
T

T

T

T

absolute poses among a collection of objects from noisy
relative poses estimated between pairs of objects in
isolation, is a fundamental problem in many inverse
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applications. This paper studies an extreme setting where
multiple relative pose estimates exist between each object
pair, and the majority is incorrect. Popular methods
that solve pose synchronization via recovering a low-rank
matrix that encodes relative poses in block fail under this
extreme setting. We introduce a three-step algorithm for
pose synchronization under multiple relative pose inputs.
The first step performs diffusion and clustering to compute
the candidate poses of the input objects. We present
a theoretical result to justify our diffusion formulation.
The second step jointly optimizes the best pose for each
object. The final step refines the output of the second step.
Experimental results on benchmark datasets of structure-
from-motion and scan-based geometry reconstruction show
that our approach offers more accurate absolute poses than
state-of-the-art pose synchronization techniques.

1. Introduction

Pose synchronization, which seeks to estimate absolute
object poses from noisy relative poses estimated between
object pairs, is a fundamental problem in many inverse
applications in vision and graphics. Examples include
multi-view structure from motion [38], 3D reconstruction
from RGB-D scans [21], and reassembling fractured
objects [14]. This problem has received great process
during the past two decades,     starting early greedy
approaches      [14, 21] to recent      optimization-based
approaches [2, 4, 11, 15, 17, 19, 20, 26–31, 34, 37]. However,
existing approaches assume that there is only one relative
pose for each object pair, and most relative poses are inliers.
This assumption breaks when relative pose estimation is
challenging, e.g., in 3D reconstruction from sparse views.
The correct poses may differ from the top-ranked relative
poses obtained by a pairwise matching method.

In this paper, we study a new pose synchronization
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Figure 1. Our approach takes multiple candidate relative poses
between pairs of objects as input and outputs absolute poses of the
input objects for geometry reconstruction.

setting, where there are multiple relative pose estimates
between an object pair, and most of them may be incorrect.
This setting is quite popular, e.g., when overlapping ratios
are low, or objects possess partial symmetries. Our
approach proceeds in three simple steps.     The first step
computes for each object a set of candidate poses. This
step is based on the fact that a correct relative pose
between any object and a root object shall be realized by
composing relative poses along multiple paths that connect
them. We introduce an iterative procedure that alternates
between diffusion and clustering to compute candidate
poses. The second step solves a Markov Random Field
(MRF) inference problem to jointly selects the best pose for
each object so that the induced relative pose agrees with
the input relative poses. The third step performs robust
optimization to fine-tune the absolute poses of input objects.

Our approach’s novelty is a diffusion formulation that
synchronizes potentially multiple relative poses between
object pairs into candidate poses for each object. The
formulation, which utilizes a mixture model, is accurate,
robust to noise, and theoretically justified. The resulting
candidate poses enable a simple MRF approach via the
projected power method [36]. Compared to prior MRF
formulations [8,33] that are based on uniform sampling, our
approach does not suffer from discretization errors.

We have evaluated our approach on benchmark
datasets of multi-view structure-from-motion and geometry
reconstruction from depth scans. Experimental results
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show that our approach outperforms state-of-the-art pose
synchronization approaches.

2. Related Works
Existing approaches fall into three categories. The first

category of methods are based on computing a spanning tree
among the input graph of relative poses [14, 21]. However,
as there are potentially an exponential number of spanning
trees in a graph, these approaches are either slow or easily
give rise to sub-optimal solutions.

The second category of methods is based on the
fact that consistent relative poses can be encoded as a
low-rank matrix while the relative poses predicted using
pairwise techniques are noisy measurements of the matrix
blocks of this low-rank matrix, c.f. [15].     This leads to
continuous optimization approaches for synchronization,
which recover the underlying low-rank matrix from noisy
measurements of its blocks.     State-of-the-art techniques
include semidefinite programming relaxation [11,15,16,28,
30, 34, 37], spectral techniques [1–3, 17, 20, 23, 26, 27, 29,
31, 32], and non-convex optimization [4, 6, 19, 24, 25, 39].
However, the basis of low-rank matrix recovery is that the
spectral gap of the matrix that encodes good input relative
poses separates from the matrix that encodes outliers in
input relative poses. This assumption is valid mainly when
most input relative poses are correct. It does not apply when
multiple input relative poses exist between a pair of objects.

