Multiple User Intent Prediction Using
Interacting Multiple Model Joint
Probabilistic Data Association Filter

Tyler Taplin * Alexander E. Lyall ** Ashwin P. Dani ***

* University of Connecticut, Storrs, CT 06269 USA (e-mail:
tyler.taplin@uconn.edu)
** University of Connecticut, Storrs, CT 06269 USA (e-mail:
alexander.lyall@uconn. edu)
*** University of Connecticut, Storrs, CT 06269 USA (e-mail:
ashwin.dani@Quconn.edu)

Abstract: This paper presents a novel method for multi-user motion intent estimation when the
motion is observed by a single sensor. A motion model is associated with each of the activities
carried out by the operator and the end location of which is termed as a motion intent. Such
modeling of intent is useful in human-robot collaborative tasks. The appropriate model selection
is achieved via an interacting multiple model (IMM) filter. When the position measurements
of multiple users originating from one sensor are close to each other, then the measurement to
operator association becomes challenging. A joint probabilistic data association (JPDA) filter is
employed to address this issue. The combined IMM and JPDA filter provides a way to infer the
motion intent of each operator. Simulation results show that the IMM-JPDA filter tracks two
target states reaching toward goal intent in the presence of clutter measurements originating

from the Kinect sensor.

1. INTRODUCTION

Intent inference and/or prediction is a central problem
in human-robot collaboration and human-machine (HM)
teaming (Dani et al., 2020; Villani et al., 2018; Modares
et al., 2017). In manufacturing environment where the
product mix is diverse, a complete automation can be
cost-inefficient and HM teaming is an appropriate level
of automation. Human safety and efficiency of the joint
operation are typically studied in HM teaming (Mumm
and Mutlu, 2011). It is observed in Li and Ge (2014); Liu
et al. (2016); Warrier and Devasia (2016) that incorpo-
rating predicted intent in HM teaming improves the effi-
ciency and safety of collaborative tasks for manufacturing
robotics and automation and other applications.

Various sensing modalities are used to infer the intent in
different application domains, for example, human move-
ment measured using a camera sensor in Mainprice et al.
(2015) or a network of camera sensors in Morato et al.
(2014) for manufacturing applications, heart rate mea-
surement in Kulic and Croft (2007), and ultrasound mea-
surement for muscle activity in Zhang et al. (2019) for
biomedical applications. Based on the application domain,
the interpretation of "intent" can be different. In this
paper, intent inference is defined as a motion/action intent
estimation by using measurements obtained from a Kinect
camera sensor. Methods have been developed to infer user
motion intent using measurements from a camera sensor
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and fusion of motion and gaze cues in Ravichandar and
Dani (2016); Ravichandar et al. (2018); Trombetta et al.
(2020). In Wang et al. (2021), multi-modal data is used
to predict the action intent in human-robot handover
task. In Ravichandar and Dani (2016), the action/motion
intent inference is formulated as a parameter estimation
problem, which is solved by using the maximum likelihood
estimation. The methods in Ravichandar et al. (2018);
Trombetta et al. (2021) formulate the problem in an
interacting multiple model (IMM) and variable-structure
IMM framework Bar-Shalom et al. (2001), respectively.
The method in Trombetta et al. (2021) can handle a
larger number of reaching motion intent using a model set
augmentation (MSA) algorithm. The MSA selects fewer
number of models out of many using constraints from the
reachable workspace and gaze cues. A hyperface convolu-
tion neural network (CNN) method is used to estimate the
gaze direction from the camera images. Information from
the two IMMs is fused, one from the gaze IMM and other
from the reaching motion IMM. These methods are able
to generate promising results when the reaching motion
intent analysis is performed for one user.

