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Abstract

Composition is a key feature of differential pri-
vacy. Well-known advanced composition the-
orems allow one to query a private database
quadratically more times than basic privacy com-
position would permit. However, these results re-
quire that the privacy parameters of all algorithms
be fixed before interacting with the data. To ad-
dress this, Rogers et al. (2016) introduced fully
adaptive composition, wherein both algorithms
and their privacy parameters can be selected adap-
tively. They defined two probabilistic objects to
measure privacy in adaptive composition: pri-
vacy filters, which provide differential privacy
guarantees for composed interactions, and pri-
vacy odometers, time-uniform bounds on privacy
loss. There are substantial gaps between advanced
composition and existing filters and odometers.
First, existing filters place stronger assumptions
on the algorithms being composed. Second, these
odometers and filters suffer from large constants,
making them impractical. We construct filters that
match the rates of advanced composition, includ-
ing constants, despite allowing for adaptively cho-
sen privacy parameters. En route we also derive
a privacy filter for approximate zCDP. We also
construct several general families of odometers.
These odometers match the tightness of advanced
composition at an arbitrary, preselected point in
time, or at all points in time simultaneously, up to
a doubly-logarithmic factor. We obtain our results
by leveraging advances in martingale concentra-
tion. In sum, we show that fully adaptive privacy
is obtainable at almost no loss.
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1. Introduction

Differential privacy (Dwork et al., 2006b) is an algorithmic
criterion that provides meaningful guarantees of individual
privacy for conducting analysis on sensitive data. Intuitively,
an algorithm is differentially private if similar inputs induce
similar distributions on outputs. More formally, an algo-
rithm A : X ! Y is differentially private if, for any set of
outcomes G ⇢ Y and any neighboring inputs x, x0

2 X ,

P(A(x) 2 G)  e
✏P(A(x0) 2 G) + �, (1)

where ✏ and � are the privacy parameters of the algorithm.

A key property of differential privacy is graceful compo-
sition. Suppose A1, . . . , An are algorithms such that each
Am is (✏m, �m)-differentially private. Advanced composi-
tion (Dwork et al., 2010; Kairouz et al., 2015) states that,
for any �

0
> 0, the composed sequence of algorithms is

(✏, �)-differentially private, where � = �
0+
P

mn �m, and

✏ =

vuut2 log

✓
1

�0

◆ X

mn

✏2m +
X

mn

✏m

✓
e
✏m � 1

e✏m + 1

◆
. (2)

When all privacy parameters are the same and small, we
roughly have ✏ = O(

p
n✏m). Hence, analysts can make use

of sensitive datasets with a slow degradation of privacy.

However, there is a major disconnect between most existing
results on privacy composition and modern data analysis.
As analysts view the outputs of algorithms, the future man-
ner in which they interact with the data changes. Advanced
composition allows analysts to adaptively select algorithms,
but not privacy parameters. In many cases, analysts may
wish to choose the subsequent privacy parameters based
on the outcomes of the previous private algorithms. For
example, if an analyst learns, from past computations, that
they only need to run one more computation, they should
be able to use the remainder of their privacy budget in the
final round. Likewise, if an analyst is having a hard time de-
riving conclusions, they should be allowed to adjust privacy
parameters to extend the allowable number of computations.

This desideratum has motivated the study of fully adaptive
composition, wherein one is allowed to adaptively select the
privacy parameters of the algorithms. Rogers et al. (2016)
define two probabilistic objects which can be used to ensure
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privacy guarantees in fully adaptive composition. The first,
called a privacy filter, is an adaptive stopping condition
that ensures an entire interaction between an analyst and
a dataset retains a pre-specified target privacy level, even
when the privacy parameters are chosen adaptively. The
second, called a privacy odometer, provides a sequence of
high-probability upper bounds on how much privacy has
been lost up to any point in time. While this work took the
first steps towards fully adaptive composition, their filters
and odometers suffered from large constants and the latter
suffered from sub-optimal asymptotic rates.

We show that, as long as a target privacy level is pre-
specified, one can obtain the same rate as advanced compo-
sition, including constants. We also construct families of
privacy odometers that are not only tighter than the origi-
nals, but can be optimized for various target levels of privacy.
Overall, we show that full adaptivity is not a cost—but rather
a feature—of differential privacy.

1.1. Related Work

Privacy Composition: There is a long line of work on pri-
vacy composition. The “basic composition” theorem states
that, when composing private algorithms, the privacy param-
eters (both ✏ and �) add up linearly (Dwork et al., 2006b;a;
Dwork and Lei, 2009). The “advanced composition” theo-
rem allows the total ✏ to grow sublinearly with a small degra-
dation on � (Dwork et al., 2010). Later work (Kairouz et al.,
2015; Murtagh and Vadhan, 2016) studies “optimal” com-
position, a computationally intractable formula that tightly
characterizes the overall privacy of composed mechanisms.

More recently, several variants of privacy have been
studied including (zero)-concentrated differential privacy
(zCDP) (Bun and Steinke, 2016; Dwork and Rothblum,
2016), Renyi differential privacy (RDP) (Mironov, 2017),
and f -differential privacy (f -DP) (Dong et al., 2021). These
all exhibit tighter composition results than differential pri-
vacy, but for restricted classes of mechanisms. These results
do not allow adaptive choices of privacy parameters.

Privacy Filters and Odometers: Rogers et al. (2016) orig-
inally introduced privacy filters and odometers, which allow
privacy composition with adaptively selected privacy param-
eters. While their contributions provide a decent approxi-
mation of advanced composition, their bounds suffer from
large constants, which prevents practical usage. Our work di-
rectly improves over these initial results. First, we construct
privacy filters essentially matching advanced composition.
We also provide flexible families of privacy odometers that
outperform those of Rogers et al. (2016).

Feldman and Zrnic (2021) leverage RDP to construct Rényi
filters, where they require individual mechanisms to satisfy
RDP. Since our proof establishes a new privacy filter for

approximate zCDP (Bun and Steinke, 2016), our results also
extend to approximate RDP (Papernot and Steinke, 2022),
which directly generalizes their Rényi filter. Even though
it is also possible to obtain a privacy filter for (✏, �)-DP
through Rényi filters (Feldman and Zrnic, 2021), this re-
sult requires a stronger assumption that algorithms being
composed satisfy probabilistic (i.e. point-wise) differential
privacy (Kasiviswanathan and Smith, 2014). Since con-
verting from differential privacy to probabilistic differential
privacy can be costly (see Lemma 2), our filters demonstrate
an improvement by avoiding the conversion cost.

More recently, Koskela et al. (2022) and Smith and Thakurta
(2022) provide privacy filters for Gaussian DP (GDP) (Dong
et al., 2021). However, their results do not hold for more gen-
eral mechanisms under f -DP and therefore cannot handle
algorithms with rare “catastrophic” privacy failure events,
in which the privacy loss goes to infinity. Both of our (✏, �)-
filter and approximate zCDP filters can handle such events.

Feldman and Zrnic (2021) and Lécuyer (2021) construct
RDP odometers. The former work sequentially composes
Rényi filters and the latter work simultaneously runs multi-
ple Rényi filters and takes a union bound. Neither odometer
provides high probability, time-uniform bounds on privacy
loss, making these results incomparable to our own. We
believe our notion of odometers, which aligns with that of
Rogers et al. (2016), is more natural.

To prove our results, we leverage time-uniform concentra-
tion results for martingales (Howard et al., 2020; 2021). The
bounds in these papers directly improve over related self-
normalized concentration results (de la Pena et al., 2004;
Chen et al., 2014). These latter bounds were leveraged in
Rogers et al. (2016) to construct filters and odometers.

1.2. Summary of Contributions

In this work, we provide two primary contributions. We
present these results in full rigor following a brief discussion
of privacy basics and martingale theory in Section 2.

Privacy Filters: In Theorem 2 of Section 3, we construct
privacy filters that match the rate of advanced composition.
Our filters significantly improve over those of Rogers et al.
(2016). In fact, our proof first derives a privacy filter for ap-
proximate zCDP (Bun and Steinke, 2016) (and also approx-
imate RDP (Papernot and Steinke, 2022)), which implies a
filter for (✏, �)-differential privacy using known conversion
results. Our results then extend the existing filters for pure
RDP in Feldman and Zrnic (2021). This extension allows us
to capture a broader class of algorithms and avoids the con-
version loss when translating bounds between pure RDP and
(✏, �)-differential privacy. We state our result in Informal
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(a) Comparing lower order terms (b) Comparing privacy odometers

Figure 1: Figure 1a compares the lower order terms of advanced composition and our privacy filter. Figure 1b compares the original
odometer of Rogers et al. (2016) with our odometers (filter, mixture, and stitched).

Theorem 1 below.1

Privacy Odometers: In Theorem 3 of Section 4, we con-
struct improved privacy odometers — that is, sequences of
upper bounds on privacy loss which are all simultaneously
valid with high probability. Our three families of odometers
theoretically and empirically outperform those of Rogers
et al. (2016). See Figure 1b for a comparison.
Informal Theorem 1 (Improved Privacy Filter). Fix tar-
get privacy parameters ✏ > 0 and � > 0, and suppose
(An)n�1 is an adaptively selected sequence of algorithms.
Assume that An is (✏n, �n)-DP conditioned on the outputs
of the first n� 1 algorithms, where ✏n and �n may depend
on outputs of A1, . . . , An�1. If a data analyst stops in-
teracting with the data before

q
2 log

�
1
�

�P
mn+1 ✏

2
m +

1
2

P
mn+1 ✏

2
m > ✏, then the entire interaction is (✏, �)-DP.

