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Abstract: Overheadwork involving the construction andmaintenance of civil infrastructure (e.g., tunnels, overpasses, and buildings) is strenu-
ous and fatigue-inducing for human workers and is particularly well-suited for co-robotization. Such work is typically quasi-repetitive, and
on-site robots must adapt to unexpected workface conditions. Methods such as learning from demonstration can leverage human experts’ dem-
onstration to let robots directly learn new skills to perform tasks. This paper proposes a generalized cylinders with orientation approach to teach
robots how to perform quasi-repetitive overhead construction tasks from human demonstration. The demonstration trajectories are first used to
construct a generalized cylinder andgenerate the robot trajectory. To ensure that the construction component (e.g., tunnel lining segment, building
ceiling tile) being installed can satisfy the geometric constraints of the workspace, orientation constraints need to be determined, and the robot
must follow such constraints. A trajectory adaptation and human-in-the-loop refinement approach are developed to refine the robot trajectory.
The proposed method was evaluated in a robot simulator with variable workspace. The results showed that the proposed approach achieves an
improved success rate (82.0%) compared to that demonstrated in previous work (71.3%) and enables overhead construction robots to readily
adapt to new worksite conditions. DOI: 10.1061/(ASCE)CP.1943-5487.0001004. © 2021 American Society of Civil Engineers.
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Introduction

Overhead construction work is particularly stressful and fatigue-
inducing for human workers. Such work typically requires signifi-
cant arm-raising movements that can cause chronic musculoskeletal
disease in workers (e.g., difficulty reaching arms or lifting objects)
(Dong et al. 2011). Overhead construction is common in several
types of projects. For example, ceiling tiles are commonly installed
overhead in residential and commercial buildings. Similarly, in the
construction and maintenance of infrastructures such as bridges,
overpasses, and tunnels (e.g., installing lining segments), human
workers often perform overhead assembly and repair tasks in chal-
lenging work environments.

The adoption of construction robots on job sites has demon-
strated improvement in the safety, the productivity of projects,
and the quality of work (Pan et al. 2018). Similar to applications
in disparate fields such as manufacturing and surgery, where a robot
can assist with repetitive or precise work in narrow workspaces,
robots on construction sites can assist with physically demanding
and repetitive construction tasks. Co-robotization can be particu-
larly beneficial in strenuous work such as overhead construction.
However, unlike manufacturing or surgery robots, where the robots
are typically placed at stationary locations to perform work through
preprogramming or tele-operation, on-site construction robots have
to navigate to different locations in an unstructured environment
to perform work that is often susceptible to loose tolerances and
discrepancies between the designed and built versions (Lundeen
et al. 2017). It is therefore impractical to preprogram a robotic
construction work plan or define it as an optimization problem.
In addition, tele-operated robots to complete construction tasks re-
quires significant training of operators that must include both con-
struction experts as well as robot technicians (Chi et al. 2012).

Imitation Learning for Construction Robots

Imitation learning or learning from demonstration (LfD) methods
eliminate the requirement of preprogramming or tele-operation to
control a robot to accomplish a task. Instead, these methods enable
the robot to imitate the behavior of human experts directly (Argall
et al. 2009). The human worker and the robot coexist in the work-
space to teach and perform construction tasks respectively. Human
experts demonstrate the task to the robot during the teaching
process, and the robot generates models to reproduce the task under
similar yet unidentical circumstances. In the performance phase,
the robot first observes the scene to determine the start and
target locations through scene understanding methods or human
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instructions (Lundeen et al. 2017, 2019). Then, the robot uses the
model to reproduce the task based on the encountered circumstance
under the human worker’s supervision (Liang et al. 2020a). For
typical installation tasks, an experienced worker can pick up and
install construction components in desired locations while the robot
observes the procedure and learns the model. Then, the robot re-
produces such installation tasks at different locations with similar
components.

This procedure of teaching construction robots is, in some as-
pects, comparable to a construction apprenticeship program in-
volved in training new construction workers (Grytnes et al.
2018). The novice construction workers follow instructions from
veteran experts and develop their skills by observing and practicing
the craft. They complete the necessary training and are evaluated
through examinations before being qualified as independent con-
struction craftworkers. The robot imitation learning or LfD meth-
ods have a learning structure that parallels such an apprenticeship
program. The robot develops a model for performing work by
observing demonstrations from expert workers and practicing the
skills through supervision, thereby developing the capability to
adapt the skills to other similar work contexts.

In our previous work, we have developed a visual LfD method
for teaching robots quasi-repetitive construction tasks (Liang et al.
2020a). We first adapted the context translation model to extract the
context from demonstration videos and translate it to the target
scene (Liu et al. 2018). We then applied a reinforcement learning
method, specifically the trust region policy optimization (TRPO)
(Schulman et al. 2015), to generate the robot control policy and
complete a ceiling tile installation process. That study demon-
strated the applicability of the LfD method to construction tasks
but required a sizeable number and variety of demonstration videos
in order to achieve acceptable accuracy and adapt to unforeseen
scenarios. In an attempt to address this limitation, our prior work
also developed an immersive virtual reality (VR)-based online dig-
ital twin for human workers to create rapid demonstrations of con-
struction tasks in various configurations (Wang et al. 2021).

With the VR system, demonstration data can be collected either
by virtual cameras or by directly tracking the pose of manipulated
objects in the virtual environment. First, the use of virtual demon-
stration data requires additional steps for application to physical
robots, such as simulation-to-reality transfer (Zhao et al. 2020)
or a combination of physical and virtual demonstrations (Liang
et al. 2019a). Second, using the pose of manipulated objects and
generating trajectories as demonstration data can mitigate the re-
quirement of scene understanding and the correspondence problem
in the visual demonstration data (Argall et al. 2009; Bach and
Aggarwal 2012). The pose of manipulated objects can be recorded
directly in the virtual environment to ensure the quality of the dem-
onstration data, instead of applying additional processes, such
as visual demonstration that require computer vision methods to
extract features from video. Trajectory-based learning from dem-
onstration approaches utilize trajectory demonstration data to learn
robot paths and have the advantages of minimum parameter tun-
ing requirement and minimum demonstration data requirement
(Ahmadzadeh et al. 2017). Therefore, it is easier for construction
workers to teach robot apprentices construction tasks using the tra-
jectory demonstration.

Research Contribution

In this paper, we develop a trajectory-based learning from demon-
stration method for robot apprentices to learn specific construction
tasks based on trajectory demonstration data. Ceiling tile installa-
tion in preinstalled grids is a common activity in tunnels, subways,

and buildings and is thus chosen as the target quasi-repetitive over-
head construction task to evaluate the robot imitation and compare
the obtained results with the previous state-of-the-art visual LfD
method (Liang et al. 2020a). The ceiling tile installation process
is intuitive to human workers but poses several challenges to con-
struction robots. The proposed method is implemented in the robot
operating system (ROS) and the Gazebo (Koenig and Howard
2004; Quigley et al. 2009) standard physics digital twins for rapid
evaluation and subsequent deployment to physical robots (Liang
et al. 2020b). In terms of the demonstration data, human workers
demonstrate the task using the VR system or control the virtual
robot inside the simulator to complete the task while recording
the trajectory of the construction component (e.g., tile).