In this paper, a novel method to infer motion intent
of multiple users is developed using a combination of a
JPDA filter with an IMM filter. The IMM-JPDA filter
(Blom and Bloem, 2002; Chen and Tugnait, 2001) has
been used for multi-target tracking applications in Chen
and Tugnait (2001) and multi-sensor, multi-target tracking
in Tugnait (2004). In this paper, the IMM-JPDA filter
from Blom and Bloem (2002) is used for goal reaching
motion intent prediction, where each reaching goal motion
is characterised as an intent model. The user or target



Fig. 1. Modeling of motion intent for multiple users.

motions are observed using a 3D camera sensor as shown
in Fig. 1. The problem is formulated as a model selection
problem from various number of possible motion models
per target in the sense of an IMM filter. Since only
one sensor is available for the measurement and many
possible measurements can originate from skeletal tracking
of Kinect camera sensor at a time instance, the association
of sensor measurement to its correct target for state
estimation of user’s motion intent becomes challenging.
To overcome this challenge, a JPDA filter is used, which
computes associations of the measurements of the target’s
previous state to the current motion state before it is used
for updating the state in the IMM filter. Similar to JPDA,
it is assumed that at-most one measurement originates
from the target within the validation region. The rest
of the validated measurements are assumed to be from
clutter. A dynamic neural network (DNN) is trained on
human reaching motion data to produce trajectories from
hand position to a goal location in the single target case,
see Ravichandar et al. (2018); Trombetta et al. (2020).
A combined model is constructed by stacking the states
and evolving the two motion profiles independent of one
another. A contraction constraint developed in Lohmiller
and Slotine (1998) is used such that the motion converges
at the goal location specified in the model. The proposed
method is implemented in simulation using skeletal joint
data obtained from the Kinect sensor. The results show
the ability of the proposed method to interpret correct
reaching motion intent for two targets to two different
objects placed on a workbench.

2. MULTIPLE USER INTENT ESTIMATION
PROBLEM

Consider a human-robot collaborative setup where the
human operators or targets are carrying out a sequence
of tasks to support the robot with its own function,
e.g., picking up an object from different locations and
handing them to the robots for manipulation or assembly,
or carrying out a joint task with the robot, e.g., moving a
large object together. A motion model is associated with
each of the tasks carried out by the targets and the tasks
being considered are goal oriented tasks, where the end
location is known in 3D space. The motion models are
learned a-priori from data and are stored as a library of
models. At each time instance, the motion of the operators
is observed by a Kinect sensor mounted on the robot. After
image processing and skeletal tracking, a noisy position
measurement of the targets is obtained in the senor frame.

Based on the position information, the multi-user intent
estimation problem is formulated as a selection of the
current model under which each of the target’s motion
is currently evolving. Since each of the motion model
is associated with a goal location, the selected model is
used to infer the goal motion intents of the operators
from one sensor. Since multiple operators are observed in
one sensor frame, multiple measurements are extracted
from the frame. In addition, there might be spurious
measurements that originate from the sensor, for instance,
skeletal tracking detects additional joints or some other
object in the scene produces a measurement. To tackle
this scenario, sensor measurement to operator state data
association problem is solved using the JPDA with the
IMM filter. In the next section, motion and measurement
models are presented, which will be used in the combined
IMM-JPDA filter.

3. MOTION AND MEASUREMENT MODELS

Given a set of n € N targets T={1,2,...,n} and m € N
models M = {1,2,...,m} corresponding to a set of m
goal locations G = {g(1),g(2),...,g(m)} s.t. G C R3, let
0}, € M indicate the mode of target ¢ at time k. Consider
the nonlinear discrete time system for each target
x’lbc—i-l = fl(x%vellc)—i_ylzm (1)
where x}c € R? is the state and u,i is i.i.d. multivariate
zero-mean Gaussian noise with the covariance Q% € R33.
The nonlinear function fi(-) is modeled by a DNN of the
form
Fiah, ) = wi + WTa (UTsi(61)) +e (si(61) . (2)
. ) ) T
where s},(6}) = [(m}c —g (6’,’6))T , 1} is the input vector
to the DNN, W € R™*3 and U € R**™ are the constant
weight matrices with ny, hidden layers. The reconstruction

error function €(-) approaches zero as the DNN is fully
trained and the vector Sigmoid activation function

