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Abstract

The Sed360 is a semi-automated image-based system for generating Particle Size Distributions (PSDs) of sands from an
image of a sedimented soil specimen. The system expanded the size range of tested soils over its predecessors to include
the entire range of sands, from 4.75 to 0.075 mm per the Unified Soil Classification System. In terms of exposed surface
area, the largest particles are more than 4000 times larger than the smallest. This large size range posed a major challenge
to image analysis. The solution, based on Haar Wavelet Analysis (HWT) was to autoadaptively adjust the sizes of HWT
analysis squares: larger squares for parts of the image that contained larger particles, and progressively smaller squares
working upward to the finest particles at the top of the sedimented soil column. From each analysis square, a single HWT
index value, correlated to the size of the soil particles within the area, is determined. The particle sizes from across the
entire image are combined to form the soil’s PSD. The new autoadaptive analysis square sizing method was utilized on five
sand specimens taken from the same parent material but with varying gradations, including finer and coarser sands, smaller
and larger particle size ranges, and a challenging gap-graded material. The results showed strong agreement with results by
sieving.
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1 Introduction

A soil’s particle size distribution (PSD) is an essential
index property in geomechanics, geotechnical engineering,
and related fields for classifying coarse-grained soils. The
PSD, along with particle shape and relative density, also
provide an initial estimate of soil properties such as com-
pressibility, the angle of internal friction and soil unit
weight [1-20]. The traditional method for determining a
soil’s PSD is through sieving, which, as Ohm et al. [15]
discuss, is costly and energy- and time-intensive. There-
fore, the use of image-based methods for determining PSDs
has been expanding.
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When soil particles settle through water, they naturally
sort by size. The particles will deposit in an assembly with
the coarsest grains at the bottom and progressively finer
particles grading to the top. Ohm and Hryciw [14] showed
that image analysis of such a sorted soil, following depo-
sition through a laboratory column of water can produce
the soil’s particle size distribution (PSD). They referred to
their system as “SedImaging” (short for sediment
imaging).

Mathematical wavelet analysis has become a powerful
tool in various civil engineering disciplines and related
fields including tunneling [5], constitutive modeling of
soils [13], structural dynamics [3], geophysics [16], seis-
mology [21, 11], seismic exploration [2], site characteri-
zation [4], sedimentary geology [17], and soil particle
characterization [19, 18]. Ohm and Hryciw [14] utilized
wavelet analysis in their Sedlmaging system to generate
PSDs for sands.

The image analysis developed by Ohm and Hryciw
utilizes a Haar [6] Wavelet Transform (HWT) to produce
hundreds of data points for the PSD. Each data point comes

@ Springer


http://orcid.org/0000-0001-6603-9707
http://crossmark.crossref.org/dialog/?doi=10.1007/s11440-023-01856-x&amp;domain=pdf
https://doi.org/10.1007/s11440-023-01856-x

5342

Acta Geotechnica (2023) 18:5341-5358

from a small square section of the captured image. The
“analysis squares” have hitherto been user-defined and of
equal size, typically 128 pixel x 128 pixel. There are
hundreds of such squares in a grid pattern covering the
entire captured image. Since porosities in the sedimented
soil column are relatively uniform [8] each analysis square
represents the same volume percentage of the specimen’s
soil solids.

The HWT-based method does not determine the actual
size of individual particles. Instead, it utilizes the image
grayscale distribution to yield one data point representing
the size of the particles in an analysis square. To work, the
HWT method requires that an analysis square be small
enough that the particles contained within it are approxi-
mately the same size. At the same time, the analysis square
must be large enough so that it contains a statistically
significant number of particles for the grayscale analysis.

Until now, the range of particle sizes that could be
analyzed by SedImaging was limited to medium and fine
sands (2.0 to 0.075 mm) per the Unified Soil Classification
System. The percentage of fines can also be determined
using a pre-washing technique [22]. This paper presents an
advanced HWT technique, which more than doubles the
range of particles that can be sized: up to 4.75 mm. Thus,
PSDs covering the full range of coarse to fine sands (be-
tween US Standard sieves No. 4 and No. 200), can now be
determined.