During the human-robot collaboration process, the robot first
gathers the tiles from the material staging area and navigates to
the installation workspace using available localization and mapping
algorithms (Xu et al. 2019, 2020). Then, the robot uses sensors
such as cameras or laser scanners to measure the layout of the
suspended grids and acquires the correct geometric information
through adopted scene understanding methods (Lundeen et al.
2017). After gathering all required information and materials, the
human worker indicates the target grid and the installation se-
quence to the robot. With such instruction, the robot can apply the
trajectory-based learning from demonstration method to manipu-
late and place tiles at the target grid locations. Finally, the human
worker inspects the tile alignment and performs any necessary ad-
justments. This workflow allows the robot to perform all physically
demanding construction tasks while the human worker demon-
strates the tasks beforehand and supervises the robot’s work pro-
cess from a safe place. The quality of the robot’s work is also
monitored by the human supervisor.

The remainder of this paper is organized as follows. First,
existing construction robotics literature and robot learning from
demonstration literature are reviewed, and the knowledge gaps
are identified. Second, a trajectory-based learning from demon-
stration method, i.e., generalized cylinders with orientation (GCO)
approach, is introduced to teach robot apprentices various con-
struction tasks. Finally, ceiling tile installation experiments are
conducted in the standard physics Gazebo robot simulator to
evaluate the proposed method and compare its performance with
a state-of-the-art visual LfD method that is based on integrating a
context translation model with reinforcement learning.

Related Work

This section discusses the state-of-the-art in construction robotics
and motivates the need for human-robot collaboration on construc-
tion sites. Second, we review existing work on robot imitation
learning methods and discuss trajectory-based learning from dem-
onstration methods for construction applications.

Robotics in Construction

Construction robots have been sporadically used on construction
sites to assist with heavy-duty tasks (Chung et al. 2010) or navigate
to hazardous or narrow locations to perform construction work
(Beckett and Ross 2017). Each robot has typically been designed
for specific functionality and the performance of a single-task
(Bock and Linner 2016), such as bricklaying (Feng et al. 2015;
Yu et al. 2009), welding (Nagata et al. 1997), or beam assembly
(Chu et al. 2013; Jung et al. 2013; Liang et al. 2017). In order
to analyze the existing research on construction robotics and high-
light the knowledge gaps, we have previously proposed a taxonomy
for human-robot collaboration in construction (Liang et al. 2021).
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Preprogramming, adaptive manipulation, learning from demonstra-
tion, improvisatory control, and full autonomy are the five primary
groups in the taxonomy categorized based on the level of robot
autonomy and human effort in the performance of work.

In the first two levels (i.e., preprogramming and adaptive
manipulation), the human worker plans and controls the robot to
complete a construction task, whereas the robot executes the pre-
defined work plan or uses sensors to make minor adjustments to
the work plan. For example, the tile placement robot, bricklaying
robot, or three-dimensional (3D) printing robot (contour crafting)
(Carneau et al. 2020; Khoshnevis 2004; Vantyghem et al. 2020) are
programmed with the robot code generated by the designed pattern
and executed on-site (King et al. 2014; Yu et al. 2009). Sensors
such as a laser profiler (Lundeen et al. 2017, 2019), force sensor
(Yousefizadeh et al. 2019), or camera (Feng et al. 2015) can help
adjust the preprogrammed work plan or receive remote control
commands from the human worker to resolve any minor issues re-
sulting from as-designed versus as-built discrepancies. Most robots
designed to work in civil infrastructure environments are included
in these two categories [e.g., tunnel or bridge inspection robots
(Bolourian and Hammad 2020; Victores et al. 2011), bridge beam
assembly robots (Yang et al. 2018)]. However, if the quality of the
robot-built component is unacceptable, the human worker has to
demolish the work performed and reconstruct it manually. Any un-
foreseen situations such as arbitrary obstructions or major discrep-
ancies resulting from loose construction tolerances will also
prevent a robot from accomplishing a task (Liang et al. 2020a).

In the last two levels (i.e., improvisatory control and full
autonomy), the robot is expected to plan and execute the work se-
quence to complete a task with the human worker supervising the
process and switching to manual control if necessary. For example,
a drilling robot that has been utilized for landslide consolidation
can autonomously operate, supervised by human workers remotely,
and switch to tele-operation mode when necessary (Molfino et al.
2008). Autonomous navigation robots are used in built environ-
ments or construction sites for maintenance and construction appli-
cations without human control or intervention (Asadi et al. 2018;
Tsuruta et al. 2019), especially for indoor or GPS-denied environ-
ments (Xu et al. 2020). However, these types of robots are unable to
perform routine construction tasks such as drywall installation or
ceiling tile fitting, which require guidance from human workers. In
addition, when a robot encounters an unexpected or unforeseen sit-
uation, the human worker can intervene in the process and control
the robot to complete the task. However, the robot is intrinsically
unaware of how human workers resolve a situation and requires
human assistance every time it encounters similar circumstances.

Based on the previous categorization and the associated litera-
ture review, it is apparent that prior work in construction robotics
has not extensively explored the idea of transferring knowledge and
problem-solving skills from human workers to robots assisting in
the performance of construction work. Such knowledge transfer
can potentially enable robots to learn work tasks directly from hu-
mans and resolve problems that arise in the performance of quasi-
repetitive construction tasks that cannot be readily solved through
optimization approaches alone. For example, the process of ceiling
tile installation requires complex manipulation trajectories that
could be different for various tiles to pass through the grid area
while avoiding collision with utilities that may be present above
the suspended grids. Such encountered workface conditions can
be easily resolved by experienced human workers, and the prospect
of transferring such knowledge to robots through learning from
demonstration or imitation learning methods (Liang et al. 2020a)
offers promise in enabling the robots to perform such work with
increased autonomy.

Robot Learning from Demonstration

Robot learning from demonstration or imitation learning methods
enable a robot to acquire new skills by imitating observed
demonstrations from human experts (Argall et al. 2009) and is
an advantageous approach when the involved skills can neither
be preprogrammed nor expressed as optimization problems
(Ravichandar et al. 2020). LfD methods are typically applied
to manipulation tasks or assembly tasks (Schwenkel and Guo
2019; Zhu and Hu 2018) that can be easily demonstrated by hu-
man experts. Existing LfD methods can be categorized based on
the demonstration methods or learning methods (Liang et al.
2020a; Ravichandar et al. 2020; Torabi et al. 2019). The demon-
stration methods are concerned with how the skills are demon-
strated to the robot, including trajectory demonstration and
passive observation. Conversely, the learning methods are catego-
rized based on how the skills are being learned by the robot,
which includes probabilistic approach, dynamic system approach,
and reward-based approach.

