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A MONTE CARLO ANALYSIS OF CONTINGENCY OPTIMAL
GUIDANCE FOR MARS ENTRY

Emily M. Palmer* and Anil V. Rao’

A Monte Carlo analysis of a contingency optimal guidance strategy is conducted.
The guidance strategy is applied to a Mars Entry problem in which it is assumed
that the surface level atmospheric density is a random variable. First, a nominal
guidance strategy is employed such that the optimal control problem is re-solved
at constant guidance cycles. When the trajectory lies within a particular distance
from a path constraint boundary, the nominal guidance strategy is replaced with a
contingency guidance strategy, where the contingency guidance strategy attempts
to prevent a violation in the the relevant path constraint. The contingency guidance
strategy utilizes the reference optimal control problem formulation, but modifies
the objective functional to maximize the margin between the path constraint limit
and path constraint function value. The ability of the contingency guidance strat-
egy to prevent violations in the path constraints is assessed via a Monte Carlo
simulation.

INTRODUCTION

Performance optimization in Mars entry, descent, and landing is a challenging problem. One
aspect that adds such complexity is the path constraints that must be imposed on the vehicle dur-
ing entry, that is, constraints must be placed on key quantities such as the dynamic pressure, the
acceleration load, and the heating rate. Typically the optimal control problem is solved offline in
the mission planning phase. During flight, however, it is likely that the vehicle will deviate from
the reference solution (which was computed offline) due to modeling errors and disturbances. As a
result of such deviations from the reference in the actual flight, it is necessary to perform guidance
corrections during entry. These guidance command corrections must not only ensure the vehicle
stays within desired limits of the objective, but must also ensure the vehicle does not violate key
constraints. This paper considers a guidance strategy that re-solves the optimal control problem at
constant guidance cycles while simultaneously allowing for a contingency mode that prevents path
constraints from being violated. The effectiveness of this contingency guidance strategy is evaluated
in this paper via Monte Carlo simulation.

It is known that once a vehicle is perturbed off its nominal trajectory, the quality of the solution
can quickly degrade. Moreover, if the deviation from the nominal is sufficiently large, it is possible
that the optimal control problem may not have a feasible solution. Different approaches have been
considered to reduce the effect of disturbances and uncertainties during the actual motion of the ve-
hicle. On of these approaches is called desensitized optimal control (DOC). DOC was first proposed
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by the work of Ref. [1] where it was first formulated for unconstrained optimal control problems. In
DOC, the uncertain parameters of interest are elevated to the level of states and the optimal control
problem is augmented by a sensitivity matrix. The sensitivity matrix captures the sensitivity of the
state at any time, ¢ with respect to changes in the initial states, however the chain rule is applied to
acquire the sensitivity of the state at the terminal time, ¢, with respect to changes in the state at
arbitrary time, t. The sensitivity matrix then can be used to augment the optimal control problem,
whether it be an additional term in the objective functional or a boundary condition. This method-
ology was then extended to constrained optimal control problems [2] , and then even applied to
a Mars Entry problem [3]. One issue with DOC is that the augmented optimal control problem s
more complex than the original, as the number of states increases quadratically as a function of the
number of original states and uncertain parameters. The increased dimensionality however can be
decreased with the use of traditional uncertainty functions, with the trade-off of not being able to
account for time-varying parametric uncertainties [4].