The expansion of the particle size range was made pos-
sible by new Sedlmaging hardware shown in Fig. 1. This
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Fig. 1 The Sed360 hardware (adapted from Ventola and Hryciw [23])
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new system is called the Sed360. Unlike its square-sectioned
predecessors [14, 22, 24], the Sed360 uses a cylindrical
sedimentation column with a 25.4 mm (1.0 in) diameter.
After a soil specimen sediments through a 1.8 m (6 ft) water
column and settles at the base as shown in Fig. 2a, the col-
umn is rotated on a precisely controlled circular stage.
Images of the sorted soil are captured from a fixed camera
location during rotation. Narrow vertical image strips are
collected at 4° increments and stitched to form an “un-
wrapped image” of the specimen’s surface as shown in
Fig. 2b. The “unwrapped” image of a sorted specimen
allows much larger particles to be analyzed than was possible
with earlier SedImaging systems. Compete hardware details
of the Sed360 and the procedure for stitching and analyzing
the images is given in Ventola and Hryciw [23].

With the expanded testable particle size range afforded
by the Sed360, the use of a fixed, user-defined analysis
square for the HWT method is no longer viable. The square
must adapt to the size of the particles within it. This paper
shows why this is necessary and presents an autoadaptive
approach that tailors analysis squares’ size to the size of the
particles within them.

1.1 The Haar wavelet transform (HWT) analysis
for sedimaging

To understand the need for variable HWT analysis squares,
a short introduction to the Haar Wavelet Transform, as it is

(®)

Fig. 2 Soil specimen in the Sed360. a Image captured during
sedimentation column rotation, b Unwrapped view of the soil
specimen perimeter



Acta Geotechnica (2023) 18:5341-5358

5343

used with SedImaging, is useful. A formal mathematical
description was given by Hryciw et al. [7] and interested
readers are encouraged to refer to it. Nievergelt [12] pro-
vides a broader explanation of wavelet mathematics. Here,
a less rigorous description, sufficient for this paper’s needs,
is presented.

For the HWT, an analysis square must be 2" x 2" pix” in
size where n has, until now, typically been seven (i.e. 2’
= 128 pixels). Since sedimentation through water sorts a
soil specimen by particle size, each of the HWT analysis
squares contains particles of approximately the same size.
As mentioned previously, relative uniformity of particle
sizes within each analysis square is critical to the analysis.
Figure 3 shows the grayscale version of the soil from
Fig. 2. Overlaying the image is a grid of 256 x 256 pix>
analysis squares. It is easy to see that the grid is too fine for
the largest particles at the bottom. It is less obvious that the
grid is too coarse for the smallest particles at the top, but
this will be demonstrated in Sect. 2.2.

For each and every one of the analysis squares in Fig. 3,
such as the single one shown in Fig. 4, an “Energy” (E) is
computed at n “decomposition levels” (DL). At the first
DL, E; reflects the magnitude of the difference in grayscale
values of adjacent pixels throughout the analysis square.
The Energy at the second DL, E,, reflects the difference
between average grayscale values of adjacent 2 x 2 pix>

4096 pix

Figure 4 B :
example

6144 pix

Fig. 3 Sample soil specimen from Fig. 2 with an overlaid grid of
256 x 256 pix’

areas throughout the analysis square. At the third DL, E; is
a measure of the difference of average grayscale values
between adjacent 4 x 4 pix” areas, and so on. The greater
the difference in averaged grayscale values between com-
pared areas, the larger the E. Regardless of n, at the final
decomposition level, E, quantifies the difference in average
grayscale values between the four quadrants of the analysis
square.

Many sands are composed of multicolored grains, or at
least different shades of the same color. The important
benefit of this is that an analysis area’s E will be largest at
the DL at which the pixel area of “grayscale averaging”
approximately coincides with the size of the soil particles
within the analysis square. This point is illustrated in
Fig. 4, which shows the distribution of E by DL (Fig. 4a)
for the example analysis square called out in Fig. 3. Also
shown in Fig. 4 are the grids corresponding to the grays-
cale averaging areas at the 5th (16 x 16 pix?), 6th
(32 x 32 pix?), and 7th (64 x 64 pix?) DLs. To the right of
each of the three gridded analysis squares, pixel values
have been replaced with each area’s average grayscale. As
compared to the 5th and 7th DLs, the differences in average
grayscale values of adjacent grid areas is more pronounced
at the 6th DL. Thus, the E is greatest around the 6th DL. By
visual observation of Fig. 4, the particle size is best
approximated by the size of the grid at the 6th level, where
E is largest.