Demonstration Method: Trajectory Demonstration
The trajectory demonstration method belongs in the first group of
demonstration methods, which directly provide the trajectory of the
task to the robot. These types of methods include kinesthetic dem-
onstration, tele-operated demonstration, and extended reality (XR)
demonstration to record the demonstration trajectory. Fig. 1 shows
the categories of the demonstration methods. In the kinesthetic
demonstration, the human expert demonstrates the task by man-
ually moving the robot to the desired waypoints (Calinon et al.
2006). The onboard sensors or external sensors are used to record
the trajectory data, including joint angles, end-effector poses, and
motor torques (Kormushev et al. 2011; Maeda et al. 2017; Song
et al. 2021a; Zahedi et al. 2020). The kinesthetic demonstration
provides an intuitive way to interact with the robot and eliminates
the correspondence problem (Argall et al. 2009), but is limited to
lightweight and small object manipulation (Zhu and Hu 2018).
Thus, it is challenging to apply kinesthetic demonstration to con-
struction tasks where the objects being manipulated are typically
heavy and oversized.

In the tele-operated demonstration, the human expert controls
the robot with a remote controller to demonstrate the task
(Kukliński et al. 2014; Mandlekar et al. 2020). Similar to the kin-
esthetic demonstration, the onboard sensors or external sensors
such as haptic sensors on the controller are used to record the tra-
jectory data (Kormushev et al. 2011). The tele-operated demonstra-
tion supports broader applications such as autonomous helicopter
learning (Abbeel et al. 2010), mobile robot positioning (Argall et al.
2008), and hierarchical tasks learning (Mohseni-Kabir et al. 2015)
due to straightforward and efficient communication of control from
the human. However, in some complicated construction tasks such
as drywall installation, it is not intuitive to control a robot to com-
plete the task using a joystick and requires additional human effort.

Lastly, in the XR demonstration, the use of virtual reality or aug-
mented reality (AR) provides various scenarios for human experts

Demonstration 
Method

Trajectory 
Demonstration

Passive 
Observation

Kinesthetic 
Demonstration

Tele-operating 
Demonstration

XR 
Demonstration

Visual 
Demonstration

Sensors 
Demonstration

Fig. 1. Categories of the demonstration method.
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to demonstrate tasks to the robot (Luebbers et al. 2019; Wang
et al. 2021). The human expert can either control the virtual robot
to demonstrate the task (Zhang et al. 2018) or directly demonstrate
the task in the virtual environment and record the video (Dyrstad
and Mathiassen 2017; Koganti et al. 2018). The trajectory of the
robot or manipulated object can be recorded easily inside the con-
trolled virtual environment to construct the demonstration dataset.
With the assistance of XR, the human expert can demonstrate dif-
ferent construction tasks inside the virtual environment with differ-
ent components and backgrounds.

Demonstration Method: Passive Observation
Passive observation is the second group of demonstration methods
and allows human experts to demonstrate the task directly and uti-
lizes sensors or cameras to collect the demonstration data. The pas-
sive observation is a particularly intuitive way for the human expert
to demonstrate the task, and the robot is not involved during the
demonstration phase. This type of method includes visual demon-
stration and sensor demonstration. In the visual demonstration, the
videos of the demonstration are collected for the robot using cam-
era or motion sensors, and then used to extract features from video
frames or track the motion of humans or objects in the scene
(Fitzgerald et al. 2015; Liu et al. 2018). Visual demonstration is
susceptible to typical computer vision-related challenges such as
occlusion (Liang et al. 2019b).

Motion capture systems provide accurate human whole-body
motion data and can record various human motions, such as lifting
objects for demonstration (Skoglund et al. 2010). However, such
systems have limited applicability for deployment in dynamic
and constantly changing construction environments. In the sensors
demonstration, multiple sensors are used to collect demonstration
data, such as tactile sensors or motion sensors (Edmonds et al.
2017; Kukliński et al. 2014). The trajectory of the human expert’s
movement or the contact force between the human and the object is
collected. Furthermore, the sensor demonstration can also be com-
bined with the visual demonstration to provide abundant and
informative demonstration data (Edmonds et al. 2017; Song et al.
2021b; Zahedi et al. 2020). This type of demonstration method is
usually applicable to tasks requiring contact forces, e.g., fastening
bolts, but needs additional data mapping approach to ensure the
correspondence.

Learning Method
The probabilistic approach, dynamic system approach, and reward-
based approach are three subgroups of the learning method, as
shown in Fig. 2. The probabilistic approach is the first group of
learning methods that encode the feature using probabilistic repre-
sentations and learn the policy. Hidden Markov model (HMM) is
the common probabilistic method applied in LfD to learn the skill
by regression (Calinon et al. 2006, 2010; Zhu and Hu 2018). In
addition, the HMM method can be combined with other probabi-
listic methods to obtain more reliable learning outcomes, such
as the combination of Gaussian mixture regression (GMR) and
Gaussian mixture model (GMM) to obtain smooth trajectories

(Calinon et al. 2006; Jaquier et al. 2019; Song et al. 2021a).
However, these methods usually require extensive parameter tun-
ing to get robust manipulation (Ahmadzadeh and Chernova 2018).
In order to minimize the parameter tuning process, Ahmadzadeh
and Chernova (2018) developed the generalized cylinders–based
LfD method to generate trajectories within the geometry. The ro-
bot trajectory is sampled inside the generalized cylinder (GC)
with three degrees-of-freedom (DOF) world coordinates (X, Y, Z),
and the orientation is randomly determined when applying inverse
kinematics to obtain robot joint angles and control policy. How-
ever, in construction tasks, it is important to consider the manipu-
lation orientation in order to pass (i.e., traverse through) some
specific geometric constraints, especially for overhead construc-
tion. Therefore, this paper proposes the orientation constraint to
significantly advance the GC approach for construction manipu-
lation tasks.

The dynamic system approach is the second group of learning
methods, which utilizes nonlinear dynamic systems to represent
demonstrations and generate trajectories. The dynamic movement
primitives (DMP) method uses the spring-damper model to re-
present the demonstration and GMM to learn the movement
(Ijspeert et al. 2013; Pastor et al. 2009) but also requires an exten-
sive parameter tuning process. Stable estimator of dynamical sys-
tems (SEDS) optimizes the parameters of the dynamic system to
imitate the demonstration as a function of the velocity data
(Khansari-Zadeh and Billard 2011).

Finally, the reward-based approach is the third group of learn-
ing methods, which defines a reward or cost function and opti-
mizes the policy with maximum reward or minimum cost.
However, it is difficult to define a reward or cost function for
the LfD method since it requires assumptions about the task
and the workspace (Ravichandar et al. 2020). Behavior cloning
or trajectory optimization approaches directly use expert demon-
stration data to learn the policy with the assumption that the expert
always provides optimal solutions to the task, and thus the hidden
cost function in the demonstration data is minimal (Bain and
Sammut 1999; Ravichandar et al. 2019). Inverse reinforcement
learning (IRL) methods first infer a hidden reward function using
demonstration data, then apply reinforcement learning (RL) meth-
ods to determine the policy based on the inferred reward function
(Abbeel et al. 2010; Ng and Russell 2000), which requires sig-
nificant computational time. Recent advances in IRL methods
combine the IRL structure with other methods to reduce the com-
putational effort. Generative adversarial imitation learning (GAIL)
(Ho and Ermon 2016; Kinose and Taniguchi 2020) is one example
of combining IRL with generative adversarial networks (GAN)
(Goodfellow et al. 2014).