Informal Theorem 1 almost recovers advanced composition
when all parameters ✏n and �n are fixed prior to interacting
with the dataset. The only difference is a slight gap in the
lower order term, as ✏

⇣
e✏�1
e✏+1

⌘


1
2✏

2. (In fact the difference
between the left and right hand sides is O(✏4), as can be
checked with a Taylor expansion.) Figure 1a demonstrates
that this gap is negligible for small values of ✏, which is the
natural setting for differential privacy.

Our second major contribution is the construction of several
families of privacy odometers. These odometers give a
running bound on privacy loss in settings where a target level
of overall privacy is not known. Our constructed odometers
are significantly tighter than the originals (Rogers et al.,

1In Appendix D, we provide an alternative proof for our pri-
vacy filter result through reductions to generalized randomized
response. While it gives the exact same rates, we believe it could
be of independent interest. For example, it may be useful for ob-
taining filters with rates like the optimal composition (Murtagh
and Vadhan, 2016; Kairouz et al., 2015), which used a similar
reduction to randomized response in their analysis.

2016), as can be seen in Figure 1b.

Our key insight is to view adaptive privacy composition
as depending not on the number of algorithms being com-
posed, but rather on the sums of squares of privacy param-
eters,

P
mn ✏

2
m. This shift to looking at “intrinsic time”

allows us to apply recent advances in time-uniform concen-
tration (Howard et al., 2020; 2021) to privacy loss martin-
gales. Overall, our results show that their is essentially no
cost for fully adaptive private data analysis.

2. Background on Differential Privacy

Throughout, we assume all algorithms map from a space
of datasets X to outputs in a measurable space, typically
either denoted (Y,G) or (Z,H). For a sequence of algo-
rithms (An)n�1, we often consider the composed algorithm
A1:n := (A1, . . . , An). For more background on measure-
theoretic matters, as well as on the notion of neighboring
datasets, see Appendix A.

We start by formalizing a generalization of differential pri-
vacy in which the privacy parameters of an algorithm An

can be functions of the outputs of A1, . . . , An�1. In par-
ticular, we replace the probabilities in Equation (1) with
conditional probabilities given relevant random variables.
Definition 1 (Conditional Differential Privacy). Suppose
A and B are algorithms mapping from a space X to mea-
surable spaces (Y,G) and (Z,H) respectively. Suppose
✏, � : Z ! R�0 are measurable functions. We say the al-
gorithm A is (✏, �)-differentially private conditioned on B

if, for any neighbors x, x0
2 X and for all measurable sets

G 2 G, we have

P (A(x) 2 G | B(x))

 e
✏(B(x))P (A(x0) 2 G | B(x)) + �(B(x)).

For conciseness, we will write either ✏ or ✏(x) for ✏(B(x))
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and likewise � or �(x) for �(B(x)).

In the nth round of adaptive composition, we will set
A := An and B := A1:n�1. In this setting, the analyst has
functions ✏n, �n : Yn�1

! R�0 and takes the nth round pri-
vacy parameters to be ✏n(A1:n�1(x)) and �n(A1:n�1(x)).
In other words, the analyst uses the outcome of the first
n� 1 algorithms to decide the level of privacy for the nth
algorithm, ensuring that An is (✏n, �n)-differentially private
conditioned on A1:n�1.

We will also leverage the notion of zero-concentrated dif-
ferential privacy (zCDP) (Bun and Steinke, 2016), which
often provides a cleaner analysis for privacy composition.
First, we will recall the definition of Rényi divergence.
Definition 2. The Rényi divergence from P to Q of order
� � 1 is defined as

D�(PkQ) :=
1

�� 1
log

 
EY⇠P

"✓
P (Y )

Q(Y )

◆��1
#!

.

The notion of zCDP bounds the Rényi divergence from
A(x) to A(x0) for any neighbors x and x

0. We will focus
on a more general definition called approximate zCDP (Bun
and Steinke, 2016; Papernot and Steinke, 2022) that per-
mits a small probability of unbounded Rényi divergence.
For the purpose of adaptive composition, we will state the
conditional counterpart of this definition.2

Definition 3 (Conditional approximate zCDP). Supppose
A and B are algorithms with inputs in space X and out-
puts in measurable spaces (Y,G) and (Z,H). Suppose
�, ⇢ : Z ! R�0 are measurable. We say the algo-
rithm A is �-approximate ⇢-zCDP conditioned on B if,
for any neighboring datasets x, x0, there exist distributions
P

0
, P

00
, Q

0
, Q

00 such that the conditional outputs are dis-
tributed according to the following mixture distributions:

A(x) | B(x) ⇠ (1� �(B(x)))P 0 + �(B(x))P 00

A(x0) | B(x) ⇠ (1� �(B(x))Q0 + �(B(x))Q00
,

where for all � � 1, D�(P 0
kQ

0)  ⇢(B(x))� and
D�(Q0

kP
0)  ⇢(B(x))�. For succinctness, we will write

⇢(x) for ⇢(B(x)) and �(x) for �(B(x)).

We will also use the notions of filtration and martingales.

Filtration and Martingales: A process (Xn)n2N is said
to be a martingale with respect to a filtration (Fn)n2N if, for
all n 2 N, (a) Xn is Fn-measurable, (b) E|Xn| < 1, and
(c) E(Xn | Fn�1) = Xn�1. Correspondingly, (Xn)n2N

2The approximate zCDP definition we state uses the convex
mixture formulation adapted from Papernot and Steinke (2022),
since it is more convenient for our proof. In Appendix C.1, we
will show that this definition is equivalent to the original definition
in Bun and Steinke (2016).

is a supermartingale if E(Xn | Fn�1)  Xn�1. In our
context, we will consider the natural filtration (Fn(x))n2N
generated by (An(x))n�1. In our proofs, we construct the
appropriate (super)martingales so that we can leverage the
optional stopping theorem and time-uniform concentration
to obtain privacy filters and odometers (Ville, 1939; Howard
et al., 2020; 2021). We present a full exposition of the
mathematical tools in Appendix A and B.

3. Privacy Filters

We now provide our main results on privacy filter. In gen-
eral, a privacy filter is a function N that takes the privacy
parameters of a sequence of private algorithms as input and
decides to stop at some point so that the composition of these
algorithms satisfies a pre-specified level of privacy. We will
first present a privacy filter for approximate zCDP (Theorem
1), which will immediately imply the privacy filter result for
(✏, �)-DP (Theorem 2). Since approximate zCDP bounds
Rényi divergence of all orders �, our proof for Theorem 1
also directly implies a privacy fiter for approximate RDP
(Papernot and Steinke, 2022), which generalizes the RDP
filter by Feldman and Zrnic (2021).

Our (✏, �)-DP filter improves on the rate of the original filter
presented in Rogers et al. (2016) and matches the rate of
advanced composition that requires pre-fixed choices of
privacy parameters. Even though it is also possible to obtain
an (✏, �)-DP filter through the result of Feldman and Zrnic
(2021), our privacy filters avoid their conversion costs and
provide a tighter bound.3

We can now state our general privacy filter in terms of
approximate zCDP.
Theorem 1 (Approximate zCDP filter). Let (An)n�1 be
an adaptive sequence of algorithms, and, for any x, let
F ⌘ (Fn(x))n2N be the natural filtration generated by
(An(x))n2N. Assume that �n, ⇢n are predictable with re-
spect to F , meaning that they are Fn�1(x)-measurable. For
any n � 1, assume that An is �n-approximate ⇢n-zCDP
conditioned on Fn�1(x). Consider the stopping function
N : R1

�0 ⇥ R1
�0 ! N given by

N((⇢n)n�1, (�n)n�1) :=

inf

8
<

:n : ⇢ <

X

mn+1

⇢m or � <

X

mn+1

�m

9
=

;

Then A1:N(·)(·) : X ! Y is �-approximate ⇢-zCDP.

We note that the above theorem immediately implies a pri-
vacy filter for approximate RDP, and thus Theorem 1 can be

3Feldman and Zrnic (2021, Section 4.3) apply Rényi filters
to algorithms which satisfy (conditional) probabilistic differential
privacy (pDP). In general, a lossy conversion from (✏, �)-DP to
(✏, �)-pDP is required to apply their filter.
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viewed as a strict generalization of the work of Feldman and
Zrnic (2021). Further, Theorem 1 implies a privacy filter
under (✏, �)-differential privacy. To show this implication,
we will use the following conversion results.
Lemma 1 ((Bun and Steinke, 2016)). If A satisfies
(✏, �)-DP, then A satisfies �-approximate 1

2✏
2-zCDP. If

A satisfies �-approximate ⇢-zCDP, then A satisfies (⇢ +
2
p
⇢ ln(1/�0), � + (1� �)�0)-DP.

We can now obtain our (✏, �)-privacy filter by a conversion
of individual approximate differential privacy parameters
to approximate zCDP ones, application of the approximate
zCDP filter, and the conversion of approximate zCDP back
to approximate differential privacy.
Theorem 2 ((✏, �)-DP filter). Suppose (An)n�1 is a se-
quence of algorithms such that, for any n � 1, An is
(✏n, �n)-differentially private conditioned on A1:n�1. Let
✏ > 0 and � = �

0 + �
00 be target privacy parameters such

that �0 > 0, �00 � 0. Let N : R1
�0 ⇥ R1

�0 ! N be given by

N((✏n)n�1, (�n)n�1) :=

inf

8
><

>:
n : ✏ <

vuut2 log

✓
1

�0

◆ X

mn+1

✏2m +
1

2

X

mn+1

✏2m or �00 <
X

mn+1

�m

9
>=

>;
.

