
Brownian Noise Reduction:

Maximizing Privacy Subject to Accuracy

Constraints

Justin Whitehouse

Carnegie Mellon University
jwhiteho@andrew.cmu.edu

Zhiwei Steven Wu

Carnegie Mellon University
zstevenwu@cmu.edu

Aaditya Ramdas

Carnegie Mellon University
aramdas@cmu.edu

Ryan Rogers

LinkedIn
rrogers@linkedin.com

Abstract

There is a disconnect between how researchers and practitioners handle
privacy-utility tradeo↵s. Researchers primarily operate from a privacy first
perspective, setting strict privacy requirements andminimizing risk subject
to these constraints. Practitioners often desire an accuracy first perspective,
possibly satisfied with the greatest privacy they can get subject to obtaining
su�ciently small error. Ligett et al. [2017] have introduced a “noise reduc-
tion” algorithm to address the latter perspective. The authors show that by
adding correlated Laplace noise and progressively reducing it on demand,
it is possible to produce a sequence of increasingly accurate estimates of a
private parameter while only paying a privacy cost for the least noisy iterate
released. In this work, we generalize noise reduction to the setting of Gaus-
sian noise, introducing the Brownian mechanism. The Brownian mechanism
works by first adding Gaussian noise of high variance corresponding to
the final point of a simulated Brownian motion. Then, at the practitioner’s
discretion, noise is gradually decreased by tracing back along the Brownian
path to an earlier time. Our mechanism is more naturally applicable to
the common setting of bounded `2-sensitivity, empirically outperforms
existing work on common statistical tasks, and provides customizable con-
trol of privacy loss over the entire interaction with the practitioner. We
complement our Brownian mechanism with ReducedAboveThreshold, a
generalization of the classical AboveThreshold algorithm that provides
adaptive privacy guarantees. Overall, our results demonstrate that one can
meet utility constraints while still maintaining strong levels of privacy.

1 Introduction

Over the past decade, di↵erential privacy has seen industry-wide adoption as a means of
protecting sensitive information [Erlingsson et al., 2014, Greenberg, 2016]. By injecting
appropriate amounts of noise, di↵erentially private algorithms allow the computation of
population-level quantities of interest while guaranteeing individual-level privacy. Of the
private mechanisms used in industry, those relating to private empirical risk minimization
(ERM) are perhaps the most impactful, in part due to their application in machine learning
tasks [Abadi et al., 2016, Song et al., 2013]. Researchers have developed many private ERM
mechanisms, ranging from least squares minimzation [She↵et, 2017, Chaudhuri et al., 2011]

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
6.

07
23

4v
4

 [c
s.L

G
]

10
 N

ov
 2

02
3

to subsampled gradient descent [Abadi et al., 2016, Balle and Wang, 2018, Wang et al.,
2019]. Despite this vast literature, most existing results take the same broad approach:
they aim to minimize error (statistical risk) subject to strict privacy guarantees. While
this strict adherence to privacy constraints may be necessary in some applications, it often
provides weak utility guarantees [Fienberg et al., 2010] and can make some learning tasks
impossible [Dwork et al., 2009]. Industry applications of di↵erential privacy may desire an
accuracy first perspective, setting desired risk requirements for models used in production.
Privacy may still be a desirable aspect of computation, but it is by no means the only goal;
minimizing risk may take center stage.

The main existing approach to this accuracy-oriented perspective on privacy was given
by Ligett et al. [2017]. These authors introduce a noise reduction mechanism for gradually
releasing a private, high-dimensional parameter. By leveraging a Laplace-based Markov
process [Koufogiannis et al., 2017], they construct a mechanism for which the privacy loss
of releasing arbitrarily many estimates of a parameter only depends on the privacy loss of
the least noisy parameter viewed. This is in contrast to results about the composition of
private algorithms, in which privacy degrades according to the total number of parameters
witnessed [Dwork et al., 2010, Kairouz et al., 2015, Murtagh and Vadhan, 2016]. The authors
also demonstrate how to privately query the utility of observed parameters on private data
by coupling their Laplace-based mechanism with AboveThreshold, a classical di↵erentially
private algorithm [Dwork and Roth, 2014, Lyu et al., 2017].

While the above mechanism provides significant privacy loss savings over a baseline method
that doubles the privacy loss each round, Laplace noise is unfit for many settings in which
`2-sensitivity is used for calibrating noise. Since converting from `2-sensitivity to `1-
sensitivity1 incurs a dimension-dependent cost, it is important to develop a noise reduction
technique with Gaussian noise.

Contributions and paper outline. We introduce the Brownian mechanism, a novel approach
for privately releasing a parameter vector subject to accuracy constraints. The Brownian
mechanism adds correlated Gaussian noise to a risk-minimizing parameter through a
Brownian motion. Noise is then iteratively stripped by moving adaptively backwards along
the randomwalk until a suitable stopping condition is met, such as meeting a target accuracy
on a public dataset. In Section 3, we define the Brownian mechanism and characterize its
privacy loss. Using machinery from martingale theory, we construct privacy boundaries for
the Brownian mechanism — upper bounds on privacy loss that hold simultaneously with
high probability. In particular, the failure probability of these bounds does not depend on
the number of outcomes observed, overcoming a seeming need for a union bound faced
by Ligett et al. [2017]. These privacy boundaries yield provable, high-probability bounds
on privacy loss under data-dependent stopping conditions.

If private data is used to evaluate risk, then the data-dependent stopping conditions can
themselves leak information. To counter this, we introduce ReducedAboveThreshold in
Section 5, a generalization of the classical AboveThreshold algorithm for privately querying
accuracy on sensitive data. We show how to couple ReducedAboveThreshold and the
Brownian mechanism so that a data analyst only ever incurs twice the privacy loss they
would incur if they had queried accuracy on a public dataset. This is in contrast to the
results in Ligett et al. [2017], which note that the privacy loss of AboveThreshold often
dominates the privacy loss incurred from using noise reduction.

We empirically evaluate the Brownian mechanism and ReducedAboveThreshold in Sec-
tion 6, finding that the Brownian mechanism can o↵er privacy loss savings over the Laplace
noise reduction method introduced by Ligett et al. [2017]. In our view, these results demon-
strate that the Brownian mechanism is a practical, intuitive mechanism for meeting accuracy
requirements in private ERM.

Lastly, we derive other new mechanisms for noise reduction, of independent interest.
We generalize the Laplace process of Koufogiannis et al. [2017] to continuous time in
Section 4, thus making the Laplace noise reduction mechanism of Ligett et al. [2017] more
flexible and adaptive to data-dependent privacy levels. We also briefly mention a noise

1The `p sensitivity of f is defined as supx⇠x0 ||f (x)� f (x0)||p for p � 1.

2

Figure 1: An example of running the Brownian mechanism to gradually release a statistic
f (x). First, a very noisy version of the hidden parameter BM1(x) is viewed. Then, loss
is measured, either on a public dataset, or on a private dataset using a method such as
ReducedAboveThreshold. If a target loss is met, the process stops. Otherwise, noise is
removed and the process repeats.

reduction mechanism for Skellam noise in Section 4, a discrete distribution used in count
queries [Agarwal et al., 2021].

2 Preliminaries

Di↵erential privacy, privacy loss, and ex-post privacy. An algorithm A : X ! Y is (✏,�)-
di↵erentially private if, for any measurable set E ⇢ Y and any neighboring inputs x ⇠ x0 ,

P(A(x) 2 E)  e✏P(A(x0) 2 E) + �. (1)

In the above [Dwork et al., 2006], ⇠ denotes some arbitrary neighboring relation. Typically
x ⇠ x0 indicates x and x0 di↵er in one entry, but any other relation su�ces. While di↵erential
privacy has proven itself a mainstay of private computation, condition (1) is too rigid to
allow data analysts to achieve a minimum desired accuracy. In other words, it embraces a
privacy first perspective, fixing a strict condition in terms of parameters ✏ and � that must
be met. We are interested in the accuracy first perspective, setting a target accuracy and
correspondingly optimizing privacy parameters.

The above definition of di↵erential privacy is qualitatively focused on bounding the
information-theoretic quantity of privacy loss [Dwork et al., 2006, 2010, Dwork and Roth,
2014].
Definition 2.1 (Privacy Loss). Let A : X ! Y be an algorithm, and fix neighbors x ⇠ x0 in X .
Let px and px

0
be the respective densities of A(x) and A(x0) on the space Y with respect to some

reference measure2. Then, the privacy loss between A(x) and A(x0) is the random variable

L(x,x0) := log

px(A(x))
px0 (A(x))

!
.

We think of A(x) as the true outcome, and L(x,x0) measures how much more likely this
outcome is under the true input x versus an alternative x0. Privacy loss provides a proba-
bilistic definition of privacy. Namely, A is (✏,�)-probabilistically di↵erentially private if, for all
neighbors x ⇠ x0 ,

P (L(x,x0) > ✏)  �. (2)

While probabilistic di↵erential privacy is not equivalent to di↵erential privacy [Ka-
siviswanathan and Smith, 2014], (✏,�)-probabilistically di↵erential privacy implies (✏,�)-
di↵erential privacy. Probabilistic di↵erential privacy emerged as a means for studying

2For instance, if µx and µx0 are the laws of A(x) and A(x0) respectively, the reference measure can
be taken to be µx +µx0 .

3

privacy composition, and has been leveraged in proving many results [Kairouz et al., 2015,
Murtagh and Vadhan, 2016, Rogers et al., 2016, Whitehouse et al., 2022]. A natural exten-
sion of privacy to the accuracy-oriented regime is ex-post privacy, which allows the bound
in condition (2) to depend the observed algorithm output.
Definition 2.2 (Ligett et al. [2017]). Let A : X ! Y be an algorithm and E : Y ! R�0 a
function. We say A is (E ,�)-ex-post private if, for any neighboring inputs x ⇠ x0 , we have

P (L(x,x0) > E(A(x)))  �.

While any algorithm is trivially ex-post private with E(A(x)) := 1, the goal is to make
E(A(x)) as small as possible. We describe theoretical tools for obtaining ex-post privacy
guarantees in Section 3, and empirically compute the ex-post privacy distributions of
various mechanisms in Section 6.

Background on Noise Reduction. Heuristically, a noise reduction mechanism allows a data
analyst to view multiple, increasingly accurate estimates of a risk minimizing parameter
while only paying an ex-post privacy cost for the least noisy iterate observed. Pinning down
a general definition of a noise reduction mechanism is di�cult, as any definition would
need to depend on how the released parameter estimates were produced. In this paper,
we consider the relevant case of additive noise mechanisms. Below, we provide an explicit
definition of noise reduction mechanisms for this setting.