Imitation learning from observation (IfO) is the special form
of LfD where the robot only has access to state demonstrations
(i.e., visual observation) instead of state-action demonstrations
(i.e., visual observation with expert’s action) (Liu et al. 2018;
Torabi et al. 2019). The challenge of the IfO is how to extract ac-
tions from demonstration states. The dynamics model is the first
type of the IfO method (Edwards et al. 2019; Pavse et al. 2020)
that learns the action from state demonstration using forward or
inverse dynamics models. For example, one of the inverse dynam-
ics methods extracts actions at from state transitions ðst; stþ1Þ in the
demonstration video to train the model, then uses it to determine the
actions for robots to follow (Nair et al. 2017).

Reinforcement learning is the second type of IfO method that
applies GAN to learn the policy (Merel et al. 2017) or manually
defines the reward function (Finn et al. 2017; Liu et al. 2018;
Sermanet et al. 2018). The visual demonstration and reward-based
IfO method has been adapted and applied to quasi-repetitive

Learning 
Method

Probabilistic 
Approach

Reward-based 
Approach

Dynamic System 
Approach

Fig. 2. Categorization of the learning method.
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construction tasks, i.e., ceiling tile installation process, in previous
work (Liang et al. 2019a, 2020a). In this paper, we develop a tra-
jectory demonstration and probabilistic method, i.e., generalized
cylinders with orientation approach, for teaching robots similar
types of processes and advancing the state of the art for comparison
of the results with previous work. The trajectory demonstration and
probabilistic method requires fewer demonstration data from hu-
man workers and results in a faster training process than the other
learning method. The high accuracy and the ability to overcome
uncertainty indicated by literature are also suitable for construction
tasks.

In summary, the proposed generalized cylinders with orientation
approach eliminates the requirement of the extensive parameter
tuning process and large amounts of demonstration data associated
with the probabilistic approach. In addition, the GCO approach also
solves the issues of precise orientation manipulation in the GC
method by using orientation constraints, heavy and large material
in the kinesthetic demonstration, and unintuitive controlling issues
in the tele-operated demonstration by XR demonstration.

Generalized Cylinders with Orientation Approach

The generalized cylinder is a generic representation of an arbitrary
cylinder. The center axis of the cylinder is defined as arbitrary
spline curve ΓðsÞ ¼ ðxðsÞ; yðsÞ; zðsÞÞ and the cross-section boun-
dary of the cylinder is a closed curve γðr; sÞ ¼ ðxðr; sÞ; yðr; sÞÞ
with different shapes. Each cross section along the center axis is
perpendicular to each other. Fig. 3 illustrates an example of GC
with the center axis and three cross sections. The GC can be rep-
resented as

Gðr; sÞ ¼ ΓðsÞ þ xðr; sÞνðsÞ þ yðr; sÞξðsÞ ð1Þ

where ν represents the unit norm vector of the center axis; and
ξ represents the unit binormal vector of the center axis. The GC
has been applied for robotics applications, including collision
detection (Martínez-Salvador et al. 2003), mapping and state esti-
mation (Özaslan et al. 2018), and learning from demonstration
(Ahmadzadeh and Chernova 2018). In this research, we modify
the GC for LfD to suit basic construction manipulation tasks
and further propose a new generalized cylinders with orientation
approach to perform complex construction manipulation tasks.
The strategies of handling unforeseen situations and obstacle avoid-
ance are also developed for human-robot collaboration. Details of
each of these elements are discussed in the following subsections.

Generalized Cylinders for Robot Learning from
Demonstration

For the learning from demonstration approach, the GC is con-
structed from demonstration data and determines the robot trajec-
tory within the GC space. Fig. 4 shows the detailed procedure of the
GC for LfD. First, the demonstration data is preprocessed to obtain
aligned data. Second, the center axis curve and the cross-section
boundary of the GC are calculated using the aligned data. Third,
the GC is constructed using the center axis curve and the set of
cross-section curves. Finally, the new robot trajectory is sampled
within the GC space starting from the new initial pose.

In the first step, the demonstration data is processed and aligned.
The demonstration data is captured using the virtual robot simulator
in Liang et al. (2020a), where the human expert controls the robot
to complete the construction task manually, and the robot’s end-
effector poses are recorded. Since the demonstrations are recorded
separately and manually, they are not aligned with each other and

have some redundant waypoints, e.g., the robot is idle during the
demonstration since the human expert has to ensure a collision-free
manipulation. The group of m demonstration data sets is defined as
Di ¼ ðDi

x;Di
y;Di

zÞ where i ¼ 1; : : : ;m represents ith demonstra-
tion data set, i.e., robot’s end-effector pose in 3D Cartesian
coordinates.

Each demonstration data set has a different number of data
points and requires the alignment process. We first apply the
Ramer–Douglas–Peucker (RDP) algorithm to simplify and remove
the redundant points in the demonstration data. Only key points
remain in the simplified trajectory. The RDP algorithm takes the
first and the last data points to find the farthest data point from
the line segment and eliminates the data point whose distance to
the line segment is smaller than the predefined threshold. By iter-
ating this process, the RDP algorithm can preserve the keypoints in
the demonstration data. Then, we resample the trajectory with n
new data points, including key points from the simplified trajectory.
Finally, we apply the dynamic time warping (DTW) algorithm to
align each resampled demonstration data. The resulting demonstra-

tion data becomes cDi ¼ ðcDi
x;
cDi
y;
cDi

zÞ, where D̂ ∈ R3×n×m repre-
sents the set of demonstration having m different demonstration
trajectories where each trajectory has n data points in 3D Cartesian
coordinates. Fig. 5 shows the original and the processed demonstra-
tion data. On the left side [Fig. 5(a)] is the original demonstration
data with three trajectories and different numbers of data points in
each trajectory. On the right side [Fig. 5(b)] is the processed dem-
onstration data, where all three trajectories have the same number
of data points and are aligned with each other.

In the second step, the center axis Γ of the GC is calculated
using processed demonstration data. We simply compute the aver-
age location of the demonstration data at the sth data point and
assign to ΓðsÞ

ΓðsÞ ¼ ðxðsÞ; yðsÞ; zðsÞÞ ¼ averageðD̂ðsÞÞ ð2Þ

Fig. 3. Example of the generalized cylinder. Each cross section γ is
perpendicular to each other along the center axis Γ.

Pre-process 
demonstration data Calculate center axis Calculate cross-

section curve
Sample new robot 

trajectory

Fig. 4. Procedure of the generalized cylinder method for robot learning
from demonstration.
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This ensures that the center axis is aligned with the demonstra-
tion data at each timestep. In the third step, the cross-section curve
γ of the GC is calculated using the processed demonstration data
and the center axis Γ. In order to construct the cross-section curve at
sth data point, we take all corresponding points from processed
demonstration data D̂ðsÞ and apply cubic spline interpolation to
fit the data with the closed curve (Ahmadzadeh and Chernova
2018). Fig. 6 illustrates one of the cross-section curves γðr; sÞ de-
fined by three demonstration data and the center axis data point.
After calculating all cross-section curves, the GC can be con-
structed by the center axis Γ, cross-section curve γ, and Eq. (1).
Fig. 7 shows an example of the GC constructed by three demon-
stration data.

