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Abstract— It is easier to program effective robots when they
inhabit highly structured environments. The growing literature
on methods to aid robot design has given comparatively little
consideration to elements external to the robot itself, yet such
elements can encode or enhance information (to improve per-
ception), can alter the effects or costs of actions (to help control),
and can provide regularity by imposing constraints. External
elements have the potential to be shared, to scale elastically,
and to spread both benefits and installation/operating costs.
These are traits of infrastructure in support of robots. We intro-
duce a basic but flexible mathematical model —via the MDP
framework— for rational evaluation of proposed additions and
changes to environments, including where infrastructure may
improve precision or performance of either perception or actu-
ation. Through it, one can assess the numbers of agents needed
for infrastructure investment to be economical, determine when
installation costs would be recouped, and evaluate the effect of
behavior changes as responses to environmental modifications.
To demonstrate how the model can be instantiated, four simple
but practical case studies are presented.

I. INTRODUCTION

A growing body of work proposes computational ap-

proaches to robot design, including research on the selec-

tion/optimization of actuators and sensors that meet some

desired level of performance while balancing cost and effi-

ciency [1]–[4]. Such work considers elements that are part

of, and physically internal to, the robot itself. While it

is generally understood that structured environments ease

many of the challenges involved in developing and deploying

useful robots, this paper approaches the idea with a fresh

twist by treating this within a design problem.

Consider tug vehicles deployed in a specially instrumented

fulfillment center. It isn’t entirely obvious for such a system

where the boundary of the “robot” ought to be:— aside from

the mobile tug shunting packages around, the instruments

and facility itself are key to the vehicle’s efficacy. This paper

introduces a method for making informed design choices in-

volving infrastructure for robots; the focus is on environmen-

tal elements possessing infrastructure-like attributes, which

is not solely a question of physical (external vs internal)

placement. First, the nebulous concept of infrastructure will

be clarified, including the distillation of common traits that

lead to important design questions and considerations.

A. Informal definitions and paper contributions

Infrastructure is commonly used to describe a variety of

services and projects that are made available to large numbers

of users. Here, we aim to informally identify the traits that

Both authors are affiliated with Dept. of Computer Science & Engineering, Texas

A&M University, College Station, TX, USA. {gracem | dshell}@tamu.edu. This work was

supported in part by the National Science Foundation under Grant No. [IIS-2034097]

and a graduate fellowship provided by the 3M Company and 3M Gives.

are often common across different kinds of infrastructure,

which will provide this paper’s working definition. Infras-

tructure that we examine has these six features:
◮ Group Utilization Multiple agents are able to access the

infrastructure to benefit from it; e.g. roadways, satellites.
◮ Elastic Scaling It should be capable of supporting the

intended number of users and of being extended in the future.
◮ Reusable Infrastructure should endure multiple uses

before being consumed, repaired, etc. and not be perishable.
◮ Cost Distribution Recuperation of the upfront construc-

tion and maintenance costs are distributed over the users in

some way; e.g. taxes, tolls, monthly bills.
◮ Fairness It should not harm any one group unduly.
◮ Impacts Agent Behavior Finally, we expect that the

infrastructure should alter the operation of agents in the

environment, having some measurable impact.

Under this definition, we aim to answer the following:

How can different proposed infrastructure be compared? Can

we examine how infrastructure will impact large populations

of agents without exhaustive simulation? Assessment should

include some subset of robots altering their behavior to

suit new infrastructure. What is the impact on agents with

differing abilities and goals, and how can that impact be

translated into a concept of “fairness”? How can the cost of

infrastructure be compared to benefits in performance?

To formalize the above description, we propose a model

that treats robots via Markov Decision Processes (MDPs);

the approach prioritizes practicality by being simple and

flexible. The infrastructure perspective offers a subtly differ-

ent approach to improving robot performance from standard

methods. The paper’s later sections discuss specific instances

of infrastructure and demonstrate its promise. Note, finally,

that a fuller treatment does appear in [5, Ch. 4].