At a fixed image magnification, Energy distributions
shift to the right (to higher DLs) with increasing particle
size. Shin and Hryciw [18] observed that the centroid of the
area (CA) under the E vs. DL plot correlated very well with
the size of particles in the analysis square (where particle
size is defined by sieve opening). The CA for the example
analysis square in Fig. 4 is 5.07. A calibration curve
between CA and the Pixels per Particle Diameter (PPD)
was established by Hryciw et al. [9]. This calibration curve
is plotted in Fig. 5 and given by the equation:

PPD = (%)5'1 (1)

The HWT analysis is performed for all of the analysis
squares (in Fig. 3), the CA values are computed for each
square, and the corresponding PPDs are found by Eq. 1.
The PPD values are then converted to actual particle sizes
using the known image magnification in units of pixels/
mm. The particle sizes are ranked from largest to smallest
and plotted as the soil’s PSD.

@ Springer



5344

Acta Geotechnica (2023) 18:5341-5358

400

CA =5.07

X

3 4

5 6 7 8

Decomposition Level

(a)

(d)

Fig. 4 Example of the HWT method used with SedImaging. a Energy versus decomposition level, b grayscale averaging areas for the 5th, ¢ 6th,

and d 7th decomposition levels
2 Motivation

With the expanded range of testable soil particle sizes
afforded by the new Sed360, the accuracy of the existing
HWT-based analysis method required reexamination. Two
significant issues were revealed: (1) The existing PPD-CA
calibration (Eq. 1) required an update, and (2) Using a
fixed HWT analysis area size (regardless of the area’s pixel
dimensions) to evaluate an entire non-uniform soil speci-
men Yyields inaccurate PSDs. These two issues motivated
development of the new, autoadaptive HWT image anal-
ysis approach described herein.

@ Springer

2.1 The new PPD-CA calibration

The original PPD-CA calibration (Eq. 1) was developed
using older camera technology and a narrower particle size
range. PPD values ranged only between 2 and 60. With
new Sed360 hardware and the expanded particle size range,
PPDs can now range to above 200. This warranted an
investigation into how well Eq. 1 fits data at these much
higher PPDs. To perform this recalibration, sand particles
were sieved into 11 narrow size ranges as listed in Table 1.
The sand is a glacio-fluvial material referred to as “2NS”
by the Michigan Department of Transportation [10].
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Fig. 5 PPD-CA calibration using the Sed360 data from Table 1

The CA values for the 504 analysis squares listed in
Table 1 were determined and are plotted versus the cor-
responding mid-PPD values in Fig. 5. Equation 1 (solid
red line) remains a good fit for PPDs of 4.1, 5.9, and 8.9.
However, at higher PPDs, the calibration points are better
fitted by:

PPD = 2.5(CA-115) (2)

Equation 2 is a straight line in the semi-log scale of
Fig. 5. This equation was obtained by fitting the data above
PPD = 15 to maximize the coefficient of determination,
R?. Hryciw et al. [7] anticipated that when camera tech-
nology advances to higher resolutions, the PPD-CA

Table 1 2NS sand ranges for Sed360 calibration testing

calibration would be linear of the form given by Eq. 2. At
the same time, there is good reason for the flattening of the
curve below PPD =~ 15. When PPDs are low, the E values
are high at low DLs. Because there is no data below
DL = 1, the “E curves” are truncated at the 1% decompo-
sition level. This results in an increasing compression of
CA values as PPD moves downward from about 15 (i.e. CA
~ 4).

Ideally, a single equation would fit the entire PPD
range, but at the present time, this would require a drastic
change to image acquisition. Camera magnifications would
have to be increased so that PPDs are always greater than
15. In other words, the finest (0.075 mm) sand particles
would require PPD = 15. This in turn would require a
camera magnification of 200 pixels/mm (about four times
the current magnification). Unfortunately, this would
decrease the camera’s field of view so much that several
photos in the vertical direction would be needed, possibly
at different camera magnifications, to photograph the entire
soil specimen. Such complexity would make Sed360 test-
ing cumbersome. Therefore, to maintain simplicity of the
Sed360 hardware (as well as the analysis) the authors
recommend using the following piece-wise PPD-CA
calibration:

CA

5.1
= 1)if CA<4.
PPD = (2.4) (Eq.1)if CA<40

2.5(CA=115)(Eq.2) if CA > 4.0

(3)

Equation 3 is highlighted in yellow in Fig. 5. The R?
value of Eq. 3 for the calibration data is 0.993. Equation 3
is used for obtaining all of the HWT-based PSD results
presented in this paper.