While desensitized optimal control has been shown to reduce the sensitivity of trajectories to un-
certainty and disturbances, the resulting trajectory suffers from a loss of performance overall as a
result. Ideally, the offline reference trajectory would be optimal, with the guidance updates being
made such that the adjustments to uncertainty are performed in a way that is optimal from the point
of where the guidance update is being implemented. Current guidance methods include propor-
tional navigation (PN) [5, 6], linear-quadratic (LQ) methods [7, 8, 9], acceleration guidance [10],
and neighboring optimal control (NOC) [11]. These methods however do not incorporate optimiza-
tion and do not take into account the full non-linear dynamics of the vehicle, leading to loss of
performance. In order to maximize performance when performing guidance updates, a methodol-
ogy was developed that re-solved the optimal control problem in real time [12]. At each guidance
update, the optimal control problem was re-solved with the original objective and boundary con-
ditions using the current state as the new initial condition. The newly solved control was then
simulated over the span of the guidance cycle period for the real” vehicle, which was modeled
with slight difference than the reference model in order to simulate uncertainties. The processes
of re-solving the optimal control problem and simulating flight was repeated until the remaining
horizon was shorter than the guidance cycle period. One issue with this methodology however was
path constraint violations. The guidance framework did not explicitly account for path constraints,
which lead to the “real” vehicle violating the constraints despite the solution obtained by solving
the optimal control problem not revealing violations. In order to prevent violations, the guidance
methodology was adjusted to explicitly deal with path constraints. Path constraints were explicitly
accounted for by implementing contingency operations if the vehicle was approaching its physical
limits and met a certain user-chosen percentage of its limits. The contingency operation guidance
followed the previous methods steps, except for within the user-chosen range of a constraint limit,
at which point the objective functional used to re-solve the optimal control problem was altered.
The contingency objective functional maximized the margin between the constrained quantity and
its limit. The guidance method was then applied to a Mars entry problem where the modeled sur-
face level atmospheric density varied from the “’real” flight atmospheric density. The problem was
solved for two scenarios; one of which assumed there was a set error in the atmospheric density
model, and one case where the error was made to be random at each guidance cycle. The random
case was only explored for a singular simulation, therefore the results were not sufficient in proving
the effectiveness of the method. This paper aims to further explore the case of random errors in the
atmospheric model. A Monte Carlo simulation was performed to evaluate the effectiveness of the
novel optimal guidance with contingencies method, and the results are presented in this paper.



BOLZA OPTIMAL CONTROL PROBLEM

Without loss of generality, consider the following optimal control problem in Bolza form. De-
termine the state, x(7) € R"=, and the control, u(r) € R™, on 7 € [—1,+1] that minimize the
objective functional

tr—to [T
J = M(x(=1), to,x(+1),t7) + L= [ Lx(r),u(r),tritotp))dr (D)
-1
subject to the dynamic constraints
dx tf - t()
- _ f . = 2
dr 9 (X(T)7u(7_)vt(7_a t0>tf)) 0, )
the inequality path constraints
Cmin < C(X(T), u(T)7 t(T; to, tf)) < Cmax; (3)
and the boundary conditions
buin < b(x(—1),%0,%x(+1),tf) < Pmax. 4)

It is noted that domain ¢ € [to,t¢] and the domain 7 € [—1, +1] are related via the affine transfor-
mation e —
;—to ;T to
> T

t(rito,ty) = (5)

LEGENDRE-GAUSS-RADAU COLLOCATION

Consider now the following partition of the Bolza optimal control problem described in Egs. (1)-
(4) into K mesh intervals. First, let (Tp,...,Tx) € [-1,+1] be such that Ty < T3 < --- < Tg.
Furthermore, let Ty = —1 and Tx = +1. Finally, let S, = [T}_1, T}]. Next, let x*) (7) and u(®) (1)
be the state and control, respectively, in mesh interval Si. The Bolza optimal control problem given
in Egs. (1)—(4) is then formulated as a K mesh interval problem as follows. Minimize the objective
functional:
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ty — 1t k
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the inequality path constraints:
Ccmin < ¢(xM (1), u™ (1), t(r5t0,tf)) < Cmax (b =1,.., K) (8)
and the boundary conditions
bumin < b(X(l)(_l),tO,X(K)(+1)atf) < bnax- )



It is noted that, in order to maintain continuity at each interior mesh point, the condition x(7}, ) =
x(T;") (k=1,..., K — 1) is enforced.

The partitioned optimal control problerm given in Eqs. (6)—(9) is discretized using Legendre-
Gauss-Radau (LGR) collocation as described in Refs. [13, 14, 15, 16]. In the LGR method, the state
in every mesh interval is approximated as

Nig+1

xB(r) = XW () = 37 X0 () (10)

where €Ek) (7) is the basis of Lagrange polynomials
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and (7 (k), ](\;g )) are the LGR points in mesh interval Sy and T](\Z ) +1 = T is anoncollocated point.