1 1 I

U( )_ |:]__|_e()1 ’ 1+e*(')2’ T ]_-|—e(')d:| ’ <3)
is the element-wise application of the sigmoid function
where d = dim(-). The states of each target are stacked
in a column vector to form the global state vector zj =
[wi;xi; e ,xﬁ] € R3". Similarly, the global noise term
v = [V,i;l/,%;--~ ;Vg] with covariance @, global mode
O, = [9%;9,%;--~ ;0,’;] € R™ and global input vector
51 (0) = [s1(0}); s2(02); - -+ 3 57(0)] are defined. The com-
bined weights, W=1I,,«,,®W and U=1,«,, ®U, are block
diagonal matrices with n blocks and ® is the Kronecker
product. Let the global reconstruction error function be

(5k(61)) = [e (sH(01)) e (s3(62)) -~ 1 (7(67)]. Then
the global model of all n targets is defined as

Tk+1 = f(mkvok)+yka (4)
where the global nonlinear function f(-) is modeled by
f(@r, 0k) = 2 + Wo (U s(0k)) + € (sk(0)) . ()
Calculating the Jacobian of (5) yields

0 0 0
OF _ppyrwr 22 TR (0)
where UT% = Toun ® UT [I343] 03] and —59;() =

diag(o([]1)(1 = o([]1)), o ([2) (T = ([ ]2)), - s o([a) (1 -



a([]a))), the state transition matrix can be approximated

by
no O
axk Eh_1

(7)

A contraction analysis is used to verify that the DNN
exponentially converges to the goal location. Similar to
Trombetta et al. (2020), the discrete time contraction
analysis is performed in accordance with Lohmiller and
Slotine (1998). The optimization problem used to train
the DNN is given by

(W, 0) = arg min{ Ep + rEw} (8)

where Ep = ZZI\E lly; — a;||?, yi € R3T*! represents the
state data zpy1 and a; is the output of 5 and Eyy is the
sum of the squares of the DNN weights, x € R™ is a scalar
parameter of regularizations. The contraction matrix is
determined by using the Jacobian from 7 in the following
inequality

F My Fe — My, < —veMy,  Mp>0 (9

where 7. € R, is a strictly positive constant, Mj, € R3*3
represents the uniformly positive definite (PD) contraction
metric which is a symmetric matrix as given in Lohmiller
and Slotine (1998). The measurement model for target i is
given by 4 o 4

2k = h'(a}) + wj, (10)
where z,?c € R? and w,iC are i.i.d. multivariate zero-
mean Gaussian measurement noise with covariance R €
R3*3. A global measurement model is constructed in a
similar fashion by stacking the vector such that z, =
[24;22;+ -+ ;27] € R3. To include false measurements and
missed detections in the measurement model, a detection
vector ¢ = [b1, B3, -, ¢0]7 is defined such that ¢i €
{0,1} is a Boolean variable that indicates whether target
i is detected, ¢}, = 1, or not, ¢i = 0. Then Dy, = > " | ¢}
is the number of detected targets at time step k. Define
the operator ®, which produces the Dj X n matrix re-
sulting from removing all zero rows from diag{¢y} and
® = ®dRI3«3. Furthermore, let x be a Dy, x Dy, permutation
matrix with ¥ = x ® [3x3, then the set of measurements
originating from detected targets, Zy is given by

Z = XP(bk) 2k (11)
Suppose that from L; measurements there are Dy < L
detected target measurements and Ly = Dy + Cj, where
(' is the number of clutter measurements. Then let Cy, > 0
define the set of measurements for the augmentation of
Ok = [2F; 2;T)T € R3Ex | where 2} are measurements from
clutter. Finally, let 1y, = [}, ¥2, -+ ,%E]T be an indicator
vector introduced to generalize the measurement model
such that a varying number of detected measurements
from the targets and clutter can be incorporated at each
time instance, 1, indicates whether a measurement corre-
sponds to a detected target and ¢} = I« — 1y indicates
if measurement comes from clutter. Based on the indicator
vectors ¢, and 17, the full measurement model including
target and clutter measurements can be expressed as

e = | D(n), (7| G-

Let xF' = xT® () @ [3x3 so that the exact measurement
model can be written

i ye = ®(dn)wk + B(dr)wy.