The third category of methods solves an inference
problem on Markov random field (or MRF) [8, 13, 18].
The key idea is to discretize the rigid pose of each object
and then jointly pick the best poses of all objects so
that the induced relative poses best align with the input
relative poses.     The advantage of this approach is that
it can incorporate multiple input relative poses between
pairs of objects.     However, this approach’s performance
heavily depends on the discretization error when sampling
the pose space of each object, which significantly affects the
energy landscape of the resulting MRF inference problem.
SFM-MRF [8] performs uniform sampling on rotations and
translations, which leads to a large-scale MRF problem
with many competing solutions that are difficult to solve.
In contrast, our approach uses an iterative procedure to
generate candidate poses from the input relative poses.
This leads to a small-scale MRF problem. Moreover, the
resulting MRF is easy to solve, allowing us to adopt an
iterative algorithm with guarantees.

Our approach for generating candidate poses alternates
between diffusing candidate poses to neighboring objects
and then clustering each object’s propagated poses from
neighboring objects. This paradigm was first proposed
in [18] for computing point-based maps among a collection
of objects. A  recent work [33] extended the idea for
pose synchronization among symmetric objects. However,
both formulations still use sampling for discretization, i.e.,
samples on surfaces for point-based maps and partitioning
of the pose space into bins for clustering. In contrast, we

introduce a continuous formulation that performs clustering
without sampling the pose space. We also provide provable
guarantees on the quality of the resulting candidate poses.

Several approaches [4, 8] have studied continuous
optimization under robust norms to refine absolute poses
from relative poses.     A  popular paradigm is to employ
iteratively reweighted non-linear least squares (IRNLLS)
for optimization. Thanks to a highly accurate initial solution
for pose refinement, our approach uses the Gauss-Newton
method for optimization, which outperforms IRNLLS.

3. Approach
We begin with the problem statement and an overview of

the proposed three step approach in Section 3.1. Section 3.2
to Section 3.4 present the technical details of each step.

3.1. Problem Statement and Approach Overview
Problem statement. The input to our approach is given
by an observation graph G =      (S , E ), where S =
{S1, · · · , S n }  denotes the input objects, and where E
denotes the edges. There may be multiple edges between
one object pair, encoding multiple outputs of a pairwise
matching algorithm. Let E (i, j ) denote the subset of edges
from object S i  to S j .  Each edge e � E (i, j ) is associated
with a rigid transformation Te =  (Re , te ) : Σ i  → Σ j  that
predicts a relative pose between the local coordinate system
Σ i  of object S i  and the local coordinate system Σ j  of object
S  . We assume that a reverse edge e � E (j, i) exists for all
e � E (i, j ) and the associated relative pose Te ′      =  T −1  is
the inverse of Te. Our goal is to predict the absolute pose
Ti : Σ i  → Σ  of object S i  in a world coordinate system Σ .
Approach overview. As shown in Figure 2, our approach
proceeds in three steps. The first step computes a candidate
set of absolute poses Ti     � S E ( 3 )  for each object S i .
Here the absolute poses are expressed with respect to the
local coordinate system of the object that has the maximum
degree in G. We present a principled approach that
alternates between a pose propagation and a pose clustering.
The second step joints picks the optimal absolute pose T
of each object S i  by solving a quadratic relaxation of MRF
inference. The third step performs continuous optimization
to refine the absolute pose Ti of each object S i .

3.2. Step I :  Candidate Pose Generation
Without losing generality, we assume that the object with

the maximum degree is S1 . The underlying principle for
computing the candidate pose set Ti is that a candidate pose
should be realized by composing relative poses along many
paths in G that connects S1 and S i .  Formally speaking, we
first define pose composition along paths.

Definition 1 Consider a path p =  (Sp 0  Sp 1  · · · Spl ( p )  )  that
connects Sp 0  and Sp l ( p )  where l(p) is the number of edges
of p. The composite relative pose Tp =  (Rp , tp ) along p is

Tp : =  Tp l ( p ) − 1 p l ( p )  ◦  · · · ◦  Tp0 p1 . (1)
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Figure 2. This figure illustrates our three-step approach. Given relative poses predicted between pairs of objects, the first step computes a
candidate set of absolute poses for each object. This is done by alternating between pose propagation and pose clustering. The second step
jointly selects the best absolute pose for each object. The third step performs bundle adjustment to refine object poses.