Size range no. Sieve range Size range [mm] Corresponding Mid PPD Number of analysis squares
PPD range® (i.e. data points in Fig. 5)
1 No. 4 to No. 5 4.75-4.00 233.2-196.4 214.8 42
2 No. 5 to No. 6 4.00-3.35 196.4-164.5 180.5 46
3 No. 7 to No. 8 2.80-2.36 137.5-115.9 126.7 45
4 No. 10 to No. 12 2.00-1.70 98.2-83.5 90.8 35
5 No. 14 to No. 18 1.40-1.00 68.7-49.1 58.9 28
6 No. 20 to No. 25 0.85-0.71 41.7-34.9 383 30
7 No. 30 to No. 35 0.60-0.50 29.5-24.6 27.0 22
8 No. 40 to No. 50 0.425-0.300 20.9-14.7 17.8 72
9 No. 70 to No. 100 0.212-0.150 10.4-7.4 8.9 66
10 No. 100 to No. 170 0.150-0.090 7.4-4.4 59 80
11 No. 170 to No. 200 0.090-0.075 4.4-3.7 4.1 38

X 504

“Image magnification = 49.1 pix/mm
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2.2 Impact of different-sized HWT analysis
squares

While the establishment of Eq. 3 is crucial to accurately
characterize the expanded particle size range in the
Sed360, the greater improvement (and the main focus of
this paper) stems from the need for autoadaptive determi-
nation of the HWT analysis square sizes. To illustrate this
need, Fig. 6 presents the PSDs for the sand shown in
Figs. 2 and 3. This image was analyzed using the HWT-
based method four separate times. Each time, a single
analysis square size was used for the entire image. Sieving
results following ASTM C136/C136M-19 [1] are also
shown.

Figure 6 reveals that none of the four PSDs using uni-
sized analysis squares matches the full range of sieve-based
results. Only the PSD using 1024 x 1024 pix” analysis
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Fig. 6 PSD results for the same sand specimen image using different
sizes of HWT analysis squares

Energy

1 n
Decomposition Level
(a)

squares correctly sizes the coarse sand. Conversely, only
the 128 x 128 pix> analysis squares correctly size the
finest sand. Figure 6 confirms that variable size windows
are needed to correctly characterize specimens containing
particles over the full spectrum of sand sizes; larger squares
should be used for coarser sand, and smaller squares for
finer sand. In response to these findings, a procedure was
developed to autoadaptively select the sizes of the analysis
squares to suit the various particle sizes.

3 Autoadaptive sizing of analysis squares:
energy distributions

The great majority of E-distributions follow a pattern as
shown in (Figs. 4 and 7). These ideal distributions display
low E at low DLs, gradually rise with increasing DL, then
steepen and peak at a midrange DL. The E then mono-
tonically decreases back to low levels at the highest DLs.
When a distribution follows this quasi-parabolic pattern,
particle sizes determined by Eq. (3) will be accurate and
reliable. We therefore refer to E-distributions such as those
in Figs. 4 and 7 as “acceptable”.

On occasion, an E-distribution does not follow an
acceptable pattern. In such cases, Eq. (3) does not yield an
accurate PPD. Figure 8 shows examples of such undesir-
able E-distributions. In Fig. 8a the analysis square is too
small for the particle size and thus, the E-distribution fails
to decrease at high DLs. This truncation of the E-distri-
bution results in an inappropriately low computed CA value
and underestimation of PPD by Eq. (3). A similar,
although less pronounced underestimation of CA can also
occur for an E-distribution that peaks at the second largest
(n-1) DL. In this case (not shown in Fig. 8), the analysis
square is still too small, and should not be used.

The analysis square in Fig. 8b is too large because it
contains particles with a wide range of sizes. Larger sand
particles are at the bottom of the square, with progressively
finer sand above. The corresponding E-distribution peaks

Energy

L
1 n
Decomposition Level
(b)

Fig. 7 Examples of analysis squares with “acceptable” E-distributions. a analysis square containing smaller particles, and b square containing

larger particles
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Fig. 8 Examples of analysis squares with “unacceptable” E-distributions. a HWT analysis square is too small relative to the soil particles,
b range of particle sizes is too large and ¢ energy curve impacted by particle coloring

around DL = 5 to 6 before decreasing. However because of
the wide range of soil particle sizes in the analysis square,
the energy distribution begins to increase again at DL = n-
1 and n. The reason for this E increase is that at DL = n-1
and n, large areas of averaged grayscale values are being
compared to other large areas of averaged grayscales.

When particles of greatly different sizes are contained
within compared areas, the averaged grayscale values can
differ enough to cause the increases in E at these higher
DLs.

