of the sparse topology and weights
become layerwise orthogonal. In comparison, our LRsI
technique keeps the original sparse weight initialization, ex-
cept learning a small set of scaling coefficients per block to
improve the gradient propagation. Along with being compu-
tationally more efficient, it can also better preserve the good
initialization already found in some sparse mask schemes
such as LTH, which have been confirmed as necessary for
their success (Tessera et al., 2021).

Smoothness in Neural Network Infusing smoothness
into neural networks, including on the weights, logits, or
training trajectory, is a common techniques to improve the
generalization and optimization (Jean & Wang, 1994). For

labels, smoothness is usually introduced by replacing the
hard target with soft labels (Szegedy et al., 2016) or soft
logits (Hinton et al., 2015a). This uncertainty of labels helps
to alleviate the overconfidence and improves the general-
ization. Smoothness can also implemented by replacing
the activation functions (Misra, 2019; Ramachandran et al.,
2017), adding skip-connections in NNs (He et al., 2016),
or averaging along the trajectory of gradient descent (Iz-
mailov et al., 2018). These methods contribute to more
stable gradient flows (Tessera et al., 2021) and smoother
loss landscapes, but most of them have not been considered
nor validated on sparse NNs.

6. Conclusion
This paper takes one step towards improving the training
techniques for sparse neural networks. Contrary to the pop-
ular belief that only the quality of sparse masks matters for
sparse training, this paper presents an alternative opportu-
nity that one can carefully customize the sparse training
techniques to train sparse sub-networks identified by vari-
ous pruning algorithms, and achieve significant performance
benefits. It presents a curated and easily adaptable training
toolkit for training any sparse mask from scratch, without
any additional overhead. Extensive experiments across dif-
ferent pruning algorithms, sparse masks, and datasets shows
the effectiveness of the proposed toolkit. Our future work
will aim for more theoretical understanding of the role of
our toolkit in sparse training performance improvement.

Acknowledgement
Z.W. is in part supported by an NSF RTML project
(#2053279).

References
Chen, T., Frankle, J., Chang, S., Liu, S., Zhang, Y., Carbin,

M., and Wang, Z. The lottery tickets hypothesis for
supervised and self-supervised pre-training in computer
vision models. arXiv preprint arXiv:2012.06908, 2020a.

Chen, T., Frankle, J., Chang, S., Liu, S., Zhang, Y., Wang,
Z., and Carbin, M. The lottery ticket hypothesis for pre-
trained bert networks. arXiv, abs/2007.12223, 2020b.

Chen, T., Cheng, Y., Gan, Z., Yuan, L., Zhang, L., and
Wang, Z. Chasing sparsity in vision transformers: An
end-to-end exploration. Advances in Neural Information
Processing Systems, 34:19974–19988, 2021a.

Chen, T., Zhang, Z., Liu, S., Chang, S., and Wang, Z. Ro-
bust overfitting may be mitigated by properly learned
smoothening. In International Conference on Learning
Representations, 2021b.



Training Your Sparse Neural Network Better with Any Mask

Chen, T., Zhang, Z., pengjun wang, Balachandra, S., Ma, H.,
Wang, Z., and Wang, Z. Sparsity winning twice: Better
robust generalization from more efficient training. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=SYuJXrXq8tw.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun,
J. Repvgg: Making vgg-style convnets great again. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13733–13742, 2021.

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. Sharp
minima can generalize for deep nets. In ICML, 2017.

Evci, U., Pedregosa, F., Gomez, A., and Elsen, E. The diffi-
culty of training sparse neural networks. arXiv preprint
arXiv:1906.10732, 2019.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,
E. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning, pp. 2943–
2952. PMLR, 2020a.

Evci, U., Ioannou, Y. A., Keskin, C., and Dauphin, Y. Gradi-
ent flow in sparse neural networks and how lottery tickets
win. ArXiv, abs/2010.03533, 2020b.

Evci, U., Ioannou, Y. A., Keskin, C., and Dauphin, Y. Gradi-
ent flow in sparse neural networks and how lottery tickets
win. arXiv preprint arXiv:2010.03533, 2020c.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M.
Stabilizing the lottery ticket hypothesis. arXiv preprint
arXiv:1903.01611, 2019.

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M.
Pruning neural networks at initialization: Why are we
missing the mark? arXiv preprint arXiv:2009.08576,
2020.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In AISTATS,
2010.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015a.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
Advances in neural information processing systems, pp.
1135–1143, 2015b.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

He, Y., Zhang, X., and Sun, J. Channel pruning for acceler-
ating very deep neural networks. In Proceedings of the
IEEE International Conference on Computer Vision, pp.
1389–1397, 2017.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015a.

Hinton, G. E., Vinyals, O., and Dean, J. Distilling the
knowledge in a neural network. ArXiv, abs/1503.02531,
2015b.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R.,
and Bengio, Y. Quantized neural networks: Training
neural networks with low precision weights and activa-
tions. Journal of Machine Learning Research, 18(187):1–
30, 2018. URL http://jmlr.org/papers/v18/
16-456.html.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.,
and Wilson, A. G. Averaging weights leads to
wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Jean, J. S. and Wang, J. Weight smoothing to improve
network generalization. IEEE Transactions on neural
networks, 5(5):752–763, 1994.