In the final step, a new robot trajectory has to be sampled within
the GC. We follow the skill reproduction process in Ahmadzadeh
and Chernova (2018) to sample the robot trajectory. The initial pose
of the trajectory p0 is randomly sampled from the first cross-section
plane S0, i.e., the cross section defined by γð0Þ and Γð0Þ. To de-
termine the next point on the second cross-section plane S1, we first
project the initial pose p0 onto S1 and get the new pose p 0

1. We use
pt to represent the current pose and ptþ1 to represent the new pose
in Eqs. (3)–(5) to keep consistency (t ¼ 0; 1; : : : n − 1)

p 0
tþ1 ¼ Ttþ1

t pt ð3Þ

where Ttþ1
t represents the projection matrix between two coordi-

nates. In order to preserve the feature of the previous pose pt, a
similarity ratio η is defined to shift the new pose p 0

tþ1 to a different
pose ptþ1. On the previous cross-section plane St, we project the
center axis point ΓðtÞ to the cross-section curve γðtÞ through pt and

find the projection point gt. The similarity ratio is calculated using
the following equation:

η ¼ jptΓðtÞj
jgtΓðtÞj

ð4Þ

After obtaining the new pose p 0
tþ1, we again project the center

axis point Γðtþ 1Þ to the cross-section curve γðtþ 1Þ through p 0
tþ1

and find the projection point gtþ1. Finally, the shifted new pose
ptþ1 is calculated by

ptþ1 ¼ ðηjgtþ1Γðtþ 1ÞjÞp 0
tþ1 ð5Þ

The entire process is repeated through every cross section to
generate the new robot trajectory. Fig. 8 illustrates the new pose
sampling process from the cross section St to Stþ1 along the center
axis Γ. The pseudo-code of the GC for LfD can be found in Fig. 9.

Fig. 5. Example of (a) original demonstration data; and (b) processed demonstration data.

th demonstration

center axis

cross-section curve

Fig. 6. Cross-section curve is defined by three demonstration data and
a center axis data point. Fig. 7. Example of the GC constructed by three demonstration data.
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Orientations Constraint

After obtaining the robot learned trajectory from the GC, the robot
control policy can be determined using inverse kinematics. The ro-
bot trajectory is in 3D Cartesian coordinates as ðx; y; zÞ triplets
without end-effector’s orientation information. However, it is nec-
essary for some complex construction tasks to strictly follow the
manipulating orientation. For example, in the ceiling tile installa-
tion process, the tile has to be manipulated to some specific orien-
tations in order to pass through the grid area. In the end, the tile also
has to be placed with the same orientation to fit the grid.

When the tile is approaching the grid, the orientations are sim-
ilar across every demonstration data. Fig. 10 illustrates the orien-
tation information of the tile manipulation. The demonstration
trajectories are close to each other when nearing the grid area to
insert a tile into the grid. We define the demonstration data points
with minimum distance to each other as the insertion points since
all demonstration trajectories have to go through that region. The
average orientation at the insertion point is defined as the critical
orientation, i.e., the robot must use it at the insertion point to pass
the tile into the grid area. Fig. 11 shows an example of the insertion
point and the critical orientation.

We propose the new algorithm called generalized cylinders with
orientation approach using the GC method and orientation con-
straint method. Fig. 12 shows the procedure of the orientation
constraint for the GC method. First, we find the cross section
with the minimum area and the insertion point. The demonstra-
tion data points on this cross section are closest to each other.

Second, we calculate the critical orientation by averaging all ori-
entation data at the insertion point. Finally, the robot pose is con-
strained by the critical orientation at the insertion point and
determines the new control policy.

In the first step, the area of every cross section is calculated, and
the one with the minimum area is found. Using the GC represen-
tation from Eq. (1), the cross-section curve at the sth data point is
γðr; sÞ ¼ ðxðr; sÞ; yðr; sÞÞ. The area of the cross-section curve can
be calculated by

areaðsÞ ¼
Z

p

0

�
x
dy
dr

− y
dx
dr

�
dr ð6Þ

where p represents the perimeter of the cross-section curve. Then,
we can determine the data point with the minimum cross section,
i.e., the inserting point ŝ.

In the second step, the critical orientation is calculated at the
inserting point ŝ. The orientation of the demonstration data is rep-
resented using quaternions. We define the critical orientation as the
average of the quaternions. Based on the definition, the average
quaternion is the argument of the minima of the following equa-
tion (Markley et al. 2007):

q̄ ¼ argmin
q∈S3

Xn
i

ωikAðqÞ − AðqiÞk2F ð7Þ

Fig. 8. Process of sampling new pose from the cross-section plane St to
the next plane Stþ1.

Fig. 9. Algorithm of the generalized cylinder for robot learning from
demonstration.

Fig. 10. Orientation information of the ceiling tile installation manip-
ulation. The orientations near the grid are similar to each other.

Insertion point

Critical 
orientation

Fig. 11. Example of the insertion point and the critical orientation.

Find minimum area 
of cross-section

Calculate critical 
orientation

Constrain pose of 
the robot

Determine new 
control policy

Fig. 12. Procedure of the orientation constraint for the GC method.
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Using Eq. (7), we can further derive the average quaternion by

q̄ ¼ argmax
q∈S3

qTMq ð8Þ

M ¼
Xn
i

ωiqiqTi ð9Þ

Therefore, the average quaternion is the normalized eigenvector
corresponding to the maximum eigenvalue of M. We calculate the
average quaternion using Eq. (9) and the eigendecomposition pro-
cess. In the final step, we apply inverse kinematics with the critical
orientation constraint and the last orientation data (the orientation
for fitting the grid) to find the robot control policy. The pseudo-
code of the GCO can be found in Fig. 13.

New Locations and Obstacle Avoidance

The GCO approach provides the geometric space constructed by
demonstration data to sample the new robot trajectory. However,

the start and the target pose have to lie in the GC space, and
the process is unable to overcome unforeseen situations such as
arbitrary obstructions. One way to overcome such unforeseen sit-
uations is to apply a nonrigid registration technique, e.g., thin-plate
splines or Laplacian trajectory editing that takes a set of points in
the unforeseen geometry to deform the GC (Ahmadzadeh and
Chernova 2018). Since construction tasks are quasi-repetitive
and subject to various start and target locations, we propose a tra-
jectory adaptation approach to refine the robot trajectory based on
the new start and target locations.

Fig. 14 shows the procedure of the trajectory adaptation ap-
proach. First, we translate each demonstration data to the new
scene and match the target data point with the new target location.
Then, we construct the GC using the translated demonstration
data. Second, we update the GC by the new start location. Third,
the collision of the new GC is checked by the collision detection
algorithm. If the collision exists, we will update the GC to avoid
the obstacle. Finally, we sample a new robot trajectory within the
new GC with the orientation constraint and apply inverse kin-
ematics to determine the robot control policy.