The derivative of the state approximation X (¥) (1) is given as

ax® Nl (k)dﬁ(.k)
= E X\ 3 12
dr = I dr (12)

The dynamic constraints given by Eq. (7) are collocated at the N LGR points in mesh interval
ke [1,..,K]as
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are the elements of the N x (NN + 1) Legendre-Gauss-Radau differentiation matrix [13] in mesh
interval S, k € [1, ..., K]. The LGR approximation then leads to the following nonlinear program-
ming problem (NLP). Minimize

K Ng
T = M(Xgl)’to’ N +17 +Zztf k)[’ () gk)ﬂfz(k)) (15)
k=1 j=1

subject to the collocation constraints of Eq. (13), the discretized path constraints
k k) ,(k .
Cmin §C(XE )7U§ ),tl( )) < Cmax (Zzl,-.-,Nk), (16)

the discretized boundary conditions
(K)

bmin < b(Xgl), t0>XNK+1atf) < bmaxa (17)
and the continuity constraints
XP, =xY (k=1,.,K - 1). (18)



OPTIMAL GUIDANCE WITH CONTINGENCY OPERATIONS

This section describes the methodology used when implementing guidance updates with con-
tingency operations. The guidance updates described in this section were performed using LGR
collocation on a shrinking horizon. The methodology explored in this paper is a modification and
extension of the work presented in Refs. [17, 12]. In the previous work, the original optimal control
problem was re-solved at the beginning of each guidance cycle, to + kAT, (where k is the guidance
cycle number and AT is the guidance cycle period) using the state at the current time as the initial
condition. Then the control generated from the optimal solution was used to simulate the flight of
the “real” vehicle over the guidance cycle period, and the process of re-solving the optimal control
problem is repeated until the remaining horizon is shorter than the guidance cycle period. Origi-
nally, the guidance strategy did not explicitly account for path constraints during the “real” flight
of the vehicle and it was found that when performing this method on the Mars entry problem, the
path constraints were violated during flight. In order to address the issue of constraint violation, a
modification was added to the method to explicitly deal with constraints.

The modified method can be summarized as follows. At the end of each guidance cycle period
the values of the constrained quantities are evaluated and the current state is taken to be the initial
condition for when re-solving the optimal control problem. In the Mars entry problem only upper
constraints are considered, however generalizing, contingencies must be made for the four following
cases: (1) cmax > 0; (2) cmax < 0; (3) ¢min > 0; (4) ¢min < 0. In the event of case (1), the
percentage of the total allowable constraint is computed and then used to determine the proximity
the current constrained quantities are to their limit. This is computed as follows:

c(x(t),u(t),?
P(t) = —( (), u(t), t € [to+ kAT, to + (k+ 1)AT], 19)
Cmax
where c is the scalar constraint quantity of interest and k is the current guidance cycle. The max-
imum value of P(t) is then compared to a user-chosen threshold, . The rate of change of the
path constraint is also computed. If it is determined that the maximum percentage is larger than the
user-chosen threshold and the constraint is increasing towards its limits, i.e.:

max P(t) > « (20)

and
¢>0 2D

then the contingency plan is activated. The following action is taken; when re-solving the optimal
control problem, the objective functional used is changed from the reference objective to a new
objective, Jo. The purpose of the new objective functional is to maximize the margin between the
current path and its limit, therefore for the case of a positive upper constaint, the new objective will
be a smooth approximation of the maximum value of the constraint function. For this study, the
following smooth approximation was used as the objective functional:

J, = min ;bg /t :f (exp(82E) ) 22)

Cmax

where [ is a user chosen parameter that can be adjusted in the mission planning phase in order to
maximize performance of the guidance updates.



When the conditions given by Eq. (20) - (21) are not met, the original objective functional is used
when re-solving the optimal control problem.