In the following definition, we let (At)t�0 be some collection of potentially correlated noise
variables. In particular, At should be thought of as marginally having either a multivariate
normal distributionN (0, tId) or multivariate Laplace distribution Lap(t). The index t can
be viewed as either “time” or “variance”, with larger values of t indicating greater variance
of noise added. Further, when we refer to a sequence of time functions (Tn)n�1, we mean a
sequence of functions Tn : (Rd)n�1! R>0 such that, for all n � 1 and �1:n 2 (Rd)n,

Tn+1(�1:n)  Tn(�1:n�1). (3)

Intuitively, the nth time function gives the adaptively chosen variance of noise that will be
added to the nth parameter based on the first n� 1 observed parameters.

Let M : X ! Y1 be an algorithm mapping databases for sequences of outputs. Let Mn :
X ! Y give the nth element of the sequence and M1:n : X ! Yn the first n elements. We
assume Mn(x) := f (x) +ATn(x), where f : X ! Y is some function that should be thought of
as producing a true, risk-minimizing parameter, (Tn)n�1 is a sequence of time functions, and
Tn(x) := Tn(M1:n�1(x)).
Definition 2.3 (Noise Reduction Mechanism). Let (At)t�0 and M : X ! Y1 be as above,
a 2 Y any constant, and suppose At + a has marginal density pat . We say M is a noise reduction
mechanism if, for any n � 1 and any neighboring datasets x ⇠ x0 , we have

L1:n(x,x0) =
p
f (x)
Tn(x)

(Mn(x))

p
f (x0)
Tn(x)

(Mn(x0))
,

where L1:n(x,x0) denotes the privacy loss between M1:n(x) and M1:n(x0).

The only noise reduction mechanism in the literature uses a Markov process with Laplace
marginals [Koufogiannis et al., 2017] to gradually release a sensitive parameter [Ligett et al.,
2017]. As originally presented, this Laplace Noise Reduction mechanism is nonadaptive,
requiring a data analyst to fix a finite sequence of privacy parameters (✏n)n2[K] in advance.
Instead of presenting this method as background, we describe it in Section 4, in which we
construct an adaptive generalization of this mechanism. We then leverage this generaliza-
tion as a subroutine in ReducedAboveThreshold, a generalization of AboveThreshold with
adaptive privacy guarantees.

Background on Brownian Motion. We now provide a brief background on Brownian
motion, perhaps the best-known example of a continuous time stochastic process [Le Gall,
2016].

4

Definition 2.4. A continuous time real-valued process (Bt)t�0 is called a standard Brownian
motion if (1) B0 = 0, (2) (Bt)t�0 has continuous sample paths, (3) (Bt) has independent increments,
i.e. Bt+s �Bs is independent of Bs for all s, t � 0, and (4) Bt ⇠N (0, t) for all t � 0.

We say a process (Bt)t�0 is a d-dimensional standard Brownian motion if each coordinate
process is an independent standard Brownian motion.

We use many properties of Brownian motion to construct the Brownian mechanism and
analyze its privacy loss in Section 3. One important property of Brownian motion is that it is
a continuous time martingale. This property allow us to use time-uniform supermartingale
concentration to characterize and bound the privacy loss of the Brownian mechanism at
data-dependent stopping times [Howard et al., 2020, 2021]. We do not go into detail about
martingale concentration in this background section, but rather defer it to Appendix A.
Additionally, (Bt)t�0 is a Markov process. This tells us that if we inspect the Brownian
motion at times 0  t1 < t2 < · · · < tn, then Bt2 , . . . ,Btn can be viewed as a randomized post-
processing of Bt1 that does not depend on Bs for any s < t1. This property allows us to show
that the privacy loss of the Brownian mechanism — which adds noise to a parameter via a
Brownian motion — only depends on the least noisy parameter observed.

3 The Brownian Mechanism: a Gaussian Noise Reduction Mechanism

The Brownian mechanism works by simulating a Brownian motion starting at some mul-
tivariate parameter; this parameter should be thought of as the risk-minimizing output
if there were no privacy constraints. The data analyst first observes the random walk at
some large time. Then, if so desired, the analyst “rewinds” time to an earlier point on the
Brownian path, reducing noise to obtain a more accurate estimate. Due to the Markovian
nature of Brownian motion, the analyst will only pay a privacy cost proportional to variance
of the random walk at the earliest inspected time.

Tn+1(�1:n)  Tn(�1:n�1). (4)

Definition 3.1. Let f : X ! Rd be a function and (Tn)n�1 a sequence of time functions. Let
(Bt)t�0 be a standard d-dimensional Brownian motion. The Brownian mechanism associated with
f and (Tn)n�1 is the algorithm BM : X ! (Rd)1 given by

BM(x) :=
⇣
f (x) +BTn(x)

⌘
n�1 ,

where we set Tn(x) := Tn
⇣
f (x) +BT1(x), . . . , f (x) +BTn�1(x)

⌘
with T1(x) being constant.

We have chosen Tn(x) as indexing notation to denote dependence on x, even if this is only
through observed parameters. In the context of ERM, one can think of f as computing a
risk minimizing parameter associated with a private dataset x 2 X . The data analyst uses
Tn along with the previous iterate to determine how far to rewind time to obtain the nth
iterate.

The Brownian mechanism, as defined above, produces an infinite sequence of parameters.
In practice, a data analyst will only view finitely many iterates, stopping when some
utility condition has been met or a minimum privacy level is reached. We introduce stopping
functions to model how a data analyst adaptively interacts with noise reduction mechanisms.
Definition 3.2 (Stopping Function). Let M : X ! Y1 be a an algorithm. For x 2 X , let
(Fn(x))n2N be the filtration given by Fn(x) := �(Mi(x) : i  n).3 A function N : Y1 ! N is
called a stopping function if for any x 2 X , N (x) :=N (M(x)) is a stopping time with respect to
(Fn(x))n�1.

A stopping function N is a rule used to decide when to stop viewing parameters that only
depends on the observed iterates of the noise reduction mechanism. N could heuristically

3The notation �(X) denotes the �-algebra generated by X. N is said to be a stopping time with
respect to (Xn) if {N  n} 2 �(Xm :m  n) for all n 2N. This definition can be extended to allow for N
to depend on independent, external randomization, but we omit this for simplicity.

5

be “stop at the first time a parameter achieves an accuracy of 95% on a held-out dataset.” If
a data analyst uses a stopping function alongside BM, per Definition 2.3, the privacy loss
accrued upon stopping is LBMN (x)(x,x

0). Recall from Figure 1 and equation (4) that the later
iterations of BM correspond to smaller noise variances, meaning that Tn is a decreasing
sequence in the number of iterations n. Further, the filtration F defined above is quite
di↵erent from the usual filtrations considered for Brownian motions. In some cases, an
analyst may want the stopping function to depend on the underlying private dataset through
more than just the released parameters, e.g. they may want their rule to be “stop at the
first time a parameter achieves an accuracy of 95% on the private dataset.” In this case,
additional privacy may be lost due to observing N (x). We detail how to handle this more
subtle case in Section 5.

Due to the Markovian nature of Brownian motion, we get the following lemma. We include
a proof in Appendix B for completeness.
Lemma 3.3. Let x ⇠ x0 be neighbors and (Tn)n�1 a sequence of time functions. Then, for any
n � 1, letting LBM1:n (x,x0) denote the privacy loss between BM1:n(x) and BM1:n(x0), we have

LBM1:n (x,x0) = log

0
BBBBBBB@

p
f (x)
Tn(x)

(BMn(x))

p
f (x0)
Tn(x)

(BMn(x))

1
CCCCCCCA
,

where pµt is the density of aN (µ,tId) random variable. Furthermore, the above equality holds if n
is replaced by an almost surely bounded stopping function N (x).

Lemma 3.3 just tells us that the Brownian mechanism is a noise reduction mechanism, i.e.
that the privacy lost by viewing the first n iterates is exactly the privacy lost by viewing the
nth iterate in isolation. Thus, we can identify LBM1:n (x,x0) with LBMn (x,x0) going forward.

The following theorem characterizes the privacy loss of the Brownian mechanism.
Theorem 3.4. Let BM be the Brownian mechanism associated with (Tn)n�1, a function f : X !
Rd , and stopping function N . For neighbors x ⇠ x0, the privacy loss between BM1:N (x)(x) and
BM1:N (x0)(x0) is given by

LBM1:N (x)(x,x
0) =
||f (x)� f (x0)||22

2TN (x)(x)
+
||f (x)� f (x0)||2

TN (x)(x)
WTN (x)(x),

where (Wt)t�0 is a standard, univariate Brownian motion. Suppose f has `2-sensitivity at most
�2. Then, letting a+ := max(0, a), we have

LBM1:N (x)(x,x
0)  �2

2
2TN (x)(x)

+
�2

TN (x)(x)
W+

TN (x)(x)
.

Theorem 3.4 also holds when a deterministic time n is replaced by N (x), where N is a
stopping function. The above theorem can be viewed as a process-level equivalent of
the well-known fact that the privacy loss of the Gaussian mechanism has an uncentered
Gaussian distribution [Balle and Wang, 2018]. We prove the Theorem 3.4 in Appendix B.
Given the clean characterization of privacy loss above, we now show how to construct
high-probability, time-uniform privacy loss bounds. We define privacy boundaries, which
map the variance of BM to high-probability bounds on privacy loss.
Definition 3.5. A function : R�0! R�0 is a �-privacy boundary for the Brownian mechanism
associated with time functions (Tn)n�1 if for any neighboring datasets x ⇠ x0 , we have

P
⇣
9n � 1 : LBM1:n (x,x0) � (Tn(x))

⌘
 �

Since the privacy loss of BM is a deterministic function of a Brownian motion, we can apply
results from martingale theory to construct general families of privacy boundaries.
Theorem 3.6. Assume the same setup as in Theorem 3.4. Let � > 0 and f be a function with
`2-sensitivity �2. The following classes of functions form �-privacy boundaries.

6

1. (Mixture boundary) For any ⇢ > 0, M
⇢ given by

 M
⇢ (t) :=

�2
2

2t
+
�2
t

s

2(t + ⇢) log

1
�

r
t + ⇢
⇢

!
.

2. (Linear boundary) For any a,b > 0 such that 2ab = log(1/�), L
a,b given by

 L
a,b(t) :=

�2
t

�2
2

+ b

!
+�2a.

We prove Theorem 3.6 in Appendix B. In the same appendix, we plot the boundaries in
Figure 4.

Privacy boundaries serve a dual purpose for the Brownian mechanism. First, since time-
uniform concentration bounds are valid at arbitrary data-dependent times, that need not be
stopping times with respect to the standard forward Brownian Motion filtration [Howard
et al., 2021], privacy boundaries provide ex-post privacy guarantees. Second, in many
settings, it may be more natural for a data analyst to adaptively specify target privacy levels
instead of noise levels. This is, for instance, the case in our experiments in Section 6. By
inverting privacy boundaries, data analysts can compute the proper amount of noise to
remove at each step to meet target privacy levels.