II. RELATED WORK

Most work on robot design does not consider the robot

as a part embedded in a much larger enveloping system,

itself amenable to design; a recent and notable exception

is [6]. A long line of robotics research explored stigmergic

multi-robot teams, wherein coordination is mediated through

modifications of the shared environment [7], often in task-

directed ways [8], [9]. This perspective, emphasizing the

environment as something active or able to be exploited

structurally (hosting common markers, or persistent shared

computation) rather than merely being passive circumambi-

ent space, leads to new ways to coordinate robots [10]–[13].

Setting up systems that shape (or constrain) the behavior

of agents who make decisions autonomously falls within

the purview of economics. The specific economic theory of



clubs, in which members all derive a benefit from goods

while dividing costs [14], fits infrastructure well; it can

describe how the transition of a good owned by a single

agent to a shared one may change its utility [15]. Such

work is connected with equilibria and game theory [16], the

latter having been given serious consideration as a potential

unifying formal model for robotics [17]. Algorithmic mecha-

nism design [18] drawing on economic ideas, was spurred on

initially by routing games as models of behavior on networks.

Traffic networks are a very visible example of infrastructure,

with models going back to the 1950s [19] and increasing

use of agent-based techniques [20]. The six infrastructure

features/traits listed on the previous page are conceptually

broader than is typical in robotic design; the importance of

such broadening is championed by [21] in the context of

fleets of autonomous vehicles.

Reinforcement learning has been applied to traffic net-

works that modify infrastructure to influence the behavior

of other agents. Demonstrations change the pathing and

behavior of individual agents [22] as well as analyzing

and responding to general trends such as congestion [23].

Fundamentally, reinforcement learning examines how agents

can operate (and adapt to changes in) an unknown en-

vironment; the standard setting uses MDPs with a policy

evolving over time [24]. Both the MDP model and changes

to policies appear in our work, but we consider the impact

of environment change after policies have converged, not the

transient phase progressing toward convergence.

III. PROBLEM FORMALIZATION

Our treatment is intended to apply broadly and this gen-

erality demands that the presentation be quite abstract.

A. Preliminaries

We model each agent’s interactions with its environment,

indicated as M , as a Goal MDP, which we recall next:

Definition 1 (Goal MDP [24]). A Goal Markov Decision

Process, or MDP, consists of:
– a finite set of states S, with an initial state1s0 ∈ S;

– a finite set of actions A;

– a transition model T : S × S ×A → [0, 1] such that

T (s′, s, a) = Pr(s′|s, a) denotes the probability of

arriving in state s′ having issued action a from state s;

– a function C : S × A × S → R ∪ {+∞} where

C(s, a, s′) is the expected cost expended for the agent

occupying state s taking action a and arriving at state s′;
– a nonempty selection of goal states G ⊆ S.

Agents’ behavior will be described via a policy:

Definition 2 (Policy). A policy π : S → A assigns, for each

state s ∈ S, an action π(s) ∈ A for an agent to take.

While we will discuss optimal policies in Section IV for

comparative purposes, the ensuing definitions apply to all

potential policies for an MDP.

1While we will assume s0 is a single state, generalization to a distribution
of starting states, as well as instances where the starting configuration is
itself part of the optimization problem, is straightforward.

Definition 3 (Expected Cumulative Cost). For M = (S, s0,
A, T, C,G), the expected cumulative cost of policy π is

E[π|M ] = E
s0,s1,...,sm

(
m∑

i=0

C(si)

)

,

where the expectation is over finite sequences s0, s1, . . . , sm
arriving at some goal state sm ∈ G, with probabilities

T (si, si−1, π(si−1)), for all i. If there are no such sequences

with non-zero probability, then we declare E[π|W ] = +∞.

B. Defining and Applying Infrastructure

We distinguish K ∈ N different classes (or types) of agent.

Definition 4 (Environment). For K classes of agent, an

environment E is a collection of MDPs, one for each class:

E := {M1,M2,M3, . . . ,MK}.

