Pratyush et al. BMC Bioinformatics (2023) 24:41 BMC Bioinfo rmatics
https://doi.org/10.1186/512859-023-05164-9

PLMSNOSite: an ensemble-based approach e

for predicting protein S-nitrosylation sites
by integrating supervised word embedding
and embedding from pre-trained protein
language model

Pawel Pratyush’, Suresh Pokharel', Hiroto Saigo? and Dukka B. KC"”

icomess Abstract

" Department of Computer Background: Protein S-nitrosylation (SNO) plays a key role in transferring nitric oxide-

Science, Michigan Technological mediated signals in both animals and plants and has emerged as an important mecha-
zUBZSQi%’eHﬁngEZQQQ‘“SA nism for regulating protein functions and cell signaling of all main classes of protein. It

Engineering and Computer is involved in several biological processes including immune response, protein stability,
Science, Kyushu University, 744, transcription regulation, post translational regulation, DNA damage repair, redox regu-

Motooka, Nishi-Ku 819-0395,

Japan lation, and is an emerging paradigm of redox signaling for protection against oxida-

tive stress. The development of robust computational tools to predict protein SNO
sites would contribute to further interpretation of the pathological and physiological
mechanisms of SNO.

Results: Using an intermediate fusion-based stacked generalization approach, we
integrated embeddings from supervised embedding layer and contextualized protein
language model (ProtT5) and developed a tool called pLMSNQOSite (protein language
model-based SNO site predictor). On an independent test set of experimentally identi-
fied SNO sites, pLMSNOSite achieved values of 0.340, 0.735 and 0.773 for MCC, sensitiv-
ity and specificity respectively. These results show that pLMSNOSite performs better
than the compared approaches for the prediction of S-nitrosylation sites.

Conclusion: Together, the experimental results suggest that pLMSNOSite achieves
significant improvement in the prediction performance of S-nitrosylation sites and
represents a robust computational approach for predicting protein S-nitrosylation sites.
pLMSNOSite could be a useful resource for further elucidation of SNO and is publicly
available at https://github.com/KCLabMTU/pLMSNOSite.

Keywords: S-nitrosylation, Deep learning, Convolutional neural network, Post-
translational modification, Word embedding, Protein language model

©The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third

party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http//creativecommons.org/publi
cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05164-9&domain=pdf
https://github.com/KCLabMTU/pLMSNOSite

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 2 of 20

Background

Nitric oxide (NO) is a highly reactive molecule, and abnormal NO levels in mammalian
cells are associated with multiple human diseases, including cancer [1]. The role of NO
as a major regulator of physiological function has become increasingly evident. S-nitros-
ylation (SNO) is one of the most important regulatory mechanisms of this vital signal-
ing molecule. In S-nitrosylation, the NO is covalently attached to the thiol side chain of
cysteine residues to form S-nitrosothiol (SN), a critical mechanism of transferring NO-
mediated signals [2]. Additionally, S-nitrosylation has unfolded as an important mech-
anism for regulating protein functions and cell signaling of all main classes of protein
and is involved in several biological processes including immune response [1], protein
stability, transcription regulation, post translational regulation, DNA damage repair,
and redox regulation [3], and is an emerging paradigm of redox signaling for protection
against oxidative stress. Recently, it has also been shown that SNO also regulates diverse
biological processes in plants [4].

The experimental identification of S-nitrosylated sites is generally performed by com-
bining the Biotin-switch technique (BST) [5]with Mass Spectrometry (MS). With few
exceptions, all methods for the identification of S-nitrosylation sites are based on the
BST and differ only in the utilized MS equipment, ion sources, and the use of liquid
chromatography. Please refer to the excellent review by Lamotte et al. [4] for an in-depth
description of experimental identification of S-nitrosylation.

Although some studies have suggested that the target cysteine residues often lie within
an acid-base or hydrophobic motif [6], recent studies have proven that the acid—base
motif is located farther from the cysteine [7]. Additionally, even though some studies
have suggested that the target cysteine must be within a signature motif (I/L-X-C-X2-
D/E) and be in a suitable environment [1], there is not yet a consensus motif for SNO [8].
In this regard, various mechanisms are involved in the formation of SNO.

Owing to this fact that high throughput experimental approaches do not yet exist for
SNO, several complimentary computational approaches have been developed to pre-
dict protein SNO sites. These approaches are mostly based on machine learning mod-
els that use experimentally identified S-nitrosylation sites to train the model and use
various features such as identity of the neighboring residues during training. Some of
the existing SNO site prediction tools are: GPS-SNO [9], SNOSite [10], iSNOPSeAAC
[11], etc. SNOSID [12], developed by Hao et al.,, is perhaps the first computational tool
for predicting S-nitrosylation sites. GPS-SNO [9] is another approach for prediction of
S-nitrosylation sites and is based on the GPS 3.0 algorithm. Moreover, iSNO-PseAAC
[11] is another approach developed by Xu et al. that uses PseAAC to represent protein
sequences for prediction of protein S-nitrosylation sites. Recently, various deep learning-
based methods [13, 14] have been developed for prediction of various post-translation
modification sites including SNO sites. In that regard, DeepNitro [15], a deep learning-
based approach, developed by Xie et al. for the prediction of protein S-nitrosylation sites
uses four different types of features: one-hot encoding, Property Factor Representation
(PFR), k-space spectrum, and PSSM encoding.

Additionally, Hasan et al. proposed PreSNO [16] which integrates two classifiers: RF
and SVM using Linear regression. The input to both the RF and SVM in PreSNO is
based on four different encoding schemes: the composition of profile-based amino acid

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 3 of 20

pair (CPA), the K-space spectral amino acid composition (SAC), tripeptide composi-
tion from PSSM (TCP), and physicochemical properties of amino acids (PPA). It must
be noted here that the DeepNitro dataset is used for training and testing of the PreSNO
model. For a thorough review of the existing computational approaches for predicting
Protein S-nitrosylation sites, please refer to Zhao et al. [17].

Lately, we have witnessed the development of exciting array of Natural Language Pro-
cessing (NLP) algorithms and technologies including recent breakthroughs in the field
of bioinformatics [14, 18—20]. Among these developments, language models (LMs) have
emerged as a powerful paradigm in NLP for learning embeddings directly from large,
unlabeled natural language datasets. In contrast to uncontextualized word embeddings,
which return the same embedding for a word irrespective of the surrounding words,
embeddings from LMs are contextualized in a way that they render the embedding
dependent on the surrounding words. These advances are now being explored in pro-
teins through the development of various protein language models (pLMs) [21-24]. The
representations (embeddings) extracted from these transformer-based language models
have been successful for various downstream bioinformatics prediction tasks [25-27],
suggesting that the huge amount of information learned by these pLMs can be trans-
ferred to other tasks by extracting embeddings from these pLMs and using these embed-
dings as an input to predict other properties of protein.