Another example of unusual features impacting the E-
distribution is shown in Fig. 8c. Like the E-distribution in
Fig. 8b, the one in Fig. 8c also increases at the final
decomposition level, n. Here, the E increase is caused by
the proximity of similarly colored particles. Three large
light-colored particles in Fig. 8c occupy almost 50% of the
top half of this analysis square. Moreover, the bottom left
quadrant of Fig. 8c contains a very dark particle. Because
of the large areas of high contrasting grayscale values and
their location within the analysis square, the E at the final
DL jumps up. This upturn in E at the last DL shifts CA to
the right and causes an overestimation of particle size.

It is important to emphasize that while the E-distribu-
tions in Fig. 8b and c are both “unacceptable”, the causes
of the undesirable increasing E at the highest DLs are
different. In Fig. 8b, the analysis square contains a range of
particle sizes that is too large. Conversely, the size of the

analysis square in Fig. 8c is actually “acceptable”; it
contains particles of about the same size (i.e. the square is
not too big) and it also contains enough soil particles (i.e.
the square is sufficiently large). Instead, the ‘“unaccept-
ability” regarding Fig. 8c is due to the happenstance
proximity of certain-colored soil particles. While Fig. 8b
and ¢ have similarly shaped “unacceptable” E-distribu-
tions, the autoadaptive analysis square sizing method will
use different procedures for addressing these two
situations.

4 The autoadaptive sizing of analysis
squares

4.1 Basic principles

The autoadaptive analysis square sizing is predicated on
four principles:

(a) Itis areasonable assumption that soil particles of the
same size are located at the same elevation of a
sorted Sed360 specimen. Therefore, the E-distribu-
tions of all analysis squares at the common elevation
are collectively used for the selection of the analysis
area size. The same square size is then assigned for a

given elevation across the entire width of the image.

@ Springer
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Fig. 9 Example illustrating guiding principle (d) of the autoadaptive sizing method of HWT analysis squares

(b)

()

The distinctions between “acceptable” and “unac-
ceptable” E-distributions discussed with Figs. 7 and
8 are utilized by the autoadaptive procedure. Accept-
able E-distributions are used “as is” while unac-
ceptable distributions are used after being adjusted.
The adjustment procedure is discussed in Sect. 4.2.
Larger analysis squares are preferred for larger
particle sizes because larger analysis squares can
be decomposed to more (higher) levels, and thus, the
E-distribution is less likely to be truncated at
DL = n. With less truncation, the computed CA will
yield a more reliable PPD by Eq. (3).

@ Springer

(d)

Despite the preference for larger analysis squares as
noted in the third principle, the smallest “accept-
able” analysis squares are used for better resolution
of particle sizes. Even if a larger analysis square
yields an “acceptable” E-distribution, the E-distri-
butions of the contained smaller analysis areas are
investigated for acceptability before final selection of
an analysis square size.

Figure 9 illustrates principle (d). Here, a 2048 x 2048

pix” analysis area contains coarse sand particles. Based on

the discussion of “acceptable” E-distributions in Fig. 7, the
E-distribution for this large 2048 x 2048 pix* area is
“acceptable”. It exhibits a peak at one of the mid-range
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DLs and E is low at the upper levels. Using Eq. 3 and a
known camera magnification, the size of this area’s parti-
cles is found to be D =3.29 mm. When the square is
quartered, the 1024 x 1024 pix® areas reveal four E-dis-
tributions that are also “acceptable”. The top two
1024 x 1024 pix? areas yield particle sizes of 2.79 and
2.75 mm which, as expected, are smaller than the one
determined for the entire 2048 x 2048 pix*> area. The
bottom two 1024 x 1024 pix* areas yield larger particle
sizes of 3.58 and 4.11 mm. The size difference between
particles in the top and bottom halves of the 2048 x 2048
pix” area is visible by eye in Fig. 9. In summary, while the
2048 x 2048 pix” analysis area’s E-distribution was “ac-
ceptable”, wusing the smaller (and also acceptable)
1024 x 1024 pix” areas leads to more accurate particle
sizes.

4.2 Procedure

After a soil specimen is sedimented, photographed, and
“unwrapped”, it is ready for the autoadaptive analysis
window sizing by the following procedure:

(1) The entire soil specimen is discretized into
2048 x 2048 pix’, then 1024 x 1024 pix?,
512 x 512 pix?, 256 x 256 pix?, and finally,
128 x 128 pix? HWT analysis squares.

(2) The E-distributions are computed for all of the
analysis squares. When the E-distribution takes an
upward turn at high DLs, the high E values are
automatically set to zero by the computer code. This
same zeroing of E at high DLs was performed during
the calibration that produced Eq. (3).