In the first step, the human worker indicates the new target lo-
cation pt in the new scene to the robot. The robot translates the
demonstration data D̂ to the new scene and matches the new target
location pt. Next, we construct the GC using the translated dem-

onstration data cD 0 and the algorithm in Fig. 9 before sampling a
new trajectory. In the second step, we update the GC with the new
start location p0, i.e., the current pose of the robot’s end-effector. If
the new start location p0 is within the GC space, we can simply
sample the new trajectory starting from the cross section of the
new start location p0 to the new target location pt, as shown in
Fig. 15(a). If the new start location p0 is outside the GC space
and coplanar with the first cross-section plane of the GC, we di-
rectly connect the new start location to the previous start location,
as shown in Fig. 15(b). By following this process, the robot can
maneuver on the first cross-section plane S0 and follow the same
trajectory afterward.

If the new start location p0 is outside the GC space and not
coplanar with the first cross section of the GC, we connect the
new start location p0 to every start waypoint of the demonstration

data D̂ 0ð0Þ with straight lines. Then, we construct a new GC
G 0ðr; sÞ using these updated straight-line demonstration data

Fig. 13. Algorithm of the orientation constraint for the generalized
cylinder approach.

Fig. 15. Updated GC with different start and target locations: (a) inside GC; (b) outside GC and coplanar with the first cross section; and (c) outside
GC and not coplanar with the first cross section.

Translate 
demonstration data 
and construct GC

Update GC by new 
start location

Check collision Sample new robot 
trajectory

Fig. 14. Procedure of the trajectory adaptation approach to refine the
robot trajectory.
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cD 00ð0Þ and resample the robot trajectory. Because all updated dem-

onstration data D̂ 00 are started from the same initial waypoint p0,
the vertex of the GC G 0ðr; sÞ is the new start location p0 and the
first similarity ratio η cannot be determined (S0 is the vertex of
the GC).

To simplify the trajectory sampling process, instead of using
the projection and similarity ratio to determine the second robot
waypoint p1, we randomly sample a waypoint on the cross-
section plane S1 and utilize it as the second robot waypoint p1.
Then, we can repeat the generating trajectory procedure in Fig. 9
to find the new robot trajectory. Fig. 15(c) shows an example
of the updated GC with a new start location outside the GC
space and not coplanar with the first cross-section plane of the
GC. Fig. 16 shows the pseudo-code of the trajectory adaptation
approach.

In the third step, we apply the collision detection algorithm to
validate the GC. The bounding box algorithm is used to create
bounding boxes around each geometry in the environment. We as-
sume that the robot has all information of the surrounding environ-
ment using an approach described in previous work to collect and
synchronize the geometry data (Liang et al. 2020b; Lundeen et al.
2017) and construct bounding boxes around each geometry in the
environment. If the GC or the handled component is intersecting
with any of the bounding boxes, the GC must be reconstructed
to avoid collisions. Existing methods used the adaptive ratio and
deformation function to avoid the obstacle intersecting with the
GC (Ahmadzadeh and Chernova 2018). We propose a human-
in-the-loop refinement approach to resolve the situation. When a
collision occurs, the human worker will demonstrate one solution
to the robot and record the trajectory. The new demonstration data
is combined with all other demonstration data to construct a
new GC.

Instead of randomly sampling a waypoint on the first cross-
section plane S1, we connect the center axis Γð1Þ to the new dem-
onstration data cDmð1Þ with a straight line and define a shift ratio ρ
to select the waypoint

ρ ¼ n

jΓð1ÞcDmð1Þj
ð10Þ

where n represents the total number of data points in one demon-
stration. Then, the first waypoint is determined by the demonstra-
tion data cDmð1Þ and the shift ratio ρ. By using the shift ratio, the
new robot trajectory will stay close to the new demonstration data
in order to avoid obstacles. Fig. 17 illustrates the process of deter-
mining the robot waypoint on the first cross-section plane. The

dashed curve is the original cross section, and the solid curve is
the new cross section extended by the new demonstration datacDmð1Þ. The new waypoint p1 is selected by the line Γð1ÞcDmð1Þ
and the shift ratio ρ. Next, we can sample the rest of the robot tra-
jectory using the updated GC and the algorithm in Fig. 9.

Conversely, a collision usually occurs when the manipulated ob-
ject is approaching the installation location, e.g., a tile collides with
the suspended grids. To overcome such collision, we include more
critical orientation data points near the installation location. The
number of critical orientation data points depends on the demon-
stration trajectory. If the demonstration trajectory is close to the
obstacle, it requires more critical orientations, and the computa-
tional time also increases significantly to calculate the average
quaternions.

We propose two steps to determine if the critical orientation is
required. First, if the distance between the current robot waypoint
and the installation plane is smaller or equal to the half-length of the
manipulated object bounding box’s largest diagonal, the critical ori-
entation is required at this waypoint. Second, if a collision still oc-
curs, we will apply the human-in-the-loop refinement approach to
avoid the obstacle and repeat the entire process to determine the
robot trajectory. Finally, the robot control policy is determined
based on the robot trajectory and the critical orientations. Fig. 18
shows the pseudo-code of the human-in-the-loop refinement
approach.

Experiments and Results

We conducted a series of experiments to evaluate the proposed
trajectory-based learning from demonstration approach. The ceil-
ing tile installation process was chosen as the target quasi-repetitive
construction task to teach and evaluate the robot. The standard
physics robot simulator ROS Gazebo was used to build the robot’s

Fig. 16. Algorithm of the trajectory adaptation approach.

Fig. 17. Process of determining the robot waypoint p1 on the first
cross-section plane S1.

Fig. 18. Algorithm of the human-in-the-loop refinement approach.
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work environment, collect demonstration data, and evaluate the
robot’s performance (Liang et al. 2020b). The success rate of
the installation is used as the evaluation metric for direct compari-
son with the same metric used in a previous work (Liang et al.
2020a), which is defined by whether the tile is placed at the desired
location within the tolerated threshold.

Experimental Setup

We first collected the demonstration data in the ROS Gazebo envi-
ronment. A KUKA 6-DOF industrial robot arm was implemented
in Gazebo and RViz (Kam et al. 2015; Koenig and Howard 2004)
along with the suspended grids and tiles. Fig. 19 shows the ROS
Gazebo robot simulator and the experimental environment. The
human expert controlled the robot to complete the ceiling tile in-
stallation process while the robot’s end-effector 6-DOF poses
ðx; y; z; qÞ were recorded as the trajectory demonstration. For the
human demonstration, we defined three different target locations,
i.e., three different grids, and demonstrated four different trajecto-
ries for each target location from similar start locations (total 12 sets
of demonstration trajectories). The proposed method applies cubic
spline interpolation to fit data with the closed curve on each cross
section, which requires at least three demonstration data points. We
choose to use four demonstration data in our system to add addi-
tional constraints to the generalized cylinder.

We assumed that the robot had picked up the tile, and thus
the tile was secured on the robot’s end-effector. The demonstra-
tion data were preprocessed using the method discussed in the
section “Generalized Cylinders for Robot Learning from Demon-
stration” to smoothen and align the trajectories. Each demonstra-
tion trajectory was resampled to 1,500 waypoints, as suggested in
Ahmadzadeh and Chernova (2018). The number of the waypoints
affects the computational time, the trajectory smoothness, and
the collision checking ability. Fig. 20 shows one of the processed
demonstration trajectories.

