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Abstract
The Sed360 is a semi-automated image-based system for generating Particle Size Distributions (PSDs) of sands from an

image of a sedimented soil specimen. The system expanded the size range of tested soils over its predecessors to include

the entire range of sands, from 4.75 to 0.075 mm per the Unified Soil Classification System. In terms of exposed surface

area, the largest particles are more than 4000 times larger than the smallest. This large size range posed a major challenge

to image analysis. The solution, based on Haar Wavelet Analysis (HWT) was to autoadaptively adjust the sizes of HWT

analysis squares: larger squares for parts of the image that contained larger particles, and progressively smaller squares

working upward to the finest particles at the top of the sedimented soil column. From each analysis square, a single HWT

index value, correlated to the size of the soil particles within the area, is determined. The particle sizes from across the

entire image are combined to form the soil’s PSD. The new autoadaptive analysis square sizing method was utilized on five

sand specimens taken from the same parent material but with varying gradations, including finer and coarser sands, smaller

and larger particle size ranges, and a challenging gap-graded material. The results showed strong agreement with results by

sieving.
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1 Introduction

A soil’s particle size distribution (PSD) is an essential

index property in geomechanics, geotechnical engineering,

and related fields for classifying coarse-grained soils. The

PSD, along with particle shape and relative density, also

provide an initial estimate of soil properties such as com-

pressibility, the angle of internal friction and soil unit

weight [1–20]. The traditional method for determining a

soil’s PSD is through sieving, which, as Ohm et al. [15]

discuss, is costly and energy- and time-intensive. There-

fore, the use of image-based methods for determining PSDs

has been expanding.

When soil particles settle through water, they naturally

sort by size. The particles will deposit in an assembly with

the coarsest grains at the bottom and progressively finer

particles grading to the top. Ohm and Hryciw [14] showed

that image analysis of such a sorted soil, following depo-

sition through a laboratory column of water can produce

the soil’s particle size distribution (PSD). They referred to

their system as ‘‘SedImaging’’ (short for sediment

imaging).

Mathematical wavelet analysis has become a powerful

tool in various civil engineering disciplines and related

fields including tunneling [5], constitutive modeling of

soils [13], structural dynamics [3], geophysics [16], seis-

mology [21, 11], seismic exploration [2], site characteri-

zation [4], sedimentary geology [17], and soil particle

characterization [19, 18]. Ohm and Hryciw [14] utilized

wavelet analysis in their SedImaging system to generate

PSDs for sands.

The image analysis developed by Ohm and Hryciw

utilizes a Haar [6] Wavelet Transform (HWT) to produce

hundreds of data points for the PSD. Each data point comes
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from a small square section of the captured image. The

‘‘analysis squares’’ have hitherto been user-defined and of

equal size, typically 128 pixel 9 128 pixel. There are

hundreds of such squares in a grid pattern covering the

entire captured image. Since porosities in the sedimented

soil column are relatively uniform [8] each analysis square

represents the same volume percentage of the specimen’s

soil solids.

The HWT-based method does not determine the actual

size of individual particles. Instead, it utilizes the image

grayscale distribution to yield one data point representing

the size of the particles in an analysis square. To work, the

HWT method requires that an analysis square be small

enough that the particles contained within it are approxi-

mately the same size. At the same time, the analysis square

must be large enough so that it contains a statistically

significant number of particles for the grayscale analysis.

Until now, the range of particle sizes that could be

analyzed by SedImaging was limited to medium and fine

sands (2.0 to 0.075 mm) per the Unified Soil Classification

System. The percentage of fines can also be determined

using a pre-washing technique [22]. This paper presents an

advanced HWT technique, which more than doubles the

range of particles that can be sized: up to 4.75 mm. Thus,

PSDs covering the full range of coarse to fine sands (be-

tween US Standard sieves No. 4 and No. 200), can now be

determined.

The expansion of the particle size range was made pos-

sible by new SedImaging hardware shown in Fig. 1. This

new system is called the Sed360. Unlike its square-sectioned

predecessors [14, 22, 24], the Sed360 uses a cylindrical

sedimentation column with a 25.4 mm (1.0 in) diameter.

After a soil specimen sediments through a 1.8 m (6 ft) water

column and settles at the base as shown in Fig. 2a, the col-

umn is rotated on a precisely controlled circular stage.