Next, we define the induced probability distributions
from a rigid pose. Similar to Gaussian mixture models used
for mean-shift clustering [7], they are used to aggregate
composite relative poses along different paths.

Definition 2 The induced probability distributions over the
space of rotations SO(3) and the space of translations R3

from a rigid pose T =  (R, t)  are given by

�R ′ − R �2

P σ R , R ( R ′ )  =  e 2 σ R , �R ′  � SO(3) (2)

P σ t , t ( t ′ )  =  e
− �t ′ − t �2  

, �t ′  � R3 (3)

where σR  and σt are hyper-parameters of P R  and P t ,
respectively.

Now we are ready to define an induced probability
distributions on rotations and translations of a pose graph.

Definition 3 Given a pose graph G, the un-normalized
induced probability distributions on rotations and
translations of object S i  in the local coordinate system of
S1 are defined as

l

Q { σ R } , R , S i  (R ′ )  =  
l = 1  

(l  +  l0)! 
p�P ( l )  

P σ l  , R p  (R ′ ) ,  (4)

{ σ l  } , t , S i         ′
l m a x αl X

σ l  , t ′
α , l m a x , l 0                             

l = 1  
( l  +  l0)! 

p�P ( l )

where P ( l )  collects all the paths from S1 to S i  whose length
is l ; l0 and lmax are the minimum and maximum lengths,
respectively, of the paths we consider.

There are several hyper-parameters in (4) and (5). α is
a decaying parameter that penalizes long paths; σ l     and σ l

are hyper-parameters of paths of length l. In this paper, we
set σ l (σ l )  = lσR (σ t )  where σR  and σt are universal
hyper-parameters (to be defined later) shared by all paths.
The coefficient l is motivated from the fact the variance
of composing l independent observations scales as O( l).

In the following, we show that under mild conditions,
Q{σ l  } , R , S i  (R ′ )        and       Q { σ t } , t , S i  (t ′ )        converge       to

Q α ,
R } , R , S i  (R ′ )  and Q { σ t } , t , S i  (t ′ ), respectively.

Proposition 1 When α > 0, then Q { σ R } , R , S i         and

Q { σ t } , t , S i  are well-defined and
s

�Q{σ l  } , R , S i  −  Q{σ l  } , R , S i  �1 ≤
eαλ 1  

(αλ1 ) l m a x  n, (6)

s  
max

�Qα , l  
} , t , S i  −  Q{σ l  

, 0
, S i  �1 ≤ lmax !

(αλ1 )l m a x  n, (7)

where λ1 is spectral norm of the adjacency matrix of G.

To show the usefulness of the induced probability
distributions, we next show that under a standard noise
model, the global maximums of Q{σ l  } , R , S i  and Q{σ l  } , t , S i

recover the underlying ground-truth pose of S i .

Proposition 2 (Informal) Suppose all T i j  are independent
and identically follow a normal distribution with probability
w1     and a uniform distribution with probability w2. Let
P1, P2 be the PDFs of the two distributions. If
(1 −  w 1  )P2 (t) � 1, then almost surely the global
maximums of Q { σ R } , R , S i and Q{σ l  } , t , S i  are with in the ∆-
neighborhood of the ground-truth, where

∆  =  O(λ1 
6  (ln αλ1 ) 3 ). (8)

Moreover, this neighborhood is almost convex when we
choose σR , σt  =  O(∆) .