To evaluate some proposed piece of infrastructure, each

MDP must be modified to “apply” its effects. This is for-

malized as a transformation on environments:

Definition 5 (Infrastructure). Collection I of K triples is in-

frastructure if we have I :=
{

(hT
1 , h

C
1 , c1), . . . , (h

T

K
, hC

K
, cK)

}

,

each triple (hT
i
, hC

i
, ci) comprising two maps and a scalar:

• function hT
i

mapping from the original transition func-

tion of MDP Mi to a new transition function T ′:

TMi
(·, ·, ·)

h
T

i7−−→ T ′
M ′

i

(·, ·, ·);

• function hC
i

mapping from the original cost function C
of MDP Mi to a new cost function C ′:

CMi
(·, ·, ·)

h
C

i7−−→ C ′
M ′

i

(·, ·, ·); and

• ci ∈ R
≥0, an associated construction cost.

For each i, the pair hT
i

and hC
i

modify MDP Mi, altering

its transition and cost functions, to give the new MDP M ′
i
.

Then, infrastructure I is an operator that modifies some

environment E
I
7−→ I(E) = {M ′

1,M
′
2,M

′
3, . . . ,M

′
K
}.

In the above definition, each triple (hT
i
, hC

i
, ci) contains

a construction cost ci, which represents the one-time cost

of constructing the infrastructure, not to be confused with

the cost functions of the MDPs within E .2 While here

we consider only the initial price of construction, much

infrastructure requires continual upkeep and consideration

of maintenance costs incurred over time is the topic of

Section V. The benefit provided by this infrastructure’s con-

struction relies on several factors: the number and types of

agents within E , if (and how) agents change their behavior in

the presence of infrastructure, and how this affects expected

costs. To formalize these aspects, we start with the fact that

environments are inhabited by (typically multiple) agents:

Definition 6 (Agent population). An agent population P

for environment E = {M1,M2, . . . ,MK} is a collection of

sub-populations, each representing a collection of a (fixed)

2We require that each MDP’s costs and infrastructure cost ci be in the
same units — in our examples, the MDP’s cost is converted to dollars so we
may look at recouped costs. Determining the equivalent “worth” of a cost
function is not always straightforward, but picking other units may help.



number of agents of a particular class, along with a policy

describing their behavior:

P := {P1,P2, . . . ,P|P|},

where each sub-population Pi := (ni, ci, πi) has ni ∈ N

agents of class ci ∈ {1, . . . ,K}, whose behavior is modeled

as following policy πi : S(Mci
) → A(Mci

).

(In the preceding, we have wrtten S(M) for the states

of MDP M ; also, analogously, A(M) for actions.) The con-

nection between environments —including those modified by

forms of infrastructure— and populations is captured next:

Definition 7 (Infrastructure response). For environment E ,

an infrastructure response is some rule that takes I and a

given agent population

P =
{

(n1, c1, π1), (n2, c2, π2), . . . , (n|P|, c|P|, π|P|)
}

and produces

P
′ =

{

(n′
1, c

′
1, π

′
1), (n

′
2, c

′
2, π

′
2), . . . , (n

′
|P′|, c

′
|P′|, π

′
|P′|)

}

such that
∑

(ni, k, πi) ∈ P

ni =
∑

(n′
i
, k, π′

i
) ∈ P

′

n′
i
, for each k ∈ {1, . . . ,K}.

The intuition is that an infrastructure response reflects

a change in a population where there may be a different

apportioning of sub-populations, but where the total agents

of each class is preserved. Clearly, also, the total number of

agents in the population is conserved.

Next, to make this more tangible, we provide some con-

crete examples of infrastructure responses:

⊲ An oblivious utilization is the identity infrastructure re-

sponse P 7→ P regardless of infrastructure I.

⊲ Given any operator S(·) that produces a policy from an

MDP,3 an S-based fully adaptive utilization is the infras-

tructure response P 7→ P
′ where each (ni, ci, πi) ∈ P

becomes (ni, ci, π
′
i
) ∈ P

′ where π′
i

is a policy obtained

via S(M ′
i
), assuming I(E) = {M ′

1,M
′
2,M

′
3, . . . ,M

′
K
}.