As discussed above, though there exist various computational approaches for pre-
dicting SNO sites, the prediction performance of the existing approaches is not yet
satisfactory. Additionally, the potential uses of deep learning methods including natu-
ral language processing and language models in predicting SNO sites is largely unex-
plored. Furthermore, the existing approaches do not leverage the distilled information
from these pLMs. To the best of our knowledge, embedding from pLMS has not been
previously used to predict SNO sites. In this regard, here we propose pLMSNOSite, a
stacked generalization approach based on intermediate fusion of models that combines
two different learned marginal amino acid sequence representations: per-residue con-
textual embedding learned on full sequences from a pre-trained protein language model
and per-residue supervised word embedding learned on window sequences. Based
on independent testing, pLMSNOSite performs better than other widely available
approaches for SNO site prediction in proteins.

Methods

Benchmark dataset

The training and testing dataset for this work was adopted from PreSNO [16]. PreSNO
utilizes the original DeepNitro [15] dataset which is curated through an extensive lit-
erature search for experimentally verified S-nitrosylation sites. This dataset consists of
an experimentally confirmed 4762 sites from 3113 protein sequences. These sequences
are first subjected to homology removal using the cd-hit algorithm [28] with an iden-
tity cut-off of 0.3, resulting in 3734 positive sites. The remaining cysteine residues from
the same protein sequences (ones that have the experimental SNO sites) are considered
as the negative S-nitrosylation sites resulting in 20,548 negative sites. Furthermore, by
eliminating the negative site if there is an identical window sequence in the set of posi-
tive sites, we obtained 20,333 negative sites. From these sites, the independent dataset

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 4 of 20

Table 1 Number of proteins, number of sites, and training set used in this study (adopted from

PreSNO)

Sites Number of proteins Number of sites (before Number of sites
balancing) (after balancing)

SNO sites 1962 3383 3383

Non-SNO sites 340 17,165 3383

Total 2302 20,548 6766

The balanced sites are used for training the model

Table 2 Number of proteins, positive, and negative sites of independent test set used in the
experiments (adopted from PreSNO)

Sites Number of proteins Number of sites
SNO sites 267 351
Non-SNO sites 231 3168
Total 438 3519

is constructed by randomly sampling 20% of the sites, and the remaining sites are used
to construct the training dataset. This resulted in 3383 SNO sites and 17,165 non-SNO
sites in the training set and 351 SNO sites and 3168 non-SNO sites in the independent
test set. Clearly, the training set is highly skewed in class distribution towards negative
sites. This imbalance in the training dataset was resolved by randomly undersampling
the negative sites. The balanced training set thus obtained was used for building the
models whereas the independent test set was unaltered for assessing the generaliza-
tion ability of the trained models on unseen data. Note that the main difference between
DeepNitro [15] and PreSNO [16] datasets is the different cut-off used in cd-hit [28]. The
description of the training dataset and independent dataset used in the study is shown in
Tables 1 and 2 respectively.

Sequence representation

A critical step before passing amino acid sequences to a machine learning model is the
numerical encoding of each amino acid through an encoding scheme that assigns a
numerical representation to the amino acid. Choosing informative, discriminating, and
independent encoding (or features) is a crucial element of effective machine learning
algorithms. Most of the existing SNO prediction tools rely on manual or hand-crafted
features for the representation of amino acids [17]. We aim to eliminate the reliance on
hand-crafted features by leveraging two feature representation approaches for estab-
lishing a robust representation of S-nitrosylation sites: word embeddings from a super-
vised embedding layer and embeddings from ProtT5 (ProtT5-XL-UniRef50) [21], a
pre-trained protein language model based on Google’s T5 (Text-to-Text Transfer Trans-
former) [29] architecture. Below, we describe these two types of embeddings in detail.

Word embedding using supervised embedding layer
Word embedding is a class of approaches to represent words using a dense vector rep-
resentation. Protein sequences can be seen as documents, and amino acids that make

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 5 of 20

the protein sequence can be seen as words. In that regard, amino acids (words) can be
represented by dense vectors using word embeddings where a vector represents the pro-
jection of the amino acid into a continuous vector space. We used Keras’s embedding
layer [30], as in LMSuccSite [27], to implement supervised word embedding where the
embedding is learned as a part of training a deep learning model. The process of param-
eter learning in this approach is supervised; the parameters are updated with subsequent
layers during the learning process under the supervision of a label. With subsequent
epochs, the layer learns a feature-rich representation of sequences while still preserv-
ing the semantic relation between amino acids (each vectorized representation being
orthogonal in some other dimension [31]). The input for this representation is the win-
dow sequence centered around the site of interest flanked by an equal number of resi-
dues upstream and downstream. In cases where there are not enough residues to create
the window sequence, we pad the window with virtual amino acids (‘—’). Initially, the
amino acids are integer encoded, so that each amino acid can be represented by a unique
integer which is provided as an input to the embedding layer. Then, the embedding layer
is initialized with random weights, and the layer will learn better embedding for all the
amino acids with subsequent epochs as the part of the training process. There are three
salient parameters in word embedding (obtained through Keras’s embedding layer) that
determines the quality of the feature representation of amino acid sequences. These
parameters are input_dim denoting the size of the vocabulary, output_dim denoting
the length of the feature vector for each word and input_length denoting the maximum
length of input sequence (in our case, the length of window sequence). The vocabulary
size is set to 23 to represent 20 canonical, two non-canonical, and one virtual amino
acid (denoted by ‘—’). Based on fivefold cross-validation on a wide range of values of
embedding dimension, we obtained the best performance using a dimension of size four.
Similarly, performing fivefold cross-validation on multiple window sizes, we obtained
the best results using a window size of 37. Hence, the output of the embedding layer is
37 x 4 where 37 is the window size and four is the embedding dimension. The hyperpa-
rameter tuning of the window size (input_length) and the embedding dimension (out-
put_dim) is explained in detail in the result section.