Then, the algorithm A1:N(·)(·) : X ! Y
1 is (✏, �)-DP,

where N(x) := N((✏n(x))n�1, (�n(x))n�1).

Now we provide a proof for Theorem 1. Recall that the out-
put under a privacy filter is a random vector A1:N(x)(x) =
(A1(x), . . . , AN(x)(x)). In our proof, we will also consider
the unstopped process A(x) = (A1(x), A2(x), . . . ).

Proof of Theorem 1. Let x, x0 be neighbors, and P,Q de-
note the likelihoods of the observed output A(x) when the
inputs are x, x

0 respectively. The likelihoods of observing
the stopped process A1:N(x)(x) under x and x

0 are:

P (A1:N(x)(x)) =

N(x)Y

n=1

P (An(x) | Fn�1(x)), (3)

Q(A1:N(x)(x)) =

N(x)Y

n=1

Q(An(x) | Fn�1(x)). (4)

It suffices to show that the two likelihoods can be decom-
posed as weighted mixtures of P 0 and P

00, and Q
0 and Q

00

respectively such that the mixture weights on P
0 and Q

0 are
at least (1� �) and for all � � 1,

max
n
D�

�
P

0(A1:N(x)(x))kQ
0(A1:N(x)(x))

�
,

D�

�
Q

0(A1:N(x)(x))kP
0(A1:N(x)(x))

�o
 ⇢�. (5)

By our assumption of conditional approximate zCDP at each
step n, we can write P (An(x) | Fn�1(x)) and Q(An(x) |

Fn�1(x)) as the following convex combinations:

P (An(x) | Fn�1(x)) = (1� �n(x))P
0
n(An(x) | Fn�1(x))

+ �n(x)P
00
n (An(x) | Fn�1(x)),

Q(An(x) | Fn�1(x)) = (1� �n(x))Q
0
n(An(x) | Fn�1(x))

+ �n(x)Q
00
n(An(x) | Fn�1(x)),

such that for all � � 1, we have both

D�

�
P 0
n(An(x) | Fn�1(x)) k Q0

n(An(x) | Fn�1(x))
�
 ⇢n(x)�,

(6)

D�

�
Q0

n(An(x) | Fn�1(x)) k P 0
n(An(x) | Fn�1(x))

�
 ⇢n(x)�.

(7)

Now consider the product measures P 0 and Q
0 such that for

any n � 1,

P
0(A1:n(x)) =

nY

m=1

P
0
m(Am(x) | Fm�1(x)) and

Q
0(A1:n(x)) =

nY

m=1

Q
0
m(Am(x) | Fm�1(x)). (8)

We will establish inequality (5). For any fixed � � 1,
consider the following processes:

Mn :=
X

mn

⇢
log

✓
P

0
m(Am(x) | Fm�1(x))

Q0
m(Am(x) | Fm�1(x))

◆
� �⇢m(x)

�
,

(9)

Xn := exp ((�� 1)Mn) . (10)

By Lemma 6, Xn is a nonnegative P 0-supermartingale with
respect to (Fn(x))n2N. By the optional stopping theorem
for nonnegative supermartingales (Lemma 5), we have

EP 0 [XN(x)]  EP 0 [X0] = 1. (11)

By plugging in the definition of Xn and the stopping
criterion of N , we can bound the Rényi divergence
D�

�
P

0(A1:N(x)(x))kQ
0(A1:N(x)(x))

�
 ⇢� (see Lemma

7), and so inequality (5) holds by symmetry.

Finally, by Lemma 8, we can rewrite both P and Q as
weighted mixtures containing P

0 and Q
0, with weights at

least 1� �. This completes the proof.

4. Privacy Odometers

Previously, we constructed privacy filters that matched the
rate of advanced composition while allowing both algo-
rithms and privacy parameters to be chosen adaptively.
While privacy filters require the total level of privacy to
be fixed in advance, it is desirable to track the privacy loss
at all steps without a pre-fixed budget (Ligett et al., 2017).
We now study privacy odometers which provide sequences
of upper bounds on accumulated privacy loss that are valid
at all points in time simultaneously with high probability.
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4.1. Background on Privacy Loss and Odometers

To formally introduce privacy odometers, we will first re-
visit the notion of privacy loss, which measures how much
information is revealed about the underlying input dataset.
For neighbors x, x

0
2 X , let px and p

x0
be the densities

of A(x) and A(x0) respectively. The privacy loss between
A(x) and A(x0) is defined as

L(x, x0) := log

✓
p
x(A(x))

px
0(A(x))

◆
. (12)

By Equation (12), a negative privacy loss suggests that the
input is more likely to be x

0, and likewise a positive privacy
loss suggests that the input is more likely to be x. We now
generalize privacy loss to its conditional counterpart.
Definition 4 (Conditional Privacy Loss). Suppose A and
B are as in Definition 1. Suppose x, x

0
2 X are neighbors.

Let px(·|·), px
0
(·|·) : Y⇥Z ! R�0 be conditional densities

for A(x) and A(x0) respectively given B(x).4 The privacy
loss between A(x) and A(x0) conditioned on B is given by

LB(x, x
0) := log

✓
p
x(A(x)|B(x))

px
0(A(x)|B(x))

◆
.

Suppose An is the nth algorithm being run and we have al-
ready observed A1:n�1(x) for some unknown input x 2 X .
If we are trying to guess whether x or a neighbor x0 pro-
duced the data, we would consider the privacy loss between
An(x) and An(x0) conditioned on A1:n�1(x). It is straight-
forward to characterize the privacy loss of a composed algo-
rithm A1:n in terms of the privacy loss of each constituent
algorithm A1, · · · , An. Namely, from Bayes rule,

L1:n(x, x
0) =

X

mn

Lm(x, x0), (13)

where Lm(x, x0) is shorthand for the conditional privacy
loss between Am(x) and Am(x0) given A1:m�1(x), per
Definition 4. Equation (13) also holds at arbitrary random
times N(x) that only depend on the dataset x 2 X through
observed algorithm outputs.

The simple decomposition of privacy loss noted above moti-
vates the study of an “alternative”, probabilistic definition
of differential privacy. Intuitively, an algorithm should be
differentially private if, with high probability, the privacy
loss is small. More formally, an algorithm A : X ! Y is
said to be (✏, �)-probabilistically differentially private, or
(✏, �)-pDP for short, if, for all neighboring inputs x, x0

2 X ,
4To ensure the existence of conditional densities, it suffices to

assume that Y and Z are Polish spaces under some metrics dY
and dZ , and that G and H are the corresponding Borel �-algebras
associated with dY and dZ (Durrett, 2019). These measurability
assumptions are not restrictive, as Euclidean spaces, countable
spaces, and Cartesian products of the two satisfy these assumption.

we have P (|L(x, x0)| > ✏)  �. In the previous line (as
well as in the remainder of the section), the randomness in
L(x, x0) comes from the randomized algorithm A.

Unfortunately, as noted by Kasiviswanathan and Smith
(2014) (in which pDP is called point-wise indistinguishabil-
ity), pDP is a strictly stronger notion than DP. In particular, if
an algorithm is (✏, �)-pDP, it is also (✏, �)-DP. The converse
in general requires a costly conversion.
Lemma 2 (Conversions between DP and pDP (Ka-
siviswanathan and Smith, 2014)). If A is (✏, �)-pDP, then
A is also (✏, �)-DP. Conversely, if A is (✏, �)-DP, then A is
(2✏, 2�

✏e✏ )-pDP.

We note that that Guingona et al. (2023) have recently shown
that other possible conversion rates from probabilistic dif-
ferential privacy to approximate differential privacy are pos-
sible. However, we note that these conversions require
trading off tightness in the approximation parameter ✏ and
the approximation parameter �. In particular, a fully tight
conversion from probabilistic differenial privacy to approx-
imate differential privacy is not possible. We will work
with the conditional counterpart of probabilistic differential
privacy (pDP).
Definition 5 (Conditional Probabilistic Differential Privacy).
Suppose A : X ! Y and B : X ! Z are algorithms, and
✏, � : Z ! R�0 are measurable. Then, A is said to be
(✏, �)-probabilistically differentially private conditioned on
B if, for any neighbors x, x0

2 X , we have

P (|LB(x, x
0)| > ✏(B(x))|B(x))  �(B(x)).

While in Theorem 2 we assumed that the algorithms being
composed were conditionally differentially private, here,
we need to assume conditional probabilistic privacy. This
is because our goal is not differential privacy, but rather
tight control over privacy loss. We conjecture that a ver-
sion of our privacy odometer (in Theorem 3) that replaces
pDP by DP and leaves all else identical does not hold. Our
intuition for this conjecture is that there exist simple ex-
amples of algorithms satisfying (✏, �)-DP that don’t satisfy
(✏, �)-pDP (see Appendix F, for instance). We believe that,
by sequentially composing such algorithms and using anti-
concentration results, one can show that some odometers
fail to be valid. We leave this as potential future work. In
sequential composition, we would assume the nth algorithm
An is (✏n, �n)-pDP conditioned on A1:n�1. The privacy
parameters would be given as functions of A1:n�1(x). Now
we state the definition of privacy odometer, which provides
bounds on privacy loss under arbitrary stopping conditions
(e.g. conditions based on model accuracy).
Definition 6 (Privacy Odometer (Rogers et al., 2016)).
Let (An)n�1 be an adaptive sequence of algorithms such
that, for all n � 1, An is (✏n, �n)-pDP conditioned on

6
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A1:n�1. Let (un)n�1 be a sequence of functions where
un : Rn�1

�0 ⇥ Rn�1
�0 ! R�0. Let � 2 (0, 1) be a tar-

get confidence parameter. For x 2 X , n � 1, define
Un(x) := un(✏1:n�1(x), �1:n�1(x)). Then, (un)n�1 is
called a �-privacy odometer if, for all x, x0

2 X neigh-
bors, we have

P (9n � 1 : L1:n(x, x
0) > Un(x))  �.