⊲ Again using S(·), for adoption rate α ∈ [0, 1], the

adoption-based utilization is the infrastructure response

P 7→ P
′ with every (ni, ci, πi) ∈ P contributing two

elements to P
′:

1) (ni − ⌊α · ni⌋, ci, πi) ∈ P
′, and

2) (⌊α · ni⌋, ci, π
′
i
) ∈ P

′, where π′
i

is obtained via

S(M ′
i
), again assuming I(E) = {M ′

1,M
′
2, . . . ,M

′
K
}.

For the final case, when the adoption rate α = 0 or α = 1,

one recovers the two previous instances.4

As the term “infrastructure response” connotes, these are

representations of how populations of agents react to changes

made to the world. Agents may not be aware of a change in

the environment, resulting in oblivious utilization. (We will

see in Section IV-A that even oblivious agents may see ben-

efits from infrastructure.) Conversely, S-based fully adaptive

utilization is where all agents within the population update

their policies according to the infrastructure transformation.

An agent can operate obliviously on the transformed MDP

M ′ owing to the way in which infrastructure is defined.

The transformation function hT cannot eliminate any actions

available to the agent at that state, although it may change

outcomes. (This follows naturally as infrastructure is only

an operation on the world, not on the agent’s capabilities.)

Thus, while there is no guarantee that an oblivious agent will

succeed, the original policy π can be used on M ′.

The notion of an adoption rate α is used in our analysis

of adoption-based utilization to indicate what proportion of

a class of agents create an updated policy π′. It models

situations in which either some agents remain unaware of

the modified environment, or, if aware, choose not to alter

their behavior. The realization splits a single sub-population

into two groups, one with the identity infrastructure response

while the other generates a new policy.

With these elements rigorously defined, we next turn to

formalizing aspects relating to measurement and evaluation.

Definition 8 (Returns). Environment E , population P, and

infrastructure I which produces P
′ after some infrastructure

response, yields the infrastructure returns over all classes K:

∑

(n′

i, c
′

i, π
′

i) ∈ P
′

n′

i ·
(

E[π′

i|M
′

i ]
)

−
∑

(ni, ci, πi) ∈ P

ni ·
(

E[πi|Mi]
)

︸ ︷︷ ︸

Change in Agent Costs

+
∑

(hT

j , h
C

j , cj) ∈ I

cj ,

The expression can be understood as follows: the original

MDPs for population P have an expected cumulative cost

over their policies; after infrastructure is applied, the new

population P
′ may adopt different policies, potentially re-

sulting in a change in costs. The difference between these

two values gives the change in expected costs under the

infrastructure response, while the final term includes the

infrastructure’s upfront construction expense. Taken together,

the result is the final expected cost incurred by all agents un-

der the response to infrastructure I on E . This expected cost

can be interpreted not only as an estimate for a single agent,

but as the average cost over many independent repetitions.5

Returns permit determination of “break-even” points for

a proposed piece of infrastructure: by changing the origi-

nal population sizes nk for each (nk, ck, πk) ∈ P or by

modifying adoption rate α, the change in agent costs may

be adjusted until the returns are equal to zero, at which

point the original construction costs have been recouped.

(See, also, Section V.) While the break-even point for

proposed infrastructure depends on the population of each

agent class, these populations may also be thought of as a

usage rate where each agent of class k must make use of the

infrastructure nk times before saved execution costs equal

expended construction costs. Interpretation of the model in

such a way disregards potential outside interference from

other agents—which is reasonable when the base MDP

3Specific instances of S(·) might be Value- or Policy-Iteration solvers,
or some Reinforcement Learning method.

4In cases where agents have choice in their initial configuration (cf. foot-
note 1), an adaptive utilization may result in a different choice in s0 than
the original policy. Naturally, oblivious utilization retains initial state s0.