We make the above precise in Corollary 3.7. In what follows, when we refer to a sequence
(En)n�1 of privacy functions, we mean a sequence of functions En : (Rd)n�1! R�0 such that,
for all n and �1:n 2 (Rd)n, En+1(�1:n) � En(�1:n�1).
Corollary 3.7. Let N be a stopping function, as in Definition 3.2. If is a �-privacy boundary
for BM, we have

sup
x⇠x0

P
⇣
LBMN (x)(x,x

0) �
⇣
TN (x)(x)

⌘⌘
 �,

i.e. the algorithm BM1:N (·)(·) is
⇣
 (TN (·)(·)),�

⌘
-ex post private, where (·) denotes a positional

argument for an input x 2 X . Further, let (En)n�1 be a sequence of privacy functions, and define

Tn(�1:n�1) := inf {t � 0 : (t) � En(�1:n�1)} .
Then BM1:N (·)(·) is (EN (·)(·),�)-ex post private, where En(x) is defined analogously to Tn(x).

Again, N should be thought of as a stopping rule based on parameter accuracy. En should
be thought of as a rule for choosing the nth privacy parameter given BM1:n�1(x).

4 An Adaptive, Continuous-Time Extension of Laplace Noise Reduction

Here, we generalize the original noise reduction mechanism of Ligett et al. [2017], which
will be used as a subroutine in Algorithm 1 in the following section. We first describe the
original Laplace-based Markov process of Koufogiannis et al. [2017]. Fix any positive integer
K and any finite, increasing sequence of times (tn)n2[K]. Let (⇣n)Kn=0 be the d-dimensional
process given by ⇣0 = 0 and

⇣n =

8>><>>:
⇣n�1 with probability

⇣
tn�1
tn

⌘2

⇣n�1 +Lap(tn) otherwise.
(5)

Koufogiannis et al. [2017] show that ⇣n ⇠ Lap(tn) and that (⇣n)Kn=0 is Markovian. Ligett et al.
[2017] use the above process to construct a noise reduction mechanism. Namely, they define
the the Laplace Noise Reduction mechanism associated with f : X ! Rd and (tn)n2[K] to be
the algorithm LNR : X ! (Rd)K given by LNR(x) := (f (x) + ⇣K , . . . , f (x) + ⇣1). If tn := �1/✏n,
then releasing nth component LNRn(x) in isolation is equivalent to running the classical
Laplace mechanism with privacy level ✏n.

7

We now extend the process (⇣n)n2[K] to a continuous time process with the same finite-
dimensional distributions. Let ⌘ > 0 be arbitrary, and let (Pt)t�⌘ be an inhomogeneous
Poisson process with intensity function �(t) := 2

t . For n � 1, let Tn := inf{t � ⌘ : Pt � n} be the
nth jump of (Pt)t�⌘ and set T0 := ⌘. Noting that Pt must be a nonnegative integer, define the
process (Zt)t�⌘ by

Zt :=
PtX

n=0

Lap(Tn). (6)

It is immediate that (Zt)t�⌘ is Markovian. We show in Appendix D that Zt ⇠ Lap(t). With
(Zt)t�⌘ , one can make LNR fully adaptive, meaning that the times (tn)n2[K] at which it is
invoked need not be prespecified, and can depend on the underlying input database x by
using time functions.

Definition 4.1. Let f : X ! Rd be a function and (Tn)n�1 a sequence of time functions. Let
(Zt)t�⌘ be the process defined in Equation (6). The Laplace noise reduction mechanism associated
with f and (Tn)n�1 is the algorithm LNR : X ! (Rd)1 given by

LNR(x) := (f (x) +ZTn(x))n�1,

where again Tn(x) := Tn(f (x) +ZT1(x), . . . , f (x) +ZTn�1(x)) and T1(x) is constant.

If the analyst would prefer instead to specify privacy functions (En)n�1, they can do so
by leveraging the corresponding time functions Tn(x) := �1/En(x), where En(x) is defined
analogously to Tn(x). We leverage LNR in our experiments in Section 6 and the process
(Zt)t�0 as a subroutine in constructing ReducedAboveThreshold. An analogous argument
to the one used in proving Lemma 3.3 can be used to show LNR enjoys the following ex-post
privacy guarantee.

Proposition 4.2. Let LNR be associated with (Tn)n�1 and a function f with `1-sensitivity �1. If
N is stopping function, the algorithm LNR1:N (·)(·) is (�1/TN (·)(·),0)-ex post private.

Skellam Noise Reduction. Last, we briefly discuss how to generate a noise reduction
mechanism for Skellam noise [Agarwal et al., 2021]. Recall that a random variable X has
a Skellam distribution with parameters �1 and �2 if X =d Y1 �Y2, where Y1 ⇠ Poisson(�1)
and Y2 ⇠ Poisson(�2) are independent Laplace random variables. For succinctness, we write
X ⇠ Skell(�1,�2).

Let (P1(t))t�0 and (P2(t))t�0 be two independent, homogeneous Poisson process with rates
�1 and �2 respectively. Observe that the continuous time process (Xt)t�0 given by Xt :=
P1(t)�P2(t) is clearly Markovian, has independent increments, and has Xt ⇠ Skell(t�1, t�2).
Thus, (Xt)t�0 can be used to define a Skellam noise reduction mechanism by releasing
(f (x) +XTn(x))n�1 for some sequence of time functions (Tn)n�1.

5 Privately Checking if Accuracy is Above a Threshold

In Section 3 we presented the Brownian mechanism, characterized its privacy loss, and
showed how to obtain ex-post privacy guarantees for arbitrary stopping functions. In
particular, these stopping functions could be based on the accuracy of the observed iterates
on public held-out data.

However, one may desire to privately check the accuracy of observed iterates on the
dataset x 2 X . Ligett et al. [2017] were able to accomplish this goal by coupling LNR with
AboveThreshold, a classical algorithm for privately answering threshold queries [Dwork
and Roth, 2014]. In the context of ERM, AboveThreshold iteratively checks if the empirical
risk of each parameter is below a target threshold, stopping at the first such occurrence.
The downside to AboveThreshold is that it requires a prefixed privacy level. In empirical
studies, Ligett et al. [2017] found this fixed privacy cost dominated the ex-post privacy
guarantees, showing little benefit to using noise reduction.

8

Below, we construct ReducedAboveThreshold, a generalization of AboveThreshold
which provides ex-post privacy guarantees. We show how to couple BM with
ReducedAboveThreshold to obtain tighter ex-post privacy guarantees than coupling with
AboveThreshold would permit. In particular, if BM is run using parameters (✏n)n�1 and
ReducedAboveThreshold indicates the N th parameter obtains su�ciently high accuracy,
the privacy loss of the net procedure will be at most 2✏N — only twice the privacy loss that
would be accrued by testing on public data.

Algorithm 1 ReducedAboveThreshold (via Laplace Noise Reduction)

Require: Algorithm Alg : X ! Y1, parameter ✏max > 0, threshold ⌧, database x 2 X , utility
u : Y ⇥X ! R where u(�, ·) is �-sensitive 8�, privacy functions (En)n�1 with En  ✏max 8n.
for n � 1 do

✏n := En(Alg1:n�1(x)), Tn := 2�/✏n
⇣n := ZTn , where (Zt)t�⌘ in Eq. (6) defines the LNR mechanism with ⌘ := 2�/✏max.
⇠n ⇠ Lap

⇣
4�
✏n

⌘

if u(Algn(x),x) + ⇠n � ⌧ + ⇣n then

Print 1 and HALT
else

Print 0

⌧ should be seen as a target accuracy, Alg as a mechanism for releasing a parameter (e.g.
BM, LNR), and u as evaluating the accuracy of Algn(x) on x. ✏max is an arbitrarily large
constant, representing the minimum level of privacy required, used to prevent the user from
examining (Zt) at arbitrarily small times. The above generalizes to sequences of thresholds
(⌧n)n�1 and sequences (un)n�1 of functions un : Yn ⇥ X ! R that are �-sensitive in their
second argument, but the added generality yields only marginal benefits. When En = ✏
for all n, Algorithm 1 recovers AboveThreshold as a special case. The intuition behind
ReducedAboveThreshold is that by gradually removing Laplace noise from the threshold, a
data analyst can ensure that privacy of the whole procedure only depends on the magnitude
of Laplace noise added when the algorithm halts. The following characterizes the privacy
loss of Algorithm 1.

Theorem 5.1. For any n � 1 and neighboring datasets x ⇠ x0 , let LAlg1:n (x,x
0) denote the privacy

between Alg1:n(x) and Alg1:n(x
0). For any x 2 X , define N (x) to be the first round where

ReducedAboveThreshold run on input x 2 X outputs 1, that is

N (x) := inf{n � 1 : ReducedAboveThresholdn(x) = 1}.
Then, the privacy loss between ReducedAboveThreshold(x) and ReducedAboveThreshold(x0),
denoted LRAT(x,x0), is bounded by

LRAT(x,x0)  LAlg1:N (x)(x,x
0) + EN (x)(Alg1:N (x)�1(x)).

We prove Theorem 5.1 in Appendix C, where we also provide a utility guarantee for
ReducedAboveThreshold. This utility guarantee, much like the utility guarantee for
AboveThreshold, is in practice weak as it derives from a union bound. Using Theorem 5.1,
we can simply choose Alg = BM as a means of adaptively generating parameters. The fol-
lowing corollary, which follows immediately from the above theorem, provides the ex-post
privacy guarantees of combining ReducedAboveThreshold and BM.
Corollary 5.2. Let BM be the Brownian mechanism associated with a function f , decreasing time
functions (Tn)n�1, and a a �-privacy boundary . Let ReducedAboveThreshold be run with
privacy functions ((Tn))n�1, threshold ⌧, and algorithm BM. Then, ReducedAboveThreshold
is

⇣
2 (TN (·)(·)),�

⌘
-ex post private.

6 Experiments

Choice of tasks: We compare the performance of BM and LNR on the tasks of regularized
logistic regression via output perturbation [Chaudhuri et al., 2011] and ridge regression

9

(a) Regularized Logistic Regression (b) Ridge Regression

Figure 2: Privacy loss plotted against loss (respectively regularized logistic and ridge loss)
for the statistical tasks of regularized logistic regression and ridge regression.