(3) Selection of the appropriate size of analysis squares
by the code is automatically determined using the
flow chart in Fig. 10. The investigation begins with
the largest analysis square size of 2048 x 2048 pix”.
Analysis starts with the lowest row of 2048 x 2048
pix> analysis squares in the image and progresses
upward. With each new 2048 x 2048 pix> row,
Fig. 10 is used from “Start”. The smallest allowable
analysis square size anywhere in the image is set at
128 x 128 pix”.

(4) Using the appropriate analysis square sizes deter-
mined by Fig. 10, the CA values for all of the areas
are computed. Equation (3) converts the CA values
to PPD, and with the known camera magnification,
the actual particle size representing the analysis
square is computed.

(5) Since analysis squares have varying sizes, the
particle sizes are weighted by the size of the analysis
squares when developing the PSD.

5 Results

Five soil specimens were tested in the Sed360 using the
autoadaptive analysis square sizing method. The stitched
“unwrapped” views of these specimens are in Fig. 11. The
specimens contain varying amounts of coarse (4.75 to
2 mm), medium (2 to 0.425 mm), and fine sand (0.425 to
0.075 mm). The exception is Specimen B, which contains
only coarse and fine sand. The same 2NS parent soil was
used for all five engineered specimens so that the study
would focus only on the performance of the autoadaptive
method on different size gradations, rather than on different
soil types. For comparison of the HWT image-based
method to sieving results for other soils, readers are
referred to Ohm and Hryciw [14], Ventola and Hryciw
[24], Ventola et al. [22], and Ventola and Hryciw [23].

Figures 12, 13, 14, 15, and 16 show the grayscale
images of the five specimens. Overlaying each of these
images is a grid showing the analysis squares autoadap-
tively selected by the code. All five specimens required
analysis squares ranging from 128 x 128 pix® to
1024 x 1024 pix*. Although 2048 x 2048 pix” areas were
the starting point in all five cases, no such large analysis
area was found to be appropriate. The resulting PSDs are
also plotted in Figs. 12, 13, 14, 15, and 16 with compar-
isons to sieving results. Table 2 summaries the PSD-
derived parameters (D4, C,, etc.). To emphasize the benefit
of the autoadaptive method, Table 2 also lists the PSD
parameters obtained by using the older approach of uni-
sized analysis squares, in this case, only 256 x 256 pix>.
The 256 x 256 pix* results are clearly inferior to the
autoadaptive results and therefore, are not plotted in
Figs. 12, 13, 14, 15, and 16 and will not be further
discussed.

6 Analysis of results

As seen in Figs. 12, 13, 14, 15, and 16, for all five of the
sand specimens, the coarsest sand particles that were first to
settle at the base of the sedimentation column require lar-
ger HWT analysis squares; as finer sand particles settle
overtop larger ones, progressively smaller analysis squares
were automatically adopted. Because of the different
window sizes, the coarser portions of the sands’ Sed360
PSDs contain fewer data points while the finer sand por-
tions of the PSDs have more points. Naturally, for the
specimens with greater percentages of coarse sand (Spec-
imens A, B, and C), more of the larger (1024 x 1024 pix2
and 512 x 512 pix?) analysis squares were employed than
for the specimens with more fine sand (Specimens D and
E). These trends are visualized in the stacked bar graphs in
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Fig. 10 Flow chart followed in Step 3 of the autoadaptive HWT analysis square sizing method

Fig. 17. About 50% of Specimens B and E are fine sand,
which is reflected in the high number of the smallest
analysis square (128 x 128 pix?) being employed for these
two specimens.

The gap-graded Specimen B (Fig. 13a) illustrates an
important success of the autoadaptive method. Specimens
A, C, D, and E have a continuous and uninterrupted flow of
larger HWT analysis squares from the bottom of the ima-
ges to progressively smaller squares moving up the image.
By contrast, in the middle of Specimen B near the interface
between coarse and fine sand, 512 x 512 pix” analysis
squares were adopted. Above them there is an immediate

@ Springer

jump to 128 x 128 pix? squares. This is a logical and
expected result for a gap-graded sand. More interestingly,
above the row of smaller squares, larger 256 x 256 pix*
squares were selected by the autoadaptive procedure. Here,
the small sand particles dictate the use of the smallest
squares (128 x 128 pix?), but various locations of different
particle colors necessitated two rows of larger squares
(256 x 256 pixz) above the two rows of smaller squares.
To elaborate on this observation, had smaller analysis
squares been used in this region, clustered black particles
within the lighter colored sand could lead to undesired
upturns in E-distributions at the highest decomposition
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(d)

(e)

Fig. 11 Specimens tested having the following size percentages per sieve analysis (coarse/medium/fine): a 67/23/10, b 50/0/50, ¢ 37/51/12, d 31/

46/23, and e 10/40/50

levels. The autoadaptive procedure eliminates this problem
by effectively “diluting” the local effects over larger
256 x 256 pix* areas. The topic of gap-graded sands will
be visited again in a separate discussion in Sect. 6.2.