PROBLEM FORMULATION

The Mars entry vehicle was modeled as a point mass over a spherical nonrotating planet, and the
equations of motion were formulated as[18]:

ro= vsin-y,
vo= —D — gsin~,
i — v coS 7y sin ¢
N 7 COS ¢
b = V COS 7y COS Y (23)
= —
) 1 vog
¥ = f[Lcosa+<f—f)cosv},
v r v
. Lsino  wvcosysiny tan6
b = 4 Leosysnytang
v COS Y r

where r is the vehicles radial distance from the center of the planet, v is the vehicles speed, 6 is
the vehicles latitude, ¢ being the vehicles longitude, ~ is the flight path angle, and 1) is the vehicles
heading angle, and g = 11/72. The lift and drag specific forces were calculated as:

I - qCLS7
m
(24)
D — qCD57
m

where C, is the vehicles coefficient of lift, C'p is the vehicles coefficient of drag, S is the charac-
teristic length, m is the vehicle mass (assumed to be constant), ¢ = pv?/2 is the dynamic pressure,
p = po exp(—h/H) is the atmospheric density, where, h = r — R is the altitude. The constants p,
H, and R are the Martian sea level density, the density scale height, and the radius of the planet,
respectively.

Physical constraints were placed on the vehicles dynamic pressure, sensed acceleration, and heat-
ing rate, given by the following equations:

q=p0*/2 < Gmax (25)
A= \% L? +D2 < Amam (26)
N
Q=K, (f) oM < Quas 27)

where IV, M, and K, are constants, and g is the Earth sea level acceleration due to gravity.

The numerical values of the physical constants used in this paper are given in 1. The initial state
and time were fixed, the final state was free with the exception of the terminal speed, and the values
are given in Table 2. Additionally the limits on the state and path constraints are given by Table 3.



Table 1. Physical constants.

Quantity Value Quantity Value
R 3.386 x 105 m T 0.6 m
" 4.284 x 1013 m3/s? M 3
90 9.80665 m/s? N 0.5
S 15.9 m? K, 1.9027 x 1073 W/cm?
Cp 1.45 H 9354 m
Cr, 0.348 00 0.0158 kg/m?
m 3300 kg

The reference objective was to maximize the altitude at which the terminal speed was reach, or
minimize

min J; = —r(ty). (28)

Table 2. Boundary conditions.

Quantity Value Quantity Value
o 3.5112 x 10° m 0o 0 rad
Vg 6000 m/s b0 —0.0873 rad
Yo —0.2007 rad o 1.6581 rad
vf 540 m/s

SOLUTION OF THE OPTIMAL CONTROL PROBLEM

The optimal solutions presented in this paper were generated using the optimal control software
GPQOPS — II, which is an hp adaptive Gaussian quadrature collocation solver[13, 14, 15, 19, 20,
21, 22, 23]. The hp method has the benefit of allowing smaller meshes to be utilized than standard
h methods, while still achieving the desired accuracy tolerances. In the hp method, mesh points are
concentrated in areas where the solution is nonsmooth and rapidly changing, and places fewer mesh
points in areas where the solution is smooth. The smoothness of the solution was approximated by
determining the decay rate of the Legendre polynomial coefficients as a function of the coefficient
index[23]. GPOPS — II interfaces with the nonlinear programming problem solver, IPOPT, which
is an interior point method. IPOPT was employed in full Newton mode and the first and second
derivatives were determined using sparce central finite differencing. GPOPS — II supplies [IPOPT
with the objective function, Lagrangian Hessian, constraint Jacobian, boundary conditions, and
dynamic constraint function. An initial guess and mesh are required inputs to GPOPS — II, and
the solution/mesh from the previous guidance cycle was used as the initial guess when re-solving
the optimal control problem. GPOPS — II then outputs the optimal solution, containing the control
matrix and state matrix. It should be noted that while the results in this paper were obtained using
GPQOPS — II, any collocation method could be used with the outlined guidance strategy.



Table 3. Bounds on variables and constraints.