Approximations of induced probabilities. Computing
Qα , l  

} , R , S i  and Q { σ t } , t , S i  directly is infeasible as the size

of P ( l )  quickly explodes when l increases. In the following,
we present an iterative algorithm for approximating them.
Specifically, let N i  denote the adjacent vertices of S i  in G. It
is clear that the path set P ( l )  admits the following recursion:

P ( l + 1 )  =  
[  

{(i, p)|p � P ( l ) } . (9)
j �N i

13074



�� �� �� ��
�

12 12 12

R

l
Q ( R P R 1 i)  = ( R  )

l + 1
Rσ } , R

tQ (t )  =
l

X
P t 1 i (t  )

X l + 1
t

α , l , l ′

{ σ l
R }

l

α , l , l ′

K
2

2 F k

2σ 2σ2 2
k , R k ,

X

σ2

2

K

σ2

2

K

σ2

K K

σ σ2 2

c

�
j

�

R t,σ  ,

Z
2

j

X
2

jw = wk
j ,

2

92 2

� 2

3

− j F − j
� �2 2

� �

σ ′ ,σ ′

X 2σ′ σ2

σ +  σ′ 2

9
R

− j F
2

2σ′ σ2

σ′ +  σ2

3 − j
′ 2

�ataset ��i�� �T � ���� �T � ���� �T � ���� �T �
Figure 3. Candidate pose generation. (Col.1) A  dataset with 22 scans with two pairwise matches per edge on average. (Col.2) Peak centers
and the density function from our results using multi-dimensional scaling. (Col.3-5) Visualizations of P ( 4 ) (T ) ,  P ( 8 ) (T ) ,  and P ( 1 2 ) (T ) .

Applying (9), we obtain the following recursions:
{ σ l  } , R , S i ′ α  X

σ 1  , R ′
α , l , l ′ −1                              ′

(1, i )�E

+  
X  

Qα , l−1 , l ′  
, S j  ( R i j R ′ ) (10)

j �N i

{ σ l  } , t , S i         ′ α σ 1 , t ′
α , l , l ′ −1                         ′

(1, i )�E

+ Q{σ  
− 1

} , t , S j  ( R i j R ′  +  t i j ) (11)
j �N i

It remains to control the complexity of Qα , l , l ′  
, R , S i and

Q { σ t } , t , S i      so that the number of mixture components in
them do not explode. The key idea is to approximate each
of them using a low complexity Gaussian mixture function
(GMM) after applying (10) and (11).     It is easy to see
that both recursions (10) and (11) apply whenever induced
probabilities are given by GMMs.

To simplify a GMM, we propose to detect its local
maximums and fit a Gaussian function around each local
minimum. Consider a GMM on S E (3):

QT (T ′ ) =  
X

w k e − d σ k , R , σ k , t  
( T ′ , T k )

k = 1

dσ k , R ,σ k , t  
(T ′ , Tk ) : =  

�R ′  −  Rk�2     
+  

�t ′  −  
t t  

�2
(12)

where wk and (σk ,R , σk , t )  are the magnitude and variance
parameters of the k-th component.

Proposition 3 T ′ =  (R ′ , t ′ )  is a critical point of QT if

R ′  =  UV T  , U ΣV T  =  
K wk e − d σ k , R , σ k , t  

( T ′ , T k )

k = 1       k , R

t ′  =  
X  wk e − d σ

k
, R , σ

k
, t  

( T ′ , T k ) (13)
k = 1       k , t

where U ΣV T  is the singular value decomposition (SVD).
Applying (13), we arrive at the following iterative
procedure for computing local maximums of QT :

R n  ← UV T  , U ΣV T  =  
X  wk e−d 2 ( T c , T k )  · R k ,
k = 1       k , R

t n  ← 
X  wk e−d 2 ( T c , T k )  · tk

X  wk e−d 2 ( T c , T k ) ,
k = 1       k , t k = 1       k , t

(14)

where T n (T c ) denote the pose at the next(current) iteration.
The starting solutions for (14) are Tk =  (Rk , tk ) .

After convergence, we detect distinctive local
maximums. Decompose {1, · · · , K }  =  C1 � · · · Cn
where each Cj      collects initial poses Tk     that converge
to the same local maximum T .     We then compute the
optimal variance parameters and an optimal mixture weight
associated with Tj  via least square fitting.
Proposition 4 The optimal solution to

σ

 min
w     T ′ �R 3 × 4  

w e −d σ R , σ t  
( T ′ , T �)

− w k e −d
k

, σ
k

, R , σ
k

, t  
( T , T k )      2 (15)

k�Cj

is given by

�  
X  2σk ,R 2  

 2σk ,t 2

k�Cj                   
σ�

R
2 +  σk , R             σ j , t

2 +  σk ,t

�R �− R k �2 �t �− t k �2

· e 2 ( σ j , R
2 + σ k , R )  e 2 ( σ j , t

2 + σ k , t )

