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In recent years, social robots have become increasingly involved in many aspects
of human lives including education [1], healthcare [2], manufacturing [3], and
agriculture [4]. Many of these applications require social robots to interact
with people on both communicative and physical levels. For instance, health-
care robots can provide patients with medicine information and retrieve the
medicine for them [5]. A collaboration robot can engage in dialogue with human
partners, assisting them in executing assigned tasks [6]. In these scenarios, it is
imperative for the robots to accurately and deterministically comprehend human
instructions, thereby mitigating the potential for physical and life-threatening
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Abstract. Having deterministic communication between humans and
robots is essential for a safe, reliable, and trustworthy workspace. Despite
the extensive efforts in training robots to comprehend human instruc-
tions, the predominant focus has been on improving the generative
aspects of models rather than the determinism. This paper presents a
frame-based method using planning language and Controlled Robot Lan-
guage to construct a reliable and deterministic linguistic channel. The
model takes multiple instructions as input and generates an appropriate
syntactic and formal representation. Core information is extracted from
formal representation using bottom-up visitors. The obtained informa-
tion is used to generate a planning script in Planning Domain Definition
Language (PDDL), which can be used directly to control the robot sys-
tem. The experiment demonstrated great performance of the proposed
method on many text-processing tasks and promising results in deter-
ministic communication with robots on a manually created new dataset
focusing on the robotic domain.
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To develop reliable communication, current methods integrate Natural Lan-
guage Processing (NLP) with AI Planning. A notable innovation within this field
is the automatic generation of Planning Domain Definition Language (PDDL)
from natural language inputs. PDDL offers a formal framework for determinis-
tic planning, addressing real-world problems, especially for cognitive robot sys-
tems. Various research attempts have been undertaken to address this challenge,
such as the dependency-tree-based method [7], the Deep Q-Network method
for action templates matching [8], and the dictionary-based approach [9]. The
majority of these studies incorporate the model acquisition tools LOCM and
LOCM2 [10] for PDDL generation. While these models can handle more genera-
tive instructions, their generated PDDL scripts are incomplete and error-prone,
necessitating additional manual post-processing to make them readable for high-
level planners. Besides, the PDDL scripts generated by acquisition tools are for
the general domain which significantly differs from the robotic domain. In the
robotic domain, planning scripts should contain only executable, non-abstract
actions, with a small number of arguments due to practical constraints.

To address these limitations, we present a robust and reliable NLP framework
that can produce deterministic robotic planning descriptions. Such determinism
can enhance the stability and trustworthiness of human-robot collaborations.
The proposed model approaches the generation problem as a multi-stage NLP
process, which provides a great control over model performances at different
stages. Furthermore, the proposed model focuses on the robot domain, which
produces complete PDDL descriptions, that are comprehensible by planners and
executable by robot controls. Additionally, the method provides both syntactic
and semantic representations, offering a wide range of flexibility and adaptability.
The workflow of the proposed method is summarized as follows: Given high-level
instructions, the proposed NLP pipeline performs a series of processing tasks on
the input, creates syntactic and semantic structures. Subsequently, information is
extracted from the semantics, which is then utilized to generate essential PDDL
problem sections. The generated PDDL is directly employed for robotic control
through ROS-Plan. The contributions of the paper are summarized as follows:

1. A deterministic linguistic communication channel has been implemented. By
exploiting the determinism property of AI Planning, we proposed a PDDL-
based framework that enables robots to unambiguously understand human
instructions.

2. The proposed linguistic dataset is designed for practical robotic planning
scenarios, making it not only suitable for linguistic model evaluation but
also for demonstrating the practical application of the framework on motion
planning.

2 Automated Planning Problem Generation

The proposed linguistic communication method takes natural language instruc-
tions from users and generates problem scripts in PDDL, as illustrated in
Fig. 1. The raw input is first pushed into the developed linguistic model, named
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Controlled Robot Language (CRL) [11]. CRL is a multi-stage linguistic model,
where each stage is dedicated to a specific text-processing task. The output
of one stage becomes the input for the next stage. In general, given a natural
language command, CRL will return an equivalent semantic expression in Dis-
course Representation Structure (DRS) [12]. This formal structure is then used
by various information extraction models to extract essential data for subsequent
generation processes. Each information extractor traverses the semantic struc-
ture to capture relevant information. The output of the information extractor
is represented in a dictionary form, which consists of a list of key-value pairs.
Finally, PDDL generation model uses these acquired pairs to create a PDDL
problem script. The resulting PDDL problem script is then combined with the
developed PDDL domain script that is constructed based on prior knowledge of
the planning problem to control the robot.
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Fig. 1. System overview: natural language instructions are translated into Controlled
Robot Language (CRL), which returns a CRL-valid expression (a); Semantic compiler
produces semantic expression from CRL-valid input (b); Information extraction from
semantics to generate a deterministic plan in PDDL (c); The planning script is utilized
for robotic control (d).