We implemented the generalized cylinders with orientation ap-
proach in MATLAB version R2020b and sent the control policy to
the Gazebo robot. The advantage of using a robot simulator such as
ROS Gazebo is that it enables rapid implementation and evaluation
of newly proposed algorithms under varying circumstances that
replicate the physical environment (Liang et al. 2020a). For exam-
ple, we can create several obstacles in the simulator to test the tra-
jectory adaptation and human-in-the-loop refinement approach.
Furthermore, using the ROS framework, the virtual robot can di-
rectly communicate with the physical robot for implementation in
the physical environment (Liang et al. 2020b).

We designed the experiments in two phases to evaluate the GCO
approach and the adaptation approach. In the first phase, the start
and the target locations were both inside the GC space. We defined
50 start locations on the first cross section of each GC, and there-
fore 150 cases to test the GCO approach. In the second phase, the
start and the target locations were both outside the GC space,
i.e., unforeseen situations. We defined 10 different start locations

Target grid
Tile

Robot arm

Fig. 19. ROS gazebo robot simulator. The KUKA industrial robot arm
with a ceiling tile mounted on the end-effector and suspended grids
were implemented in the simulator.

Fig. 20. One of the processed demonstration trajectories with 1,500
waypoints.

Target Target

(a) (b)

Fig. 21. Two examples of different start locations and target grids.
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and 10 different target grids to test the trajectory adaptation ap-
proach. We also captured the image of the start locations for the
imitation from observation approach to compare with the GCO ap-
proach. Fig. 21 shows two examples of different start locations and
target grids.

For the evaluation, we used the volumetric success rate as the
evaluation metric, which is the same metric used in a previous work
(Liang et al. 2020a). We calculate the volumetric difference of the
final tile placement and desired tile placement, then compare the
difference with the predefined threshold. If the volumetric differ-
ence exceeds the threshold, the robot execution is considered as
failed. Based on the ceiling tile manual (Ceiling Tile UK 2018),
the 60 cm2 tile (60 × 60 × 1 cm) allows for 0.5 cm tolerance be-
tween the tile and the grid. Therefore, we define the threshold as

60 × 1 × 0.5 cm ¼ 30 cm3. Fig. 22 shows examples of the success
and the failed cases.

Results

In the first phase of the experiment, the success rate of the GCO
approach is compared with the GC approach and the context
translation reinforcement learning method (CTRL) (Liang et al.
2020a). Table 1 shows the results of the GCO approach, GC ap-
proach, and the CRTL method for the robot installing ceiling tiles.
First, the success rate of the GCO approach is 75.3%, with 113
success cases and 37 failed cases. In the 37 failed cases, the tiles
were found to have collided with the grids before reaching the
critical orientations. Second, the success rate of the GC approach
is 16.0%, with 24 success cases and 126 failed cases. Among
the 126 failed cases, 103 were unable to pass the grid, and 23
exceeded the threshold. Finally, the success rate of the CTRL
method is 71.3%, with 107 success cases and 43 failed cases.
Among the 43 failed cases, 23 were unable to pass the grid, and
8 exceeded the threshold.

Fig. 23 shows the results of the GCO approach and the gener-
ated robot trajectory. The GC is constructed by the four sets of
demonstration data, which are the thin lines inside the GC. The
generated trajectory is shown as the thick line inside the GC,

(a) (b) (c)

Fig. 22. Examples of (a) the success; (b) unable to pass the grid; and (c) collide with the grid cases.

Fig. 23. Results of the GCO approach and the generated robot trajectory.

Table 1. Results of the GCO approach, GC approach, and CTRL method
for ceiling tile installation

Method Success Failure Success rate (%)

GCO 113 37 75.3
GC 24 126 16.0
CTRL 107 43 71.3
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and the insertion point (critical orientation) is shown as the middle
dot. The robot will manipulate from the start location p0 to the tar-
get location pt. For the failed cases in this experiment, the robot
was unable to complete the task due to the demonstration trajec-
tories being close to the suspended grid and the tile colliding before
reaching the critical orientation. We applied the multiple critical
orientations approach and resolved 34 failed cases. Only three
cases still collided with the grid due to the inaccurate demonstration
orientation recording (98.0% success rate). Fig. 24 shows one of
the sequences of the robot executing the ceiling tile installation
process.

To further evaluate the multiple critical orientations, we com-
pare different numbers of critical orientations with average com-
putation time and success rate. The GCO approach and the first
experiment scenario are used in this evaluation. The computation
time is defined as the elapsed time from constructing GC with
processed demonstration data to finding robot control policy with
inverse kinematics. Table 2 shows the results of the different num-
ber of critical orientations. The success rate continually increases
when including more critical orientations, and the average compu-
tation time also increases because of the additional average quatern-
ion calculation. The 204 critical orientations are the maximum
number for resolving failed cases in the experiment, and the re-
maining three failed cases are caused by the error in the demon-
stration data.

In the second phase of the experiment, the success rate of the
GCO and trajectory adaptation approach is compared with the GC
approach and the CTRL method. Table 3 shows the results of the
GCO and trajectory adaptation approach (GCOT), GC and trajec-
tory adaptation approach (GCT), and the CTRL method for the new
start and target locations. First, the success rate of the GCOT is
82.0%, with 82 success cases and 18 failed cases. The 18 failed
cases collided with the grid during the insertion process. Even with
the multiple critical orientations, the tile could still collide with
the grid after passing the last critical orientation. The other reason
is the noisy demonstration orientation during the data collection
phase. Second, the success rate of the GCT is 3.0%, with three suc-
cess cases and 97 failed cases, which were unable to pass the grid.
The low success rate of the GCT is due to incorrect orientation
near the grid. Finally, the success rate of the CTRL method is
66.0%, with 66 success cases and 34 failed cases. Among the
34 failed cases, 24 were unable to pass the grid, and 10 exceeded
the threshold.

Fig. 25 shows the results of the GCOT approach and the gen-
erated robot trajectory. The human worker first determines the new
target grid location pt to the robot. Then, the robot constructs the
GC using four sets of translated demonstration data (thin lines) and
connects to the new start location p0. Lastly, the robot can generate
the adapted trajectory (thick line) using the new GC. Fig. 26 shows
one of the sequences of the robot executing the ceiling tile instal-
lation process using the GCOT approach with the new start and
target locations.

t = 0 t = 4 t = 8

t = 10 t = 12 t = 16

(a) (b) (c)

(d) (e) (f)

Fig. 24. Sequence of the robot executing the ceiling tile installation process using the GCO approach.