Embedding from pre-trained protein language model ProtT5

Another representation that we use in our work is based on embeddings from ProtT5, a
pre-trained protein language model (pLM). The advances in Natural Language Process-
ing (NLP) gained by the development of newer language models have been transferred
to protein sequences by learning to predict masked or missing amino acids using a large
corpus of protein sequences [21-23]. Processing/distilling the information learned by
these pLMs yields a representation of protein sequences referred to as embeddings [21].
Recently, these embeddings have been shown to be beneficial in various structural bio-
informatics tasks including but not limited to secondary structure prediction and sub-
cellular location, among others. In that regard, in this work, we use pLM ProtT5 [21,
27] as a static feature encoders to extract per residue embeddings for protein sequences
for which we are predicting S-nitrosylation sites. It is relevant to note that the input to
ProtT5 is the overall protein sequence. ProtT5 is a pLM trained on BFD (Big Fantastic
Database consisting of 2.5 billion sequences), fine-tuned on Uniref50 consisting of 45

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 6 of 20

million sequences, and developed at Rostlab using T5 [29] architecture. Infact, postional
encoding is learned specific to each attention head in the transfromer architecture which
is shared across all the layers of attention stack. Using ProtT5, the per-residue embed-
dings were extracted from the last hidden layer of the encoder model with the size of
Lx1024, where L is the size of the protein using the overall protein sequence as the input.
As suggested by ProtTrans [26], LMSuccSite [27], the encoder side of ProtT5 was used,
and embeddings were extracted in half-precision. For our purpose, as the per-residue
embeddings are a contextualized representation, we only used the 1024 length embed-
dings for the site of interrogation (aka cystine ‘C’). The schematic of the extraction of

embedding from ProtT5 is shown in Fig. 1.

Deep learning models
Given the input and output, we train several DL models to learn underlying patterns in

the protein sequence.

<Protein ID> | <Site>

Y

EDAGQYSCVGQEKTSAVLTVD...ALPPKFT

Full Sequence

ProtT5
Tranformer

Encoder Decoder

Per Residue Encoder Ouput

.....

EEE D] R

Contextualized Feature Vector of the Site 'C’
Fig. 1 Extraction of Embeddings from ProtT5 language model, the site is the site of interrogation (C,
represented in red)

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 7 of 20

Sequence-based models

The input to the model is the sequence of amino acids which can thought of as sequence
of words in the field of natural language processing (NLP). Hence, an obvious option is to
employ models designed to train and process sequences, such as recurrent neural network
(RNN), long-short term memory (LSTM) [32], bidirectional long-short term memory (BiL-
STM), and so forth. The main drawback of these sequence-oriented models is that they are
computationally intense, requiring a large number of parameters for training.

Convolution neural network (CNN) model

CNN models have demonstrated great success in various computer vision tasks, where
convolution kernels or filters are used to learn and discern the spatial co-relation between
pixels in images. In our SNO site prediction setting, CNNs can help learn the underlying
relationship among the amino acids in the input protein sequence. CNNs are less compu-
tationally intensive models than sequence-oriented models and facilitate the training of
deeper networks as significantly fewer parameters are needed to be learned. The usage of
CNNss is prevalent in several PTM prediction tasks [13, 15, 27]. In our case, we use CNN to
process the feature representation of the protein sequence obtained from the word embed-
ding layer as described in the previous section. The process of obtaining feature maps of
input integer encoded window sequence from the convolution layer (or kernel) is given by
the formula:

Glmnl = (f - h)lmym) =3 > hlj,KIf b —j,n = K] (1)

where the input sequence is denoted by f and the kernel by 4. The index of rows and
columns in the resultant matrix is denoted by m and # respectively. Typically, we use
multiple convolutions over the input sequence which helps to extract diverse features
from a single input map and the output maps are stacked forming a volume. The dimen-
sion of the obtained feature map from convolution over volume can be calculated using
the following formula:

[nllf.fon] = [ﬂoor(n—i_zsp_f + 1>,ﬂoor<n+zsp_f + 1),114 (2)

where # is the size input sequence, 7, is the number of channels, f is the kernel size, p
is the used padding s is the used stride and 7, is the number of kernels. The convolu-
tion layer is followed by the max-pooling layer which selects the maximum value from
regions of feature maps, creating a downsampled map. The downsampled feature map is
then flattened and passed into a conventional fully connected network. All the weights
in the network are updated using the backpropagation algorithm. It is to be mentioned
that we use a non-linear activation function called ReLU (Rectified Linear Unit) in all
layers of the architecture for capturing non-linear signals in the data. Among other acti-
vation functions, ReLU is widely adopted in deep learning applications due to its ben-
efits such as representational sparsity and efficiency with respect to computation. The
ReLU activation function for a domain value x is given by:

RELU (x) = max(0,x) (3)

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 8 of 20

pLMSNOSite architecture

The general framework of the stacked generalization consists of two base models
(level-0 models) and a higher-level meta-model (level-1 model, meta-classifier). Our
approach pLMSNOSite (protein Language Model-based S-Nitrosylation Site predic-
tor) uses stacked generalization to combine the meta-features (marginal representa-
tions) learned from the base models to achieve better prediction. Specifically, the first
base model (herein referred to as embedding layer module) learns the representation of
local information of cysteine residue of interest captured by proximal residues within
window sequences using supervised word embedding. The second base model (herein
referred to as pLM ProtT5 module) learns the contextualized information of the same
cysteine residue generated by unsupervised pLM using a full-length sequence as input.
These learned features by the base models using different representations are fused
together and a meta-model is learned adopting an ensemble approach known as stacked
generalization. The overall architecture of pLMSNOSite is shown in Fig. 2. As shown
in the figure, the architecture of pPLMSNOSite consists of two base models: the super-
vised embedding layer module and the ProtT5 module, followed by a higher-level meta-
model (meta-classifier) that performs the feature-level fusion of base models. We further

Word Embedding

n“':’"” Dense Layer
(@23x4x37) (16)
Flatten Layer
(384)

2D Convolution Layer
(Filter=64, Kernel=19x1)

Integer Encoding
@7)

Output Layer |
)

Dropout
©3)

Window Peptide

Word Embedding | eatures
@n "

—
(Embedding2DCNN)

Sequence
+ Stacked Generaization
Feature Level Fusion \J Meta-Classifier — 5 pecision

pLM
Module
(ProtTSANN) Features
Input Layer :
(20)
Q :
) . DenseLayer
@) :

Output Layer
&)

Site

Features

ProtT5 Language

T Model Encoder

Protein Sequence

* Input Layer
L0z
é Dense Layer
<12 pengeLayer
(16) 0
Dense Layer
=9 oupuiLayer
3 m

Dropout
0.4)

Fig. 2 The overall architecture of pLMSNOSite with the two base models and a meta-classifier model

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 9 of 20

describe the supervised embedding layer module and ProtT5 modules and higher-level

meta-model in detail below.