2.1 Natural Language Disambiguation and Semantics Parsing

To enable the robot to comprehend instructions, we have developed a model that
can deterministically derive the formal expression of the input, known as Con-
trolled Robot Language (CRL) [11]. CRL encompasses two primary steps: (1)
A processing step is accomplished by a linguistic model, to conduct syntactical
analysis, error detection and translation; (2) An operation of the semantic com-
piler on the translated input, to produce an equivalent and complete semantic
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expression. The CRL’s pipeline comprises six core components: tokenizer, lemma-
tizer, POS tagger, phrase-chunker, syntactic parser, and translator. The output
of this pipeline is a grammatically correct sentence that has been translated from
the original input. The translated sentence is directly readable by the semantic
compiler. In this paper, we chose Fuchs’s discourse-based model [13] as a seman-
tic compiler. While first-order logic is the more common choice for semantic rep-
resentation, it is only suitable for representing individual, isolated sentences. In
more extensive and complex contexts, first-order logic often falls short in captur-
ing relationships between sentences. We leverage discourse-level structure [12] to
effectively capture the semantics of the entire robotic planning scene.

In the POS tagging process, we developed a three-layer cascade model with
remarkable flexibility and performance control. At the base layer, we employ the
spaCy model, a pre-trained statistical and rule-based linguistic model designed
for POS tagging. Nonetheless, the performance of spaCy is imperfect, leading to
numerous incorrect and inapplicable labels. These inaccuracies can significantly
impact the performance of subsequent stages. To flexibly control the model per-
formance, the cascade model introduces two additional layers: dynamic and static
layers, which are stacked on top of the base layer. The static layer focuses on
correcting inapplicable labels — labels that are correctly identified by the base
layer but are unsuitable for the subsequent stages’ processing. These inappli-
cable labels include proper names, keywords, and annotations. In contrast, the
dynamic layer is used to rectify incorrect labels caused by limitations of the base
layer. Human users can easily detect these mislabeled tokens and update the syn-
tactic rules to the dynamic layer. Given a tokenized instruction, the dynamic,
static, and base layers carry out the tagging process respectively. The final out-
come is a sequence of POS tags, cascading from the top layer to the bottom. If
using only the base layer, the model may inaccurately label certain tokens. For
instance, “move” can be labeled as a singular noun (NN) rather than its correct
base form verb (VB). The dynamic layer rectifies this by ensuring that “move”
can only be VB. Although the base layer can still correctly identify the POS of
many tokens, such as exclamation and commas, the resulting non-alphabetical
labels are not comprehensible to the syntactic and semantic parsers. Hence, the
static layer is used to assign more suitable labels to these tokens.

To increase the grammatical expressiveness of the proposed model, we devel-
oped a translator capable of converting invalid sentences to valid ones. Given the
inherent error-proneness of natural language commands, users may inadvertently
provide invalid inputs. The proposed translator can detect, navigate and fix the
errors using their syntactic structures. To capture the syntactic structure of a
sentence, we employed a Context Free Grammar (CFG) specifically designed for
Controlled Robot Language. This grammar consists of 220 meticulously selected
grammar rules. The lexicons are dynamically generated using the inputs and
their POS labels. Our dynamic CFG grammar is generative enough to capture
the syntactic structure of both invalid and valid sentences. If a user enters an
invalid command, the syntactic parser can still construct the sentence’s syntac-
tic structure. Leveraging this structure, the translator can identify the exact
locations where the errors have occurred and translate them into the correct
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forms. Figure 2 represents an example of how a translation is accomplished. The
dynamic CFG is robust enough to capture the typos (verb “moves” should be in
second person form). Once the tree is captured, the model can detect the precise
location of the error, which is under the nonterminal Verb. The verb is then
transformed into the correct form, resulting in a valid, grammatically correct
sentence.
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Fig. 2. Comparison of syntactical trees during translation from invalid to valid sen-
tence. Translation is used to detect and repair the misuse of the verb tense “moves”.

2.2 Identification of PDDL Problem Components

Once all instructions are CRL-valid, we construct the semantic representation of
the entire planning scene. To effectively represent large and complex contexts, we
utilize DRS [12] as a semantic compiler, which can capture linked anaphora and
coherence. In the complete semantic expression, we focus more on key compo-
nents, including verbs, object roles, functions, and properties, which are essential
for the subsequent generation process. Figure 3 illustrates how verb, subject and
object are extracted from semantic statement. The box-like DRS formulation
(Fig. 3a) is first linearized into an equivalent DRS statement, which is further
parsed into a tree-like structure (Fig.3b). Given this parsed semantic tree, we
can easily extract and capture the essential information. A recursive algorithm
traverses along the tree, detecting and copying the matched information into an
output dictionary, which contains a set of key-value pairs.

