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—— Abstract

The weighted Euler curve transform (WECT) was recently introduced as a tool to extract meaningful
information from shape data, when the shape is equipped with a weight function. In this extended
abstract, we provide an experimental investigation on using the WECT for image classification.

2012 ACM Subject Classification Theory of computation — Computational geometry; Mathematics
of computing — Geometric topology

Keywords and phrases Topological data analysis, Euler characteristic, classification, image data

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Funding The authors are supported by a collaborative grant through the National Science Foundation,
NSF DMS 1854336 and DMS 2038556.

1 Introduction

One of the primary goals of topological shape analysis is to summarize the shape of data
using topological invariants. The Fuler Characteristic (EC) is a simple invariant that is easily
computed from data. For a filtered topological space, this can be extended to an Fuler Char-
acteristic Curve (ECC). This extended abstract considers a variant of the ECC for a filtered
and weighted simplicial complex, called the Weighted Euler Curve Transform (WECT) [6].

2 Background

Given a simplicial complex K and a filter function f: K — R, the ECC is the func-
tion xs: R — Z that maps = € R to the EC of the sublevel set f~!((—o0,7]). A common
filter function is the directional filter function, which, for K embedded in R?, is the lower-
star filter for a direction s € S'. Using an ensemble of directional filter functions, one for
each direction in S', we obtain a parameterized collection of ECCs, called the Euler curve
transform (ECT).! No two distinct shapes have the same ECT [9]. Since its introduction,
the ECT has developed both in theory and in practice [1,3,5-7].

The WECT is a generalization of the ECT for weighted complexes [6]. Let K be a
simplicial complex in R? and let g: K — R be its weight function (g need not be a filter

! The ECT can be defined more generally; however, for brevity, we restrict the definition here to our
specific problem setting.
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Figure 1 Freudenthal Triangulation of 5 x 5 image.

function). The WECT for K assigns to each s € S! the function ws 4: R — 7Z defined by:

wig) =Y (1T Y gloy= D (1) g(0),

d=0 ceK, geK
ha(o)<t hs(o)<t

where hy: K — R is the lower-star filter in direction s.

3 Experiments

3.1 Data Sets

Synthetic image datasets are generated using the following parameters: shape, pixel intensity,
and function extension. The domain of an image is a 64 x 64 grid, with vertices on an integer
lattice, triangulated using the Freudenthal triangulation [4]; see Figure 1. The shapes are the
domain of the image pixels with positive intensity. Two shapes are considered: the disc (D)
and the square (S). The disc D is centered at (32, 32) with a radius of 20 pixels. The square S
is also centered at (32,32) and has an edge length of 35, ensuring that both D and S have
approximately the same number of pixels. Let K be the triangulation of either D or S.
Pixel intensities are sampled from Gaussian (G) and uniform (U) density shapes. A
bivariate Gaussian density with a peak at the middle of the image and diagonal covariance
matrix with standard deviations 100 is used. Points are sampled from this distribution and
then assigned to the nearest grid cell to create a 2D histogram. This histogram is rescaled
so that the maximum intensity is 255. In the uniform distribution, each pixel intensity is
sampled from [0, 255]. In what follows, g: Ky — R is the function on the vertices of K.
Together, the shape and distribution define four image classes: square-Gaussian (SG),
square-uniform (SU), disc-Gaussian (DG), and disc-uniform(DU), with 250 sampled images
in each; see Figure 2. Given an image (a function g: Ky — R), we consider two extensions
(functions F: K — R). First, the maximum extension is defined by mapping a simplex to
the maximum value on its vertices. Second, the average extension takes average instead of
the maximum. For each image class, we test both function extensions, creating eight data
sets. We refer to an image, along with its extension to all simplices an extended image.
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Figure 2 Four image classes.

Table 1 Pairwise classification results with maximum weight function extension.

SG SU DG DU
SG | 0.500 £ 0.000
SU | 1.000£0.000 0.500 £ 0.000
DG | 0.902+£0.023 0.998+0.006 0.500 & 0.000
DU | 1.000+0.000 1.000+0.000 0.998£0.006 0.500 =+ 0.000

3.2 Methods

We evaluate the WECT on the task of binary classification. Given two data sets, we first
compute the WECT for each extended image. To approximate the WECT (a function
over S1), we sample eight equally-spaced directions from S!, which was sufficient given the
simplicity of the image features. To discretize each WECC, 50 threshold values are sampled,
thus each image results in a vectorized WECT of length 400. Next, we train a Support
Vector Classifier (SVC) [2] separately for each binary classification model. The set of WECTs
is partitioned into training and test sets, with an 80/20 train-test split. All SVCs in this
work use a regularization parameter of value 20. This was implemented in Python, using
data structures from the Dionysus 2 library [8]. Experiments were conducted on an Intel
Xeon E5-2680 (128 GB RAM).

3.3 Results and Conclusion

For each pair of image classes, we compute the WECTs for both the maximum and the
average function extensions. Then, we fit SVC models on 10 unique collections of 250 images
of each class and report the average accuracies and the standard errors. Table 1 and Table 2
provide the percentage of correctly classified test images.

In the simple data sets that we considered, we found the WECT to be suitable for the
task of binary classification. The weakest classification result was comparing the SG and DG
classes under the average weight function extension. Because Gaussian density decreases
toward zero in the extremes, the corners of SG have weights that are close to zero making

Table 2 Pairwise classification results with average weight function extension.

SG SU DG DU
SG | 0.500 £ 0.000
SU | 1.000+£0.000 0.500 £ 0.000
DG | 0.830£0.048 1.000+0.000 0.500 % 0.000
DU | 1.000+0.000 0.948+0.034 1.000£0.000 0.500 =+ 0.000
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SG resemble the DG. Why the maximum weight function extension performed better than
the average is not immediately clear. We plan to extend the set of shapes, distributions, and
function extensions in order to explore this observation.
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