Supervised (word) embedding layer module

The input to this module is a protein window sequence (centered around the site of
interest flanked by an equal number of residues on both sides) that captures the local
interaction between amino acids surrounding the site of interrogation (in this case
S-nitrosylation/non-S-nitrosylation sites) within the window sequence. We choose a
deep two-dimensional (2D) Convolutional Neural Network (CNN) to extract feature
maps from these localized interactions of proximal amino acids. The advantage of CNN
over other sequence-oriented models has been explained in the previous section. Inter-
estingly, the CNN model also showed promising performance in fivefold cross-valida-
tion (refer result section). The 2D-CNN architecture in this module first consists of a
word embedding layer which takes integer encoded sequence as an input. The output
from this layer (37 x 4, where 37 is the window size and 4 is the embedding dimension)
is passed into a 2D convolutional layer to extract feature maps from a window sequence
followed by a dropout layer to prevent overfitting, a max-pooling layer and a fully con-
nected layer consisting of a flatten layer and a dense layer. The hyperparameters asso-
ciated with the model architecture were determined by performing an extensive grid
search based on fivefold cross-validation. The search space and optimal hyperparameter
values of the model obtained from cross-validation are reported in the Additional file 1:
Table S2. Finally, the feature map of size 16 obtained from the final hidden layer from
the optimized 2D-CNN model (hereafter dubbed Embedding2DCNN) is treated as the
output of the first base model.

pPLM ProtT5 module

In this module, at first per-residue embeddings are extracted from the last hidden layer
of the encoder models of ProtT5 of the size of Lx1024, where L is the length of the pro-
tein using the overall protein sequence as the input. Subsequently, the 1024 features
corresponding to the site of interest are extracted and fed as an input to this module.
A dense neural network was used to learn the representation from the obtained fea-
tures. The architecture of this model and its corresponding hyperparameter values in
this module were also chosen based on grid search using fivefold cross-validation. The
search space and selected hyperparameter values are reported in the Additional file 1:
Table S1. Similar to Embedding2DCNN, we obtained a feature map of size 4 from this
base model (hereafter dubbed as ProtT5ANN module).

Stacked generalization

To integrate the capability of the representation learned by the base models (Embed-
ding2DCNN and ProtT5ANN), we implemented stacked generalization of these mod-
ules. To this end, instead of stacking on a decision level or a score level, we performed
an intermediate level feature fusion by concatenating the feature maps obtained from
the final hidden layers of the base models (16 x 1 from the Embedding2DCNN and
4 x 1 from the ProtT5ANN) as explained in previous subsections. The fused features

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 10 of 20

were then used to train the meta-model (meta-classifier) that acts as the final inference
model. Since the datasets used to train base models and meta-classifier are similar, there
is a likelihood of data leakage about target information from base models to meta-classi-
fier [33], which could result in overestimation of cross-validation performance leading to
spuriousness in the model selection process. Considering this, we paid special attention
to ensure that there is no data leakage from base models to meta-classifier. In this work,
we performed the fivefold cross-validation algorithm called Stacking with K-fold cross-
validation, developed by Wolpert [34], to ensure no target information is leaked while
training the meta-classifier. Initially, the overall training data are randomly split into K
folds. Subsequently, base models are trained using K-1 folds, and the models are tested
against the remaining onefold validation set. The predictions or features obtained from
different base models for each fold are collected to train the next-level model (meta clas-
sifier). As a result, the meta classifier is trained on a non-overlapping dataset prevent-
ing any potential data leakage. Similar to other modules, we selected a single layer feed
forward neural network as the architecture for the stacked generalization model using
cross-validation.

Model training
All the deep learning models were trained to minimize the binary cross-entropy loss or
log loss function which is given by the following equation:

o3 [itog(51) + (1~ yi)iog(1-5))])

where y; and y; are the ground truth and predicted probability for the ith instance of N
points respectively.

The parameters in the model were optimized to minimize the above loss function
using Adam stochastic optimization method (AMSGrad variant) with an adaptive learn-
ing rate of 0.001, the decay rate for the first moment as 0.9, and the decay rate for the
second moment as 0.999. Prior to training, the number of epochs was set to 200 and the
batch size was set to 128. Additionally, an early stopping strategy with patience equal to
5 was used which stops the training after 5 epochs if no improvement in loss is recorded.
Any potential overfitting while training was averted by carefully monitoring accuracy/
loss curves.

Evaluation of models and performance metrics

We adopt a stratified fivefold cross-validation strategy for model selection. Subsequently,
we perform independent testing to assess the generalization error of our approach as
well as compare with it the existing approaches. Below, we define the performance met-
rics used for evaluating the models.

TP + TN
TP + TN + FP + FN

Accuracy(ACC) = (5)

TP

Sensitivity(SN) = ——
TP 4+ FN

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 11 of 20

TN
Specificity(SP) = ——
pecificity (SP) TN + EP (7)
TP+ TN — FP x FN
MCC = (8)
(TP 4+ FP)(TP + FN)(TN + FP)(TN + FN)

where TP (True Positive) is the number of actual SNO sites predicted as positive, TN
(True Negative) is the number of non-SNO sites predicted as negative, FP (False Posi-
tive) is the number of non-SNO sites predicted as positive and FN (False Negative) is the
number of actual SNO sites predicted as negative.

We also use AUROC (Area Under Receiver Operating Characteristic curve) and AUPR
(Area Under Precision-Recall curve) to further evaluate the discriminating performance
of the models.

Results

As described above, pLMSNOSite uses stacked generalization to combine the super-
vised word embedding layer module (Embedding2DCNN) and the pLM ProtT5 module
(ProT5ANN) using a meta-classifier. The meta-classifier in fact learns from the output
of the base models and thus the base models were first optimized to robustly learn their
corresponding representations. Successively, the meta-classifier was optimized to pro-
duce the classification inference accurately.

Initially, we analyze the comparative performance of various ML/DL architectures for
the selection of the optimal base models using fivefold cross-validation. Subsequently,
the comparative cross-validation performance of various models was analyzed for the
selection of optimal meta-classifier. Finally, we compare the performance of the overall
architecture pLMNOSite against existing SNO site prediction tools using the independ-
ent test set. The details of the results obtained from these experiments are presented in
the following subsections.

Selection of window size and embedding dimension for word embedding module

As described in the Methods section, the supervised embedding layer has three major
parameters: vocabulary size (input_dim), window size (input_length), and embedding
dimension (output_dim). The input_dim is fixed to 23 based on the number of canonical
amino acids (= 20), non-canonical amino acids (=2), and virtual amino acids (=1). The
window size (input_length) is important as too few residues might result in informa-
tion loss while too many residues might result in loss of local contextual information of
the site. To obtain the optimal input_length, fivefold cross-validation was performed by
varying window sizes from 21 to 63. Similarly, a higher embedding dimension demands
substantial computational cost and thus the optimal output_dim was determined by
exhaustively searching the value of the embedding dimension in the search space rang-
ing from 2 to 32.