4.2. Improved Privacy Odometers

We construct our privacy odometers in Theorem 3. Our tech-
nical centerpiece is time-uniform concentration inequalities
for martingales (Ville, 1939; Howard et al., 2020; 2021).
For a martingale (Mn)n2N and confidence level � > 0,
time-uniform concentration inequalities provides bounds
(Un)n2N satisfying P(9n 2 N : Mn > Un)  �. Thus, if
we can create a martingale from privacy loss, we can use
time-uniform concentration to construct odometers. Our
proof first considers the case where each An is (✏n, 0)-pDP
and the privacy loss martingale (Mn)n2N (Dwork et al.,
2010) is given by M0 = 0 and:

Mn := Mn(x, x
0) := L1:n(x, x

0)�
X

mn

E
�
Lm(x, x0)|Fn�1(x)

�

(14)
We then extend to the case of �n � 0 via conditioning.

To construct their filters and odometers, Rogers et al. (2016)
use self-normalized concentration inequalities (de la Pena
et al., 2004; Chen et al., 2014). We instead use advances
in time-uniform martingale concentration (Howard et al.,
2020; 2021), which yields tighter results.
Theorem 3. Suppose (An)n�1 is a sequence of algorithms
such that, for any n � 1, An is (✏n, �n)-pDP condi-
tioned on A1:n�1. Let � = �

0 + �
00 be a target approx-

imation parameter such that �
0
> 0, �00 � 0. Define

N := N((�n)n�1) := inf
n
n 2 N : �00 <

P
mn+1 �m

o

and Vn :=
P

mn ✏
2
m. Define the following:

1. Filter odometer. For any ✏ > 0, let y
⇤ :=⇣

�

q
2 log

�
1
�0

�
+
q
2 log

�
1
�0

�
+ ✏

⌘2
. Define the

functions (uF
n )n�1 by

u
F
n (✏1:n, �1:n) :=8
<

:
1 n > N
q

2y⇤ log( 1
�0 )

2 +

q
2 log( 1

�0 )
2
p
y⇤ Vn + 1

2Vn otherwise.

2. Mixture odometer. For any � > 0, define the sequence
of functions (uM

n )n�1 by

u
M
n (✏1:n, �1:n) :=
8
<

:

1 n > Nr
2 log

⇣
1
�0

q
Vn+�

�

⌘
(� + Vn) +

1
2Vn otherwise.

3. Stitched odometer. For any v0 > 0, define the se-
quence of functions (uS

n)n�1 by

uS
n(✏1:n, �1:n) :=
8
<

:

1 n > N or Vn < v0

1.7

r
Vn

⇣
log log

⇣
2Vn
v0

⌘
+ 0.72 log

�
5.2
�0
�⌘

+ 1
2Vn else.

Then, any of the sequences (uF
n )n�1, (uM

n )n�1, or (uS
n)n�1

is a �-privacy odometer.

The proof of Theorem 3 can be found in Appendix E. We
now provide intuition for our odometers, which are plot-
ted in Figure 3. Our insight is to view odometers not as
functions of the number of algorithms being composed, but
rather as functions of the intrinsic time

P
mn ✏

2
m. This

reframing allows us to leverage the various time-uniform
concentration inequalities discussed in Appendix B. The
filter odometer is the tightest odometer when the valueP

mn ✏
2
m is close to a “fixed time” y

⇤, but the tightness
drops off precipitously when

P
mn ✏

2
m is far from y

⇤. The
mixture odometer, which is named after the the method of
mixtures (Robbins, 1970; de la Peña et al., 2007; Howard
et al., 2021), sacrifices tightness at any fixed point in time to
obtain overall tighter bounds on privacy loss. This odometer
can be numerically optimized, in terms of ⇢, for tightness
at a predetermined value

P
mn ✏

2
m. The stitched odome-

ter, whose name derives from Theorem 6, is similarly tight
across time. This odometer requires that

P
mn ✏

2
m exceed

some pre-selected “variance” v0 before becoming nontrivial
(i.e. finite). Larger values of v0 will yield tighter odometers,
albeit at the cost of losing bound validity when accumulated
variance is small. With this intuition, we can compare our
odometers to the original presented in Rogers et al. (2016).
Lemma 3 (Theorem 6.5 in Rogers et al. (2016)). Assume
the same setup as Theorem 3, and fix � = �

0 + �
00, where

1
e � �

0
> 0 and �

00
� 0. Define the sequence of functions

(uR
n )n�1 by

uR
n (✏1:n, �1:n) :=

8
>>>>>>><

>>>>>>>:

1, n > Nr
2Vn

⇣
log(110e) + 2 log

⇣
log(|x|)

�0
⌘⌘

+ 1
2Vn n  N, Vn 2


1

|x|2
, 1

�

s

2

✓
1

|x|2
+ Vn

◆⇣
1 + 1

2 log
�
1 + |x|2Vn

�⌘
log log

⇣
4
�0 log2(|x|)

⌘
+ 1

2Vn,

otherwise

,

where |x| denotes the number of elements in dataset x. Then,
(uR

n )n�1 is a �-privacy odometer.

Our new odometers improve over the one presented in
Lemma 3. First, the above odometer has an explicit de-
pendence on dataset size. In learning settings, datasets are
large, degrading the quality of the odometer. Secondly,
the tightness of the odometer drops off outside of the in-
terval

h
1

|x|2 , 1
i
. If any privacy parameter of an algorithm

7
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(a) Comparing filter odometers (b) Comparing mixture odometers (c) Comparing stitched odometers

Figure 2: Comparison of filter, mixture, and stitched odometers plotted as functions of
P

mn ✏2m. We set �0 = 10�6 and assume all
algorithms being composed are purely differentially private for simplicity.

(a) New odometers vs. original (b) New odometers vs. pointwise advanced com-
position

Figure 3: Figure 3a compares our odometers to the original. Figure 3b compares them with advanced composition optimized point-wise.
The curve plotted for advanced composition is valid at any fixed time, but not uniformly over time. Our odometers nevertheless provide a
close approximation.

being composed exceeds 1, the bound becomes significantly
looser. Lastly, and perhaps most simply, the form of the
odometer is complicated. Our odometers all have relatively
straightforward dependence on the intrinsic time

P
mn ✏

2
m.

We now examine the rates of all odometers. For simplicity,
let v :=

P
mn ✏

2
m. The stitched odometer has a rate of

O(
p
v log log(v)) in its leading term, asymptotically match-

ing the law of the iterated logarithm (Robbins, 1970) up to
constants. Both the original privacy odometer and the mix-
ture odometer have a rate of O(

p
v log (v)), demonstrating

worse asymptotic performance. The filter odometer has the
worst asymptotic performance, growing linearly as O (v).
This does not mean the stitched odometer is the best odome-
ter, since target levels of privacy are often kept small.

To empirically compare odometers, it suffices to consider
the setting of pure differential privacy, as the odometers
identically depend on (�n)n�1. Each presented odometer
can be viewed as a function of v, allowing us to compare
odometers by plotting their values for a continuum of v. Fig-
ure 3a shows that there is no clearly tightest odometer. All
odometers, barring the original, dominate for some window
of values of v. While the stitched odometer is asymptoti-
cally best, the mixture odometer is tighter for small values

of v. Likewise, if one knows an approximate target pri-
vacy level, the filter odometer is tightest. This behavior
is expected from our understanding of martingale concen-
tration (Howard et al., 2020; 2021): there is no uniformly
tightest boundary containing (with probability 1� �) the en-
tire path of a martingale; boundaries that are tight early must
be looser later, and vice versa. In fact, we conjecture that
our bounds are essentially unimprovable in general — this
conjecture stems from the fact that the time-uniform martin-
gale boundaries employed have error probability essentially
equal to �, which in turn stems from the deep fact that
for continuous-path (and thus continuous-time) martingales,
Ville’s inequality (Fact 4)—that underlies the derivation of
these boundaries—holds with exact equality. Since we oper-
ate in discrete-time, the only looseness in Ville’s inequality
stems from lower-order terms that reflect the possibility that
at the stopping time, the value of the stopped martingale
may not be exactly the value at the boundary.

In Figure 3b, we compare our odometers with advanced
composition optimized in a point-wise sense for all values
of v simultaneously. This boundary is not a valid odometer,
as advanced composition only holds at a prespecified point
in intrinsic time v. Our odometers are almost tight with
advanced composition for the values of v plotted. Our filter

8
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odometer lies tangent to the advanced composition curve,
as expected from Section 5.2 of Howard et al. (2020).

5. Future Directions

There are many open problems related to fully adaptive
composition. For example, even though privacy filters has
been studied under the notion of Gaussian DP (Smith and
Thakurta, 2022; Koskela et al., 2022), privacy filters and
odometers have not been studied for general f -DP (Dong
et al., 2021). It also has not been investigated whether
adaptivity in privacy parameter selection improves the per-
formance of iterative algorithms such as private SGD. In-
tuitively, it should be beneficial to let the iterates of an
algorithm guide future choices of privacy parameters. Opti-
mal composition results (Kairouz et al., 2015; Murtagh and
Vadhan, 2016; Zhu et al., 2022) have yet to be considered in
a setting where privacy parameters are adaptively selected.
In Appendix D, we provide another proof of Theorem 2,
which leverages a reduction of private algorithms to general-
ized randomized response. Since such a reduction was used
in the proofs of Kairouz et al. (2015) and Murtagh and Vad-
han (2016), we believe this proof can be useful for optimal
composition with adaptively chosen privacy parameters.
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A. Measure-Theoretic Formalism

Below, we provide some measure-theoretic formalisms and
details regarding datasets and neighboring relations.