(a) Regularized Logistic Regression (b) Ridge Regression

Figure 3: Empirical privacy loss distributions for logistic regression and ridge regression
with loss assessed either (left) on the training data treated as a public, held-out dataset,
(middle) via AboveThreshold, or (right) via ReducedAboveThreshold.

via covariance perturbation [Smith et al., 2017].4 For logistic regression, we leveraged the
KDD-99 dataset [KDD, 1999] with d = 38 features, predicting whether network events
can be classified as “normal" or “malicious". For ridge regression, we used the Twitter
dataset [Kawala et al., 2013] with d = 77 features to predict log-popularity of posts. In each
case, we ran our experiments on n = 10,000 randomly sub-sampled data points. In order to
guarantee bounded sensitivity, we normalized each data point to have unit `2 norm. We
note that this aspect di↵ers from the experimentation conducted by Ligett et al. [2017], who
normalized by the maximum `2 norm, a non-private operation.

Experiments: For each task, we conducted two experiments. We discuss the specific
parameter settings for these experiments in Appendix E. In the first experiment, we plotted
guaranteed (in the case of LNR) or high-probability (in the case of BM) privacy loss on
the x-axis against average loss (either logistic or ridge) on the y-axis. We conduct such
a comparison as probability 1 privacy loss bounds cannot be provided for the Gaussian
mechanism. Likewise, adding a probability � of minimally improves privacy loss for the
Laplace mechanism. We computed the average loss curve for each mechanism over 1,000
trials, and have included point-wise valid 95% confidence intervals.

In the second experiment, we plotted the empirical privacy loss distributions for BM
and LNR under the stopping conditions of loss being at most 0.41 for logistic re-
gression and 0.025 for ridge regression. For each mechanism, we evaluated this em-
pirical distribution using three approaches for testing empirical loss: treating the
training data as a held-out dataset, using AboveThreshold, and using our mechanism,

4The two tasks use the logistic loss `(y,z) := log(1+exp(�yz)) and the squared loss `(y,z) := 1
2 (z�y)2.

The regularized loss on a dataset D := {(xi ,yi)}i2[n] is L(�,D) := 1
n
Pn

i=1 `(yi ,�
T xi) +

�||�||22
2 .

10

ReducedAboveThreshold. In AboveThreshold, we set the privacy parameter to be fixed at
✏ = 0.5. In ReducedAboveThreshold, we took the sequence of privacy parameters to be the
same as the sequence of privacy parameters used by BM and LNR. We once again computed
these empirical distributions over 1,000 runs of each mechanism.

Findings: The findings of the two experiments are summarized in Figure 2 and Figure 3.
For both tasks, BM obtains significant improvements in loss over LNR near the privacy
loss level that was optimized for. For both tasks, the privacy loss distribution for BM has
lower median privacy loss than that of LNR. In addition, the privacy loss distribution for
BM is more tightly concentrated around the median, indicating more consistent perfor-
mance. The privacy loss distribution for LNR has a heavy tail, demonstrating that many
runs do not attain the target loss until high privacy loss costs are incurred. Comparing
ReducedAboveThreshold and AboveThreshold, we see that the privacy loss distribution
for ReducedAboveThreshold has higher variance than that of AboveThreshold. However,
ReducedAboveThreshold attains a significantly lower median level of privacy loss when
coupled with BM. This latter point reflects the observations of Ligett et al. [2017], who
note that when AboveThreshold is used to determine stopping conditions on private data,
it contributes the bulk of the privacy loss to the empirical distributions. On the other hand,
our figures demonstrate that ReducedAboveThreshold results in a more mild privacy loss
at target stopping conditions.

7 Conclusion

In this paper, we constructed the Brownian mechanism (BM), a novel approach to noise
reduction that adds noise to a hidden parameter via a Brownian motion. We not only
precisely characterized the privacy loss of the Brownian mechanism, but also bounded it
through applying machinery from continuous time martingale theory. We then demon-
strated how the utility of the iterates produced by BM can be assessed on private data via
ReducedAboveThreshold, a generalization of the classical AboveThreshold algorithm. This
was itself accomplished by a continuous-time generalization of the original Laplace noise
reduction (LNR) mechanism. Last, we empirically demonstrated that BM outperforms LNR
on common statistical tasks, such as regularized logistic and ridge regression.

We comment on several limitations and open problems related to our work. We considered
noise reduction mechanisms in the setting of one-shot privacy, in which only a single
mechanism is run on private data. Traditional composition results, such as those for fixed
privacy parameters [Dwork et al., 2010, Kairouz et al., 2015, Murtagh and Vadhan, 2016] or
adaptively selected parameters [Rogers et al., 2016, Feldman and Zrnic, 2021, Whitehouse
et al., 2022] are not directly applicable to algorithms satisfying ex-post privacy; additional
machinery needs to be developed to handle composition in this case. A naive approach
to composition is possible, which involves summing the ex-post privacy guarantees of
composed algorithms and summing the corresponding �’s, but we expect this approach
to be loose. Finally, noise reduction is currently only applicable to output perturbation
methods; it remains open to see how to combine noise reduction with other prominent
methods for private computation, such as objective perturbation.

8 Acknowledgements

We would like to thank Gennady Samorodnitsky for pointing out a mistake in an earlier
version of Definition 2.3, which in turn led to a bug in the proof of Lemma 3.3. AR acknowl-
edges support from NSF DMS 1916320 and an ARL IoBT CRA grant. Research reported
in this paper was sponsored in part by the DEVCOM Army Research Laboratory under
Cooperative Agreement W911NF-17-2-0196 (ARL IoBT CRA). The views and conclusions
contained in this document are those of the authors and should not be interpreted as repre-
senting the o�cial policies, either expressed or implied, of the Army Research Laboratory
or the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation herein.

11

ZSW and JW were supported in part by the NSF CNS2120667, a CyLab 2021 grant, a Google
Faculty Research Award, and a Mozilla Research Grant.

JW acknowledges support from NSF GRFP grants DGE1745016 and DGE2140739.

References

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with di↵erential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages 308–318, 2016.

Naman Agarwal, Peter Kairouz, and Ziyu Liu. The skellam mechanism for di↵erentially
private federated learning. Advances in Neural Information Processing Systems, 34, 2021.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for di↵erential privacy:
Analytical calibration and optimal denoising. In International Conference on Machine
Learning, pages 394–403. PMLR, 2018.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Di↵erentially private
empirical risk minimization. Journal of Machine Learning Research, 12(3), 2011.

Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press,
2019.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of di↵erential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography, pages 265–284, 2006.

Cynthia Dwork, Moni Naor, Omer Reingold, Guy N Rothblum, and Salil Vadhan. On the
complexity of di↵erentially private data release: e�cient algorithms and hardness results.
In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages
381–390, 2009.

Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and di↵erential privacy. In
2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 51–60. IEEE,
2010.

Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 1054–1067, 2014.

Vitaly Feldman and Tijana Zrnic. Individual privacy accounting via a Rényi filter. Advances
in Neural Information Processing Systems, 34, 2021.

Stephen E Fienberg, Alessandro Rinaldo, and Xiaolin Yang. Di↵erential privacy and the
risk-utility tradeo↵ for multi-dimensional contingency tables. In International Conference
on Privacy in Statistical Databases, pages 187–199. Springer, 2010.

Andy Greenberg. Apple’s ‘di↵erential privacy’ is about collecting your data—but not your
data. Wired Magazine, 2016.

Steven R. Howard, Aaditya Ramdas, Jon McAuli↵e, and Jasjeet Sekhon. Time-uniform
Cherno↵ bounds via nonnegative supermartingales. Probability Surveys, 17:257 – 317,
2020.

Steven R. Howard, Aaditya Ramdas, Jon McAuli↵e, and Jasjeet Sekhon. Time-uniform,
nonparametric, nonasymptotic confidence sequences. The Annals of Statistics, 49(2):1055
– 1080, 2021.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for di↵eren-
tial privacy. In International Conference on Machine Learning, pages 1376–1385. PMLR,
2015.

12

Shiva P Kasiviswanathan and Adam Smith. On the ‘semantics’ of di↵erential privacy: a
Bayesian formulation. Journal of Privacy and Confidentiality, 6(1), 2014.

Emilie Kaufmann and Wouter M Koolen. Mixture martingales revisited with applications
to sequential tests and confidence intervals. Journal of Machine Learning Research, 22(246):
1–44, 2021.

François Kawala, Ahlame Douzal-Chouakria, Eric Gaussier, and Eustache Dimert. Prédic-
tions d’activité dans les réseaux sociaux en ligne. In 4ième Conférence Sur les Modèles et
L’analyse des Réseaux: Approches Mathématiques et Informatiques, page 16, 2013.

KDD. KDD cup 1999 data, 1999.

Fragkiskos Koufogiannis, Shuo Han, and George J Pappas. Gradual release of sensitive data
under di↵erential privacy. Journal of Privacy and Confidentiality, 7(2), 2017.

Jean-François Le Gall. Brownian motion, martingales, and stochastic calculus. Springer, 2016.

Katrina Ligett, Seth Neel, Aaron Roth, Bo Waggoner, and Steven Z Wu. Accuracy first:
Selecting a di↵erential privacy level for accuracy constrained ERM. Advances in Neural
Information Processing Systems, 30, 2017.

Min Lyu, Dong Su, and Ninghui Li. Understanding the sparse vector technique for di↵eren-
tial privacy. Proc. VLDB Endow., 10(6):637–648, Feb 2017.

Jack Murtagh and Salil Vadhan. The complexity of computing the optimal composition of
di↵erential privacy. In Theory of Cryptography Conference, pages 157–175. Springer, 2016.

Ryan M Rogers, Aaron Roth, Jonathan Ullman, and Salil Vadhan. Privacy odometers and
filters: pay-as-you-go composition. In Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016.

Or She↵et. Di↵erentially private ordinary least squares. In International Conference on
Machine Learning, pages 3105–3114. PMLR, 2017.

Adam Smith, Abhradeep Thakurta, and Jalaj Upadhyay. Is interaction necessary for dis-
tributed private learning? In 2017 IEEE Symposium on Security and Privacy (SP), pages
58–77. IEEE, 2017.

Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with
di↵erentially private updates. In 2013 IEEE Global Conference on Signal and Information
Processing, pages 245–248. IEEE, 2013.

Jean Ville. Etude critique de la notion de collectif. Bull. Amer. Math. Soc, 45(11):824, 1939.

Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled Rényi di↵er-
ential privacy and analytical moments accountant. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 1226–1235. PMLR, 2019.

Justin Whitehouse, Aaditya Ramdas, Ryan Rogers, and Zhiwei Steven Wu. Fully adaptive
composition in di↵erential privacy. arXiv preprint arXiv:2203.05481, 2022.