Table 2. Results of the multiple critical orientations, average computation
time, and success rate using GCO approach

Number of
critical orientations

Average computation
time (s) Failure

Success
rate (%)

1 11.25 37 75.3
10 19.63 33 78.0
100 65.47 19 87.3
204 184.91 3 98.0

Table 3. Results of the GCO and trajectory adaptation approach, GC and
trajectory adaptation approach, and CTRL method for the new start and
target locations

Method Success Failure Success rate (%)

GCOT 82 18 82.0
GCT 3 97 3.0
CTRL 66 34 66.0
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Discussion

To evaluate the proposed trajectory-based learning from demon-
stration approach, we compared the demonstration data and the
experiment results with the imitation learning from observation
methods. For the demonstration data, the IfO methods typically re-
quire thousands of visual demonstration data (3,000 demonstration
data in our experiment) (Liang et al. 2020a; Yu et al. 2019), whereas
the proposed trajectory-based approach only needs a few-shot dem-
onstration (four sets of demonstrations in our implementation).

In the CTRL method, the camera viewpoint is fixed for the dem-
onstration data and the robot execution scene in order to increase
the success rate. If camera viewpoints are arbitrary for the demon-
stration data and the robot execution scene, we have to include a

greater variety of demonstration data, e.g., provide more demon-
stration videos with different scenes using the parametric VR sys-
tem (Wang et al. 2021). In addition, to avoid unforeseen obstacles
or improvise the robot’s process, we have to apply additional
algorithms such as meta reinforcement learning (Finn et al. 2017).
Conversely, the GCO approach requires a detailed demonstration
with the robot’s end-effector 6-DOF trajectory, which can be col-
lected using the robot simulator or the parametric VR system. Fur-
thermore, we can also collect demonstration data in the physical
environment using the object pose estimation method (Billings
and Johnson-Roberson 2018; Liang et al. 2019b) or markers such
as AprilTag and Kanade-Lucas-Tomasi Enhanced by Global con-
straints (KEG) algorithm (Feng and Kamat 2013; Olson 2011) to
track the 6-DOF pose of the manipulated object.

Fig. 25. Results of the GCOT approach and the generated robot trajectory.

t = 0 t = 5 t = 8

t = 12 t = 16 t = 20

(a) (b) (c)

(d) (e) (f)

Fig. 26. Sequence of the robot executing the ceiling tile installation process using the GCOT approach with the new start and target locations.
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For the experiment results, the GCO approach achieves a higher
success rate (75.3% for single critical orientation and 98.0% for
multiple critical orientations) than the pure GC approach (16%)
and the CTRL method (71.3%) due to its close following of
the human demonstration with detailed 6-DOF end-effector pose
information. In the new start and target locations experiment, the
GCOT approach also achieves a higher success rate (82.0%) than
the GCT approach (3.0%) and the CTRL method (66.0%). The
GC-based approach requires humans to indicate the target grid lo-
cation, whereas the CTRL method requires the camera to point at
the target grid. The CTRL methods can also achieve high accuracy
by providing sufficient and varied visual demonstration data. The
experiment results indicate that the success rate continually in-
creased with multiple critical orientations until the errors were
caused by the noisy demonstration data. In the future, the noisy
demonstration data can be reduced by including more demonstra-
tion data and applying the random sample consensus (RANSAC)
method (Fischler and Bolles 1981) to exclude noisy outliers in
the data.

In terms of the field application scenario, the proposed method
consists of two phases: the learning phase and the performance
phase. In the learning phase, the human workers demonstrate
and record the task using the VR system or control the virtual robot
to complete the task. The recorded data is then processed and
learned by the robot in the virtual simulator. This process requires
at least one human worker to demonstrate the task, and with more
human workers involved, the demonstration data will have a wider
variety. In real practice, more demonstration data will yield more
detailed generalized cylinder and orientation constraints but in-
crease computational time. After the robot processes and learns
the tasks from the demonstration data, the human worker will val-
idate the robot performance in the virtual simulator using the test
cases in the experiment to ensure the robot can generate the trajec-
tory and achieve similar performance.

In the performance phase, the physical robot is deployed on the
construction site and teams up with a human worker. The human
worker will indicate the installation sequence, and the robot will
show the planned result in the virtual simulator first and ask for
human approval. The human worker can intervene at any point
to adjust the trajectory using the proposed human-in-the-loop re-
finement approach. The physical robot will execute the work plan
after receiving approval. A timely advantage of using the proposed
approach is the facilitation of social distancing on construction sites
as the method only requires one human worker to team up with a
robot apprentice and can separate themselves from other human
workers on construction sites.

The proposed trajectory-based learning from demonstration
method for teaching robots construction tasks also has some lim-
itations. First, the proposed method is evaluated in the virtual sim-
ulator and might encounter additional challenges when it is applied
to physical robots on real construction sites. For example, the ceil-
ing tiles and the suspended grids might not match each other due to
loose tolerances and design-build discrepancies. This issue requires
human-in-the-loop adaptation to help the robot adjust the compo-
nent and provide additional instructions.

Second, the environment feedback is assumed to be collected
by additional sensors and registered to the virtual simulator
(Lundeen et al. 2017; Xiao et al. 2018). However, when dealing
with the dynamic changing environment on construction sites,
synchronization between the virtual and the physical environment
is required to provide real-time information. The online process-
level digital twin can ensure state synchronization between the
physical and the virtual environment (Liang et al. 2020b). Third,
the proposed method used trajectory demonstration to learn the

construction skill. However, some of the construction tasks require
different types of demonstrations to learn the skill. For example,
if the ceiling tile and the grid are perfectly snug without any
workable gap between them, the human worker has to push the
tile up and down to overcome friction and place it at the correction
location. This process will need multiple types of demonstrations,
such as tactile observations, to measure the contact force corre-
sponding to the visuals so that the movements can be recorded
and fused with such additional observation streams to teach the
robot.

For future work, a human-subjects study aimed at understand-
ing how human workers interact with the robot using the proposed
system to indicate the target location and supervise the process
will first be conducted to evaluate the human-in-the-loop refine-
ment approach. Second, the deployment to the physical robot us-
ing digital twins for bidirectional communication between the
virtual and physical robots will be developed. Third, the extension
of the proposed approach to other quasi-repetitive construction
tasks, such as drywall installation, will be investigated. Finally,
the combination of multiple types of demonstration and sensor
fusion, including trajectory, visual, and tactile demonstration, will
be developed to tackle more complex construction tasks in clut-
tered work environments such as actual tunnel or bridge construc-
tion sites.

Conclusions

This research proposed a trajectory-based learning from demonstra-
tion method to train robots to perform overhead quasi-repetitive
construction tasks. The generalized cylinder approach was adapted
and combined with orientation constraints to construct a geometric
representation using demonstration data and generate the robot tra-
jectory within the space with critical orientations (GCO approach).
The trajectory adaptation approach and human-in-the-loop refine-
ment approach were proposed to overcome unforeseen situations
and avoid collisions (GCOT approach).

The proposed GCO and GCOT approaches were evaluated in
the standard physics robot simulator ROS Gazebo with ceiling tile
installation demonstration trajectories collected from the human-
controlled robot simulator and compared with the visual demon-
stration method (context translation and reinforcement learning
method). The results showed that the GCO and GCOT could
achieve 98.0% and 82.0% success rates with different start and tar-
get locations, which is suitable for training robots to perform over-
head construction work alongside human workers.
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