Neighboring Datasets: Roughly speaking, an algorithm
is differentially private if it difficult to distinguish between
output distributions when the algorithm is run on similar
inputs. In general, this notion of similarity amongst inputs is
defined as a neighboring relation ⇠ between elements on the
input space X . In particular, if two inputs (also referred to
as datasets or databases) x, x0

2 X satisfy the neighboring
relation x ⇠ x

0, the we say x and x
0 are neighbors.

There are several canonical examples of neighboring re-
lations on the space of inputs X . One example is where
X = Xn for some data domain X. The data domain can
be viewed as the set of all possible individual entries for a
dataset, and the space Xn correspondingly contains all pos-
sible n element datasets. In this setting, databases x, x0

2 X

may be considered neighbors if x and x
0 differ in exactly

one entry. Another slightly more general setting is when
X = X⇤, i.e., all possible datasets of finite size. In this
situation, the earlier notion of neighboring still makes sense.
However, in addition, we may say input datasets x and x

0

are neighbors if x can be obtained from x
0 by either adding
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or deleting an element. This is a very natural notion of
neighboring, as under such a relation an algorithm would
be differentially private if it were difficult to determine the
presence or absence of an individual. Our work is agnostic
to the precise choice of neighboring relation. As such, we
choose to leave the notion as general as possible.

Algorithms and Random Variables: We will consider
algorithms as randomized mappings A : X ! Y taking
inputs from X to some output space Y . To be fully for-
mal, we consider the output space Y as a measurable space
(Y,G), where G is some �-algebra denoting possible events.
Recall that a �-algebra S for a set S is simply a subset of
2S containing S and ; that is closed under countable union,
intersection, and complements. When we say A is an algo-
rithm having inputs in some space X , we really mean A(x)
is a Y-valued random variable for any x 2 X . The space X
need not have an associated �-algebra, as algorithm inputs
are essentially just indexing devices. Given a sequence of al-
gorithms (An)n�1, (An(x))n�1 is a sequence of Y-valued
random variables, for any x 2 X .5

Since we are dealing with the composition of algorithms, we
write A1:n(x) as shorthand for the random vector of the first
n algorithm outputs, i.e. A1:n(x) = (A1(x), . . . , An(x)).
Formally, the random vector A1:n(x) takes output values
in the product measurable space (Yn

,G
⌦n) where G

⌦n

denotes the n-fold product �-algebra of G with itself. Like-
wise, since the number of algorithm outputs one views in
fully-adaptive composition may be random, if N is a random
time (i.e. a N-valued random variable), we will often con-
sider the random vector A1:N (x) = (A1(x), . . . , AN (x)).

Filtrations and Stopping Times: Since privacy compo-
sition involves sequences of random outputs, we will use
the measure-theoretic notion of a filtration. If we have
fixed an input x 2 X , we can assume the random sequence
(An(x))n�1 is defined on some probability space (⌦,F ,P).
Given such a probability space, a filtration (Fn)n2N of F is
a sequence of �-algebras satisfying: (i) Fn ⇢ Fn+1 for all
n 2 N, and (ii) Fn ⇢ F for all n 2 N. Given an arbitrary
Y-valued discrete-time stochastic process (Xn)n�1, it is of-
ten useful to consider the natural filtration (Fn)n2N given
by Fn := �(Xm : m  n) and F0 = {;,⌦}. Intuitively, a
filtration formalizes the notion of accumulating information
over time. In particular, in the context of the natural filtra-
tion generated by a stochastic process, the nth �-algebra
in the filtration Fn essentially represents the entirety of
information contained in the first n random variables. In
other words, if one is given Fn, they would know all pos-

5Even if algorithms have different types of outputs (maybe
some algorithms have categorical outputs while others output real-
valued vectors), Y can still be made appropriately large to contain
all possible outcomes.

sible events/outcomes that could have occurred up to and
including timestep n.

Lastly, we briefly mention the notion of a stopping time, as
this measure-theoretic object is necessary to define privacy
filters. Given a filtration (Fn)n2N, a random time N is said
to be a stopping time with respect to (Fn)n2N if, for any
n, the event {N  n} 2 Fn. In words, a random time
N is a stopping time if given the information in Fn we
can determine whether or not we should have stopped by
time n. Stopping times are essential to the study of fully-
adaptive composition, as a practitioner of privacy will need
to use the adaptively selected privacy parameters to deter-
mine whether or not to stop interacting with the underlying
sensitive database.

B. Martingale Inequalities

In this appendix, we provide a thorough exposition into the
concentration inequalities leveraged in this paper. First, at
the heart of supermartingale concentration is Ville’s inequal-
ity (Ville, 1939), which can be viewed as a time-uniform
version of Markov’s inequality.
Lemma 4 (Ville’s Inequality (Ville, 1939)). Let (Xn)n2N
be a nonnegative supermartingale with respect to some
filtration (Fn)n2N. Then, for any confidence parameter
� 2 (0, 1), we have P

�
9n 2 N : Xn �

EX0
�

�
 �.

We do not directly leverage Ville’s inequality in this work,
but all inequalities we use can be directly proven from
Lemma 4 (Howard et al., 2020; 2021). In short, each in-
equality in this supplement is proved by carefully massaging
a martingale of interest into a non-negative supermartingale.

Another useful tool we will leverage is Doob’s optional
stopping theorem.
Lemma 5 (Optional stopping theorem (Durrett, 1996)). Let
(Xn)n2N be a nonnegative supermartingale with respect
to some filtration (Fn)n2N. Then E [X⌧ ]  E [X0] for all
stopping times ⌧ that are potentially infinite.

For our alternative proof of the privacy filter (in Section D),
we leverage the following special case of a recent advance
in time-uniform martingale concentration (Howard et al.,
2020). The following Theorem 4 is just a special case of
the main result in Howard et al. (2020), and we include the
proof for completeness. When we say a random variable X

is �2-subGaussian conditioned on some sigma-algebra G,
we mean that, for all � � 0,

E
�
e
�X

| G
�
 e

�2�2/2
.

In particular, if X is �2-subGaussian as above, this does not
imply that �X is �-subGaussian (because the condition is
only assumed for � � 0). In general, X can have differ-
ent behaviors in its left and right tail, see for example the

11
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discussion of the differing tails of the empirical variance of
Gaussians in Howard et al. (2021).
Theorem 4. Let (Mn)n2N be a martingale with respect
to some filtration (Fn)n2N such that M0 = 0 almost
surely. Moreover, let (�n)n�1 be a (Fn)n2N-predictable
sequence of random variables such that, conditioned on
Fn�1, �Mn := Mn �Mn�1 is �2

n-subGaussian. Define
Vn :=

P
mn �

2
m. Then, we have, for all a, b > 0,

P
✓
9n 2 N : Mn �

b

2
+

b

2a
Vn

◆
 exp

✓
�b

2

2a

◆
.

Proof of Theorem 4. Let (Mn)n2N be the martingale listed
in the theorem statement. Observe that, for any a, b > 0,
the process (Xn)n2N given by

Xn := exp

0

@ b

a
Mn �

b
2

2a2

X

mn

�
2
m

1

A

is a non-negative supermartingale. As such, applying Ville’s
inequality (Lemma 4) yields

P
✓
9n 2 N : Xn > exp

✓
b
2

2a

◆◆
 exp

✓
�
b
2

2a

◆
.

Now, on such event, taking logs and rearranging yields

b

a
Mn 

b
2

2a
+

b
2

2a2

X

mn

�
2
m.

Multiplying both sides by a
b finishes the proof.

The predictable process (Vn)n2N is a proxy for the accumu-
lated variance of (Mn)n2N up to any fixed point in time. In
particular, the process (Vn)n2N can be thought of as yield-
ing the “intrinsic time” of the process. The free parameters
a and b thus allow us to optimize the tightness of the bound-
ary for some intrinsic moment in time. This is ideal for us,
as, for the sake of composition, the target privacy parameter
✏ can guide us in finding a point in intrinsic time (that is, in
terms of the process (Vn)n2N) to optimize for. We discuss
how to apply this inequality to prove privacy composition
results both in this supplement and in Section 3.

We also leverage the following martingale inequalities from
Howard et al. (2021) in Section 4, where we construct var-
ious families of time-uniform bounds on privacy loss in
fully-adaptive composition. These inequalities take on a
more complicated form than Theorem 4, but we explain
the intuition behind them in the sequel. The first bound we
present relies on the method of mixtures for martingale con-
centration, which stems back to Robbins’ work in the 1970s
(Robbins, 1970). There are many good resources providing
an introduction to the method of mixtures (de la Peña et al.,
2007; Kaufmann and Koolen, 2021; Howard et al., 2021).

Theorem 5. Let (Mn)n2N be a martingale with respect
to some filtration (Fn)n2N such that M0 = 0 almost
surely. Moreover, let (�n)n�1 be a (Fn)n2N-predictable
sequence of random variables such that, conditioned on
Fn�1, �Mn := Mn �Mn�1 is �2

n-subGaussian. Define
Vn :=

P
mn �

2
m and choose a tuning parameter � > 0.

Then, for any � > 0, we have

P

0

@9n 2 N : Mn �

vuut2(Vn + �) log

 
1

�

s
Vn + �

�

!1

A  �.

The next inequality relies on the recent technique of bound-
ary stitching, first presented in Howard et al. (2021). In-
tuitively, the technique works by breaking intrinsic time —
that is, time according to the accumulated variance process
(Vn)n2N — into roughly geometrically spaced pieces. Then,
one optimizes a tight-boundary in each region and takes a
union bound. The actual details are more technical, but are
not needed in this work.