Quantity Value Quantity Value
Tmin | 3.3862 x 10m ||  rpax | 3.5112 x 10 m
VUmin 0.1 m/s Umax 6000 m/s
O min —27 rad O max 27 rad
Gmin —1.2217 rad Dmax 1.2217 rad
Ymin —1.0472 rad Ymax O rad
Ymin —27 rad Ymax 27 rad
Omin 0.05236 rad Omax 2.0944 rad
Gmin 0 Pa Gmax 10000 Pa
Apin 0 m/s? Apax 590 m/s?
Qmin 0 \V/CIH2 Qmax 70 VV/CHI2

MONTE-CARLO ANALYSIS

This section describes the process used to evaluate the effectiveness of the newly outlined guid-
ance strategy against random errors in the model used to solve the reference solution. The modeling
error was simulated by using a reference model when solving the optimal control problem and sim-
ulating the flight of the “real” vehicle with a perturbed model. The only difference between the
reference model and the perturbed model was the density model used, which are given as:

Pref = PO exp(—h/H), (29)
Ppert = Po exp(—h/H), (30)

respectively, where pg and pg are the reference and perturbed surface level densities, & is the altitude,
and H is the density scale height. In order to simulate random perturbations, the value of the
surface level density, po, was drawn from a uniform distribution on [pg, 1.05p¢] at the beginning
of each guidance cycle. In order to analyze the effectiveness of the guidance algorithm for the
guidance algorithm was run from entry to end of mission N times. For each N run of the guidance
simulation, the following quantities were recorded: final state, final time, maximum values of each
path constraint, and number of objective functional changes.

The result of the Monte Carlo simulation is a data set of N for the final state, final time, maximum
path constraint values, and number of objective functional switches. The data then can be statisti-
cally analyzed to gather information on the effectiveness of the guidance algorithm at preventing
path constraint violation, as well as give insight into performance loss due to the disturbances, i.e.
lowered final altitude. The error between the final states for each sample in the Monte Carlo analysis
will be computed with regards t the reference solution, that is the errors are defined as:

(5,( = i(tf) - X(tf) (31)

where X(t¢) is the final state of each sample and x(t¢) is the final state of the reference solution.
Additionally, the Monte Carlo simulations were used to choose the constant parameter, 3, used in
the contingency objective functional given by Eq. (22).



RESULTS

A Monte Carlo simulation was performed using N = 500 samples. Simulations were run using
values of 8 = 3,4 for the constant parameter in the contingency objective functional. A value
of @« = 0.8 was used to determine when to switch to contingency operations. A Monte Carlo
analysis was was also completed for the guidance strategy without contingency operations. For
each simulation, guidance updates were performed every 10 seconds. The results of the simulations
are presented in this section and compared to the reference solution.

Reference Solution

The optimal control problem was solved using the reference model. The final state of the vehicle
was determined to be:

z = [3396634 m, 540 m/s, 0.306 rad, — 0.137 rad, —0.246 rad, 2.07rad]  (32)

The speed versus altitude was plotted, as well as the control (Fig. 1).
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Figure 1. Reference Solution.

Results without Contingency Operation

The following results represent the guidance algorithm being employed without contingency op-
erations. Out of the N = 500 Monte Carlo simulations performed, the acceleration load path con-
straint was violated for 475 runs, the heat rate constraint was violated for 40 runs, and the dynamic
pressure constraint was kept under the limit. Figure 2 depicts the error in the final states at each
sample of the Monte Carlo analysis. Figure 3 shows the maximum path constraint values at each
sample. The results illustrate the need to explicitly account for path constraints when executing
guidance updates, as even small perturbations away from the reference solution can lead to con-

straint violation. Additionally, the altitude versus speed, and control was plotted for a single run
(Fig. 4).



Table 4. Results for guidance scheme without contingency operations

Measure h(ty) v(ty) ty max A max Q max q
Mean Value 10.67km | 5399 m/s | 310.6s | 5.08 gy | 69.53 W/cm? | 6.94 KPa

Standard Deviation 52.6 m 0.2147 m/s | 0.352s | 0.050 go | 0.337 W/cm? | 67.5Pa
Highest Value 10.81km | 540m/s | 311.5s | 521 g9 | 70.28 W/ecm? | 7.11 KPa
Lowest Value 10. 50km | 538m/s | 3099s | 494 gy | 68.5W/cm? | 6.74 KPa
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Figure 2. Error of final states at each sample without contingency operations.
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Figure 4. Results for a single sample of the guidance scheme employed without con-
tingency operations.