13

A Background on Martingale Concentration

In this section, we provide a background on the basics of martingale concentration needed
throughout this paper. Central to all results in this section is Ville’s inequality [Ville, 1939],
which can be viewed as a time-uniform version of Markov’s inequality for martingales.
Lemma A.1 (Ville’s Inequality [Ville, 1939]). Let (Xt)t�0 be a nonnegative supermartingale
with respect to some filtration (Ft)t�0. Then, for any confidence parameter � 2 (0,1), we have

P
✓
9t � 0 : Xt �

EX0
�

◆
 �.

While standard Brownian motion (Bt)t�0 is not a nonnegative supermartingale, geometric
Brownian motion given by Y�t := exp

⇣
�Bt � �2

2 t
⌘
is a nonnegative martingale for any � 2 R,

and hence Lemma A.1 can be applied. In fact, the probability in the lemma above becomes
exactly � when it is applied to a nonnegative martingale with continuous paths like Y�t .
From Ville’s inequality, the following line-crossing inequality for Brownian motion can be
obtained.
Lemma A.2 (Line-Crossing Inequality). For � 2 (0,1) and a,b > 0 satisfying e�2ab = �, we have

P (9t � 0 : Bt � at + b) = �.

A proof of the above fact can be found in any standard book on continuous time martingale
theory [Le Gall, 2016, Durrett, 2019]. The above also follows from a special case of the more
general time-uniform Cherno↵ bound presented in Howard et al. [2020].

The above inequality can be seen as optimizing the tightness of the time-uniform boundary
at one pre-selected point in time. However, due to the adaptive nature of the Brownian
mechanism presented in Section 3, it is sometimes desirable to construct a time-uniform
boundary which sacrifices tightness at a fixed point in time to obtain greater tightness over
all of time.

The method of mixtures provides one such approach for constructing tighter time-uniform
boundaries [Kaufmann and Koolen, 2021, Howard et al., 2021]. We discuss this concept
briefly in the context of Brownian motion. Observe that, since (Y�t)t�0 is a nonnegative
martingale, for any probability measure ⇡ on R, the process (X⇡

t)t�0 given by

X⇡
t :=

Z

R
Y�t ⇡(d�)

is also nonnegative martingale. By appropriately choosing the probability measure ⇡ and
applying Ville’s inequality, one obtains the following concentration inequality [Howard
et al., 2021].
Lemma A.3 (Mixture Inequality). Let ⇢ > 0 and � 2 (0,1) be arbitrary. Then,

P

0
BBBBBB@9t � 0 : Bt �

s

2(t + ⇢) log

1
�

r
t + ⇢
⇢

!1CCCCCCA = �.

We leverage Lemmas A.2 and A.3 to construct the privacy boundaries in Theorem 3.6 in
Appendix B.

B Proofs From Section 3

Here, we prove the results from Section 3. We start by showing that BM is in fact a noise-
reduction mechanism, which is claimed in Lemma 3.3. To prove the cited lemma, it su�ces
to show the following result.

Proposition B.1. For ⌫ 2 Rd , let (B⌫t)t�0 be a standard d-dimensional Brownian motion starting
at ⌫. Let (Tn)n�1 be a sequence of decreasing time functions5 Tn : R(n�1)d ! R, N : R1 !N

5As before, T1 is implicitly a constant, independent of (B⌫t)t�0

14

(a) Variance of Noise vs. Privacy Loss (b) Privacy Loss vs. Variance of Noise

Figure 4: A comparison of the linear and mixture boundaries, both optimized for tightness
at ✏ = 0.3 with � = 10�6. The first plot directly plots the corresponding bounds as in
Theorem 3.6. The second plot inverts the boundaries, showing the variance necessary to
meet a target privacy level.

a bounded stopping function, and define T ⌫n := Tn
✓
B⌫T ⌫1

, . . . ,B⌫T ⌫n�1

◆
and N⌫ :=N

⇣
(B⌫T ⌫n)n�1

⌘
. Let

p⌫1:N denote the joint density of
✓
B⌫T ⌫1

, . . . ,B⌫T ⌫N⌫

◆
. Then, with probability 1, we have

p⌫1:N

✓
B⌫T ⌫1

, . . . ,B⌫T ⌫N⌫

◆

p
µ
1:N

✓
B⌫T ⌫1

, . . . ,B⌫T ⌫N⌫

◆ =

exp

0
BBBB@�

(B⌫
T⌫N⌫
�⌫)2

2TN⌫

1
CCCCA

exp

�
(B⌫

T⌫N⌫
�µ)2

2TN⌫

! ,

which is just the ratio between the density of a N
⇣
⌫,T ⌫N⌫

⌘
random variable and a N

⇣
µ,T ⌫N⌫

⌘

random variable evaluated at B⌫T ⌫N⌫
.

A key part of proving the above proposition will be developing a strong Markov property
for Brownian bridges. Recall that a Brownian bridge is, in essence, a Brownian motion that
has been “pinned down” at some initial and terminating value. More rigorously, for a
random variable A 2 Rd and a constant b 2 Rd , a Brownian bridge (Xt)0tT with initial
value X0 = A and terminating value XT = b is a process that can be written in the form
Xt = T�t

T A+Bt � t
T (BT � b), where (Bt)0tT is a standard d-dimensional Brownian motion

that is independent of A. The following properties of Brownian bridges follow from the
definition.
Lemma B.2 (Properties of Brownian Bridges). Let (Xt)0tT be a d-dimensional Brownian
bridge with X0 = A, for A being a random vector in Rd , and X1 = b, with b 2 Rd fixed. Then, the
following hold:

1. If A0 2 Rd is independent of (Xt)t�0,A and b0 2 Rd is constant, the process (X 0t)0tT
given by

X 0t := Xt +
T � t
T

A0 +
t
T
b0

is a d-dimensional Brownian bridge on [0,T] with initial value X 00 = A+A0 and termi-
nating value X 0T = b + b0 .

2. µ(t) := EXt = T�t
T EA+ t

T b for all 0  t  T .

3. k(s, t) := Cov(Xs,Xt) =
(T�t)(T�s)

T 2 Cov(A) +
⇣
s^ t � st

T

⌘
Id .

4. For any C > 0, the process (X 0t)0tCT given by X 0t :=
p
CXt/C is a d-dimensional

Brownian bridge with initial point
p
CA and terminal point

p
Cb on [0,CT).

15

5. If A ⇠N (µ,⌃), then (Xt)0tT is a continuous Gaussian process on [0,T], and hence it’s
law is uniquely determined by µ and k.

If (Bt)t�0 is a d-dimensional Brownian motion and ⌧ is a stopping time with respect to the
natural filtration (Ft)t�0, the strong Markov property for Brownian motion (see Theorem
2.20 of Le Gall [2016]) tells us that the process (B⌧+t � B⌧)t�0 is also a d-dimensional
Brownian motion that is independent of F⌧ . While we need to be a little more careful with
scaling in the setting of Brownian bridges, we can show a similar strong Markov property.
Lemma B.3. Let (Xt)0t1 be a standard d-dimensional Brownian bridge with X0 = A and
X1 = b, and let (Gt)0t1 be the corresponding natural filtration. Let ⌧ be a (Gt) stopping time.
Let (X(⌧)

t)0t1�⌧ be the process defined by X(⌧)
t := Xt+⌧ � 1�⌧�t

1�⌧ X⌧ � t
1�⌧ b, and define the rescaled

process (Y (⌧)
t)0t1 by

Y (⌧)
t :=

p
1� ⌧X(⌧)

t/(1�⌧).

Then, (Yt)0t1 is a standard Brownian bridge with Y0 = Y1 = 0 independent of G⌧ .

Proof. Step 1: reduction to the case a = b = 0: First, we note that it su�ces to prove the
result when A = a is a constant. If we prove the result in this case, we note we have by the
tower rule for conditional expectations that, for any event E,

P(Y (⌧) 2 E) = E
h
P

⇣
Y (⌧) 2 E | A

⌘i
= E [P (Z 2 E)] = P (Z 2 E) ,

where (Zt)0t1 is a Brownian bridge with Z0 = Z1 = 0. Next, note it su�ces to prove the
result in the case a = b = 0. Let (Xt)0t1 be a Brownian bridge satisfying X0 = a and X1 = b.
Define another process (X 0t)t�0 on the same probability space by X 0t := Xt � (1� t)a� tb. By
the first part of Lemma B.2, (X 0t)t�0 is a Brownian bridge on [0,1] with initial point X 00 = 0
and X 01 = 0. Clearly, the natural filtration (Gt)0t1 for (Xt)0t1 is also the natural filtration

for (X 0t)0t1. Further, a simple calculation yields that for any fixed 0  s  t  1, X(s)0
t = X(s)

t .
Thus it also follows that Y (⌧)0

t = Y (⌧)
t for all (Gt) stopping times ⌧ and all 0  t  1.

Step 2: considering when ⌧ = T is deterministic: Thus, going forward we consider the
case where (Xt)0t1 is a Brownian bridge with X0 = X1 = 0. Clearly it su�ces to consider
(Xt)0t1 to be one-dimensional in what follows, as in the multivariate case the coordinates
of X are independent one-dimensional Brownian bridges. We first consider the case where
⌧ = T is a constant time. In this case, the process (Zt)0t1 given by

Zt :=
8><>:
Xt for 0  t < T ,

X(T)
t�T for T  t  1

is clearly a Gaussian process on [0,1] that is continuous on [0,T) and [T ,1]. To show the
result, we must show (1) for any s 2 [0,T), t 2 [T ,1], k(s, t) := Cov(Zs,Zt) = 0 (this implies
X(T), and hence Y (T) is independent of GT), (2) µ(t) := EZt = 0 for all t 2 [T ,1], and (3)
k(s, t) := Cov(Zs,Zt) = (s � T)^ (t � T) � (s�T)(t�T)

1�T for all s, t 2 [T ,1] (these final two points
show the law of X(T) is that of a Brownian bridge since we already have sample path
continuity).

We now check each of these properties. In what follows, recall that Xt = Bt � tB1 for some
(now one-dimensional) Brownian motion (Bt)0t1, and remember that Cov(Bs,Bt) = s^ t.

1. For s 2 [0,T) and t 2 [0,1�T], we have (assuming for now that E[X(T)
t] = 0, which

we confirm in a later point)

Cov(Xs,X
(T)
t) = E


Xs

✓
Xt+T �

1�T � t
1�T XT

◆�

= E [XsXt+T]�
1�T � t
1�T E [XsXt] = s(1� t �T) + 1�T � t

1�T s(1�T)
= 0,

which confirms the first point.

16

2. For any t 2 [0,1�T], we have

E

X(T)
t

�
= E


Bt+T � (t +T)B1 �

1�T � t
1�T BT +

1�T � t
1�T TB1

�
= 0,

proving the second point.