5Assuming non-interference between agents, the expected cost for a single
agent can be easily extended to a group solely through ni and n

′

i terms.





facility, i.e., oblivious use, resulted in a slight reduction (16%
improvement) to an expected trip time of 132.26 s, while

adaptive robots had times improved by 36% to 100.68 s.
In the initial configuration, the robot has no preference for

any part of the hallway it travels in, and the resulting policy

is just the fastest route. The benefits seen in oblivious use is a

result of travelling over runners incidentally. With an updated

model, the runners become natural travel routes for the

robot. Improved motion dynamics yield policies where robots

approach the nearest runner en route their destination—

the robots staying near walls has the unintended benefit of

reducing interference with residents/staff in the hallways.

1) Conceptual Extensions: A benefit of specific paths for

robots is that they could have distance markers or QR codes

applied to them. While the current robots in the facility

cannot sense this information, future robots might use such

patterns for more accurate navigation. Our next case study

considers the idea of infrastructure modifying sensing.

B. Material Handling: Perception that Improves Precision

Figure 2 depicts a fulfillment warehouse in which robots

assist with loading trucks. Each collects goods from pickup

location (A, B, or C) and transports them to a drop-off zone,

where other agents then sort and finally load. Where goods

appear, and where their drop-off location will be, is assumed

to be random (i.i.d.). When not active, the robots occupy one

of two maintenance bays; when tasked, the robot could be

in either bay with equal likelihood.

The robots use low-resolution cameras to determine if an

area is open space or contains an obstacle, but they have

low accuracy and perceived obstacles may differ in size

from reality. Consequently, the robots do not have sufficient

certainty that they will avoid trucks when passing between

them, forfeiting some efficiency. The top row of Figure 2

shows policies under these conditions: robots favor the mid-

dle path to avoid uncertainty-induced risk. The warehouse

manager wants robots to take the shortest possible path to

improve operational efficiency and balance avoid congestion.

However, any environmental modifications must respect her

limited budget. She decides to mark the trucks’ parking

spots with a high-visibility tape, enhancing contrast between

trucks and the floor. This improves identification of obstacles,

allowing the robots to move between trucks with less risk.

This problem is modeled as multiple MDPs, sequenced

together: Starting in a random maintenance bay, the robot is

assigned to pick up goods at one of three locations. After

achieving this initial goal, that location becomes its new

initial state and it is assigned one of three drop-off locations.

Finally, the agent begins at a drop-off spot and is assigned

one of two maintenance bays to return to. Perception im-

provements are modeled through the controller: the initial

movement model for agents near obstacles has a chance that

the agent will drift when moving forward representing the

probability of the low-level control loop driving the system

forward when the space ahead is misidentified as free when

it is not. More accurate sensing reduces the chance of drift,

decreasing expected penalties.

Fig. 2: Various policies for different drop-off locations, indicated
with a star. Top: Uncertainty in sensing causes agents to take a
longer path to avoid obstacles. Bottom: High-visibility markings
allow agents to pass between trucks safely.

The top and bottom rows of Figure 2 show examples of

policies for a robot proceeding from any of the pickup zones

to several different drop-off points. As the optimal policy

depends on which of the several goals the robot is assigned, it

maintains different policies for its various starting locations,

pick-up zones, and drop-off locations. The bottom row shows

policies after the introduction of high-visibility tape, and

deliberate motions between trucks is clearly visible.

The application of high-visibility tape allows for the

current agents to remain in use with minimal environmental

changes or cost. This change has the largest impact on the

cost for agents to transport loads from pickup to drop-off.

Given that the regions between trucks are unlikely to be

visited during the other parts of the process, the sequencing

of MDPs also enables us to uncover precisely where infras-

tructure offers the greatest benefit (i.e, the transport step).

C. Bridges in the Park: Actuation to Improve Efficiency

Two businesses in nearby buildings —separated by a park

but with a roadway connecting them— wish to transport

goods back and forth (Figure 3). Both sides maintain a fleet

of robots for transporting goods. The park is popular with

employees and visitors, who take walks during their breaks.