(12)

(13)

where the set of association events is covered by the
hypotheses (xk, dk)-

4. MULTI-USER INTENT ESTIMATION USING IMM
AND JPDA FILTER

A multi-user motion intent filter is presented in this
section, using a combined IMM-JPDA filter. The IMM
filter is used to select the appropriate model for the ith
operator and JPDA is used to associate the measurement
coming from the sensor frame to the operator for state
estimation. The intent estimation filter is presented in
following steps.

4.1 Interaction/Mizing

In this step the initial state and covariance for each filter
in the IMM of each target ¢ are computed by mixing
the state and covariance from the previous step. Let
i 0 = Pr {6} =0'|0._, =67} be the model transition
probability and pj_1(0%|¢?) be the mixing probability
computed by

i1 Toi 05 fte—1(67)
o (]90) = 00T
[ij,—1(67)
where fi§_1(67) = Y0 moi pipth_1(67), pr—1(67) is the
mode probability of the IMM, the initial state and covari-
ance for ith user and #'th mode is computed by

i2—1|92 (01') = Z uk71(9i|9j)i§;71(9j),
07=1

(14)

(15)

Py (67) = D 1 (6167) %

0i=1

(Plifl (07) + {55271 (67) = &}—1j6 (91)}

{@;_1 (07) =) _1j; <9i)r>

(16)

4.2 Predicted State and Covariance

The predicted state Z computed using the §°th dynamic
model in (4) and the corresponding predicted covariance
are given by

7, (91) = f(jikqw; (6°),6")
P (0') = FiPy_yjo; (6) Fi + Qi

where F}, is the Jacobian of (5).

(17)

4.8 Measurement Validation using Gating

To validate the measurements at time instance k, a gate
V. is defined for each target ¢, which is given by

Vi = {2 [ =2 (007 S100) T -2 (017)] <) (18)
where V}, is an elliptical region centered around z¢ (6%) with
a gate size v € RT and é,@* is obtained by solving the
following maximization problem. Find QA,’C such that

0} = argmaxg; {det S;,(6°)} (19)



where the cross covariance Si(6") for the target i is
computed as follows

Sk (6") = HePj_yjq (0') Hi + Ry (20)

with Hp = I as the Jacobian of the measurement model
in (10). The validated measurements are obtained by
evaluating (18) for each measurement yj. If y, € Vi then
it is considered as a validated measurement and those
lying outside the region, y;, ¢ Vj, are considered as false.
The reduced set of possible detection and permutation
hypothesis at kth time instance for various ¢ is given by

Xi(9).

4.4 Evaluation of Measurement to Target Association and
Measurement Update

The target state xj(0") and the covariance Py(6) are
updated by incorporating the measurements appropriately
weighted by £;7. The filter update equations are given
below.

#(0) = 70 + KL0) (287 00 (0)) (1)
P(0") = Pi(60") — Ki.(0)HLPi(60 (Zﬁiﬁ (")

+ Ki(0) (Zﬂif ') (0 (0 )K;i(e’)
j=1
G ICEIT)

x (iﬁ?’(mvmi)) Ky o9"

where the innovation term is v}’ (0°) = yl — hi(Z (%)),

the filter gain K7 (07) and By (6) term are computed as
follows.