3. Lastly, using property 3 of Lemma B.2, for s, t 2 [0,1�T] s.t. s < t, we have

Cov
✓
X(T)
s ,X(T)

t

◆
= E

✓
Xs+T �

1�T � s
1�T XT

◆✓
Xt+T �

1�T � t
1�T XT

◆�

= {(s +T)� (s +T)(t +T)}� 1�T � t
1�T {T � (s +T)T }

� 1�T � s
1�T {T � (t +T)T }+ (1�T � t)(1�T � s)

(1�T)2
n
T �T 2

o

=
1

1�T

(s +T)(1�T � t)(1�T)�T (1�T � s)(1�T � t)

�

=
(1�T � t)s
(1�T) = s � st

1�T .

Since we have shown that, for any T 2 [0,1], Y (T) is independent of GT , we have that, for any
E 2 Gt and any bounded, any fixed times 0  t1 < t2 < · · · < tp  1, and continuous function
F : Rdp! R�0,

E EF(Y
(T)
t1 , . . . ,F(T)

tp) = P(A)EF(Xt1 , . . . ,Xtp),

which is a fact we will use in the sequel.

Step 3: generalizing to general stopping times:

We now emulate a standard proof of the strong Markov property for Brownian motion to
extend to the case where ⌧ is a (Gt)0t1 stopping time (in particular, the proof of Theorem
2.20 in Le Gall [2016]).

It su�ces to show that, for any A 2 G⌧ , 0  t1 < t2 < · · · < tp  1, and F : Rdp ! R�0
continuous and bounded that

E AF(Y
(⌧)
t1 , . . . ,Y (⌧)

tp) = P(A)EF(Xt1 , . . . ,Xtp).

As noted in Le Gall [2016], this not only proves the independence of (Y (⌧)
t) and G⌧ , but also

demonstrates by taking A = ⌦ (where (⌦,F ,P) is the underlying probability space) that
(Y (⌧)

t) and (Xt) have the same finite-dimensional distributions, and hence (Y (⌧)
t) is a standard

d-dimensional Brownian bridge since sample paths are continuous.

For n a positive integer and T 2 R, define T |n := min{k2�n : k 2 Z, k2�n � T }, i.e. T |n is
the smallest real of the form k2�n that is greater than or equal to T . A straightforward
expansion of Y (⌧|n)

t yields that, for any t 2 [0,1], we have Y (⌧|n)
t �����!

n!1 Y (⌧)
t , and thus bounded

17

convergence yields

E AF(Y
(⌧)
t1 , . . . ,Y (⌧)

tp) = lim
n!1

E AF(Y
(⌧|n)
t1 , . . . ,Y (⌧|n)

tp)

= lim
n!1

2nX

k=0

E A Ek
n
F(Y (⌧|n)

t1 , . . . ,Y (⌧|n)
tp)

= lim
n!1

2nX

k=1

E A Ek
n
F(Y (k2�n)

t1 , . . . ,Y (k2�n)
tp)

= lim
n!1

2nX

k=1

P(A\Ek
n)EF(Y

(k2�n)
t1 , . . . ,Y (k2�n)

tp)

= P(A)EF(Xt1 , . . . ,Xtp),

where (Xt)0t1 is a standard d-dimensional Brownian bridge, proving the desired result.
In the above, Ek

n := {(k � 1)2�n < ⌧  k2�n}, and we use the identity Ek
n
F(Y (⌧|n)

t1 , . . . ,Y (⌧|n)
tp) =

Ek
n
F(Y (k2�n)

t1 , . . . ,Y (k2�n)
tp). The second to last inequality follows from applying the result

where t is a deterministic time, noting that the event A\Ek
n is Gk2�n-measurable.

Thus, we have shown the desired result.

Corollary B.4. Let (Xt)0t1 be a d-dimensional Brownian bridge with X0 = A and X1 = b,
where A is a random variable. Let (Gt)0t1 be the corresponding natural filtration. Let ⌧ be
a (Gt) stopping time. Then, for any G 2 G⌧ , the conditional law of the process (Xt)⌧t1 given
{⌧ = T ,X⌧ = x}\G is that of a Brownian bridge on [T ,1] with initial value XT = x and terminal
value X1 = b, i.e.

P(X 2 · | ⌧ = T ,X⌧ = x,G) = P(S 2 ·),
where (St)Tt1 is a Brownian bridge on [T ,1] with ST = x and S1 = b.

Proof. Let (Zt)0t1 be a Brownian bridge wth Z0 = Z1 = 0. Applying the tower rule for
conditional expectation alongside Lemma B.3 gives us, for all E 2 F ,

P
⇣
Y (⌧) 2 E | ⌧,X⌧ , G

⌘
= E

h
P

⇣
Y (⌧) 2 E | F⌧

⌘i
= P(Z 2 E).

Thus, with probability one over the joint distribution of (X⌧ ,⌧, G), we have

P
⇣
Y (⌧) 2 E | X⌧ = x,⌧ = t,G

⌘
= P(Z 2 E).

With Lemma B.2, we know that, since Y (⌧) is a Brownian bridge with Y (⌧)
0 = Y (⌧)

1 = 0 on

this event, then, 1p
1�T Y

(⌧)
t(1�T) = Xt+T � 1�T�t

1�T x + t
1�T b is a Brownian bridge with initial and

terminal value 0 on [0,1�T]. The remainder of the result follows by adding 1�T�t
1�T x � t

1�T b,
applying the first part of Lemma B.2, and reindexing the process to be defined on [T ,1].

Lemma B.3 and Corollary B.4 above show that the conditional distributions of Brownian
bridges, even at stopping times, are very well-behaved — the conditional distributions are
exactly that of another Brownian bridge. We aim to apply these results to our analysis of the
privacy loss of the Brownian mechanism as follows. We will shortly that the distribution of
the outputs of the Brownian mechanism, which can be viewed as a Brownian motion being
run in reverse, can be equivalently viewed as a Brownian bridge with random (particularly,
multivariate Gaussian) initial state and fixed terminating state. Coupling this with the
above strong Markov property, we will show that even when an analyst picks arbitrarily
complicated stopping functions, the privacy loss looks as if the inspection times were fixed
in advance.

First, we show that, for a fixed number n of time functions, the privacy loss is exactly as
outlined in the statement of Proposition B.1.

18

Lemma B.5. Let n 2N be arbitrary, and let T1, . . . ,Tn be decreasing (i.e. non-increasing) time
functions. Let p⌫1:n denote the joint density of (B⌫T ⌫1

, . . . ,B⌫T ⌫n), where (B
⌫
t)t�0 is a d-dimensional

Brownian motion starting at ⌫ 2 Rd and T ⌫m := Tm
✓
B⌫T ⌫1

, . . . ,B⌫T ⌫m�1

◆
. Then, for any y1, . . . , yn 2 Rd ,

we have6

p⌫1:n(y1, . . . , yn) /⌫ exp

�kyn � ⌫k

2

2Tn

! nY

m=2

exp
 �kym�1 � ymk2
2(Tm�1 �Tm)

!
,

where Tm = Tm(y1, . . . , ym�1) for notational convenience and /⌫ indicates that the constant of
proportionality does not depend on ⌫.

Proof. We prove the result by induction on n, with the base case of n = 1 being trivial.
Assume now the result holds for n. Recall that the first time function T1 is simply a
constant. Define the “backwards” process (X⌫

t)0tT1 by X⌫
t := B⌫T1�t , and let (Gt)0tT1 be

the corresponding natural filtration, i.e. Gt := �(X⌫
s : s  t) = �(B⌫T1�s : s  t). Inspection

yields that (X⌫
t)0tT1 is a Brownian bridge with X⌫

0 ⇠N (⌫,T1Id) and X⌫
T1

= ⌫.

First, we note that the strong Markov property (in particular Corollary B.4) yields that,
for any (Gt) stopping times ⌧1  · · ·  ⌧n, the law of of (X⌫

t)⌧n1T1 conditional on the event
{X⌫

⌧1 = y1, . . . ,X⌫
⌧n = yn} is that of a Brownian bridge with initial point X⌫

⌧n = yn and terminal
point X⌫

T1
= ⌫. Applying this in the case ⌧m = T1 � Tm, this yields that the conditional

law of (X⌫
t)T1�TntT1 given {X⌫

0 = y1,X
⌫
T1�T2 = y2, . . . ,X

⌫
T1�Tn = yn} is a Brownian bridge with

initial point X⌫
T1�Tn = yn and terminal point X⌫

T1
= ⌫. But, this is equivalent to saying the

conditional law of (B⌫t)0tTn given {B⌫Tn = yn, . . . ,B
⌫
T1

= y1} is that of a Brownian bridge with
initial value B⌫0 = ⌫ and terminal value B⌫Tn = yn.

Next, note that, on the event {B⌫Tn = yn, . . . ,B
⌫
T1

= y1}, the time function Tn+1 = Tn+1(y1, . . . , yn)
is constant in value. Following the from the preceding paragraph, the conditional density
p⌫1:n+1(yn+1 | y1, . . . , yn) is just that of a Brownian bridge with initial value B⌫0 = ⌫ and B⌫Tn = yn
inspected at time Tn+1. That is, from using the covariance and mean expressions for a
Brownian bridge along with the fact it is a Gaussian process, we have by Lemma B.2

p⌫1:n+1(yn+1 | y1, . . . , yn) /⌫ exp

0
BBBBBBBBB@
�

����yn+1 � ⌫ � Tn+1
Tn

(yn � ⌫)
����
2

2(Tn �Tn+1)
· Tn+1
Tn

1
CCCCCCCCCA
.

Thus, applying Bayes rule for densities alongside the inductive hypothesis, we have

p⌫1:n+1(y1, . . . , yn+1) = p⌫1:n(y1, . . . , yn)p
⌫
1:n+1(yn+1 | y1, . . . , yn)

/⌫ exp

�kyn � ⌫k

2

2Tn

!
·
0
BBBBB@

nY

m=2

exp
 �kym�1 � ymk2
2(Tm�1 �Tm)

!1CCCCCA · exp

0
BBBBBBBBB@
�

����yn+1 � ⌫ � Tn+1
Tn

(yn � ⌫)
����
2

2(Tn �Tn+1)
· Tn+1
Tn

1
CCCCCCCCCA

= exp

�kyn+1 � ⌫k

2

2Tn+1

!
·
n+1Y

m=2

exp
 �kym�1 � ymk2
2(Tm�1 �Tm)

!
,

which proves the desired claim.

With the above lemma, which shows that Proposition B.1 holds when the number of
time functions is constant, we can now prove that Proposition B.1 holds in full generality.

6Since we may have Tm = Tm�1 for some m, we adopt the convention that when ym = ym�1,

exp
✓�(ym�ym�1)2
2(Tm�Tm�1)

◆
= 1. Likewise, when ym , ym�1 in this setting, we adopt exp

✓�(ym�ym�1)2
2(Tm�Tm�1)

◆
= 0. After

the proof of this lemma, only the former case will occur.