2.3 Plan Script Generation

To deterministically generate a planning script, we developed a PDDL generation
model. The PDDL generator is a composition of various visitors, each designed
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Fig. 3. Two different but equivalent representations of the formal expression. Tree-
like format of the formal expression is easier for information extraction and PDDL
generating.

to gather specific sets of information. Although the logic flows of these visitors
can overlap, the complexity of the task necessitates the use of multiple visitors.
In practice, every PDDL generator requires a minimum of 3 distinct visitors: 1)
A predicate-visitor to capture executable verbs and function arguments; 2) An
object-visitor to capture proper nouns and identifying entities; 3) A preposition-
visitor to capture geometric information. The captured outputs are combined
together to generate PDDL problem sections. The PDDL problem file requires 3
main sections: (:objects), (:init), and (:goal). The generated sections are com-
bined together into one problem description script, which is readable by PDDL
planners. The generation strategies depend strongly on the type of instruction.

The generated PDDL problem file alone is insufficient for planning and
robotic control. PDDL planner requires both problem and domain files. Since
human instructions do not provide useful information to construct a PDDL
domain, we create a domain file based on the prior knowledge of the planning
domain. For instance, in the Block world problem, we defined a set of actions
that are most suitable and executable in the robot framework: mowve, grasp,
release, throw, and search. Following the design conventions for robotic work
cells [14], we have also defined various types of objects that are relevant for the
manipulation environment: robot, position, object and pid (process id). Figure 4
represents a complete PDDL domain for the Block world problem.

The diversity of semantic expressions makes it challenging to develop a uni-
versal generation algorithm. Therefore, it becomes necessary to implement vari-
ous generation strategies tailored to the specific types of instructions. In practice,
we have categorized all instructions into 3 primary types: 1) Single action sen-
tence with well-identified entities; 2) Single action sentence with ungrounded
entities; and 3) Sentence involving multiple actions.

Type 1 commands consist of sentences featuring a single action and clearly
identified entities. The plan generation strategy for type 1 commands is straight-
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(define (domain demo_file) (:action move
(:requirements :typing) :parameters (?robot - robot
(:types ?pid - process_id
position_and_object ?y - position_and_object)
table robot :precondition (and)
object - position_and_object :effect (check_move
position - position_and_object ?robot ?pid T_iy)
process_id )
) (:action grasp
(:predicates :parameters (?robot - robot
(is_robot ?x - robot) ?pid - process_id
(at ?x - object ?y - position) ?y - object)
(on ?x - object ?y - position_and_object) :precondition (and)
(check_move :effect (check_grasp
?robot - robot ?robot ?pid ?y)
?pid - process_id )
?x - position_and_object) (:action release
(check_grasp :parameters (?robot - robot
?robot - robot ?pid - process_id
?pid - process_id ?y - object)
?y - object) :precondition (and)
(check_release :effect (check_release
?robot - robot ?robot ?pid ?y)
?pid - process_id )
?y - object) )

Fig. 4. Develop PDDL domain for Block world problem.

forward and requires no additional processing steps. The dictionary produced
by predicate-visitor serves as the basis for the construction of (:goal) section.
Type 1 commands are the simplest instructions involving well-defined entities.
To convert a sentence into a type 1 equivalent, we replace all available nouns
with recognized identities. Figure 5a illustrates an example of how a type 1 com-
mand is created, wherein the unidentified noun (the red box) is replaced with an
identified proper noun (BOX_ 1).

Type 2 commands represent the relaxed version of type 1 commands, allow-
ing ungrounded objects. In other words, type 2 commands can include singular
or plural nouns. To generate plans for type 2 commands, an additional prepro-
cessing step is required, which involves mapping unidentified nouns to objects
within the robot’s perception. This process is referred to as grounding, where we
establish a correspondence between objects in the natural language instructions
and the objects available in the robot’s knowledge base. Figure 5b illustrates an
example of how the proposed model handles type 2 commands.

Finally, type 3 commands contain more than one action, which is an alterna-
tive formulation for multiple sentences. Since each predicate-visitor is optimized
to handle one primary action and its associated arguments, sentences with mul-
tiple actions can introduce complexity to the extraction process. Therefore, a
distinct strategy is needed to generate plans for type 3 instructions. To han-
dle type 3 commands, we convert each command into multiple sentences with
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Desription: Command:

a. Tell the robot to move the red box. —>Sawyer, move BOX_1!
(Type 1 command)

grounding
b. Tell the robot to move the red box. — Sawyer, move the red box!
(Type 2 command)

c. Tell the robot to move the red box Sawyer, move the red box
then release the gripper. and release that box!