Images of the sorted soil are captured from a fixed camera

location during rotation. Narrow vertical image strips are

collected at 4� increments and stitched to form an ‘‘un-

wrapped image’’ of the specimen’s surface as shown in

Fig. 2b. The ‘‘unwrapped’’ image of a sorted specimen

allowsmuch larger particles to be analyzed thanwas possible

with earlier SedImaging systems. Compete hardware details

of the Sed360 and the procedure for stitching and analyzing

the images is given in Ventola and Hryciw [23].

With the expanded testable particle size range afforded

by the Sed360, the use of a fixed, user-defined analysis

square for the HWT method is no longer viable. The square

must adapt to the size of the particles within it. This paper

shows why this is necessary and presents an autoadaptive

approach that tailors analysis squares’ size to the size of the

particles within them.

1.1 The Haar wavelet transform (HWT) analysis
for sedimaging

To understand the need for variable HWT analysis squares,

a short introduction to the Haar Wavelet Transform, as it is

Fig. 1 The Sed360 hardware (adapted from Ventola and Hryciw [23])

20 mm

(a) (b)

Fig. 2 Soil specimen in the Sed360. a Image captured during

sedimentation column rotation, b Unwrapped view of the soil

specimen perimeter
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used with SedImaging, is useful. A formal mathematical

description was given by Hryciw et al. [7] and interested

readers are encouraged to refer to it. Nievergelt [12] pro-

vides a broader explanation of wavelet mathematics. Here,

a less rigorous description, sufficient for this paper’s needs,

is presented.

For the HWT, an analysis square must be 2n 9 2n pix2 in

size where n has, until now, typically been seven (i.e. 27

= 128 pixels). Since sedimentation through water sorts a

soil specimen by particle size, each of the HWT analysis

squares contains particles of approximately the same size.

As mentioned previously, relative uniformity of particle

sizes within each analysis square is critical to the analysis.

Figure 3 shows the grayscale version of the soil from

Fig. 2. Overlaying the image is a grid of 256 9 256 pix2

analysis squares. It is easy to see that the grid is too fine for

the largest particles at the bottom. It is less obvious that the

grid is too coarse for the smallest particles at the top, but

this will be demonstrated in Sect. 2.2.

For each and every one of the analysis squares in Fig. 3,

such as the single one shown in Fig. 4, an ‘‘Energy’’ (E) is

computed at n ‘‘decomposition levels’’ (DL). At the first

DL, E1 reflects the magnitude of the difference in grayscale

values of adjacent pixels throughout the analysis square.

The Energy at the second DL, E2, reflects the difference

between average grayscale values of adjacent 2 9 2 pix2

areas throughout the analysis square. At the third DL, E3 is

a measure of the difference of average grayscale values

between adjacent 4 9 4 pix2 areas, and so on. The greater

the difference in averaged grayscale values between com-

pared areas, the larger the E. Regardless of n, at the final

decomposition level, En quantifies the difference in average

grayscale values between the four quadrants of the analysis

square.

Many sands are composed of multicolored grains, or at

least different shades of the same color. The important

benefit of this is that an analysis area’s E will be largest at

the DL at which the pixel area of ‘‘grayscale averaging’’

approximately coincides with the size of the soil particles

within the analysis square. This point is illustrated in

Fig. 4, which shows the distribution of E by DL (Fig. 4a)

for the example analysis square called out in Fig. 3. Also

shown in Fig. 4 are the grids corresponding to the grays-

cale averaging areas at the 5th (16 9 16 pix2), 6th

(32 9 32 pix2), and 7th (64 9 64 pix2) DLs. To the right of

each of the three gridded analysis squares, pixel values

have been replaced with each area’s average grayscale. As

compared to the 5th and 7th DLs, the differences in average

grayscale values of adjacent grid areas is more pronounced

at the 6th DL. Thus, the E is greatest around the 6th DL. By

visual observation of Fig. 4, the particle size is best

approximated by the size of the grid at the 6th level, where

E is largest.

At a fixed image magnification, Energy distributions

shift to the right (to higher DLs) with increasing particle

size. Shin and Hryciw [18] observed that the centroid of the

area (CA) under the E vs. DL plot correlated very well with

the size of particles in the analysis square (where particle

size is defined by sieve opening). The CA for the example

analysis square in Fig. 4 is 5.07. A calibration curve

between CA and the Pixels per Particle Diameter (PPD)

was established by Hryciw et al. [9]. This calibration curve

is plotted in Fig. 5 and given by the equation:

PPD ¼ CA

2:4

� �5:1

ð1Þ

The HWT analysis is performed for all of the analysis

squares (in Fig. 3), the CA values are computed for each

square, and the corresponding PPDs are found by Eq. 1.