�R �− R k �2

σ j , R , σ j , t  =  arg max wk 2
R  k , R 2  e 2 ( σ ′  2 + σ k , R )

R        t  k�Cj R k , R

�t �− t k �2

2 
t  k , t 2  e 2 ( σ t

2 + σ k , t ) (16)
t k , t
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We     compute     (σ j , R , σ j , t )      in     (16)     via     alternating
maximization, starting from σR       =  median(σk,R ) and

j

σ′ =  median(σk,t ). See the supp. material for details.
j

After compressing the mixture components of rotations
and translations, we keep the top-k (k =  4 in all of our
experiments) components with maximum weights. Figure 3
illustrates the diffusion and clustering procedure on a
dataset with 22 scans.
Hyper-parameters σR  and σt . We compute them by
detecting consistent cycles in the input graph. Specifically,
we first use [12] to compute a collection of cycles C. For
each cycle c � C, we say it is consistent if the composite
rotation R c  and translation tc satisfy �Rc  −  I3� ≤ |c|ϵR

and �tc� ≤ |c|ϵt, where |c| is the length of c. In all of
our experiments, we set ϵR  =  0.1 and ϵt =  0.1ϵ where ϵ
is the average object size. Let Ccons denote all consistent
cycles. We compute σR  =  medianc�Ccons (�Rc  −  I3�/     |c|)
and σt =  medianc�Ccons (�t�/     |c|)

3.3. Step I I :  Optimal Pose Selection
The second step takes the candidate poses of each object

Ti =  {T i x      =  ( R i x  , t i x  )|xi � [ni ]} as input and jointly
picks the optimal pose T     =  ( R  , t )  � Ti . We formulate
this step as solving a second-order MRF which optimizes
the following objective function:

|S| |S|

max ϕ (T , T ) (17)
x1 �[n1 ], · · ·  ,x n �[n | S | ]  

i = 1  j = 1  e�E ( i , j )

multiplication operation and projection operation:

v ( t )  =  Av ( t−1 ) , v ( t )  =  P ∆ n i

 (µt v i ). (18)

where P ∆ n         : R n i      → ∆ n i  is the projection operation on
the simplex ∆ n i  : =  {x|x  � R n i  , 1T x  =  1, x ≥  0}:

P ∆       (v i )  : =  argmin�vi −  y�2.
y �∆n i

µt → ∞ is a scaling parameter. We set µt =  �A�1,∞ t for
all of our experiments. (18) is run tmax =  200 steps. After
that, the selected pose is given by

T g =  Tix� , x� =  arg max v(t) .
i

3.4. Step I I I :  Pose Refinement
The third step performs continuous optimization to refine

the object poses ( R  , t ). This is achieved by using robust
norms to extract inliers in the input pairwise rotations R i n

and tin translations for e in each set E (i, j ) that satisfy
R i n R i  =  R j  and R i n t i  +  te     =  t j  approximately:

min 
X  

ρR (�R i n  −  R j R T  �F ) s.t. R 1  =  I3       (19)
i       

e�E ( i , j )

min ρ t (�Ri n t i  +  t i n  −  t j �) s.t. t1 =  0 (20)
i       

 
e�E ( i , j )

where ρR  and ρt are Geman-Mcclure robust functions:

where

ϕe (Tix i  , T j x j  )  =  exp
 
−  

�R i n R i x i  −  R
j

x j  �2

R

�R i n t i x i  +  t i n  −  t j x j  �2

2σ2

ρR (x )  =  
s

 s 
+

 
x2 , ρ t (x)  =  

s
 s

+
 
x2 (21)

where the hyper-parameters s R  and st are given by

s     =  2 · median min �R i n  −  R g R g T  �
j : E ( i , j ) =�

where � · �F  is the matrix Frobenius norm.
Since the candidate poses are computed via diffusion,

they are more accurate than those obtained from sampling
the space of rotations and translations (e.g., SFM-MRF [8]),
which are subject to discretization errors.     We find that
(17) can be solved effectively using projected power
method [36], which is a simple iterative procedure in
contrast to more complex MRF inference techniques [8,22].