(Type 3 command)

Fig. 5. Three types of commands that the proposed system can handle efficiently with
different generating strategies.

consistent subjects and the same action order. The primary actions and their
respective arguments are segmented into distinct blocks.

3 Experiment

To evaluate the effectiveness of the proposed method, we conducted experiments
on various real-world planning scenarios. Recognizing the absence of a suitable
dataset for evaluation, particularly since most NLP datasets are centered on the
broader English domain, we developed a new dataset specifically tailored for
robotics and planning. Each entry in the dataset represents a distinct planning
scenario, and consists sequence of instructions, queries, and perception descrip-
tions. The performance of the proposed method is measured by the system’s
competence in comprehending instructions and its proficiency in generating valid
plans. More specifically, we evaluate the model’s accuracy in four core tasks: POS
tagging, syntactic parsing, semantic parsing, and PDDL problem generation.
The experiment results demonstrate the robust performance and configurability
of the POS tagger and syntactic parser. While there is a lower accuracy perfor-
mance observed in semantic parsing and PDDL generation. Finally, we illustrate
how the generated planning file can be used for controlling a robot in simulation.

3.1 Experiment Setup

To set up the robot environment, we implemented the MagicHand platform [15],
with a specific focus on the Block world problem. This platform comprises a
Rethink Sawyer robot and an AR10 gripper, both implemented in simulation
using Gazebo and ROS Kinetic. The NLP pipeline is developed in Python 3.9,
utilizing libraries such as Spacy, NLTK and Lark. For high-level robotic control
and PDDL solving, we use Moveit! [16] and Fast-Forward planner [17]. The choice
of Fast-Forward planner is significant, since it preserves the order of actions in
the planning solution.
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Fig. 6. Performance of the CRL model’s components.

The dataset contains 335 planning scenarios, with approximately 4,000
tokens. Each entry represents a sequence of sentences, and these sentences can
take the form of a query, descriptive statement, or command. The dataset also
includes ungrammatical sentences. We evaluated the model’s performance on the
following tasks: POS tagging, syntactic parsing, semantic parsing, and PDDL
problem generation. For POS tagging, we measured the accuracy of the multi-
label model. For more complex tasks like syntactic parsing, semantic parsing,
and PDDL generation, we measured the framework’s feasibility in generating
meaningful output.

3.2 Performance of CRL Model

The performance of CRL model is visualized in Fig. 6. The proposed framework
excels with 100% accuracy in POS tagging. Additionally, the model achieves a
100% feasibility score in syntactic parsing, demonstrating its capability to parse
all the instructions in the dataset. However, the feasibility score for semantic
parser is slightly lower at 77.01% (258/355 sentences). This is attributed to
certain limitations of Fuchs’s semantic compiler [13]. For instance, Fuchs’s model
can not understand gerunds, personal pronouns, and adheres to specific rules
for adverbs and prepositions. The performance of PDDL planning generation
stands at 73.73% in terms of feasibility (247/355 sentences). It’s noteworthy
that the performance of earlier tasks will set the upper limit for the performance
of subsequent tasks. This emphasizes the importance of performance control and
model flexibility, which the proposed method addresses. Finally, we showed how
one scenario successfully led to the planning execution in the robotic system. The
scenario contains 12 commands executed in sequential order. Figure 7 illustrates
how the robotic system processes the input and executes the actions accordingly.
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1. Please move to BOX_3! 2. Sawyer, grasp BOX_3! 3. Slowly move to POS_2! 4. Release BOX_3!

5. Please move to BOX_1. 6. Carefully grasp BOX_1. 7. Sawyer, move to POS_3! 8. Sawyer, release BOX_1!

9. Please move to BOX_2. 10. Please grasp BOX_2  11. Please move to POS_1! 12. Release BOX_2!
carefully!

Fig. 7. The proposed system successfully converted a 12 consecutive commands into a
practical execution plan.

4 Conclusion

This paper presents a robust and deterministic linguistic communication chan-
nel, which allows human users to interact reliably with robots. Leveraging the
determinism property of planning descriptions (PDDL), we developed a multi-
stage model that can provide both syntactic and semantic expressions. Addi-
tionally, the model demonstrates the ability to comprehend instructions and
generate deterministic planning. The performance of the method was evaluated
on a newly designed dataset, yielding impressive results. POS tagging achieved a
perfect 100% score in accuracy, while syntactic parsing secured a flawless 100%
feasibility score. These outcomes affirm the deterministic nature of the proposed
method. Although the model achieved slightly lower feasibility scores 77.01% for
semantic parsing and 73.73% for PDDL problem generation, these limitations
can be attributed to the constraints of the semantic compiler itself. In summary,
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this paper highlights the promising potential of PDDL-based methods for build-
ing deterministic communication channels between humans and robots, which
can reduce physical accidents in workplace environments.
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