The PPD values are then converted to actual particle sizes

using the known image magnification in units of pixels/

mm. The particle sizes are ranked from largest to smallest

and plotted as the soil’s PSD.

Fig. 3 Sample soil specimen from Fig. 2 with an overlaid grid of

256 9 256 pix2
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2 Motivation

With the expanded range of testable soil particle sizes

afforded by the new Sed360, the accuracy of the existing

HWT-based analysis method required reexamination. Two

significant issues were revealed: (1) The existing PPD-CA

calibration (Eq. 1) required an update, and (2) Using a

fixed HWT analysis area size (regardless of the area’s pixel

dimensions) to evaluate an entire non-uniform soil speci-

men yields inaccurate PSDs. These two issues motivated

development of the new, autoadaptive HWT image anal-

ysis approach described herein.

2.1 The new PPD-CA calibration

The original PPD-CA calibration (Eq. 1) was developed

using older camera technology and a narrower particle size

range. PPD values ranged only between 2 and 60. With

new Sed360 hardware and the expanded particle size range,

PPDs can now range to above 200. This warranted an

investigation into how well Eq. 1 fits data at these much

higher PPDs. To perform this recalibration, sand particles

were sieved into 11 narrow size ranges as listed in Table 1.

The sand is a glacio-fluvial material referred to as ‘‘2NS’’

by the Michigan Department of Transportation [10].

(a)

(b) (c)

(d)

CA = 5.07

Fig. 4 Example of the HWT method used with SedImaging. a Energy versus decomposition level, b grayscale averaging areas for the 5th, c 6th,
and d 7th decomposition levels
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The CA values for the 504 analysis squares listed in

Table 1 were determined and are plotted versus the cor-

responding mid-PPD values in Fig. 5. Equation 1 (solid

red line) remains a good fit for PPDs of 4.1, 5.9, and 8.9.

However, at higher PPDs, the calibration points are better

fitted by:

PPD ¼ 2:5 CA�1:15ð Þ ð2Þ

Equation 2 is a straight line in the semi-log scale of

Fig. 5. This equation was obtained by fitting the data above

PPD = 15 to maximize the coefficient of determination,

R2. Hryciw et al. [7] anticipated that when camera tech-

nology advances to higher resolutions, the PPD-CA

calibration would be linear of the form given by Eq. 2. At

the same time, there is good reason for the flattening of the

curve below PPD & 15. When PPDs are low, the E values

are high at low DLs. Because there is no data below

DL = 1, the ‘‘E curves’’ are truncated at the 1st decompo-

sition level. This results in an increasing compression of

CA values as PPD moves downward from about 15 (i.e. CA

& 4).

Ideally, a single equation would fit the entire PPD

range, but at the present time, this would require a drastic

change to image acquisition. Camera magnifications would

have to be increased so that PPDs are always greater than

15. In other words, the finest (0.075 mm) sand particles

would require PPD = 15. This in turn would require a

camera magnification of 200 pixels/mm (about four times

the current magnification). Unfortunately, this would

decrease the camera’s field of view so much that several

photos in the vertical direction would be needed, possibly

at different camera magnifications, to photograph the entire

soil specimen. Such complexity would make Sed360 test-

ing cumbersome. Therefore, to maintain simplicity of the

Sed360 hardware (as well as the analysis) the authors

recommend using the following piece-wise PPD-CA

calibration:

PPD ¼
CA

2:4

� �5:1

Eq:1ð Þ if CA� 4:0

2:5 CA�1:15ð Þ Eq:2ð Þ if CA[ 4:0

8><
>: ð3Þ

Equation 3 is highlighted in yellow in Fig. 5. The R2

value of Eq. 3 for the calibration data is 0.993. Equation 3

is used for obtaining all of the HWT-based PSD results

presented in this paper.

Fig. 5 PPD-CA calibration using the Sed360 data from Table 1

Table 1 2NS sand ranges for Sed360 calibration testing

Size range no. Sieve range Size range [mm] Corresponding

PPD rangea
Mid PPD Number of analysis squares

(i.e. data points in Fig. 5)