Specifically, denote N  =               ni . Let A  � R N × N

be a block matrix that stores the values ϕe (Tix , Tj x  ),
i.e., the elements of the (i, j )-th block A i j  are given by
A i j ( x i , x j )  = e�E ( i , j )  ϕe (Tik , Tj l ), xi � [ni ], xj � [nj ].
Introduce the corresponding n ×  1 block indicator vector v
� R N  whose element v i x  , i � [|S|], xi � [ni] specifies the
confidence on selecting Ti x      as the pose for the i− t h
object. Initialize v(0) =  √ n

 , x i  � [ni ], i � [|S|]. At each
iteration t ≥  1, we alternate between a matrix-vector

s =  2 · median min �Ri n tg  +  t i n  −  tg�
j : E ( i , j ) =�

Here (Rg , tg ) are the optimal scan poses from step II.
Unlike [4] that solves (19) and (20) using iteratively

reweighted non-linear least squares (IRNLLS), we solve
both using Gauss-Newton method (GNM). This is
motivated from the fact that the output of step II  is already
close to the optimal solution. Specifically, starting from
R ( 1 )  =  Rg , at iteration k we optimize the velocity vector
c i  � R3  for R i  by minimizing

|S| |S|

F  =                   R  
( k ) �E ( k )  −  ( c j × ) R ( k ) x +

i = 1  j = 1  e�E ( i , j )      R

R ( k ) ( c i × )  −  
E ( k ) ⟨E ( k ) , − ( c j × ) R ( k )  +  R ( k ) ( c i × ) ⟩

�F ,
R e F
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Figure 4. Comparison between reconstruction results before and after GNM for optimizing (19) on a dataset with 18 scans, with mean
rotation and translation errors below the visualization.

s.t c1 =  0, where R ( k )  =  R ( k ) R ( k ) T  
and E ( k )  =  R i n  −

R ( k ) .  F  is quadratic in ci , therefore, the optimal values c�
can be obtained by solving a linear system. After that, we
update the rotations as R ( k + 1 )  =  exp(α�c�×)R(k ) ,  where
α� is the optimal stepsize obtained through line search.

Similarly, starting from t(1)      =  tg , at iteration k we
optimize the displacement vector c i  � R3  for t i  via

|S| |S|

min                   t  
( k ) �r ( k )  +  R i n c i  −  c j

i = 1  j = 1  e�E ( i , j )       t

( k )  ( k ) T    i n

−
σ2 +  �r( k )�2

�     s.t. c1 =  0 (22)

where r ( k )  =  R i n t ( k )  +  t i n  −  t (k ) .  Figure 4 shows the
significant improvement in synchronization accuracy with
GNM on a dataset with 18 scans. Please refer to the supp.
material for more comparisons.

4. Evaluation
Section 4.1 introduces the experimental setup.

Section 4.2, Section 4.3, and Section 4.4 present the
results on synthetic datasets, RGB-D scans, and RGB
images, respectively.

4.1. Experimental Setup
Baseline approaches. We consider four types of baseline
approaches.

• Convex programming relaxation. We evaluate
against SE-Sync [28], a state-of-the-art approach
for pose synchronization. We also compare the
performance of rotation synchronization against two
other approaches: Shonan-Rot [11] and SDP-Rot [34].

• Spectral synchronization. The second category
of baseline employs spectral approaches to perform
synchronization. We compare against TransSync [20],
a state-of-the-art approach in this category.

• Non-convex optimization. The third category of
baselines minimizes non-convex objective functions.
We compare against SFM-MRF [9] and K-Best [33],

two state-of-the-art approaches, and IRLS-L0 [5], a
state-of-the-art rotation synchronization approach.

• Cycle-pruning.     The fourth category leverages the
cycle-consistency constraint to filter out incorrect
relative poses. We compare against RobustRecons [6],
a state-of-the-art approach in this category.

3 . 0

0 . 5

Figure 5. Synthetic datasets where G are geometric graphs on 1000
random samples on the unit sphere. (Left) Sync-Easy. The average
vertex degree is 30. (Right) Sync-Hard. The average degree is 20.