The cross-validation experiments suggest that the output_dim (or, embedding
dimension) of 4 and input_length (or window size) of 37 produced the highest MCC
and these values were utilized for further analysis. The obtained value of output
dimension is indeed a significant improvement over the traditional binarization

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 12 of 20

i
1
i
i
i
1
i
i
i
i
%) H

Q

O o032 9 |
= 0.32 1
i
0.30 |
030 i
0.28 !
0.28 H
i
0.26 !
H

20 30 40 50 60 0 4 8 12 16 20 24 28 32

Window Dimension
a) Window size vs MCC b) Dimension Vs MCC

Fig. 3 Sensitivity analysis of MCC on fivefold cross-validation when a window size is varied keeping the
dimension and vocabulary size constant (dimension =4, vocabulary size =23), b dimension is varied keeping
the window size and vocabulary size constant (window size =37, vocabulary size=4)

Table 3 Fivefold cross-validation results (mean+ onestandard deviation) of embedding layer
module on the training set

Model ACC SN SP MCC

2D-CNN 0.688+0.018 0.76040.063 0.61540.069 0.382+0.034
ANN 0.6584+0.018 0.69740.0351 06194+0.010 0.31840.036
LSTM 0.67440.011 0.816+0.067 0.533+0.074 0.3684+0.024
ConvLSTM 0.667 £0.006 0.836+0.023 0498+0.017 0.355£0.017
BiLSTM 0.68640.009 0.747 +£0.093 0.626 +0.083 0.38040.022

The highest values in each category are bolded

encoding (or, one-hot encoding) where static and relatively higher dimensional fea-
tures are generated. It is also worthwhile to note that the optimal window size for
PreSNO is 41 (only 2 residue difference on each side of the central residue). The
sensitivity analysis of MCC (mean) on fivefold cross-validation for different win-
dow sizes and embedding dimension for Embedding2DCNN is shown in Fig. 3a, b
respectively and the respective plots for other models are in Additional file 1: Fig. S1.

Selection of model architecture for the word embedding module

To obtain the best architecture for the word embedding module, we performed a
fivefold cross-validation of the model using various architectures: 2D-CNN [29],
ANN, LSTM [30], ConvLSTM [31], and BiLSTM using the value of window size
(=37), vocabulary size (=23) and embedding dimension (=4) obtained from the
prior experiments. It must be noted here that the supervised word embedding is
obtained as a part of the training process of the model, so we only experimented
with DL-based architectures. These DL architectures were tuned using grid search
with fivefold cross-validation over wide range of search space (provided in Addi-
tional file 1: Table S2). The results of the fivefold cross-validation of the optimized
models are shown in Table 3. Similarly, the AUPR and AUC for cross-validation for
these models are shown in Fig. 4. It can be observed from Table 3 as well as Fig. 4

Pratyush et al. BMC Bioinformatics (2023) 24:41
a)
1.0
- g
i 4 3
0.8 g
g o
2 -
< -
v 06 e
= Fa
= >
o
a o
o 04 i’ ¥
g 2 —— 2D-CNN--AUROC = 0.73
il ~—— ANN--AUROC = 0.69
0.2 »” —— LSTM--AUROC = 0.70
all B 520 —— ConvLSTM--AUROC = 0.70
M - —— BILSTM--AUROC = 0.71
p. ~~~ No Skill ~AUROC = 0.50
0.0

0.2

0.4 0.6 0.8 1.0

False Positive Rate

Precision

0.8

0.6

0.4

0.2

0.0

—— 2D-CNN--AUPR = 0.75
—— ANN-AUPR =0.71

—— LSTM--AUPR = 0.69
= ConvLSTM-AUPR = 0.69
—— BIiLSTM-AUPR = 0.71
=== No Skill-AUPR

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 4 a ROC curves and area under curve (AUC) values for different architectures for the supervised
embedding layer module. b Precision-recall (PR) curves and area under curve (AUC) values for different
architectures for the supervised embedding layer module

a)

0.8

0.6

0.4

True Positive Rate

0.2

0.0

- —— ANN--AUROC = 0.73
4 ~—— SVM--AUROC = 0.72
—— RF--AUROC = 0.69
—— XGBoost--AUROC = 0.69
—— AdaBoost--AUROC = 0.67
=== No Skill --AUROC = 0.50

0.4 0.6 0.8
False Positive Rate

1.0

Precision
°
3

0.9

o
@

0.6

0.5

—— ANN--AUPR = 0.78
—— SVM--AUPR = 0.76
—— RF--AUPR = 0.72

—— XGBoost--AUPR = 0.74
—— AdaBoost--AUPR = 0.72
=== No Skill

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 5 a Area under ROC curves (AUROC) values for different architectures for the ProtT5 module. b Area
under precision-recall (AUPR) values for different architectures for the ProtT5 module

that the 2D-CNN architecture produces the best results (MCC in the table and AUC
in the figures). Based on this, 2D-CNN architecture was chosen as the final architec-

ture for the word embedding module.

Selection of model architecture for the pLM module (protT5)

It has been observed in multiple studies encompassing various bioinformatics tasks
that a simple machine learning model is enough to obtain a satisfactory performance
for pLM based embeddings [26, 27]. Based on this knowledge, we experimented with
ANN (Artificial Neural Network), SVM (Support Vector Machine) [35], RF (Random
Forest) [36], XGBoost (Extreme Gradient Boosting), and AdaBoost (Adaptive Boost-
ing) architectures for protT5 module using fivefold cross-validation. The scikit-learn’s
GridsearchCV was used to optimize SVM, RF, XGBoost and AdaBoost with cv as 5 and
param_grid (parameters grid) value as mentioned in the Additional file 1: Table S1. The
results of the fivefold cross-validation of the optimal models are reported in Table 3 and
ROC and PR curves for the same are shown in Fig. 5. It can be observed that the ANN
architecture produced the best results (MCC in Table 4 and AUC in Fig. 5). Based on
this, ANN architecture was chosen as the final architecture for the pLM ProtT5 module.