1 No. 4 to No. 5 4.75–4.00 233.2–196.4 214.8 42

2 No. 5 to No. 6 4.00–3.35 196.4–164.5 180.5 46

3 No. 7 to No. 8 2.80–2.36 137.5–115.9 126.7 45

4 No. 10 to No. 12 2.00–1.70 98.2–83.5 90.8 35

5 No. 14 to No. 18 1.40–1.00 68.7–49.1 58.9 28

6 No. 20 to No. 25 0.85–0.71 41.7–34.9 38.3 30

7 No. 30 to No. 35 0.60–0.50 29.5–24.6 27.0 22

8 No. 40 to No. 50 0.425–0.300 20.9–14.7 17.8 72

9 No. 70 to No. 100 0.212–0.150 10.4–7.4 8.9 66

10 No. 100 to No. 170 0.150–0.090 7.4–4.4 5.9 80

11 No. 170 to No. 200 0.090–0.075 4.4–3.7 4.1 38

R 504

aImage magnification = 49.1 pix/mm
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2.2 Impact of different-sized HWT analysis
squares

While the establishment of Eq. 3 is crucial to accurately

characterize the expanded particle size range in the

Sed360, the greater improvement (and the main focus of

this paper) stems from the need for autoadaptive determi-

nation of the HWT analysis square sizes. To illustrate this

need, Fig. 6 presents the PSDs for the sand shown in

Figs. 2 and 3. This image was analyzed using the HWT-

based method four separate times. Each time, a single

analysis square size was used for the entire image. Sieving

results following ASTM C136/C136M-19 [1] are also

shown.

Figure 6 reveals that none of the four PSDs using uni-

sized analysis squares matches the full range of sieve-based

results. Only the PSD using 1024 9 1024 pix2 analysis

squares correctly sizes the coarse sand. Conversely, only

the 128 9 128 pix2 analysis squares correctly size the

finest sand. Figure 6 confirms that variable size windows

are needed to correctly characterize specimens containing

particles over the full spectrum of sand sizes; larger squares

should be used for coarser sand, and smaller squares for

finer sand. In response to these findings, a procedure was

developed to autoadaptively select the sizes of the analysis

squares to suit the various particle sizes.

3 Autoadaptive sizing of analysis squares:
energy distributions

The great majority of E-distributions follow a pattern as

shown in (Figs. 4 and 7). These ideal distributions display

low E at low DLs, gradually rise with increasing DL, then

steepen and peak at a midrange DL. The E then mono-

tonically decreases back to low levels at the highest DLs.

When a distribution follows this quasi-parabolic pattern,

particle sizes determined by Eq. (3) will be accurate and

reliable. We therefore refer to E-distributions such as those

in Figs. 4 and 7 as ‘‘acceptable’’.

On occasion, an E-distribution does not follow an

acceptable pattern. In such cases, Eq. (3) does not yield an

accurate PPD. Figure 8 shows examples of such undesir-

able E-distributions. In Fig. 8a the analysis square is too

small for the particle size and thus, the E-distribution fails

to decrease at high DLs. This truncation of the E-distri-

bution results in an inappropriately low computed CA value

and underestimation of PPD by Eq. (3). A similar,

although less pronounced underestimation of CA can also

occur for an E-distribution that peaks at the second largest

(n-1) DL. In this case (not shown in Fig. 8), the analysis

square is still too small, and should not be used.

The analysis square in Fig. 8b is too large because it

contains particles with a wide range of sizes. Larger sand

particles are at the bottom of the square, with progressively

finer sand above. The corresponding E-distribution peaks

Fig. 7 Examples of analysis squares with ‘‘acceptable’’ E-distributions. a analysis square containing smaller particles, and b square containing

larger particles

Fig. 6 PSD results for the same sand specimen image using different

sizes of HWT analysis squares
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around DL = 5 to 6 before decreasing. However because of

the wide range of soil particle sizes in the analysis square,

the energy distribution begins to increase again at DL = n-

1 and n. The reason for this E increase is that at DL = n-1

and n, large areas of averaged grayscale values are being

compared to other large areas of averaged grayscales.

When particles of greatly different sizes are contained

within compared areas, the averaged grayscale values can

differ enough to cause the increases in E at these higher

DLs.

Another example of unusual features impacting the E-

distribution is shown in Fig. 8c. Like the E-distribution in

Fig. 8b, the one in Fig. 8c also increases at the final

decomposition level, n. Here, the E increase is caused by

the proximity of similarly colored particles. Three large

light-colored particles in Fig. 8c occupy almost 50% of the

top half of this analysis square. Moreover, the bottom left

quadrant of Fig. 8c contains a very dark particle. Because

of the large areas of high contrasting grayscale values and

their location within the analysis square, the E at the final

DL jumps up. This upturn in E at the last DL shifts CA to

the right and causes an overestimation of particle size.