19

The idea behind the general proof is as follows. First, we consider the setting where an
analyst has a sequence of time functions T1,T2, . . . and uses a stopping function N that
satisfies N ((yn)n�1)  n for all possible strings of inputs. We then construct a sequence of

exactly n time functions S1, . . . ,Sn such that pµ1:n
✓
B⌫S⌫1

, . . . ,B⌫S⌫n

◆
= p

µ
1:N

✓
B⌫T ⌫1

, . . . ,B⌫T ⌫N⌫

◆
. Then,

in the general case where we only assume N ((yn)n�1) <1 for all sequences (yn)n�1, for any

� > 0,⌫ 2 Rd , there is some n⌫� such that P
✓
N

✓⇣
B⌫T ⌫n

⌘
n�1

◆
 n⌫,�

◆
� 1� �, which will allow us

to apply our argument from the setting where N is bounded alongside a limiting argument.

With the above brief description of our technique at hand, we now prove Proposition B.1.

Proof of Proposition B.1. By assumption, for all sequences (ym)m�1 of elements of Rd , we
have N ((ym)m�1)  n for some fixed natural number n 2 N. If (Tm)m�1 is the original
sequence of stopping functions, define a new sequence by Sm := Tm^N for all m 2 [n].7

It is straightforward to see that, for any µ,⌫ 2 Rd , p
µ
1:N

✓
B⌫T ⌫1

, . . . ,B⌫T ⌫N⌫

◆
=

p
µ
1:n

✓
B⌫T1^N⌫ , . . . ,B

⌫
T ⌫n^N⌫

◆
= p

µ
1:n

✓
B⌫S⌫1

, . . . ,B⌫S⌫n

◆
. Moreover, Lemma B.5 yields that

p⌫1:n

✓
B⌫S⌫1

, . . . ,B⌫S⌫n

◆

p
µ
1:n

✓
B⌫S⌫1

, . . . ,B⌫S⌫n

◆ =

exp

0
BBBBB@�

����B⌫S⌫n
�⌫

����
2

2S⌫n

1
CCCCCA

exp

0
BBBBB@�

����B⌫S⌫n
�µ

����
2

2S⌫n

1
CCCCCA

=

exp

0
BBBBBBBB@
�

�����B
⌫
T⌫N⌫
�⌫

�����
2

2T ⌫N⌫

1
CCCCCCCCA

exp

0
BBBBBBBB@
�

�����B
⌫
T⌫N⌫
�µ

�����
2

2T ⌫N⌫

1
CCCCCCCCA

,

which is just the ratio between the density of aN
⇣
⌫,T ⌫N⌫

⌘
random variable and aN

⇣
µ,T ⌫N⌫

⌘

random variable evaluated at B⌫T ⌫N⌫
, proving the desired result.

We now prove Theorem 3.4, which gives a closed form characterization of the Brownian
mechanism. In what follows, we use the same notation for the density of Brownian motion
as in the above proof.

Proof of Theorem 3.4. The second statement of the theorem is trivial and follows from our
assumption of bounded `2 sensitivity. Hence, we only prove the first statement below.

From the results of Lemma 3.3, we have

LBM1:N (x)(x,x
0) = log

0
BBBBBBBB@

p
f (x)
TN (x)(x)

(BMn(x))

p
f (x0)
TN (x)(x)

(BMn(x))

1
CCCCCCCCA

= �1
2

2
666664
||BTN (x) � f (x)||22

TN (x)(x)
�
||BTN (x) � f (x0)||22

TN (x)(x)

3
777775

7While N technically accepts an infinite sequence (yn)n�1 of vectors as input, by definition,
checking N ((yn)) m only requires examining the first m elements of the sequence y1, . . . , ym.

20

Without loss of generality, and for the sake of simplicity, f (x) = 0. The privacy loss can be
written as

LBM1:N (x)(x,x
0) =

1
2TN (x)(x)

⇣
�||BTN (x)(x)||22 + ||BTN (x)(x) � f (x0)||22

⌘

= � 1
Tn(x)

hBTN (x)(x), f (x
0)i+ 1

2TN (x)(x)
||f (x0)||22

= � ||f (x
0)||2

TN (x)(x)

*
BTN (x)(x),

f (x0)
||f (x0)||2

+
+

1
2TN (x)(x)

||f (x0)||22

= � ||f (x
0)||2

TN (x)(x)

*
BTN (x)(x),

f (x0)
||f (x0)||2

+
+

1
2TN (x)(x)

||f (x0)||22

= � ||f (x
0)||2

TN (x)(x)
WTn(x) +

1
2TN (x)(x)

||f (x0)||22.

Note that the last inequality follows from the fact that if (Bt)t�0 is a d-dimensional Brownian
motion and z 2 Rd is a unit vector under the `2 norm, then the process Wt := hz,Bti is a
standard Brownian motion. Noting that (�Wt)t�0 is also a Brownian motion furnishes the
result.

We now use the characterization of privacy loss in Theorem 3.4 alongside the time-uniform
concentration results for continuous time martingales found in Appendix A to construct
two general families of privacy boundaries. We now prove Theorem 3.6.

Proof of Theorem 3.6. Recall from Theorem 3.4 that we have the following bound

LBM1:N (x)(x,x
0)  �2

2TN (x)(x)
+

�
TN (x)(x)

W+
TN (x)(x)

,

where A+ := max(A,0). First, by leveraging Lemma A.3, we see that, with probability at
least 1� �, we have

LBM1:N (x)(x,x
0)  �2

2TN (x)(x)
+

�
TN (x)(x)

vuut
2(TN (x)(x) + ⇢) log

0
BBBBBB@
1
�

s
TN (x)(x) + ⇢

⇢

1
CCCCCCA =

M
⇢ (TN (x)(x)),

proving that M
⇢ is a valid �-privacy boundary. Likewise, by Lemma A.2, we have that

LBM1:N (x)(x,x
0)  �2

2TN (x)(x)
+

�
TN (x)(x)

(aTN (x)(x) + b) =
�

TN (x)(x)

�
2
+ b

!
+�a = L

a,b(TN (x)(x)),

showing L
a,b is a valid �-privacy boundary.

C Proofs From Section 5

In this appendix, we provide proofs of the results in Section 5. We start by proving the
privacy guarantees for ReducedAboveThreshold.

Proof of Theorem 5.1. For ReducedAboveThreshold as described in Algorithm 1, on
the event {N (x) = n}, all information leaked about the underlying private dataset
is contained in Alg1:n(x) and ↵1:n(x), where ↵n(x) is defined to be the nth bit out-
put by ReducedAboveThreshold. For any y 2 X , let q

y
1:n denote the joint density of

(Alg1:n(y),↵1:n(y)), p
y
1:n the marginal density of Alg1:n(y), and p

y
1:n(· | ·) the conditional

pmf of ↵1:n(y) given the observed values of Alg1:n(y). As such, for any neighboring datasets

21

x ⇠ x0, on the event {N (x) = n}, the privacy loss of ReducedAboveThreshold, denoted by
LRAT(x,x0), is given by

LRAT1:n (x,x0) = log

qx1:n(Alg1:n(x),↵1:n(x))

qx
0

1:n(Alg1:n(x),↵1:n(x))

!

= log

px1:n(Alg1:n(x))

px
0

1:n(Alg1:n(x))

!
+ log

px1:n(↵1:n(x) | Alg1:n(x))
px
0

1:n(↵1:n(x) | Alg1:n(x))

!

= log

px1:n(Alg1:n(x))

px
0

1:n(Alg1:n(x))

!
+ log

px1:n(0

n�11 | Alg1:n(x))
px
0

1:n(0n�11 | Alg1:n(x))

!

= LAlg1:n (x,x
0) +Ln(x,x0),

where 0n�11 denotes the string of n�1 0’s followed by a single 1. In the last line we leverage
the definition of the privacy loss between Alg1:n(x) and Alg1:n(x

0) and define

Ln(x,x0) := log

px1:n(0

n�11 | Alg1:n(x))
px
0

1:n(0n�11 | Alg1:n(x))

!
.

Now, to finish the result, it su�ces to prove that, for any n, Ln(x,x0)  En(Alg1:n�1(x)). With-
out loss of generality, we can assume all thresholds take the same value ⌧ across rounds,
as we can always define the shifted function u0n(Alg1:n(x),x) := un(Alg1:n(x),x) � ⌧n + ⌧.
To prove our desired inequality, we proceed largely in the same way as the proof
of AboveThreshold found in Lyu et al. [2017], noting that conditioning on Alg1:n(x)
serves to fix the utility functions u1(Alg1(x), ·), . . . ,un(Alg1:n(x), ·) and the privacy levels
E1,E2(Alg1(x)), . . . ,En(Alg1:n�1(x)). For simplicity, going forward, we refer to the former
quantities as u1(·), . . . ,un(·) and the latter quantities just as ✏1, . . . ,✏n. The only remaining
caveat that we must take care in handling variable amount of noise on the threshold intro-
duced by LNR. Going forward, let P1:n denote the conditional probability P(· | Alg1:n(x)).
First, observe that we can write the numerator of Ln(x,x0) as

px
⇣
0n�11 | Alg1:n(x)

⌘
=

Z

Rn
g⌧1:n(s1, . . . , sn)

0
BBBBB@

n�1Y

i=1

P1:n (ui (x) + ⇠i < si)

1
CCCCCAP1:n (un(x) + ⇠n � sn)d~s,

where g⌧1:n represents the density for the joint distribution of (⌧ + Z(2�/✏m))nm=1, where
(Z(t))t�⌘ is as defined in Equation (6). We now need three inequalities. The first two are
standard from the analysis of Lyu et al. [2017], so we do not provide a proof. The third
inequality is a product of our novel ReducedAboveThreshold mechanism, and hence we
provide a proof. The inequalities are:

1. For i < n and fixed si , P1:n(ui (x) + ⇠i < si)  P1:n(ui (x0) + ⇠i < si +�),

2. for i = n and any sn, P1:n(un(x) + ⇠n � sn)  e✏n/2P1:n(un(x0) + ⇠n � sn +�), and

3. for any s1:n 2 Rn, g⌧1:n(s1, . . . , sn)  e✏n/2g⌧1:n(s1 +�, . . . , sn +�).