Page 13 of 20

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 14 of 20

Table 4 Fivefold cross validation results (mean = one standard deviation) of different models based
on ProtT5 features

Architecture ACC SN SP MCC

ANN 0.710+0.015 0.745+0.028 0.674+0.015 0.421+0.030
SVM 0.700£0.012 0.702£0.016 0.699+0.020 0.401£0.024
RF 0.682+£0.010 0.815+0.815 0.549+0.815 0.379+£0.378
XGBoost 0.699+0.008 0.752+0.019 0.645 £ 0.007 0400+£0.016
AdaBoost 0.672+£0143 0.695+0.024 0.650£0.022 0.345+£0.029

Highest values in each column are highlighted in bold

Selection of model architecture for meta classifier

Additionally, the optimal architecture for the stacked generalization (aka meta classifier)
was obtained using fivefold cross-validation on various ML models. Essentially, during
the cross-validation of models for the meta-classifier, the intermediate features obtained
from base models were used paying special attention to any potential leakage of target
information in the training of the meta classifier as described in the methods section.
The candidate models for the meta-classifier were optimized using this approach (data
leakage mitigation) for fivefold cross-validation (over the search space reported in Addi-
tional file 1: Table S3). Table 5 and Fig. 6 show the comparison of the optimized models
based on fivefold cross-validation. These results indicate that Artificial Neural networks
(ANN) achieves better validation performance compared to other classifiers in terms
of MCC and competitive results in terms of AUPR and AUROC. The meta-classifier

Table 5 Performance comparison using different architectures for meta-classifier based on fivefold
cross-validation results (mean = one standard deviation)

Model ACC SN SP MCC

ANN 0.727 £0.017 0.769+0.016 0.685+0.033 0.4573+0.032
LR 0.703+£0.014 0.740+0.017 0.66540.028 0407 +0.027
SYM 0.71940.021 0.807 +£0.029 063140017 0.44540.043
RF 0.7244+0.010 0.771+0.026 0.67840.022 0.45140.021
XGBoost 0.697 +0.006 0.735+0.014 0.66040.022 0.39640.011

The highest value in each column is highlighted in bold

a) b)
1.0 =2 i
r,,
25
-
d 4 .

o 08 Z 5 -
= y e
© P &
< i
v 06 4 P c
> 4 .,
2 - 506
g 4 @
& o4 L-7" —— ANN--AUROC = 0.80 2 .
o A o SVM--AUROC = 0.81 & 04 —— ANN (pLMSNOSite)--AUPR = 0.81
= 30T —— LR-AUROC = 0.80 SVM--AUPR = 0.81

0.21 ff . —— RF-AUROC = 0.80 — LR--AUPR =0.80

o —— XGBoost--AUROC = 0.80 0.2 —— RF-AUPR =0.80
A -== No Skill --AUROC = 0.50 —— XGBoost--AUPR = 0.80
0.0 £2 -=- No Skill--AUPR = 0.50
0.0 0.2 0.4 06 0.8 10 0.0
- 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Recall

Fig. 6 Results based on fivefold cross-validation a ROC curves and area under curve (AUC) values for
different architectures for the meta classifier model. b Precision-recall (PR) curves and area under curve (AUC)
values for different architectures for meta classifier model

Pratyush et al. BMC Bioinformatics (2023) 24:41
a)
1.0 — —
0.8 ,,/ g
3 L
[7
-4 -
o 064 -
2 7
S W
@ .
£ 0.4 o
(<]
’g —— pLMSNOSite--AUROC = 0.75
0.2 Embedding2DCNN--AUROC = 0.74
——— ProtTSANN--AUROC = 0.71
=== No Skill --AUROC = 0.50
0.0 T T T T
0.0 0.2 0.4 0.6 0.8

False Positive Rate

1.0

Precision
°
>

o
N}

0.0

—— pLMNOSite--AUPR = 0.30
Embedding2DCNN--AUPR = 0.28
—— ProtTSNN--AUPR = 0.25

0.0

0.2 0.4 0.6 0.8 1.0
Recall

Fig. 7 Results based on independent test set (imbalanced): a ROC curve and b AUPR curve for the base
models and pLMSNOSite

Table 6 Performance comparison of base models (aka Embedding2DCNN and ProtTSANN models)
and ensemble model (pLMSNOSite)

Models ACC SN SP MCC
Embedding2DCNN 0.706 0.798 0.696 0.310
ProtT5ANN 0.791 0.598 0.812 0.293
pLMSNOSite 0.769 0.735 0.772 0.340

The highest value in each column is highlighted in bold

based on ANN was hence chosen for our work and we call the overall approach as
pLMSNOSite.

Performance of base models and pLMSNOSite on independent test set

To observe the relative performance of the base models (aka Embedding2DCNN and
ProtT5ANN) and ensemble model on the independent test set, we compared the per-
formance of these models using an independent test set. Note that this independent
test set is imbalanced and that these results have no effect whatsoever on model selec-
tion (model selection was solely done based on the results of fivefold cross-validation
on training data). The ROC and PR curves of the base models and ensemble model
(pPLMSNOSite) are shown in Fig. 7 and Table 6 shows other performance metrics for the
base models and ensemble model. The results indicate that the ensemble model (pLM-
SNOSite) exhibits higher AUROC, AUPR and MCC compared to the base models. This
demonstrates the better generalization ability of the ensemble model (pLMSNOSite)
compared to the base models. From the figure, the AUPR values are quite low which is
to be expected because precision and recall are focused on minority class (minority class
size: 351, majority class size: 3168). Nevertheless, pPLMSNOSite still has better precision
compared to other existing approaches (Additional file 1: Fig. S4).

Furthermore, we analyzed the performance of pLMSNOSite and base models under
various controlled specificity values. As shown in Fig. 8, we can observe that the pro-
posed pLMSNOSite approach performs better in terms of MCC and sensitivity at vari-
ous values of controlled specificity. Also, we can concur that as the models become more
specific, pPLMSNOSite is still able to outperform the base models.

Page 15 of 20

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 16 of 20

mm pLMSNOSite
BN ProtTSANN
| === Embedding2DCNN
(@}
o
=
0.40 0.50 0.60 0.70 0.80 0.90
Controlled Specificity
0.8
2 06
2
=
(%2}
@
B 0.4
0.2
0.0

0.60 0.70
Controlled Specificity

Fig. 8 Comparison of MCC and Sensitivity of pLMSNOSite with base models under different controlled
specificity values

It must be noted that pLMSNOSite was selected as the final predictor based on the
cross-validation experiments, and these results were presented to simply assess the per-
formance of the base models and meta-model on the independent test set.