It is important to emphasize that while the E-distribu-

tions in Fig. 8b and c are both ‘‘unacceptable’’, the causes

of the undesirable increasing E at the highest DLs are

different. In Fig. 8b, the analysis square contains a range of

particle sizes that is too large. Conversely, the size of the

analysis square in Fig. 8c is actually ‘‘acceptable’’; it

contains particles of about the same size (i.e. the square is

not too big) and it also contains enough soil particles (i.e.

the square is sufficiently large). Instead, the ‘‘unaccept-

ability’’ regarding Fig. 8c is due to the happenstance

proximity of certain-colored soil particles. While Fig. 8b

and c have similarly shaped ‘‘unacceptable’’ E-distribu-

tions, the autoadaptive analysis square sizing method will

use different procedures for addressing these two

situations.

4 The autoadaptive sizing of analysis
squares

4.1 Basic principles

The autoadaptive analysis square sizing is predicated on

four principles:

(a) It is a reasonable assumption that soil particles of the

same size are located at the same elevation of a

sorted Sed360 specimen. Therefore, the E-distribu-

tions of all analysis squares at the common elevation

are collectively used for the selection of the analysis

area size. The same square size is then assigned for a

given elevation across the entire width of the image.

Fig. 8 Examples of analysis squares with ‘‘unacceptable’’ E-distributions. a HWT analysis square is too small relative to the soil particles,

b range of particle sizes is too large and c energy curve impacted by particle coloring
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(b) The distinctions between ‘‘acceptable’’ and ‘‘unac-

ceptable’’ E-distributions discussed with Figs. 7 and

8 are utilized by the autoadaptive procedure. Accept-

able E-distributions are used ‘‘as is’’ while unac-

ceptable distributions are used after being adjusted.

The adjustment procedure is discussed in Sect. 4.2.

(c) Larger analysis squares are preferred for larger

particle sizes because larger analysis squares can

be decomposed to more (higher) levels, and thus, the

E-distribution is less likely to be truncated at

DL = n. With less truncation, the computed CA will

yield a more reliable PPD by Eq. (3).

(d) Despite the preference for larger analysis squares as

noted in the third principle, the smallest ‘‘accept-

able’’ analysis squares are used for better resolution

of particle sizes. Even if a larger analysis square

yields an ‘‘acceptable’’ E-distribution, the E-distri-

butions of the contained smaller analysis areas are

investigated for acceptability before final selection of

an analysis square size.

Figure 9 illustrates principle (d). Here, a 2048 9 2048

pix2 analysis area contains coarse sand particles. Based on

the discussion of ‘‘acceptable’’ E-distributions in Fig. 7, the

E-distribution for this large 2048 9 2048 pix2 area is

‘‘acceptable’’. It exhibits a peak at one of the mid-range

CA2048 = 6.71
D = 3.29 mm

CA1024 = 6.53
D = 2.79 mm 

CA1024 = 6.51
D = 2.75 mm

CA1024 = 6.80
D = 3.58 mm 

CA1024 = 6.51
D = 4.11 mm 

Fig. 9 Example illustrating guiding principle (d) of the autoadaptive sizing method of HWT analysis squares
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DLs and E is low at the upper levels. Using Eq. 3 and a

known camera magnification, the size of this area’s parti-

cles is found to be D = 3.29 mm. When the square is

quartered, the 1024 9 1024 pix2 areas reveal four E-dis-

tributions that are also ‘‘acceptable’’. The top two

1024 9 1024 pix2 areas yield particle sizes of 2.79 and

2.75 mm which, as expected, are smaller than the one

determined for the entire 2048 9 2048 pix2 area. The

bottom two 1024 9 1024 pix2 areas yield larger particle

sizes of 3.58 and 4.11 mm. The size difference between

particles in the top and bottom halves of the 2048 9 2048

pix2 area is visible by eye in Fig. 9. In summary, while the

2048 9 2048 pix2 analysis area’s E-distribution was ‘‘ac-

ceptable’’, using the smaller (and also acceptable)

1024 9 1024 pix2 areas leads to more accurate particle

sizes.

4.2 Procedure

After a soil specimen is sedimented, photographed, and

‘‘unwrapped’’, it is ready for the autoadaptive analysis

window sizing by the following procedure:

(1) The entire soil specimen is discretized into

2048 9 2048 pix2, then 1024 9 1024 pix2,

512 9 512 pix2, 256 9 256 pix2, and finally,

128 9 128 pix2 HWT analysis squares.

(2) The E-distributions are computed for all of the

analysis squares. When the E-distribution takes an

upward turn at high DLs, the high E values are

automatically set to zero by the computer code. This

same zeroing of E at high DLs was performed during

the calibration that produced Eq. (3).