Both robots and people can access the road, though absence

of sidewalks means there is some risk of an accident, incur-

ring a high cost. People prefer shorter routes to maximize the

area they can visit in the park during their breaks. Robots also

prefer a shorter route to reduce travel time as maintenance

is performed after a certain number of hours of service.

A B

Fig. 3: Park layout
highlighting the complexity
of choices involved when
modifying environments
through infrastructure.
The pair of large yellow
stars indicate the locations
of the two businesses,
while smaller stars indicate
additional entry and exit
points for pedestrians. The
two locations labeled A and
B are potential sites for a
proposed bridge.



The businesses consider two possibilities: (i) speed bumps

to slow road traffic and reduce accidents; (ii) a bridge in

the park that provides a safer and faster path. While the

businesses may favor a bridge positioned to enable fast routes

for their robots, employees petition for a bridge facilitating

easy travel between landmarks of interest. But what is the

benefit of a bridge—for the robot fleet and employees? Will

safety and speed justify the expense of bridge construction?

If so, at which location should it be built?

To obtain answers, robots will naturally be treated as if

solving an MDP. While humans cannot be controlled per

se, a policy is still a serviceable modeled: we employ a

basic MDP constructed via some simple assumptions—a

more sophisticated one, based on observations of how they

move through the park (say using inverse reinforcement

learning [30]) could be used if desired. We indicate the

MDP which describes the robots as Mr, and the MDP

based on human observation Mh. The robots may begin at

one of the two buildings and have the other as their goal,

while the human policy generally has employees returning

to the entrance they started at. For this example, we find

the optimal policy for the robots, denoted πr. Similarly, we

designate the MDPs that have undergone a transformation

from infrastructure as M ′
r and M ′

h.

The two proposed bridge locations are shown as A and

B in Figure 3. The original MDPs (Mr and Mh) reflect a

world without bridges. Three different infrastructure trans-

formations were performed: one that places a bridge at A,

one putting a bridge at B, and one with bridges at both A

and B. Speed bumps are constructed in all cases. Table II

shows expected travel time for various routes, created from

the randomly chosen of sub-goals.

Neither robots nor humans take advantage of the infras-

tructure obliviously as routes are planned to cross bridges

only when they’re known, while the speed bumps will

impact the agents regardless. Humans are unaffected by

speed bumps, but the robots have difficulty traversing them

and now incur a small additional time cost on the roads.

The adaptation of agents results in a new policy π′
r , with an

associated expected reward E[πr|M
′
r ]. As Mr’s cost function

represents the total travel time, the difference between the

updated expected cost E[π′
r |M

′
r ] and the original E[πr|Mr]

Robot No Bridge Bumps Bridge A Bridge B A & B

Route 1 201.7 213.0 115.3 101.9 101.9
Route 2 199.4 210.6 115.3 101.9 101.9
Route 3 236.0 243.7 148.9 119.3 119.3
Route 4 223.5 234.8 211.4 198.0 198.0
Route 5 353.2 361.0 192.0 220.5 192.0
Average 242.8 252.6 156.6 148.3 142.6

Human No Bridge Bumps Bridge A Bridge B A & B

Route 1 914.9 914.9 455.1 549.5 455.1
Route 2 672.6 672.6 446.9 348.2 348.2
Route 3 303.3 303.3 303.3 303.3 303.3
Route 4 744.3 744.3 536.2 463.7 463.7
Route 5 1437.9 1437.9 514.1 587.4 451.9
Average 814.6 814.6 451.1 450.4 404.4

TABLE II: Expected travel times in seconds given the two different
bridge locations. The bumps column marks the introduction of speed
bumps, but no use of bridges. Top: The robot fleet moves at a speed
of 5 km/h. Bottom: The humans move at 3 km/h.
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Fig. 4: Impact of adoption rate and the number of infrastructure
uses on recouped costs. These graphs show, for robots (left) and
humans (right), the number of uses needed at different adoption
rates in order for saved costs to equal construction costs. Red lines
correspond to Bridge A, blue lines to Bridge B, and black lines to
both bridges simultaneously. Each line is a different route.

directly reflects the resulting time-saving. For comparison to

the implementation cost, the travel time is converted into a

dollar amount by pro-rating the cost of maintenance over the

amount of time the robot can run between services.