Theorem 6. Let (Mn)n2N be a martingale with respect
to (Fn)n2N such that M0 = 0 almost surely. More-
over, let (�n)n�1 be a (Fn)n2N-predictable sequence of
random variables such that, conditioned on Fn�1, both
�Mn := Mn � Mn�1 and ��Mn are �

2
n-subGaussian.

Define Vn :=
P

mn �
2
m and choose a starting intrinsic

time v0 > 0. Then, for any � 2 (0, 1), we have

P
 
9n 2 N : Mn � 1.7

s

Vn

✓
log log

✓
2Vn

v0

◆
+ .72 log

✓
5.2
�

◆◆

and Vn � v0

!
 �.

Note that the original version of Theorem 6 as found in
Howard et al. (2021) has more free parameters to optimize
over, but we have already simplified the expression to make
the result more readable. The free parameter v0 > 0 in
the above boundary gives the intrinsic time at which the
boundary becomes non-trivial (i.e., the tightest available
upper bound before Vn � v0 is 1).

We qualitatively compare these bounds in Section 4, wherein
we construct various time-uniform bounds on privacy loss
processes. For now, Theorem 4 can be thought of as pro-
viding a tight upper bound on a martingale at a single point
in intrinsic time, providing loose guarantees elsewhere. On
the other hand, Theorems 5 and 6 provide decently tight
control over a martingale at all points in intrinsic time si-
multaneously, although at the cost of sacrificing tightness at
any given fixed point.
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C. Details in Proof of Approx-zCDP Filter

C.1. Equivalence of Approximate zCDP Definitions

We will show that our definition of approximate zCDP is
equivalent to the original definition of approximate zCDP
due to Bun and Steinke (2016). Let us first restate their
definition as a condition on a private algorithm A.

Condition 1 (Original definition of Bun and Steinke (2016)).
For any neighboring datasets x, x0, there exist events E and
E

0 such that for all � � 1,

D�(A(x) | EkA(x0) | E0)  ⇢�,

D�(A(x0) | E0
kA(x) | E)  ⇢�,

P(A(x) 2 E) � 1� �, and
P(A(x0) 2 E

0) � 1� �.

Our definition is adapted from the approximate Rényi differ-
ential privacy definition due to Papernot and Steinke (2022).
We restate the (unconditional) definition below.

Condition 2 (Adapted from Papernot and Steinke (2022)).
For any neighboring datasets x, x0, there exist distributions
P

0
, P

00
, Q

0
, Q

00 such that the outputs are distributed accord-
ing to the following mixture distributions:

A(x) ⇠ (1� �)P 0 + �P
00
, A(x0) ⇠ (1� �)Q0 + �Q

00

with for all � � 1, D�(P 0
kQ

0)  ⇢� and D�(P 0
kQ

0) 

⇢�.

Theorem 7. Conditions 1 and 2 are equivalent.

Proof of Theorem 7. Fix any neighbors x, x0. Suppose an
algorithm A satisfies Condition 1 for some events E,E

0.
Then we could let P 0 and Q

0 be the conditional distributions
P(A(x) 2 · | A(x) 2 E) and P(A(x0) 2 · | A(x0) 2 E

0)
respectively. Then let

P
00(·) =

1

�

⇣
P(A(x) 2 · | A(x) 2 E

c)P(A(x) 2 E
c)

+ P
0(·) (P(A(x) 2 E)� (1� �))

⌘
,

Q
00(·) =

1

�

⇣
P(A(x0) 2 · | A(x0) 2 E

0c)P(A(x0) 2 E
0c)

+Q
0(·) (P(A(x0) 2 E

0)� (1� �))
⌘
.

Then A(x) is distributed according to the mixture (1 �

�)P 0 + �P
00, and A(x0) is distributed according to the mix-

ture (1 � �)Q0 + �Q
00. Thus, A also satisfies condition 2

given that D�(P 0
kQ

0)  �⇢ and D�(Q0
kP

0)  �⇢ by our
assumption of Condition 1.

Now suppose A satisfies Condition 2 for some pairs of
distributions (P 0

, P
00) and (Q0

, Q
00). Then we can view

the output distribution of A(x) as generating a Bernoulli

random variable C such that with probability (1��), C = 1
and A(x) draws an outcome from P

0 and with probability
C = 0 and A(x) draws an outcome from P

00. Similarly, we
can view A(x0) as flipping a coin C

0 such that A(x0) draws
an outcome from Q

0 when C
0 = 1. Then letting the events

E be all the randomness of A(x) such that C = 1 and E
0

be all the randomness of A(x0) such that C 0 = 1 satisfies
condition 1.

C.2. Missing Proofs

Lemma 6. The process {Xn}n�1 defined in (10) is a P
0-

nonnegative supermartingale with respect to (Fn(x))n2N.

Proof of Lemma 6. For any t � 0,

EP 0 [Xt+1 | Ft(x)]

= EP 0

"
Xt exp

 
(�� 1) log

✓
P

0
t+1(At+1(x) | Ft(x))

Q0
t+1(At+1(x) | Ft(x))

◆

� �(�� 1)⇢t+1(x)

!
| Ft(x)

#

= Xt EP 0

"✓
P

0
t+1(At+1(x) | Ft(x))

Q0
t+1(At+1(x) | Ft(x))

◆(��1)

| Ft(x)

#

· exp(��(�� 1)⇢t+1(x))

 Xt exp(�(�� 1)⇢t+1(x)) exp(��(�� 1)⇢t+1(x))

= Xt,

where the last inequality follows from the Renyi divergence
bound due to approximate zCDP.

Lemma 7. Consider measures P
0 and Q

0 defined in (8).
Their Rényi divergence satisfies

D�

�
P

0(A1:N(x)(x))kQ
0(A1:N(x)(x))

�
 ⇢�.

Proof of Lemma 7. By the definition of Xn and that
EP 0 [XN(x)]  EP 0 [X0] = 1, we have

EA1:N(x)(x)⇠P 0
⇥
exp

�
(�� 1)MN(x)

�⇤
 1 ()

EP 0

"
exp

 
(�� 1)

X

mN(x)

(
log

✓
P 0
m(Am(x) | Fm�1(x))

Q0
m(Am(x) | Fm�1(x))

◆

� �⇢m(x)

)!#
 1 ()

EP 0

"✓
P 0(A1:N(x))

Q0(A1:N(x))

◆��1

· exp

0

@�(�� 1)�
X

mN(x)

⇢m(x)

1

A
#
 1.

By the definition of stopping time N , we haveP
mN(x) ⇢m(x)  ⇢, which implies the stated Renyi di-

vergence bound.
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Lemma 8. Let likelihood functions P,Q, P
0
, Q

0 be defined
in (3), (4), and (8). Then there exists likelihood functions
P

00 and Q
00 such that

P = (1� �)P 0 + �P
00
,

Q = (1� �)Q0 + �Q
00
.

Proof of Lemma 8. We will show the decomposition for P ,
and the proof follows identically for the decomposition of
Q. First, we can express the likelihood P (A1:N(x)(x)) as
follows:

P (A1:N(x)(x)) =

N(x)Y

n=1

P (An(x) | Fn�1(x))

=

N(x)Y

n=1

⇥
(1� �n(x))P

0
n(An(x) | Fn�1(x))

+ �n(x)P
00
n (An(x) | Fn�1(x))

⇤

=
X

S✓{1,...,N(x)}

wS · fS(A1:N(x)(x))

where

fS(A1:N(x)(x)) :=Y

n2S

P
00
n (An(x) | Fn�1(x))

Y

nN(x),n/2S

P
0
n(An(x) | Fn�1(x))

and wS =
⇣Q

n2S �n(x)
Q

n2N\S(1� �n(x))
⌘

. Note that
each fS is a likelihood of the stopped process A1:N(x)(x)
under input data set x, and f; = P

0(A1:N(x)(x)). Thus, it
suffices to show that w; � 1� � almost surely. To see this,
we have

w; =
Y

nN(x)

(1� �n(x)) � 1�
X

nN(x)

�n(x) � 1� �.

D. An Alternative Proof for Theorem 2

As a first step in our alternative proof of Theorem 2, it is
easier to consider the case where each algorithm An satisfies
conditional (✏n, �n)-pDP, as this condition provides a high-
probability bound on the privacy loss. This allows us to
use the martingale machinery in Appendix B to prove tight
composition results.
Lemma 9. Theorem 2 holds under the stronger assumption
that, for any n � 1, An is (✏n, �n)-pDP conditioned on
A1:n�1.

Before we can prove Lemma 9, we need to following bound
on the conditional expectation of privacy loss, which can be
immediately obtained from the bound on expected privacy
loss presented in Bun and Steinke (2016).

Lemma 10 (Proposition 3.3 in Bun and Steinke (2016)).
Suppose A and B are algorithms such that A is ✏-
differentially private conditioned on B. Then, for any input
dataset x 2 X and neighboring dataset x0

⇠ x, we have
that

E (L(x, x0)|B(x)) 
1

2
(✏(B(x)))2 .

Now, we prove Lemma 9.