(3) Selection of the appropriate size of analysis squares

by the code is automatically determined using the

flow chart in Fig. 10. The investigation begins with

the largest analysis square size of 2048 9 2048 pix2.

Analysis starts with the lowest row of 2048 9 2048

pix2 analysis squares in the image and progresses

upward. With each new 2048 9 2048 pix2 row,

Fig. 10 is used from ‘‘Start’’. The smallest allowable

analysis square size anywhere in the image is set at

128 9 128 pix2.

(4) Using the appropriate analysis square sizes deter-

mined by Fig. 10, the CA values for all of the areas

are computed. Equation (3) converts the CA values

to PPD, and with the known camera magnification,

the actual particle size representing the analysis

square is computed.

(5) Since analysis squares have varying sizes, the

particle sizes are weighted by the size of the analysis

squares when developing the PSD.

5 Results

Five soil specimens were tested in the Sed360 using the

autoadaptive analysis square sizing method. The stitched

‘‘unwrapped’’ views of these specimens are in Fig. 11. The

specimens contain varying amounts of coarse (4.75 to

2 mm), medium (2 to 0.425 mm), and fine sand (0.425 to

0.075 mm). The exception is Specimen B, which contains

only coarse and fine sand. The same 2NS parent soil was

used for all five engineered specimens so that the study

would focus only on the performance of the autoadaptive

method on different size gradations, rather than on different

soil types. For comparison of the HWT image-based

method to sieving results for other soils, readers are

referred to Ohm and Hryciw [14], Ventola and Hryciw

[24], Ventola et al. [22], and Ventola and Hryciw [23].

Figures 12, 13, 14, 15, and 16 show the grayscale

images of the five specimens. Overlaying each of these

images is a grid showing the analysis squares autoadap-

tively selected by the code. All five specimens required

analysis squares ranging from 128 9 128 pix2 to

1024 9 1024 pix2. Although 2048 9 2048 pix2 areas were

the starting point in all five cases, no such large analysis

area was found to be appropriate. The resulting PSDs are

also plotted in Figs. 12, 13, 14, 15, and 16 with compar-

isons to sieving results. Table 2 summaries the PSD-

derived parameters (D60, Cu etc.). To emphasize the benefit

of the autoadaptive method, Table 2 also lists the PSD

parameters obtained by using the older approach of uni-

sized analysis squares, in this case, only 256 9 256 pix2.

The 256 9 256 pix2 results are clearly inferior to the

autoadaptive results and therefore, are not plotted in

Figs. 12, 13, 14, 15, and 16 and will not be further

discussed.

6 Analysis of results

As seen in Figs. 12, 13, 14, 15, and 16, for all five of the

sand specimens, the coarsest sand particles that were first to

settle at the base of the sedimentation column require lar-

ger HWT analysis squares; as finer sand particles settle

overtop larger ones, progressively smaller analysis squares

were automatically adopted. Because of the different

window sizes, the coarser portions of the sands’ Sed360

PSDs contain fewer data points while the finer sand por-

tions of the PSDs have more points. Naturally, for the

specimens with greater percentages of coarse sand (Spec-

imens A, B, and C), more of the larger (1024 9 1024 pix2

and 512 9 512 pix2) analysis squares were employed than

for the specimens with more fine sand (Specimens D and

E). These trends are visualized in the stacked bar graphs in
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Fig. 17. About 50% of Specimens B and E are fine sand,

which is reflected in the high number of the smallest

analysis square (128 9 128 pix2) being employed for these

two specimens.

The gap-graded Specimen B (Fig. 13a) illustrates an

important success of the autoadaptive method. Specimens

A, C, D, and E have a continuous and uninterrupted flow of

larger HWT analysis squares from the bottom of the ima-

ges to progressively smaller squares moving up the image.

By contrast, in the middle of Specimen B near the interface

between coarse and fine sand, 512 9 512 pix2 analysis

squares were adopted. Above them there is an immediate

jump to 128 9 128 pix2 squares. This is a logical and

expected result for a gap-graded sand. More interestingly,

above the row of smaller squares, larger 256 9 256 pix2

squares were selected by the autoadaptive procedure. Here,

the small sand particles dictate the use of the smallest

squares (128 9 128 pix2), but various locations of different

particle colors necessitated two rows of larger squares

(256 9 256 pix2) above the two rows of smaller squares.

To elaborate on this observation, had smaller analysis

squares been used in this region, clustered black particles

within the lighter colored sand could lead to undesired

upturns in E-distributions at the highest decomposition

Fig. 10 Flow chart followed in Step 3 of the autoadaptive HWT analysis square sizing method
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levels. The autoadaptive procedure eliminates this problem

by effectively ‘‘diluting’’ the local effects over larger

256 9 256 pix2 areas. The topic of gap-graded sands will

be visited again in a separate discussion in Sect. 6.2.