(22)

K, (0') = Pp(0")Hy Si(6°) " (23)
Jrpi\ [@(¢)]*1X*jﬁk(¢a>27n)
e )= Z Zg@ Br(9, X, 0) o

with ®(¢).; and x.; are the ith and jth columns of ®(¢)
and y, and

ﬁk(¢7 >27 0) =
W o ﬁ b (@ X, 0"
=1
><(1 — P (P g (69)), for X € Xi(0)
0, otherwise.
(25)

where cp is the normalizing constant, A is the spatial
density of clutter, P; is the detection probability of the
user %

b6, %, 0) = [(2m)*r det( S0 (67))] " F

1 o
52 mX*]Vk( ) [Sk(é)l)] lyzj(el)

(26)

X exp

The mode probability u}(6%) is updated for targets i =
{1,...,n} and models #° = {1,..,m} using

V=" B¢ %.0)

¢,%,0"

(27)

4.5 Combined State Estimates and Covariance

The combined state and covariance of the IMM-JPDA
filter is then obtained as follows.

0i=1 Xx,¢
P= S S Ao x0 ( Pi0) + [2.(6%) — )
0i=1 X,

(6% - fc;‘f) o8)

which gives the estimated position of the target ¢ and
associated covariance obtained after processing all the
measurements in one sensor frame coming from multiple
targets and background clutter, i.e., false measurement.
The IMM-JPDA filter is implemented for the intent esti-
mation validation as shown in the following section.

5. EXPERIMENTAL RESULTS
5.1 Experimental Setup

Experiments are conducted to validate combined IMM-
JPDA filtering for multi-user intent prediction. A Mi-
crosoft Kinect motion sensor is used to collect skeletal
tracking motion data, and provides the measurements
in Euclidean position coordinates. A prefiltering step is
utilized for smoothing the measurement signal prior to
applying IMM-JPDA filter. Arm motion data of two par-
ticipants reaching for distinct objects on a workbench
is used. In order to highlight the advantages of JPDA
filtering, data includes reaching across different objects on
the workbench in such a manner as to occlude measure-
ments from the sensor. When hand motions cross in the
camera focal plane the Kinect skeletal tracking software
is unable to distinguish hand positions and results in er-
roneous measurements. Another issue arises as targets are
mobile around the workstation. Identifiers for associating
measurements to specific targets are lost when crossing
from one side of the camera view to the other. For these
reasons, experiments were performed in an attempt to
push the limitations of the measurement technique and
provide an ideal testing environment for the application of
IMM-JPDA tracking method to reaching intent inference
problem.

JPDA filtering allows for loosening assumptions that
the identifiers attached to measurements are trustworthy.
In addition, multiple target tracking through combining
JPDA with IMM filtering is insensitive to scenarios in-
volving persistent false alarms and clutter. The identifiable
information of the measurements is removed and the filter
relies on validation regions to narrow down the measure-
ments used in the filter update step. The event space for
two targets reaching toward two goal locations leads to
four models to consider. The IMM distinguishes models



based upon the likelihood that the motion is approaching
a goal location. The contraction constraint provides infor-
mation about which goal is the intended outcome. The
IMM-JPDA filter for intent inference is coded and run in
Matlab R2022b on a laptop with a 2.8GHz Intel Xeon CPU
with 6 cores and 64 GB of RAM.

% goall
% goal2
+  meas
tart
tar2

Fig. 2. Trajectories for multiple targets using IMM-JPDA
filter for scenario 1.

5.2 Model Parameters and Filter Design

In the experiments, the wrist and hand positions for both
the right and left arms of each user are chosen as the
input measurements. The benefit of obtaining multiple
data points for each target, instead of only considering
a single position for each target, is that for situations
when a measurement is unreliable or occluded it may
be ignored while the alternative measurement may still
be processed in the motion model. For our case, this
results in eight measurements to be considered prior to
measurement validation. The initial target information,
i.e., which hand belongs to which target is assumed to
be known at the beginning of the simulation with number
of targets given by the number of detected skeletons the
Kinect sensor tracks. The initial state for the tracking
algorithm is determined by averaging the initial position
of each hand and wrist pair. Goal locations are known and
were determined by selecting pixel locations of objects in
the image of the workspace and transforming them from
the camera frame to the world frame using known intrinsic
parameters of the camera and an estimation of the objects
depth from the Kinect sensor.