Results for 3 = 3

The guidance algorithm was run for N = 500 samples using = 3. The tabulated results
are given in Table 5. The guidance algorithm was able to successfully prevented path constraint
violations for each simulation. The error in the final state with regards to the reference solution

was plotted for each sample (Fig. 5), as well as the maximum path constraint values (Fig. 6).
Additionally, the control and state was plotted for a single sample (Fig. 7).

Table 5. Results for 5 = 3

Measure h(ts) v(ty) tr max A max max ¢

Mean Value 10.21 km | 539.22m/s | 3259s | 483 gy | 68.9W/cm? | 6.59 KPa
Standard Deviation | 62.83m | 0.4402m/s | 1.24s | 0.050 go | 0.353 W/cm? | 67.5Pa

Highest Value 10. 50 km | 540 m/s 32745 | 4949y | 69.94 W/cm? | 6.74 KPa
Lowest Value 10. 07km | 5382m/s | 316.15s | 471 gy | 67.96 W/cm? | 6.42 KPa

Results for 5 =4

The guidance algorithm was run for N = 500 samples using 3 = 4. The tabulated results
are given in Table 6. The guidance algorithm was able to successfully prevented path constraint
violations for each simulation. The error in the final state with regards to the reference solution
was plotted for each sample (Fig. 8), as well as the maximum path constraint values (Fig. 9).
Additionally, the control and state was plotted for a single sample (Fig. 10).
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Figure 5. Error of final states at each sample using a value of § = 3.

Table 6. Results for 5 =4

400 450 500

Measure h(ts) v(ty) tr max A max Q max ¢
Mean Value 10.22 km | 539.21 m/s | 326.2s 4.82 go 68.9 W/cm? | 6.58 KPa
Standard Deviation | 54.92m | 04423 m/s | 0.523s | 0.0495 gy | 0.343 W/cm? | 64.93 Pa
Highest Value 10.37km | 540m/s | 328.09s | 4.94 g5 | 69.66 W/cm? | 6.74 KPa
Lowest Value 10. 04 km | 5383 m/s | 321.3s 4.69 g9 | 67.95W/cm? | 6.41 KPa
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Figure 6. The maximum value of each constrained quantity for each sample using a
value of 5 = 3. The dashed line represents the true limit of the vehicle.
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Figure 7. Results for a single sample using a value of 5 = 3.
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Figure 8. Error of final states at each sample using a value of 3 = 4.

13



altitute [km]

140

120

100

®
3

«
3

40

<
&
o 8000 - .
»
<
=

6000 Il Il Il Il . Il - .\ -~ - Il . Il
0 50 100 150 200 250 300 350 400 450 500

I < 1. I
200 250 300
N

Figure 9. The maximum value of each constrained quantity for each sample using a
value of 5 = 4. The dashed line represents the true limit of the vehicle.

R @ r o—
o 8 ]
. 4 ° 1) 9
o o
181 © 5 o B
o o
r 1 o o o
161 o o o Bl
L 1 =z ° o o
g 14 4
)
& o
L i Zi2k o o 4
) g
1+ ° o 4
L B e}
30 o
o o
08p 4
S °e
k R % o ° <}
06 % E
e b M an
. . . . . . 04 . . . . . .
0 1000 2000 3000 4000 5000 6000 7000 0 50 100 150 200 250 300
speed [m/s] time [s]

(a) Altitude versus speed for a single run.

Figure 10. Results for a single sample using a value of g = 4.

14

(b) Control versus time for a single run.

350



CONCLUSION

An optimal guidance scheme employing contingency operations to prevent path constraint vi-
olations was presented. The guidance scheme was applied to a Mars entry problem where it was
assumed that there was a modeling error in the surface level atmospheric density. Monte Carlo anal-
yses were performed to evaluate the effectiveness of the guidance scheme and was compared to the
reference trajectory. Additionally, the guidance scheme was employed without contingency opera-
tions. The surface level atmospheric density was drawn from a uniform distribution on [pg, 1.05p¢]
at the beginning of each guidance cycle to simulate perturbations. It was found that without con-
tingency operations, the heating rate constraint was violated for 95 % of the Monte Carlo simula-
tions. Employing contingency operations, the path constraint violations were eliminated completely.
These results indicate that the proposed guidance scheme with contingency operations has merit and
should be further explored for path constrained flight.
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