6.1 Comparison of Sed360 and sieving results
Overall there is very good agreement between the

autoadaptive Sed360 PSD and the sieving results for all
five sand specimens. In all five cases, the percentages of

fine sand by the autoadaptive method and by sieving (see
Table 2) are virtually identical. This excellent agreement is
also seen in Figs. 12, 13, 14, 15, and 16 where at
0.425 mm, the Sed360 and sieving curves coincide. How-
ever, at the tail end of the curves, the autoadaptive Sed360
typically undersizes the smallest particles. This could be
due to small errors in the manual cropping of Sed360
images. Or, ambient light may be illuminating the tops of
the soil specimens, thus making the top row of analysis
areas appear to contain larger particles than are actually

@ Springer



5352 Acta Geotechnica (2023) 18:5341-5358

Gravel Coarse Sand Medium Sand Fine Sand Silt/Clay
100 mo— 1 T T T  —

o Séd360‘

o | | | = Sieve

90 o
80 -

70

60

50

40 § i B

Percentage Finer [%)]

. % s
0r b | a 1

20 -

10.0 1.0 0.1
Particle Size [mm]

(a) (b)

Fig. 12 Sed360 Results for Specimen A. a Autoadaptively determined analysis squares used to generate the HWT-based PSD, b PSD results
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Fig. 13 Sed360 Results for Specimen B. a Autoadaptively determined analysis squares used to generate the HWT-based PSD, b PSD results
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Fig. 14 Sed360 Results for Specimen C. a Autoadaptively determined analysis squares used to generate the HWT-based PSD, b PSD results
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Fig. 15 Sed360 Results for Specimen D. a Autoadaptively determined analysis squares used to generate the HWT-based PSD, b PSD results
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Table 2 Details and results of the five sands tested in the Sed360
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Fig. 16 Sed360 Results for Specimen E. a Autoadaptively determined analysis squares used to generate the HWT-based PSD, b PSD results

Item Specimen A Specimen B Specimen C Specimen D Specimen E
Sed360 Sieve  Sed360 Sieve  Sed360 Sieve  Sed360 Sieve  Sed360 Sieve
256" Auto” 256" Auto” 256 Auto” 256" Auto” 256 Auto”
Specimen size [g] 96.8 93.0 100.3 97.8 914
Coarse sand [%] 2 44 67 1 35 50 2 31 37 1 24 31 0 8 10
Medium sand [%] 56 48 23 23 17 0 68 59 51 59 53 46 42 42 40
Fine sand [%] 42 8 10 76 48 50 30 10 12 40 23 23 58 50 50
Dgp [mm] 0.88 2.10 260 034 1.70 220 090 1.80 1.90 070 1.40 1.50 043 054 0.60
Dj;p [mm] 0.36  1.40 1.80 023 0.23 023 042 096 1.00 038 0.50 0.50 021 0.20 0.21
D;o [mm] 031 045 040 0.16 0.13 0.10 031 043 030 024 022 021 014 0.12 0.10
(o 28 47 6.5 2.1 13.1 220 29 42 6.3 2.9 6.4 7.1 3.1 4.5 6.0
ct 0.5 2.1 3.1 1.0 02 0.2 0.6 1.2 1.8 09 08 0.8 0.7 0.6 0.7

“Using a fixed HWT analysis area size of 256 pixel by 256 pixel

"Using the autoadaptive HWT analysis area sizing procedure from Fig. 10

“Coefficient of Uniformity, C, = Dgo/D;g
dCoefficient of Curvature, C, = (D30)*/(Dgo X D;0)

present. Future research will address this relatively minor
issue.