Evaluation metrics. Following [9], we report the
percentage of absolute angular rotation errors and absolute
translation errors that fall within a varying threshold.

4.2. Results on Synthetic Datasets
As illustrated in Figure 5, we generate synthetic datasets

by constructing G as geometric graphs. This is motivated
from the trial application of pose synchronization in 3D
reconstruction from RGB-D or RGB images where each
object is matched with adjacent objects. Specifically, we
consider a Sync-Easy and a Sync-Hard dataset, where both
of them have 1000 objects distributed on a unit sphere. Each
dataset is parameterized by five parameters kn, ng, p, q, and
δ. kn denotes the average number of adjacent objects in
G. For Sync-Easy, we connect each object with 30 nearest
neighbors. For Sync-Hard, we connect each object with 10
nearest neighbors. ng denotes the number of absolute poses
associated with each object, i.e., (Rl , tl ), 1 ≤  i  ≤  n, 1 ≤
l ≤  ng. Here the ground-truth is given by R i  =  I3 , t1 =  0.
R  , 2 ≤  l  ≤  ng is a random rotation and t , 2 ≤  l  ≤  ng is a
random translation in the cube [−1, 1] . p, q, and δ control
how the relative poses are generated. We generate
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Figure 6. Results on synthetic datasets shown in Figure 5. (a) Angular rotation errors on the Sync-Easy dataset. (b) Translation errors on the
Sync-Easy dataset. (c) Angular rotation errors on the Sync-Hard dataset. (d) Translation errors on the Sync-Hard dataset.Baselines:
IRLSL0  [5]; RobustR [6]; SDP [34]; SESync [28]; SFMMRF [9]; TransSync [20];K-Best [33].

ng relative poses along each edge: ( R l  , tl  ), 1 ≤  l  ≤  ng.
With probability pl ,

R i j  =  e x p ( c i j l × ) R j R l T  , t i j  =  t l  −  R l  R l T  t l  +  c i j l

where c i j l  and c i j l  are independent random vectors in cube
[−δ, δ]3. Likewise, with probability 1 − pl , R l

j  is a random
rotation and t l       is a random vector in cube [−1, 1]3. pl are
chosen so that p1     =  p and pl     =  q, 2 ≤  l  ≤  ng. The
parameters for Sync-Easy and Sync-Hard are k =
30, ng =  2, p =  1, q =  0.5, δ =  4 ·10−3 and kn =  20, ng =
3, p =  0.8, q =  0.5, δ =  2 · 10 .

Figure     6     compares     our     approach     and     baseline
approaches. First of all, we can see that on both Sync-Easy
and Sync-Hard, convex optimization formulations (SE-
Sync, Shonan-Rot, and SDP-Rot) and spectral formulations
(TransSync) fail to recover the underlying ground-truth.
This is expected as both formulations are based on
the assumption that there is at most one relative pose
estimation between each pair of objects.     RobustRecons
and IRLS-L0 deliver reasonable results on Sync-Easy. We
can understand this from the fact that pruning inconsistent
cycles applies when the noise-level among inliers is small,
while optimization under robust norm may work when
the fraction of inliers is significant (50% for Sync-Easy).
However, both RobustRecons and IRLS-L0 fail on Sync-
Hard, in which cycle-consistency is not exactly satisfied
among inliers and the fraction of outliers is significant
(80% for Sync-Hard).

The top performing baselines are SFM-MRF and K-
Best, which can take as input multiple relative poses
between a pair of objects. However, the accuracy of our
approach is much higher than both. This is because both
baselines sample the space of rotations and translations,
which is subject to discretization errors. Such discretization
errors affect the optimal solution greatly when the fraction
of outliers is large. Therefore, our approach outperforms
SFM-MRF and K-Best significantly on Sym-Hard.

4.3. Results on RGB-D Scans

Next, we compare our approach and baseline approaches
on pose synchronization of RGB-D scans. To this end, we
use ScanNet [10], which consists of 1513 3D scenes. Our
goal is to test the performance of 3D reconstruction from
sparse views. To generate the input data, we randomly
sample 10 to 25 scans from each scene. The relative poses
between each pair of scans are computed using spectral
matching [35]. We consider two settings. In the first setting,
we consider one relative pose between each object pair
whenever the number of matched features is bigger than
20% times the minimum number of features on each object.
In the second setting, we use up to four relative poses per
object pair whenever the number of matched features is
bigger than 20% times the minimum number of features on
each object. We report statistics over the entire ScanNet
dataset.