We now prove the third inequality. We have that

g⌧1:n(s1, . . . , sn)

g⌧��1:n (s1, . . . , sn)
=

g⌧n (sn)g
⌧
1:n�1(s1, . . . , sn�1 | sn)

g⌧��n (sn)g⌧��1:n�1(s1, . . . , sn�1 | sn)

=
g⌧n (sn)
g⌧��n (sn)

 e✏n/2,

where the first equality follows from applying Bayes rule to the joint densities of the noisy
thresholds, and the second equality follows from the fact that (Z(t)) forms a Markov process.
This in particular implies that the density conditional density given the nth threshold
satisfies ga1:n�1(s1, . . . , sn�1 | sn) = gb1:n�1(s1, . . . , sn�1 | sn) for all a,b 2 R. The last inequality

22

follows from examining the ratio of densities of Lap(⌧,2�/✏n) and Lap(⌧��,2�/✏n) random
variables. Now, observe that by a simple shift of parameters we have

g⌧��1:n (s1, . . . , sn) = g⌧1:n(s1 +�, . . . , sn +�).

Plugging this in, we have

px
⇣
0n�11 | Alg1:n(x)

⌘

=
Z

Rn
g⌧1:n(s1, . . . , sn)

0
BBBBB@

n�1Y

i=1

P1:n(ui (x) + ⇠i < si)

1
CCCCCAP1:n(un(x) + ⇠n � sn)d~s

 e✏n/2
Z

Rn
gT��1:n (s1, . . . , sn)

0
BBBBB@

n�1Y

i=1

P1:n(ui (x) + ⇠i < si)

1
CCCCCAP1:n(un(x) + ⇠n � sn)d~s

 e✏n
Z

Rn
g⌧��1:n (s1, . . . , sn)

0
BBBBB@

n�1Y

i=1

P1:n(ui (x0) + ⇠i < si +�)

1
CCCCCAP(un(x

0) + ⇠n � sn +�)d~s

= e✏n
Z

Rn
g⌧1:n(s1, . . . , sn)

0
BBBBB@

n�1Y

i=1

P1:n(ui (x0) + ⇠i < si)

1
CCCCCAP1:n(un(x0) + ⇠n � sn)d~s

= e✏npx
0 ⇣
0n�11 | Alg1:n(x)

⌘
.

Rearranging furnishes the desired result.

We can also prove a corresponding utility guarantee for ReducedAboveThreshold. As
mentioned earlier, this utility guarantee is naive in the sense that it is derived from a union
bound. Thus, instead of plotting the utility guarantee in our experiments in Section 6, we
instead plot empirically observed loss/accuracy. Additionally, for the utility guarantee to
hold, the sequence of privacy functions (En)n�1 must be constant functions, i.e. En = ✏n
for each n. We now state the formal, high-probability utility guarantee in the following
proposition.
Proposition C.1. Let (pn)n�1 be a sequence of non-negative numbers such that

P1
i=1 pi = 1, and

let � 2 (0,1) be a confidence parameter. Define the sequence of parameters (⌘n)n�1 by

⌘n :=
4�
✏n

log

2
�

!
� log(pn)

!
.

Then, if N (x) is the time defined in Theorem 5.1, with probability at least 1�� , we have
uN (x)(x) � ⌧N (x) � ⌘N (x).

Proof. The above utility guarantee follows from applying two simple union bounds. First,
we have

P

0
BBBBB@
[

n�1
{|⇠n| � ⌘n/2}

1
CCCCCA 

X

n�1
P(|⇠n| � ⌘n/2) =

X

n�1
exp

✓�✏n⌘n
4�

◆
=
�
2

X

n�1
pn = 1.

Second, we have that

P

0
BBBBB@
[

n�1
{|⇣n| � ⌘n/2}

1
CCCCCA 

X

n�1
P(|⇣n| � ⌘n/2) =

X

n�1
exp

✓�✏n⌘n
2�

◆
 �

2

X

n�1
pn = 1.

Thus, with probability at least 1�� , we have simultaneously for all n � 1 that |⇠n|  ⌘n/2
and |⇣n|  ⌘n/2. Thus, with the same probability, on round N (x), we have

uN (x)(x) � ⌧N (x) � ⌘N (x).

23

D Proofs From Section 4

We first prove that the process defined in Equation (6) has Laplace marginal distributions.
Theorem D.1. Let (Zt)t�⌘ be the process defined in Equation (6). Then, for any t � ⌘, we have

Zt ⇠ Lap(t).

In what follows, we sometimes use the notation Z(t) interchangeably with Zt for conve-
nience.

Proof. Recall that if X ⇠ Lap(s), then X has characteristic function 's given by

's(�) =
1

1+�2s2
.

Let � denote the characteristic function of Zt �Z⌘ . Since Z⌘ and Zt �Z⌘ are independent, to
show Zt ⇠ Lap(t), it su�ces to show that

�(�) =
't(�)
'⌘ (�)

=
1+�2⌘2

1 +�2t2
.

Now, observe that the inhomogenous Poisson process (Pt)t�⌘ can be written as
(eP(et/2))t�log(⌘2) where eP is a homogeneous Poisson process with rate � = 1 on [log(⌘2),1).
In terms of the process eP, we can consider the process (eZt)t�log(⌘2) given by

eZt =
X

nePt

Lap
✓
e
eTn/2

◆
,

where eTn := inf{t � log(⌘2) : ePt � n} and eT0 = log(⌘2). It is easy to see that

eZ(log(t2))� eZ(log(⌘2)) =d Zt �Z⌘ .

Leveraging this identity, it follows that we have

�(�) = E
h
ei�(Zt�Z⌘)

i
= E


ei�(

eZ(log(t2))�eZ(log(⌘2)))
�

=
1X

n=0

⌘2

t2

h
log(t2/⌘2)

in

n!

Z

log(⌘2)u1<u2<···<unlog(t2)
f (n)(u1, . . . ,un)

nY

i=1

E

ei�Lap(e

ui /2)
�
du

=
⌘2

t2

1X

n=0

Z

log(⌘2)u1<u2<···<unlog(t2)

nY

i=1

1
1+�2eui

du. (7)

In the above, f (n)(u1, . . . ,un) := n!
[log(t2/⌘2)]n is the distribution of the order statistics

(U(1), . . . ,U(n)) of n i.i.d. random variables that are uniform on [log(⌘2), log(t2)]. Essen-
tially, what we have done is first conditioned of the number of Poisson arrivals that occur
in the interval [log(⌘2), log(t2)]. Then, on the event {N (t) = n}, we condition again on the
location of the n arrivals, which we know to be uniformly distributed across the time inter-
val. Once the arrival locations are known, we can compute the conditional characteristic
function, which is the the product of characteristic functions as illustrated in the integral
above.

Now, we show inductively that
Z

log(⌘2)u1<u2<···<unlog(t2)

nY

i=1

1
1+�2eui

du =
1
n!

"
log

t2

⌘2
1 +�2⌘2

1 +�2t2

!#n
.

24

The base case of n = 1 is trivially true. Now, we have that
Z

log(⌘2)u1<u2<···<unlog(t2)

nY

i=1

1
1+�2eui

du

=
Z log(t2)

u1=log(⌘2)

1
1 +�2eu1

Z

u1<u2<···<un

nY

i=2

1
1+�2eui

du�1du1

=
1

(n� 1)!

Z log(t2)

u=log(⌘2)

1
1 +�2eu

"
log

t2

eu
1+�2eu

1+�2t2

!#n�1
du

=
1
n!

Z log(t2)

log(⌘2)

d
du

"
� log

t2

eu
1+�2eu

1+�2t2

!#n
du =

1
n!

"
log

t2

⌘2
1 +�2⌘2

1 +�2t2

!#n
.

Leveraging this identity and picking up from the expression for �(�) in Equation (7), we
have that

�(�) =
⌘2

t2

1X

n=0

1
n!

"
log

t2

⌘2
1 +�2⌘2

1 +�2t2

!#n

=
⌘2

t2
exp

log

t2

⌘2
1 +�2⌘2

1 +�2t2

!!
=

1+�2⌘2

1 +�2t2
.

This proves the desired result.

The above proof can also be leveraged to show that, for any finite fixed sequence of times
(tn)n2[K], (Z(t1), . . . ,Z(tK)) has the same distribution as (⇣1, . . . ,⇣K), where (⇣n)n2[K] is the
Laplace process associated with times (tn)n2[K] as outlined in Equation (5). This justifies
that the process (Z(t))t�⌘ is in fact a continuous time generalization of the aforementioned
discrete time process.

E Additional Experimental Details

Parameter settings: We set the regularization parameter to be � = 0.05 and note that the
`2 and `1-sensitivity for the output perturbation of logistic regression are respectively 2

n�

and 2
p
d

n� . Likewise, for covariance perturbation in ridge regression, the `2-sensitivities for
privately releasing XTX and XT y are both 2.0, and the corresponding `1-sensitivities for
releasing these quantities are 2.0d and 2.0

p
d respectively [Ligett et al., 2017, Chaudhuri

et al., 2011]. We set the failure probability for BM to be � = 10�6, and in each task map
privacy parameters (✏n) to times (tn) using the linear privacy boundary L

a,b optimized for
tightness at ✏ = 0.3.

Optimizing privacy boundaries: We provide a high level description of how one may set
the parameters associated with the privacy boundaries discussed in Theorem 3.6. Let us
consider the case of the mixture boundary M

⇢ for illustrative purposes.

Suppose a data analyst desires that the final level of privacy loss obtained by interacting
with the Brownian mechanism should be approximately ✏. Then, intuitively, the analyst
should want to add the variance of the Gaussian noise added to be as small as possible when
the privacy boundary takes value ✏. In mathematical notation, the analyst wants to find a
parameter ⇢⇤ satisfying

⇢⇤ = argmin
⇢

(M
⇢)�1(✏),

where we note that the inverse function (M
⇢)�1 exists as M

⇢ is strictly increasing. While this
inverse has no closed form in general, the parameter ⇢⇤ can be e�ciently computed using a
few lines of code. A similar, even more straightforward computation can be conducted for
the linear privacy boundary.

25

Simulating Noise Reduction Mechanisms: We briefly describe how a data analyst can pro-
duce samples from the Brownian mechanism and the Laplace noise reduction mechanism.
First, since T1(x) is a constant, we have BM1(x) ⇠N (f (x),T1(x)). Then, given BM1:m�1(x), we
have BMm(x) ⇠ N

⇣
f (x) + Tm(x)

Tm�1(x)
(BTm�1(x)� f (x)),

(Tm�1(x)�Tm(x))Tm(x)
Tm�1(x)

⌘
. Since simulating the

Brownian mechnaism only requires normal samples, it can be e�ciently computed.

Second, to sample from LNR, one can first generate the the points of arrival of the inhomo-
geneous Poisson process (Pt)t�⌘ up to time T1(x). Let T1, . . . ,TN denote these arrival times,
where we note that N , the number of arrivals up to time T1(x), is a random variable. Then,
one can generate Ym ⇠ Lap(Tm) for m N . From this information, the process (Zt)⌘tT1(x)
can be readily computed, as in Equation (6).

26