Proof of Lemma 9. To begin, we assume that the algo-
rithms (An)n�1 satisfy (✏n, 0)-pDP conditioned on A1:n�1.
We will show how to alleviate this assumption on the ap-
proximation parameter in the second half of the proof. Fix
an input database x 2 X . For convenience, we denote by
(Fn(x))n2N the natural filtration generated by (An(x))n�1.
Since we have fixed x 2 X , for notational simplicity, we
write ✏n for the random variable ✏n(A1:n�1(x)) and define
�n similarly. Additionally, by N we mean the stopping time
N((✏n)n2N, (�n)n2N). Recall that we have already argued
that, for any neighboring dataset x0

⇠ x, the process

Mn := Mn(x, x
0) = L1:n(x, x

0)�
X

mn

E
�
Lm(x, x0)|Fm�1(x)

�

is a martingale with respect to (Fn(x))n2N. Further
observe that its increments �Mn := Ln(x, x0) �

E (Ln(x, x0)|Fn�1(x)) are ✏
2
n-subGaussian conditioned on

Fn�1(x).

Thus, by Theorem 4, we know that, for any b, a > 0, we
have

P
✓
9n 2 N : Mn �

b

2
+

b

2a
Vn

◆
 exp

✓
�b

2

2a

◆
,

where the process (Vn)n2N given by Vn :=
P

mn ✏
2
m is

the accumulated variance up to and including time n. Thus,
it suffices to optimize the free parameters a and b to prove
the result.

To do this, consider the following function f : R�0 ! R�0

given by

f(y) =

s

2 log

✓
1

�0

◆
y +

1

2
y.

Clearly, f is a quadratic polynomial in p
y which is strictly

increasing. In particular, one can readily check that

y
⇤ :=

 
�

s

2 log

✓
1

�0

◆
+

s

2 log

✓
1

�0

◆
+ ✏

!2

(15)

solves the equation f(y) = ✏, where ✏ > 0 is the target
privacy parameter.

As such, setting a := y
⇤ and b :=

q
2 log

�
1
�0

�
y⇤ yields

exp

✓
�b

2

a

◆
= exp

 
�2y⇤ log

�
1
�0

�

y⇤

!
= �

0
.
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Furthermore, expanding the definition of (Mn)n2N, we see
that for the selected parameters the parameters yield, with
probability at least 1� �

0, for all n  N we have:

L1:n(x, x
0) 

b
2
+

b
2a

Vn +
X

mn

E
�
Lm(x, x0) | Fm�1

�


b
2
+

b
2a

X

mn

✏2m +
1
2

X

mn

✏2m

=
1
2

s

2 log

✓
1
�0

◆
y⇤ +

1
2

q
2 log

�
1
�0
�
y⇤

y⇤

X

mn

✏2m +
1
2

X

mn

✏2m


1
2

s

2 log

✓
1
�0

◆
y⇤ +

1
2

s

2 log

✓
1
�0

◆
y⇤ +

1
2

X

mn

✏2m

=

s

2 log

✓
1
�0

◆
y⇤ +

1
2

X

mn

✏2m 

s

2 log

✓
1
�0

◆
y⇤ +

1
2
y⇤ = ✏.

Thus, we have proven the desired result in the case where
all algorithms have �n = 0.

Now, we show how to generalize our result to the case where
the approximation parameters �n are not identically zero.
Define the events

A := {9n  N : L1:n(x, x
0) > ✏} , and

B := {9n  N : Ln(x, x
0) > ✏n} .

Our goal is to show that, with N defined as in the statement
of Theorem 2, that P(A)  �. Simply using Bayes rule, we
have that

P(A) = P(A\B
c)+P(A\B)  P(A|B

c)+P(B)  �
0+P(B),

where the second inequality follows from our already-
completed analysis in the case that �n = 0. Now, we show
that P(B)  �

00, which suffices to prove the result as we
have, by assumption, � = �

0 + �
00.

Define the modified privacy loss random variables
( eLn(x, x0))n2N by

eLn(x, x
0) :=

(
Ln(x, x0) n  N

0 otherwise
.

Likewise, define the modified privacy parameter random
variables e✏n and e�n in an identical manner. Then, we can
bound P(B) in the following manner:

P(9n  N : Ln(x, x
0) > ✏n) = P

⇣
9n 2 N : eLn(x, x

0) > e✏n
⌘



1X

n=1

P
⇣
eLn(x, x

0) > e✏n
⌘
=

1X

n=1

EP
⇣
eLn(x, x

0) > e✏n|Fn�1

⌘



1X

n=1

Ee�n = E
" 1X

n=1

e�n

#
= E

2

4
X

nN

�n

3

5  �
00
.

Thus, we have have proven the desired result in the general
case.

Our key insight above is to view filters as functions of
the “intrinsic time” determined by privacy parameters,P

mn ✏
2
m. Lemma 9 can also be obtained leveraging the

analysis for Rényi filters (Feldman and Zrnic, 2021). How-
ever, our approach to proving Theorem 2 has the advantage
that it does not require reductions between different modes
of privacy. While Lemma 10, which bounds expected pri-
vacy loss, does require some complicated analysis, we only
ever need to apply Lemma 9 to instances of randomized
response, in which case computing the privacy loss bound
is trivial.

We now use Lemma 9 to prove Theorem 2. Recall that
Lemma 2 shows that algorithms that satisfy pDP also satisfy
DP, but the converse is not true and may require a conversion
cost. To avoid this cost, we define following generalization
of randomized response.
Definition 7 (Conditional Randomized Response). Let
R := {0, 1,>,?} and 2R be the corresponding power set
of R. Then, R taking inputs in {0, 1} to outputs in the mea-
surable space (R, 2R) is an instance of (✏, �)-randomized
response if, for b 2 {0, 1}, R(b) outputs the following:

R(b) =

8
>>><

>>>:

b with probability (1� �) e✏

1+e✏

1� b with probability (1� �) 1
1+e✏

> with probability � if b = 1

? with probability � if b = 0.

More generally, suppose B : {0, 1} ! Z is a random-
ized algorithm. For functions ✏, � : Z ! R�0, we
say R is an instance of (✏, �)-randomized response con-
ditioned on B if, for any true input b0 2 {0, 1} and hy-
pothesized alternative b 2 {0, 1}, the conditional proba-
bility P(R(b) 2 ·|B(b0) = z) is the same as the law of
(✏(z), �(z))-randomized response with input bit b.

Conditional (✏, �)-randomized response satisfies both con-
ditional (✏, �)-DP and conditional (✏, �)-pDP. We will lever-
age the fact that it satisfies both privacy definitions with
the same parameters. A surprising result in the nonadap-
tive setting is that any (✏, �)-DP algorithm can be viewed
as a randomized post-processing of (✏, �)-randomized re-
sponse (Kairouz et al., 2015). We generalize this result to
the adaptive conditional setting below. In the language of
Blackwell’s comparison of experiments (Blackwell, 1953),
instances of randomized response are “sufficient” for in-
stances of arbitrary DP algorithms, and we prove that the
same is true for conditional randomized response and con-
ditionally DP algorithms. In what follows, by a transition
kernel ⌫, we mean that for any b 2 Z and r 2 R, ⌫(·, r | b)
is a probability measure on (Y,G).
Lemma 11 (Reduction to Conditional Randomized Re-
sponse). Let A and B map from X to measurable spaces
(Y,G) and (Z,H), respectively. Suppose A is (✏, �)-
differentially private conditioned on B. Fix neighbors
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x0, x1 2 X , and let R be an instance of (✏, �)-randomized
response conditioned on B

0, where B
0 : {0, 1} ! Z is the

restricted algorithm satisfying B
0(b) = B(xb). Then, there

is a transition kernel ⌫ : G ⇥ R ⇥ Z ! [0, 1] such that,
for all b, b0 2 {0, 1}, P (A(xb) 2 · | B

0(b0)) = ⌫b,b0 , where
⌫b,b0 = E (⌫(·, R(b) | B0(b0)) | B0(b0)).6

Lemma 11 tells us that the conditional distribution obtained
by averaging the kernel ⌫(·, R(b) | B

0(b0)) over the ran-
domness in R(b) matches the conditional distribution of
A(xb). To prove Lemma 11, first recall the important fact
that any differentially private algorithm can be viewed as
a post-processing of randomized response (Kairouz et al.,
2015), as stated in Lemma 12 below.

Lemma 12 (Reduction to Randomized Response (Kairouz
et al., 2015)). Let algorithm A : X ! Y be (✏, �)-DP.
Let R be an instance of (✏, �)-randomized response. Then,
for any neighbors x0, x1 2 X , there is a transition kernel
⌫ : G ⇥ R ! [0, 1] such that for b 2 {0, 1}, we have
P(A(xb) 2 ·) = ⌫b, where7

⌫b = E⌫(·, R(b)).

In Lemma 11 of Section 3, we generalized Lemma 12 to
the case of conditional differential privacy. To do this, we
introduced conditional randomized response in Definition 7.
In conditional randomized response, on the event {B = z},
the conditional laws of R(0) and R(1) just become that
of regular randomized response with some known privacy
parameters ✏(z) and �(z). We now prove Lemma 11.

Proof of Lemma 11. Let b, b0 2 {0, 1} be arbitrary. For
any outcome {B

0(b0) = z}, let Pz(A(xb) 2 ·) be the prob-
ability measure P(A(xb) 2 ·|B

0(b0) = z). In particular,
this measure does not depend on the input bit b0. By the as-
sumptions of conditional differential privacy (Definition 1),
it follows that under the probability measure Pz , A(xb) is
(✏(z), �(z))-differentially private. Moreover, it also follows
that R is an instance of (✏(z), �(z))-randomized response

6By ⌫b,b0(·) := E (⌫(·, R(b) | B0(b0)) | B0(b0)), we mean
that ⌫b,b0 is the (random) averaged probability measure:

⌫b,b0(·) = P(R(b) = 1 | B0(b0))⌫(·, 1 | B0(b0))

+ P(R(b) = 0 | B0(b0))⌫(·, 0 | B0(b0))

+ P(R(b) = ? | B0(b0))⌫(·,? | B0(b0))

+ P(R(b) = > | B0(b0))⌫(·,> | B0(b0)).