6.1 Comparison of Sed360 and sieving results

Overall there is very good agreement between the

autoadaptive Sed360 PSD and the sieving results for all

five sand specimens. In all five cases, the percentages of

fine sand by the autoadaptive method and by sieving (see

Table 2) are virtually identical. This excellent agreement is

also seen in Figs. 12, 13, 14, 15, and 16 where at

0.425 mm, the Sed360 and sieving curves coincide. How-

ever, at the tail end of the curves, the autoadaptive Sed360

typically undersizes the smallest particles. This could be

due to small errors in the manual cropping of Sed360

images. Or, ambient light may be illuminating the tops of

the soil specimens, thus making the top row of analysis

areas appear to contain larger particles than are actually

(a)                                     (b)                                         (c)           

(d)                                        (e)

20 mm

Fig. 11 Specimens tested having the following size percentages per sieve analysis (coarse/medium/fine): a 67/23/10, b 50/0/50, c 37/51/12, d 31/

46/23, and e 10/40/50
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128x128 pix
2

256x256 pix
2

512x512 pix
2

1024x1024 pix
2

(a)                           (b)                           

Fig. 12 Sed360 Results for Specimen A. a Autoadaptively determined analysis squares used to generate the HWT-based PSD, b PSD results

128x128 pix
2

256x256 pix
2

512x512 pix
2

1024x1024 pix
2

(a)                           (b)                           

Fig. 13 Sed360 Results for Specimen B. a Autoadaptively determined analysis squares used to generate the HWT-based PSD, b PSD results
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128x128 
2

256x256 
2

512x512 
2

1024x1024 
2

(a)                           (b)                           

pix

pix

pix

pix

Fig. 14 Sed360 Results for Specimen C. a Autoadaptively determined analysis squares used to generate the HWT-based PSD, b PSD results

128x128 pix
2

256x256 pix
2

512x512 pix
2

1024x1024 pix
2

(a)                           (b)                           

Fig. 15 Sed360 Results for Specimen D. a Autoadaptively determined analysis squares used to generate the HWT-based PSD, b PSD results
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present. Future research will address this relatively minor

issue.

At the coarse end of the PSDs, the autoadaptive Sed360

method seems to undersize particles slightly. This is most

evident and pronounced in Specimen E shown in Fig. 16.

To understand why this occurs, Specimen E’s row of

1024 9 1024 pix2 analysis squares in Fig. 16a is

examined. There are not enough coarse sand particles to

fully fill up these four large analysis areas; the coarse sand

particles fill only the bottom half of these 1024 9 1024

pix2 squares, while smaller sand particles fill the top half of

this row. The HWT results for these analysis squares are

like that in the Fig. 9 example. In both instances, for an

analysis area that contains a range of particle sizes, the

128x128 pix
2

256x256 pix
2

512x512 pix
2

1024x1024 pix
2

(a)                           (b)                           

Fig. 16 Sed360 Results for Specimen E. a Autoadaptively determined analysis squares used to generate the HWT-based PSD, b PSD results

Table 2 Details and results of the five sands tested in the Sed360

Item Specimen A Specimen B Specimen C Specimen D Specimen E

Sed360 Sieve Sed360 Sieve Sed360 Sieve Sed360 Sieve Sed360 Sieve

256a Autob 256a Autob 256a Autob 256a Autob 256a Autob

Specimen size [g] 96.8 93.0 100.3 97.8 91.4

Coarse sand [%] 2 44 67 1 35 50 2 31 37 1 24 31 0 8 10

Medium sand [%] 56 48 23 23 17 0 68 59 51 59 53 46 42 42 40

Fine sand [%] 42 8 10 76 48 50 30 10 12 40 23 23 58 50 50

D60 [mm] 0.88 2.10 2.60 0.34 1.70 2.20 0.90 1.80 1.90 0.70 1.40 1.50 0.43 0.54 0.60

D30 [mm] 0.36 1.40 1.80 0.23 0.23 0.23 0.42 0.96 1.00 0.38 0.50 0.50 0.21 0.20 0.21

D10 [mm] 0.31 0.45 0.40 0.16 0.13 0.10 0.31 0.43 0.30 0.24 0.22 0.21 0.14 0.12 0.10