For the IMM-JPDA filter, the measurement covariance Ry,
is chosen as 0.5[343, while the process covariance @y for
all the models is selected as 0.1I343. Each motion model is
produced by considering the combinations of targets and
goals. A uniform initial mode probability px_1 is assigned
to the IMM-JPDA filter. The mode transition probability
matrix for two modes is set to (957 0-333). The state
prediction from the IMM is used along with a measurement
gating threshold to determine which measurements to use
for updating each model. A value for gating threshold
~v = 0.1 is chosen to produce a reasonable size gating region
for measurement validation. Validation is performed on the
set of measurements in the region where the probability
of detection for a target is Binomially distributed, with
a probability of detection Py = 0.99. False measurements
are considered to be Poisson distributed processes with a

distribution determined by the expected spatial density
of the clutter A in the validation region. The JPDA filter
results in a set of weights used in calculating the update
step. The weights calculated in the JPDA filter correspond
to the likelihood of measurement to target association and
incorporate the clutter.

5.8 Scenario 1

In the first set of experiments, the reaching motion tasks
are designed to test the ability of the filter without obscur-
ing the measurements with dense clutter or intermittent
sampling rates. For the simple case of two targets reaching
toward two goals, the IMM-JPDA filter is able to estimate
the state in the presence of clutter. Fig. 2 shows the
trajectories for each target’s reaching motion produced by
the method. As seen from Fig. 2, the estimated target
states tend toward the true goal location or intent. In Fig.
4, the Euclidean distance between two target tracks as a
function of time is shown in blue. For this scenario, the
two target motions do not cross each other, which can be
seen from the estimated states of the filter and the track
differences show in Fig. 4.

Fig. 3. Track coalescence in the result of the target
measurements crossing experiment.

5.4 Scenario 2

In the next set of experiments, the IMM-JPDA filter is
tested in a scenario when the operators’ reaching motions
are close to each other, which provides a challenging sce-
nario for the filter to estimate the states of the targets.
Fig. 3 shows the trajectories for each target’s reaching
motion produced by the method. Initially, when the target
measurements are far apart the filter is able to estimate the
states of two targets correctly leading to correct estimation
of the goal location, but as the measurements from two
targets get closer to one another, the estimated target
states coalesce leading to difficulties in estimating the
reaching goal intent. This happens as a result of com-
plete overlap in the measurements within the validation
regions of the targets and can eventually lead to mode
collapse. Fig. 4 shows the difference between tracks for the
corresponding example scenarios in red. The undesirable
behavior is observed due to crossing of targets toward
the end of the experiment. Hypothesis pruning has been
explored in Blom and Bloem (2002) as a means of avoiding
coalescence by disregarding association events which have
a lower likelihood of occurrence. The track difference infor-
mation shown in Fig. 4 can be used to indicate when the
targets are crossing. Furthermore, it provides insight into



whether or not incoming and future measurements should
be trusted, or if additional information from an alternate
sensor is required.
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Fig. 4. Distance between tracks for selected examples
from twelve experiments. The blue line corresponds
to scenario 1 and red line corresponds to scenario 2.

6. CONCLUSION AND FUTURE WORK

A novel multi-user action intent estimation method using
IMM-JPDA filter is presented in this paper. The IMM-
JPDA filter is used to estimate the position states of
two different users from multiple measurements originat-
ing from a Kinect reference frame. The filter first com-
putes a validation region for each target’s state and uses
measurements within the validation region to update the
state estimate. The measurements that are coming from
other joints of the skeleton are treated as a clutter and
weighted appropriately in the filter to update the state
estimate. The methods is validated using a simulation sce-
nario where two user are reaching for two different objects.
Future work will focus on evaluating the performance of
the proposed method on more use cases.
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