At the coarse end of the PSDs, the autoadaptive Sed360
method seems to undersize particles slightly. This is most
evident and pronounced in Specimen E shown in Fig. 16.
To understand why this occurs, Specimen E’s row of
1024 x 1024 pix*> analysis squares in Fig. 16a is

@ Springer

examined. There are not enough coarse sand particles to
fully fill up these four large analysis areas; the coarse sand
particles fill only the bottom half of these 1024 x 1024
pix* squares, while smaller sand particles fill the top half of
this row. The HWT results for these analysis squares are
like that in the Fig. 9 example. In both instances, for an
analysis area that contains a range of particle sizes, the
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Fig. 17 Composition breakdown of the five specimens by percent. a Sand type percentages within each specimen according to sieve results, and
b percentage of the specimen images (Figs. 12, 13, 14, 15, and 16) analyzed using each of the autoadaptively-selected HWT square sizes

HWT-determined particle size is smaller than the largest
particles in the area, but larger than the finest particles. The
possible solution to this in Fig. 9 was to quarter the larger
analysis square. However using smaller squares for the
coarse sand particles in Specimen E is not feasible (i.e.
50% of the row’s energy curves would violate the rules of
the autoadaptive HWT window sizing procedure), and
ultimately the reason why the Sed360 PSD undersizes the
coarse sand portion of the specimen. One solution to this
problem is using a larger overall specimen size, but other
remedies may exist that will be explored in the future.

6.2 Discussion of gap-graded sands

To explain why the Sed360 PSD reports 17% medium sand
in the gap-graded Specimen B when the mix was created
with only coarse and fine sand, the three rows of
512 x 512 pix” analysis squares in Fig. 13a are examined.
These rows are located at the interface between the fine and
coarse sand. In Fig. 18 the data points in the Sed360 PSD
are color-coded to the analysis squares in these rows.

As expected, the analysis squares that appear to contain
only fine sand (the green-colored squares in Fig. 18) yield
particle size values (the green circle data points in Fig. 18)
that fall within the fine sand range of the Sed360 PSD.
Similarly, the analysis squares that appear to contain only
coarse sand (pink squares) have particle sizes (pink circle

data points) that are within or very near the coarse sand
range of the PSD.

The remaining areas in these three rows of analysis
squares (the brown, cyan, and dark blue squares) corre-
spond to the PSD data points that plot within the medium
sand range. The three sets contain various proportions of
fine and coarse sand. The brown areas contain mostly fine
sand. Thus, the corresponding brown PSD data points lie at
the finer end of the medium sand size range. The dark blue
squares contain mostly coarse sand; thus, the dark blue
Sed360 PSD data points lie in the coarser end of the
medium size range. Lastly, the cyan areas are those that
contain a more even mix of coarse and fine sand. As such,
their points lie closer to the middle of the medium sand
range. The HWT-based particle sizes for the brown, cyan,
and dark blue analysis squares are essentially providing a
weighted average for the varying amounts of coarse and
fine sands in these areas. In doing so, the Sed360 PSD
erroneously concludes that there is some medium-sized
sand in Specimen B.

It is worth noting that Specimen B was intentionally
engineered to test the limits of the Sed360 for a severely
gap-graded sand. With particles between 2.0 and 0.425 mm
entirely absent from this specimen, penetration of the pores
in the coarse sand by fine sand particles was guaranteed. A
naturally-occurring gap-graded sand would typically not
have such a wide range of particles sizes missing entirely.

@ Springer



5356

Acta Geotechnica (2023) 18:5341-5358

Percentage Finer [%]

Gravel

90 -

80

70 -

60

50 -

40

30"

20

Coarse Sand
100+

T
o
o
.c-
°
m

Medium Sand Fine Sand SiltY/Clay
.

o Sed360
| m Sieve

'
'
'
'
'
'
'
'
i
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

Particle Size [mm]

Fig. 18 Investigating the HWT analysis squares at the coarse and fine sand interface in Specimen B

Even small amounts of medium-sized particles would
create a sand filter that would limit the pore “clogging”.
Better agreement should therefore be expected between the
Sed360 and sieve PSDs for naturally-occurring gap-graded

sands.
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7 Conclusions

The hardware developments of the Sed360 afforded the
expansion of testable soils by SedImaging to include the
entire sand range according to the Unified Soil Classifica-
tion System (4.75 to 0.075 mm; No. 4 sieve to No. 200
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sieve). The expansion of testable soils necessitated a
reexamination of the existing HWT-based image analysis
method used to generate the PSDs of soil tested by SedlI-
maging. In doing so, the calibration equation used in the
method has been updated. More significantly, a new
method has been created that autoadaptively adjusts the
size of the HWT analysis areas to more accurately deter-
mine particle size distributions for the expanded range of
particle sizes. Five specimens of sand with varying gra-
dations and amounts of coarse, medium, and fine sand were
tested and analyzed using the new autoadaptive HWT-
based image analysis method. Strong agreement between
the Sed360 and sieve results was observed when the vari-
able window sizes were used.
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