Comparison with other existing tools using an independent test set

Finally, we compared the performance of our approach (pLMNOSite) with other
existing SNO site prediction tools using an independent test set described in the
Benchmark dataset section. Specifically, our approach was compared against widely
available tools such as GPS-SNO [9], SNOSite [10], iSNO-PseAAC [11], DeepNitro
[15], and PreSNO [16]. It must be pointed out that the same training and independ-
ent test set used by PreSNO predictor was employed for our analysis for fair com-
parison. The results of the comparison are presented in Table 7 and note that the
results for other predictors were adopted from PreSNO [16]. It can be observed from
Table 7 that the pLMSNOSite achieves the best MCC (= 0.340) among the compared
approaches showing an improvement of ~35.0% in MCC compared to the next best
approach (PreSNO). Additionally, it also exhibited an ~21.7% increase in sensitivity

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 17 of 20

Table 7 Performance comparison of pLMSNOSite against other existing approaches using the
independent test set

Predictors TP FP TN FN ACC SN SP MCC AUROC
GPS-SNO 99 825 2337 253 0.693 0.281 0.739 0.014 0.523
iSNO-PseAAC 101 768 2394 251 0.710 0.287 0.757 0.031 -
SNOSite 235 1749 1413 117 0469 0.668 0447 0.069 -
DeepNitro 202 776 2386 148 0.737 0.578 0.737 0.222 0.731
PreSNO 21 733 2431 141 0.752 0.604 0.769 0.252 0.756

pLMSNOSite 258 718 2446 93 0.769 0.735 0.773 0.340 0.754

The highest values in each column are highlighted in bold

Note that the values for other approaches were adopted from PreSNO. Although same independent test set was used for all
the approaches, there is a slight variation in the number of total positive and negative sites. Nevertheless, the integrity of
comparison is not compromised at all

404 o Non-SNO
® SNO

Dimension-2

—40 4

-100 =75

Dimension-1

Fig.9 2D t-SNE visualization of the learned features from training data by pLMSNOSite

and improvements in terms of specificity and accuracy. It is worth noting that pLM-
NOSite struck the most balance between sensitivity and specificity with a g-mean
(geometric mean of sensitivity and specificity) of 0.754, a ~10.6% improvement over
PreSNO. Additionally, it can also be seen that the ProtT5 model alone has a better
MCC (=0.293) than the other compared approaches. Based on these results, it can
be concluded that our novel approach termed pLMSNOSite is a robust predictor of
S-nitrosylation sites in proteins.

t-SNE visualization of pLMSNOSite

Additionally, we used t-distributed stochastic neighbor embedding (t-SNE) [37] to
project the learned features from the final hidden layer into R* cartesian space. With
a perplexity value of 50 and a learning rate of 500, the t-SNE was visualized from the
training data using a scatter plot (Fig. 9). It can be inferred from the plot that the
boundary of separation between SNO sites (blue data points) and non-SNO sites
(orange data points) is quite pronounced indicating that the proposed stacked gener-
alization approach is able to discriminate between the positive sites and the negative
sites.

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 18 of 20

Discussions and conclusions

Protein S-nitrosylation is one of the important protein post-translational modifica-
tions that is responsible for regulating protein functions and cell signaling of all main
classes of proteins. In this work, we developed a computational tool to predict pro-
tein S-nitrosylation sites called pLMSNOSite that combines a supervised embedding
layer model and a protein language model (based on ProtT5) using a stacked gen-
eralization approach. Based on independent test results, pPLMSNOSite shows better
performance than the compared existing tools. As can be seen from the results, the
improved performance of our approach can mainly be attributed to the new embed-
ding representation obtained from ProtT5 (a protein language model). One of the
benefits of language models like ProtT5 is that it is learned on overall sequence to
extract the contextualized embedding of the site of interest as a consequence of which
the dependency on defining local contextual information of the site based on the win-
dow size (which demands additional overhead for hyperparameter tuning) is averted.
Based on the experimental results, it can be concluded that pLMSNOSite is a promis-
ing tool for predicting protein S-nitrosylation sites. The trained pLMSNOSite model
and related dataset are provided in our public GitHub repository (https://github.com/
KCLabMTU/pLMSNOSite) for the community.

As in pLMSNOSite, the representation of protein sequences using protein language
model could be explored to improve other protein bioinformatics tasks like protein-drug
interaction prediction [38]. Essentially, by representing the protein target using pLMs we
may expect improved protein-drug interaction prediction. Additionally, the protein lan-
guage model could be used for improved protein—protein interaction prediction (PPI) [39]
where representations for both proteins can be extracted using pLMs. Although pLM-
SNOSite shows promising performance, the predictive performance of pLMSNOSite
could be improved by leveraging the vast amount of structural data made available due
to the success of AlphaFold2 [18]. Additionally, pPLMSNOSite only uses sequence features
from ProtT5 language model for feature extraction but there are other recent protein lan-
guage models (e.g. ESM-2 [24]) and exploration of these language models for SNO site pre-
diction could be other important future work. Since our method uses ProtT5, our method
might require appropriate computational resources for very long protein sequences.

Abbreviations

SNO S-nitrosylation

LMs Language models

T5 Text to text transfer transformer

t-SNE T-distributed stochastic neighbor embedding
PTM Post translational modification

MCC Mathew correlation coefficient

ROC Receiver operating characteristics

AUC Area under ROC curve

PR Precision-recall

RelU Rectified linear unit

CNN Convolutional neural network

LSTM Long short-term memory

BiLSTM Bidirectional long short-term memory
ConvLSTM Convolutional long short-term memory
DL Deep learning

SVM Support vector machine

LR Logistic regression

RF Random forest

PPI Protein—protein interaction

https://github.com/KCLabMTU/pLMSNOSite
https://github.com/KCLabMTU/pLMSNOSite

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 19 of 20

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/512859-023-05164-9.

Additional file 1. Contains supplementary tables and figures referred to in the manuscript. In sections 1, 2, and 3,
we describe various ML/DL architectures and their respective hyperparameters. Table S1. Hyperparameter search
space for models in the ProtT5 module. Table S2. Hyperparameter search space for models in the word embedding
module. Table S3. Hyperparameter search space for models in the meta-classifier. Table S4. fivefold cross-validation
results of Embedding2DCNN and ProtTSANN when imbalanced learning (based on cost-sensitive learning) is
performed. Table S5. Best combination (with respect to MCC) of window size and embedding dimension for each of
the candidate models for the word embedding module on fivefold cross-validation. Figure S1. The sensitive analysis
curves of each DL model in the word embedding module on fivefold cross-validation. Table S6. Comparison of
ProtT5 with other pLMs such as ProtBERT (BERT-based ProtTrans family model) and Meta's ESM-1 using independent
testing. Figure S2. Frequency and WebLogo plots for train positive and train negative window sequences (window
size = 37). Figure S3. Precision-Recall curves were produced for base models and pLMSNOSite using an imbalanced
independent set and a balanced independent test set separately. Figure S4. Comparison of pLMSNOSite with other
existing predictors based on precision values using an independent test set.

Acknowledgements
We acknowledge the High-Performance Computing resources made available to us by Michigan Tech. We also acknowl-
edge helpful discussions with Subash C. Pakhrin, Meenal Chaudhari, Hamid Ismail, Zenia Sidorov and Soufia Bahmani.

Author contributions

PP, SP, HS, DK conceived of and designed the experiments. PP and SP performed the experiments and data analysis. PP,
SP, DK wrote the paper. PP, SP, HS, and DK revised the manuscript. DK oversaw the overall project. All authors read and
approved the final manuscript.