If robots do not adapt to the new environment, the addi-

tional time incurred by the speed bumps results in an increase

in overall travel time. The introduced infrastructure therefore

is detrimental to oblivious robot agents. However, once either

bridge is introduced and the robots adapt and change their

policies, the robot agents’ costs are reduced.

Figure 4 shows, for both types of agents, the number

of trips the agents must take to recoup the infrastructure’s

construction costs. Using the equation in Section III, there

exists a non-linear relation between the adoption rate α and

the number of trips necessary. For the robots, who incur

additional costs on their original routes, higher adoption rates

are necessary to offset costs of the oblivious part of the fleet.

We now consider the impact of infrastructure on the

people. The assignment of a monetary cost to their trips

through the park is more difficult than for the robots.

Although the humans are not looking to enter and leave

the park as fast as possible (unlike the robots), there are

other factors (such as the duration of their break) that mean

they still benefit from bridges that reduce their route and

prevent them from having to use the roadways. For clarity

in this example (and, perhaps, somewhat bleakly), we will

consider the time spent on paths to correspond to time spent

not working, and therefore shorter paths result in increased

profits for the business. Additionally, the introduction of

bridges results in humans avoiding the road. This results in

far fewer accidents, which is a strong indication that a bridge

is worth its construction cost.

The final selection of where to place the bridge gives

rise to a consideration of “fairness,” wherein the businesses

must compare the impact of the bridges on both robots and

humans. Suppose that Bridge A costs $1600, and Bridge

B costs $1200. The cost of the infrastructure is recouped

directly through reduced traffic accidents and maintenance

costs, and indirectly recouped through employees. As em-

ployees are not negatively impacted by the introduction of

speed bumps on the road, their graph does not show much

variation between bridge options; Bridge B results in slightly

shorter paths on average for employees than Bridge A,

but both show that costs are quickly recouped even when





times a day to each resident. They likely carry laundry back

and forth, and guide residents around but, for a pessimistic

estimate of break-even point, we will ignore these uses.

Without the runners, the expected time of a delivery trip

was 157.86 s. With the runners, this decreased to 100.68 s.
This results in a daily average of 7577.28 s and 4832.64 s,
respectively. With the runners and this minimum amount

of trips, the robots reduce their time spent traveling daily

by just under 46min. To assign a monetary value to this,

assume each robot frees up a nursing assistant to perform

other duties. Therefore, valuing the work of the robots at the

cost of employing a human for the same amount of time at

$16/h the “cost” of the robots becomes $33.68 per day and

$21.49 per day. Given that care facilities operate every day,

the yearly maintenance cost will be recouped after 123 days.

VI. CONCLUSION AND FUTURE WORK

This work connects environmental modification with robot

design by introducing a model for analysis of the wide

variety of forms infrastructure takes. The model treats in-

frastructure as an operator that transforms existing MDP

models to reflect changes to behavior induced by altering the

environment. Within the framework, we interpret the MDP’s

expected value not as a representative statistic for a single

agent making decisions about an uncertain future, but as the

cost over many independent repetitions. This allows us to

understand the average behavior of a class of agent without

direct large-scale simulation of all agents involved.

The model has room for refinement, which future work

could explore. As noted, the model disregards inter-agent

interference—this was a deliberate choice to allow tractable

analysis of aggregate effects across many repetitions. In

certain settings, contrary to the case studies examined herein,

interference may be critical and models of how interactions

manifest would be a useful addition. One simple option for

obtaining an effective model might be the inclusion of a

correction term (e.g., the penalization function Q(·) of [33]).

Infrastructure itself can also be more complex, containing

internal state. The need to capture complex behavior and

the impact of infrastructure as something that interferes

with agents (via its transformation functions) suggests that

infrastructure itself may be modeled as a type of agent.
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