Leclerc, G. and Madry, A. The two regimes of deep network
training. arXiv preprint arXiv:2002.10376, 2020.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In NIPS, 1989.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Advances in neural information processing
systems, pp. 598–605, 1990.

https://openreview.net/forum?id=SYuJXrXq8tw
https://openreview.net/forum?id=SYuJXrXq8tw
http://jmlr.org/papers/v18/16-456.html
http://jmlr.org/papers/v18/16-456.html


Training Your Sparse Neural Network Better with Any Mask

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot
network pruning based on connection sensitivity. arXiv
preprint arXiv:1810.02340, 2018.

Lee, N., Ajanthan, T., Gould, S., and Torr, P. H. A signal
propagation perspective for pruning neural networks at
initialization. arXiv preprint arXiv:1906.06307, 2019.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

Li, H., Xu, Z., Taylor, G., and Goldstein, T. Vi-
sualizing the loss landscape of neural nets. CoRR,
abs/1712.09913, 2017a. URL http://arxiv.org/
abs/1712.09913.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. Vi-
sualizing the loss landscape of neural nets. arXiv preprint
arXiv:1712.09913, 2017b.

Liu, S., Yin, L., Mocanu, D. C., and Pechenizkiy, M. Do
we actually need dense over-parameterization? in-time
over-parameterization in sparse training. arXiv preprint
arXiv:2102.02887, 2021.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C.
Learning efficient convolutional networks through net-
work slimming. In Proceedings of the IEEE international
conference on computer vision, pp. 2736–2744, 2017.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. In International
Conference on Learning Representations, 2019.

Misra, D. Mish: A self regularized non-monotonic neural
activation function. arXiv preprint arXiv:1908.08681, 4:
2, 2019.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,
Gibescu, M., and Liotta, A. Scalable training of arti-
ficial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9
(1):1–12, 2018.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational
dropout sparsifies deep neural networks. In Interna-
tional Conference on Machine Learning, pp. 2498–2507.
PMLR, 2017.

Molchanov, P., Mallya, A., Tyree, S., Frosio, I., and Kautz,
J. Importance estimation for neural network pruning. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 11264–11272, 2019.

Müller, R., Kornblith, S., and Hinton, G. When does label
smoothing help? arXiv preprint arXiv:1906.02629, 2019.

Müller, R., Kornblith, S., and Hinton, G. E. When does label
smoothing help? CoRR, abs/1906.02629, 2019. URL
http://arxiv.org/abs/1906.02629.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Icml, 2010.

Petzka, H., Adilova, L., Kamp, M., and Sminchisescu, C.
A reparameterization-invariant flatness measure for deep
neural networks. ArXiv, abs/1912.00058, 2019.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F., Bengio, Y., and Courville, A. On the spec-
tral bias of neural networks. In International Conference
on Machine Learning, pp. 5301–5310. PMLR, 2019.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for
activation functions. arXiv preprint arXiv:1710.05941,
2017.

Savarese, P., Silva, H., and Maire, M. Winning the lottery
with continuous sparsification. In NeurIPS, 2020.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Su, J., Chen, Y., Cai, T., Wu, T., Gao, R., Wang, L., and Lee,
J. D. Sanity-checking pruning methods: Random tickets
can win the jackpot. arXiv preprint arXiv:2009.11094,
2020.

Sung, Y.-L., Nair, V., and Raffel, C. Training neural
networks with fixed sparse masks. In Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?
id=Uwh-v1HSw-x.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Prun-
ing neural networks without any data by iteratively con-
serving synaptic flow. arXiv preprint arXiv:2006.05467,
2020.

Tessera, K.-a., Hooker, S., and Rosman, B. Keep the gradi-
ents flowing: Using gradient flow to study sparse network
optimization. arXiv preprint arXiv:2102.01670, 2021.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
Attention is all you need. ArXiv, abs/1706.03762, 2017.

http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1906.02629
https://openreview.net/forum?id=Uwh-v1HSw-x
https://openreview.net/forum?id=Uwh-v1HSw-x


Training Your Sparse Neural Network Better with Any Mask

Wang, C., Zhang, G., and Grosse, R. Picking winning
tickets before training by preserving gradient flow. arXiv
preprint arXiv:2002.07376, 2020.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning
structured sparsity in deep neural networks. In Advances
in neural information processing systems, pp. 2074–2082,
2016.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W. Py-
hessian: Neural networks through the lens of the hessian.
2020 IEEE International Conference on Big Data (Big
Data), pp. 581–590, 2020.

Zhu, C., Ni, R., Xu, Z., Kong, K., Huang, W. R., and Gold-
stein, T. Gradinit: Learning to initialize neural networks
for stable and efficient training. ArXiv, abs/2102.08098,
2021.