Funding
This work was supported by National Science Foundation (NSF) grant nos. 1901793, 1564606 (to DK) JSPS KAKENH]
grant no.s JP19H04176 and JP22K19834 (to SH).

Availability of data and materials
The datasets, trained models, source codes, and other resources used in this study are publicly available https://github.
com/KCLabMTU/pLMSNOSite.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 14 October 2022 Accepted: 30 January 2023
Published online: 08 February 2023

References

1. FernandoV, et al. S-nitrosylation: an emerging paradigm of redox signaling. Antioxidants (Basel). 2019;8(9):404.

2. Martinez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms.
Free Radic Biol Med. 2011;51(1):17-29.

3. Hess DT, et al. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol. 2005;6(2):150-66.

Lamotte O, et al. Protein S-nitrosylation: specificity and identification strategies in plants. Front Chem. 2014,2:114.

5. Jaffrey SR, Snyder SH. The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE.
2001,2001(86):L1.

6. Stamler JS, Lamas S, Fang FC. Nitrosylation. The prototypic redox-based signaling mechanism. Cell.
2001;106(6):675-83.

7. Marino SM, Gladyshev VN. Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the
emerging role of trans-nitrosylation. J Mol Biol. 2010,395(4):844-59.

8. Smith BC, Marletta MA. Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr Opin
Chem Biol. 2012;16(5-6):498-506.

9. XueY, et al. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm. PLoS
ONE. 2010;5(6): 11290.

10. LeeTY, et al. SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with
substrate site specificity. PLoS ONE. 2011;6(7): €21849.

11. XuY, et al. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino
acid propensity into pseudo amino acid composition. PLoS ONE. 2013;8(2): e55844.

Bl

https://doi.org/10.1186/s12859-023-05164-9
https://github.com/KCLabMTU/pLMSNOSite
https://github.com/KCLabMTU/pLMSNOSite

Pratyush et al. BMC Bioinformatics (2023) 24:41 Page 20 of 20

12. Hao G, et al. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein
mixtures. Proc Natl Acad Sci USA. 2006;103(4):1012-7.

13. Pakhrin SC, et al. Deep learning-based advances in protein posttranslational modification site and protein cleavage
prediction. Methods Mol Biol. 2022;2499:285-322.

14. Meng LK, et al. Mini-review: recent advances in post-translational modification site prediction based on deep learn-
ing. Comput Struct Biotechnol J. 2022,20:3522-32.

15. XieY, et al. DeepNitro: prediction of protein nitration and nitrosylation sites by deep learning. Genom Proteom
Bioinform. 2018;16(4):294-306.

16. Hasan MM, et al. Prediction of S-nitrosylation sites by integrating support vector machines and random forest. Mol
Omics. 2019;15(6):451-8.

17. Zhao Q, et al. Recent advances in predicting protein S-nitrosylation sites. Biomed Res Int. 2021;2021:5542224.

18. Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873): p. 583-+.

19. Badal VD, Kundrotas PJ, Vakser IA. Natural language processing in text mining for structural modeling of protein
complexes. BMC Bioinform. 2018;19(1):84.

20. Pokharel S, et al. NLP-based encoding techniques for prediction of post-translational modification sites and protein
functions. In: K. Lukasz (ed) Machine learning in bioinformatics of protein sequences: algorithms, databases and
resources for modern protein bioinformatics. World Scientific Publishing Company. 2023.

21. Elnaggar A, et al. ProtTrans: towards cracking the language of lifes code through self-supervised deep learning and
high performance computing. [EEE Trans Pattern Anal Mach Intell. 2021;44(10):7112-27.

22. Rives A, et al, Biological structure and function emerge from scaling unsupervised learning to 250 million protein
sequences. Proc Natl Acad Sci USA. 2021;118(15).

23. Brandes N, et al. ProteinBERT: a universal deep-learning model of protein sequence and function. Bioinformatics.
2022.

24. Rives A, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein
sequences. Proc Natl Acad Sci USA. 2021. 118(15).

25. Heinzinger M, et al. Contrastive learning on protein embeddings enlightens midnight zone. NAR Genom Bioinform.
2022;4(2)1qac043.

26. Littmann M, et al. Protein embeddings and deep learning predict binding residues for various ligand classes. Sci
Rep. 2021;11(1):23916.

27. Pokharel S, et al. Improving protein succinylation sites prediction using embeddings from protein language model.
Sci Rep. 2022;12(1):16933.

28. LiW, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences.
Bioinformatics. 2006;22(13):1658-9.

29. Raffel C, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res.
2020;21:5485-551.

30. Lee H, Song J. Introduction to convolutional neural network using Keras: an understanding from a statistician. Com-
mun Stat Appl Methods. 2019;26(6):591-610.

31. LiH,etal Deep neural network based predictions of protein interactions using primary sequences. Molecules.
2018;23(8):1923.

32. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735-80.

33. Ting KM, Witten IH. Issues in stacked generalization. J Artif Intell Res. 1999;10:271-89.

34, Wolpert DH. Stacked generalization. Neural Netw. 1992;5(2):241-59.

35. Hearst MA. Support vector machines. [EEE Intell Syst Their Appl. 1998;13(4):18-21.

36. Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.

37. van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579-605.

38. Zhao BW, et al. A novel method to predict drug-target interactions based on large-scale graph representation learn-
ing. Cancers (Basel). 2021;13(9):2111.

39. Hul,etal. Asurvey on computational models for predicting protein—protein interactions. Brief Bioinform.
2021;22(5).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

fast, convenient online submission

thorough peer review by experienced researchers in your field

rapid publication on acceptance

support for research data, including large and complex data types

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC

	pLMSNOSite: an ensemble-based approach for predicting protein S-nitrosylation sites by integrating supervised word embedding and embedding from pre-trained protein language model
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Methods
	Benchmark dataset
	Sequence representation
	Word embedding using supervised embedding layer
	Embedding from pre-trained protein language model ProtT5
	Deep learning models
	Sequence-based models
	Convolution neural network (CNN) model
	pLMSNOSite architecture
	Supervised (word) embedding layer module
	pLM ProtT5 module
	Stacked generalization
	Model training
	Evaluation of models and performance metrics

	Results
	Selection of window size and embedding dimension for word embedding module
	Selection of model architecture for the word embedding module
	Selection of model architecture for the pLM module (protT5)
	Selection of model architecture for meta classifier
	Performance of base models and pLMSNOSite on independent test set
	Comparison with other existing tools using an independent test set
	t-SNE visualization of pLMSNOSite

	Discussions and conclusions
	Acknowledgements
	References