Figure 7(Left) shows the rotation and translation errors
of our approach and baseline approaches under the first
setting. In this setting, the major challenge is that most
edges are outliers that do not have a reasonable relative pose
estimate. In this case, all methods, including our approach,
do not produce accurate synchronization results. However,
our approach outperforms all baseline approaches when
considering the relative performance with salient margins.
Specifically, regarding the percentage of rotation estimates
whose errors fall under 10◦ , our approach achieves 56.4%,
which is 17.3% higher than K-Best, the top-performing
baseline. Regarding the percentage of translation estimates
whose errors fall under 0.25m, our approach achieves
58.9%, which is again 4.6% higher than K-Best.

Figure 7(Right) shows the rotation and translation
errors of our approach and baseline approaches under
the second setting. Due to representation limitations
of convex programming and spectral approaches, i.e.,
SE-Sync, Shanon-Rot, SDP-Rot, and TransSync, their
performance is worse than the first setting. Thanks to
certain abilities for handling multiple relative poses per
object pair, IRLS-L0, RobustRecons, SFM-MRF, and K-
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Figure 7. Results on ScanNet [10]. (Left) Average angular rotation errors (a) and average translation errors given one relative pose per
object pair. (Right) Average angular rotation errors (c) and average translation errors (d) given four relative poses per object pair.

Best result in performance improvements compared to the
first setting. In particular, K-Best is still the top-performing
baseline with 67.8% percent of rotation predictions under
10◦  and 73.2% percent of translation predictions under
0.25m. Our approach is significantly better than all
baseline approaches, improving the rotation and translation
estimates by 22.1% and 12.5% under the same thresholds.
Moreover, the performance gains of our approach in the
second setting are larger than in the first setting. In other
words, our approach can fully utilize the additional inputs.

Cornell-Quad
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Finally, we evaluate rotation synchronization on RGB
images. To this end, we consider two large-scale datasets
Cornell-Artquad and San-Francisco from [9]. Cornell-
Artquad has 5530 images with 222044 edges. San-
Francisco has 7866 images and 101512 edges. Each edge
has one relative rotation as input.

Figure 8 plots the angular errors of our approach and
baseline approaches. Since G is sparse, approaches based
on low-rank matrix recovery that require noise-level smaller
than the spectral gap of G, i.e., SE-Sync, Shonan-Rot, SDP-
Rot, and Trans-Sync, only exhibit limited performance.
For the same reason, the performance of these approaches
on San-Francisco is lower than that on Cornell-Artquad.
RobustRecons also shows limited performance on both
datasets due to difficulty in sampling cycles on sparse
graphs. The top-performing baselines are SFM-MRF and
K-Best. However, our approach still outperforms both of
them. The running time of our method is 263s over San-
Francisco and 570s over Cornell-Artsquad, both of which
are competitive against baseline methods (see Appendix C
for a full comparison of time efficiency).

5. Limitations
One limitation of our approach is that candidate pose

generation employs pose clustering at each iteration for
each object. When the number of adjacent edges is
large, this step is time-consuming.     We plan to address
this challenge by developing more efficient clustering

Figure 8. Results of rotation synchronization on (Left) Cornell-
Artquad and (Right) San-Francisco.

approaches or using a subset of propagated poses for
clustering. Another limitation is that step I  which computes
candidate poses, and step II, which jointly selects candidate
poses, are decoupled. We plan to study how to unify these
two steps as both steps employ a diffusion operation that
aggregates information from neighboring objects.

6. Conclusion

This paper introduced a new pose synchronization
approach that addresses the open challenge where there
are multiple relative poses between each pair of objects, in
which the correct one may not be the top ranked relative
pose. Our approach employs a novel iterative diffusion and
clustering step for computing the candidate poses, a joint
optimization strategy for selecting consistent poses, and a
pose refinement step which optimizes the relative poses
under a robust norm. Empirical results on real and synthetic
datasets demonstrate the advantage of our approach against
state-of-the-art pose synchronization approaches.
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