7 By ⌫b(·) := E⌫(·, R(b)), we mean ⌫b is the averaged proba-
bility measure given by

⌫b(·) = P(R(b) = 1)⌫(·, 1) + P(R(b) = 0)⌫(·, 0)

+ P(R(b) = ?)⌫(·,?) + P(R(b) = >)⌫(·,>).

under Pz . Consequently, Lemma 12 yields the existence of a
kernel ⌫z such that Pz(A(xb) 2 ·) = Ez⌫z(·, R(b)), where
the averaged measure is as defined in Footnote 7. Setting
⌫(·, R(b)|z) := ⌫z(·, R(b)), we see that

P(A(xb) 2 · | B
0(b0) = z) = E (⌫(·, R(b) | z) | B0(b0) = z) ,

which thus yields

P(A(xb) 2 · | B
0(b0)) = E (⌫(·, R(b) | B0(b0)) | B0(b0)) ,

where the conditionally averaged measure is as described in
Footnote 6 in the main body of the paper. This proves the
desired result.

Lastly, before proving Theorem 2, we need the follow-
ing lemma. This lemma essentially tells us that if A is
(✏, �)-pDP conditioned on B, and A

0 is a randomized post-
processing algorithm, then releasing the vector (A,A

0) is
also (✏, �)-pDP conditioned on B. Note that this is not
in contradiction with the converse direction of Lemma 2,
as releasing the output of A

0 alone may not satisfy con-
ditional (✏, �)-pDP. But once we observe A, since A

0 is a
post-processing, we can gleam no more information about
the true underlying dataset.
Lemma 13. Suppose A,B are algorithms with inputs in
X and outputs in measurable spaces (Y,G) and (Z,H)
respectively. Assume A is (✏, �)-pDP conditioned on B.
Let (S,S) be a measurable space and suppose µ : S ⇥

Y ⇥ Z ! [0, 1] is a conditional transition kernel. Suppose
A

0 : X ! S is an algorithm satisfying

P (A0(x) 2 ·|A(x0) = y,B(x0) = z) = µ(·, y | z), (16)

for all y 2 Y, z 2 Z , and x, x
0
2 X . Then, the joint algo-

rithm (A,A
0) : X ! Y ⇥ S is also (✏, �)-pDP conditioned

on B.

Proof of Lemma 13. Let x, x
0
2 X be arbitrary neigh-

boring datasets. Let qxB , q
x0

B be the corresponding condi-
tional joint densities of (A(x), A0(x)) and (A(x0), A0(x0))
given B(x) respectively. Likewise, let pxB , p

x0

B be the cor-
responding conditional densities of A(x) and A(x0) re-
spectively conditioned on B(x), and q

x
B,A, q

x0

B,A the con-
ditional densities of A

0(x) and A
0(x0) given A(x) and

B(x). Let L
(A,A0)
B (x, x0) denote the joint privacy loss

between (A(x), A0(x)) and (A(x0), A0(x0)) given B(x),
while LA

B(x, x
0) denotes the privacy loss between A(x) and

A(x0) given B(x). We have, using Bayes rule,

L
(A,A0)
B (x, x0) = log

✓
q
x
B(A(x), A0(x) | B(x))

qx
0

B (A(x), A0(x) | B(x))

◆

= log

 
p
x
B(A(x) | B(x))

px
0

B (A(x) | B(x))
·
q
x
B,A(A

0(x) | B(x), A(x))

qx
0

B,A(A
0(x) | B(x), A(x))

!

= log

✓
p
x
B(A(x) | B(x))

px
0

B (A(x) | B(x))

◆
= L

(A)
B (x, x0),
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The first equality on the second line follows from the as-
sumption outlined in Equation (16). More specifically, since
we have

P (A0(x) 2 ·|A(x), B(x)) = µ(·, A(x) | B(x)) =

P (A0(x0) 2 ·|A(x), B(x)) ,

it follows that the conditional densities qxB,A and q
x0

B,A are
equal almost surely. Since A is (✏, �)-pDP conditioned on
B, the result now follows.

We now can prove Theorem 2 using these tools.

Proof of Theorem 2. Fix arbitrary neighbors x0, x1 2 X .
Let (Rn)n�1 be a sequence of algorithms such that Rn is
an instance of (✏n, �n)-randomized response conditioned
on A

0
1:n�1 : {0, 1} ! Y

n�1, where A
0
m : {0, 1} ! Y is

the restricted algorithm given by A
0
m(b) := Am(xb), for all

m � 1. Lemma 11 guarantees the existence of a sequence
of transition kernels (⌫n)n�1, ⌫n : G ⇥ R ⇥ Y

n�1
!

[0, 1] such that, for all n � 1 and b, b
0
2 {0, 1}, we have

P(A0
n(b) 2 · | A

0
1:n�1(b

0)) = ⌫
(n)
b,b0 almost surely. Here,

⌫
(n)
b,b0 is the averaged conditional probability, as defined in

terms of ⌫n in Lemma 11 and Footnote 6. This equality
means we can find an underlying probability space (i.e. a
coupling) such that the random post-processing draws from
the kernel ⌫n(·, Rn(b) | A

0
1:n�1(b

0)) equal A0
n(b) almost

surely, for all n � 1.

Now, for any n � 1, since Rn is an instance of (✏n, �n)-
randomized response conditioned on A

0
1:n�1, it follows that

Rn is in fact (✏n, �n)-pDP conditioned on A
0
1:n�1. More-

over, this also implies that Rn is (✏n, �n)-pDP conditioned
on (A0

1:n�1, R1:n�1), since, by definition, ✏n and �n only
depend on the realizations of R1:n�1 through the outputs
of A0

1:n�1. By Lemma 13, it follows that for all n � 1,
the algorithm (Rn, A

0
n) is (✏n, �n)-pDP conditioned on

(R1:n�1, A
0
1:n�1). Thus, by Lemma 9, it follows that the

composed algorithm (R1:N 0(·)(·), A
0
1:N 0(·)(·)) is (✏, �)-DP,

where N
0(b) := N(xb) and ✏, � and N , are as outlined in

the statement of Theorem 2.

Lastly, since differential privacy is closed under arbitrary
post-processing (Dwork and Roth, 2014), it follows that
A

0
1:N 0(·)(·) is (✏, �)-differentially private. Since x0 and x1

were arbitrary neighboring inputs, the result follows, i.e.
A1:N(·)(·) : X ! Y

1 is (✏, �)-differentially private.

E. Proof for Privacy Odometers in Theorem 3

We now show the formal proof for our privacy odometers
presented in Theorem 3 in Section 4.

Theorem 3. As in the proof of Lemma 9, we first consider
the case where �n = 0 for all n � 1. In this case, fix an

input dataset x 2 X and a neighboring dataset x0
2 X .

Let (Mn)n2N be the corresponding privacy loss martingale
as outlined in Equation (14), where we implicitly hide the
dependence on x, x

0, which are fixed. Let (un)n�1 be one
of the sequences outlined in the theorem statement, and
define Un := un(✏1:n, �1:n) for all n � 1, where once again
we write ✏n and �n for ✏n(A1:n�1(x)) and �n(A1:n�1(x))
respectively. It follows from Theorems 4, 5, and 6 that

P (9n 2 N : Mn > Bn)  �,

for Bn = Un �
1
2

P
mn ✏

2
m. Recalling that Mn =P

mn{Lm(x, x0) � E(Lm(x, x0)|Fn�1(x))} and that
E(Ln(x, x0)|Fn�1(x)) 

1
2✏

2
n for all n 2 N, it thus fol-

lows that

P (9n 2 N : L1:n(x, x
0) > Un)  �,

where (Fn(x))n�1 is again the natural filtration generated
by (An(x))n�1. Thus, since x ⇠ x

0 were arbitrary, we have
shown that (un)n�1 is a �-privacy odometer in the case
�n = 0 for all n � 1.

To generalize to the case where �n may be nonzero, we can
apply precisely the same argument used in the second part of
the proof of Lemma 9, thus proving the general result.

F. An Algorithm Satisfying (✏, �)-DP but not

(✏, �)-pDP

In this appendix, we construct a simple algorithm taking
binary inputs that satisfies (✏, �)-DP but not (✏, �)-pDP. In
particular, this provides intuition as to why we conjecture
our odometers constructed in Section 4 would not hold under
the assumption that the algorithms being composed satisfy
(✏, �)-DP in general.

To this end, fix a privacy parameter ✏ > 0 and an approxima-
tion parameter � 2 (0, 1). Let A : {0, 1} ! {0, 1,>,?}

be an instance of (✏, �)-randomized response, and let B :
{0, 1} ! {0, 1} be defined by

B(b) :=

(
1 if A(b) 2 {1,>},

0 otherwise.

Since differential privacy is closed under arbitrary post-
processing, it follows that the constructed algorithm B is
(✏, �)-differentially private. On the other hand, setting x = 1,
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x
0 = 0, we note that on the event {B(1) = 1},

LB(1, 0) = log

✓
P(B(1) = 1)

P(B(0) = 1)

◆

= log

✓
P(A(1) = 1) + P(A(1) = >)

P(A(0) = 1) + P(A(0) = >)

◆

= log

 
� + (1� �) e✏

1+e✏

(1� �) 1
1+e✏

!

= log

✓
� + e

✏

1� �

◆
> ✏.

Since straightforward calculation yields

P(B(1) = 1) = (1� �)
e
✏

1 + e✏
+ � > �,

we see that B does not satisfy (✏, �)-pDP.
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