Cu
c 2.8 4.7 6.5 2.1 13.1 22.0 2.9 4.2 6.3 2.9 6.4 7.1 3.1 4.5 6.0

Cc
d 0.5 2.1 3.1 1.0 0.2 0.2 0.6 1.2 1.8 0.9 0.8 0.8 0.7 0.6 0.7

aUsing a fixed HWT analysis area size of 256 pixel by 256 pixel
bUsing the autoadaptive HWT analysis area sizing procedure from Fig. 10
cCoefficient of Uniformity, Cu = D60/D10

dCoefficient of Curvature, Cc = (D30)
2/(D60 x D10)
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HWT-determined particle size is smaller than the largest

particles in the area, but larger than the finest particles. The

possible solution to this in Fig. 9 was to quarter the larger

analysis square. However using smaller squares for the

coarse sand particles in Specimen E is not feasible (i.e.

50% of the row’s energy curves would violate the rules of

the autoadaptive HWT window sizing procedure), and

ultimately the reason why the Sed360 PSD undersizes the

coarse sand portion of the specimen. One solution to this

problem is using a larger overall specimen size, but other

remedies may exist that will be explored in the future.

6.2 Discussion of gap-graded sands

To explain why the Sed360 PSD reports 17% medium sand

in the gap-graded Specimen B when the mix was created

with only coarse and fine sand, the three rows of

512 9 512 pix2 analysis squares in Fig. 13a are examined.

These rows are located at the interface between the fine and

coarse sand. In Fig. 18 the data points in the Sed360 PSD

are color-coded to the analysis squares in these rows.

As expected, the analysis squares that appear to contain

only fine sand (the green-colored squares in Fig. 18) yield

particle size values (the green circle data points in Fig. 18)

that fall within the fine sand range of the Sed360 PSD.

Similarly, the analysis squares that appear to contain only

coarse sand (pink squares) have particle sizes (pink circle

data points) that are within or very near the coarse sand

range of the PSD.

The remaining areas in these three rows of analysis

squares (the brown, cyan, and dark blue squares) corre-

spond to the PSD data points that plot within the medium

sand range. The three sets contain various proportions of

fine and coarse sand. The brown areas contain mostly fine

sand. Thus, the corresponding brown PSD data points lie at

the finer end of the medium sand size range. The dark blue

squares contain mostly coarse sand; thus, the dark blue

Sed360 PSD data points lie in the coarser end of the

medium size range. Lastly, the cyan areas are those that

contain a more even mix of coarse and fine sand. As such,

their points lie closer to the middle of the medium sand

range. The HWT-based particle sizes for the brown, cyan,

and dark blue analysis squares are essentially providing a

weighted average for the varying amounts of coarse and

fine sands in these areas. In doing so, the Sed360 PSD

erroneously concludes that there is some medium-sized

sand in Specimen B.

It is worth noting that Specimen B was intentionally

engineered to test the limits of the Sed360 for a severely

gap-graded sand. With particles between 2.0 and 0.425 mm

entirely absent from this specimen, penetration of the pores

in the coarse sand by fine sand particles was guaranteed. A

naturally-occurring gap-graded sand would typically not

have such a wide range of particles sizes missing entirely.

Fig. 17 Composition breakdown of the five specimens by percent. a Sand type percentages within each specimen according to sieve results, and

b percentage of the specimen images (Figs. 12, 13, 14, 15, and 16) analyzed using each of the autoadaptively-selected HWT square sizes
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Even small amounts of medium-sized particles would

create a sand filter that would limit the pore ‘‘clogging’’.

Better agreement should therefore be expected between the

Sed360 and sieve PSDs for naturally-occurring gap-graded

sands.

7 Conclusions

The hardware developments of the Sed360 afforded the

expansion of testable soils by SedImaging to include the

entire sand range according to the Unified Soil Classifica-

tion System (4.75 to 0.075 mm; No. 4 sieve to No. 200

Fig. 18 Investigating the HWT analysis squares at the coarse and fine sand interface in Specimen B
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sieve). The expansion of testable soils necessitated a

reexamination of the existing HWT-based image analysis

method used to generate the PSDs of soil tested by SedI-

maging. In doing so, the calibration equation used in the

method has been updated. More significantly, a new

method has been created that autoadaptively adjusts the

size of the HWT analysis areas to more accurately deter-

mine particle size distributions for the expanded range of

particle sizes. Five specimens of sand with varying gra-

dations and amounts of coarse, medium, and fine sand were

tested and analyzed using the new autoadaptive HWT-

based image analysis method. Strong agreement between

the Sed360 and sieve results was observed when the vari-

able window sizes were used.
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