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Here we investigate how college students may conceptualize symbolic algebraic properties. This 

work uses the theory of Grundvorstellungen (GVs) to analyze how learners’ conceptions may or 

may not align with some desired goals of instruction.  Through the analysis of interviews with 

students across a variety of courses, we describe several categories of conceptions, or 

descriptive GVs, that emerged in the data. We expect these categorizations to be a helpful first 

step in understanding learners’ thinking and improving instruction on algebraic properties. 
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Mathematical properties justify transformation across mathematical domains, especially 

those that rely on symbolic representation such as algebra.  Despite the central role that algebraic 

properties play in mathematical transformation, learners often do not use them in mathematically 

valid ways (e.g., Hoch & Dreyfus, 2004; Mok, 2010) and instruction may not support students in 

learning about properties explicitly enough (e.g., Barnett & Ding, 2019; Eaves et al., 2021; 

Larsen, 2010). In this paper we focus on how learners identify parallel syntactic structure 

between symbolic properties and mathematical objects such as expressions, and we explore how 

this may relate to their conceptions of symbolic properties in algebra. 

Forms and Symbolic Properties 

The framework of student conceptions of symbolic properties presented here is part of a 

larger structure sense model, which has been presented in more detail in other work (Wladis, 

2019; Wladis et. al. 2022a, 2023a); here we focus in more detail on conceptions of symbolic 

properties specifically.  As part of this framework, we view a property as any mathematical 

statement that may be used to transform a mathematical object into an equivalent object with a 

different form. Using this definition, both axiomatic and derived statements are properties. 

Consider the examples: 1) a definition of rational exponents, written for example as: 𝑥
1

𝑛 = √𝑥𝑛
 

for all positive integers 𝑛; and 2) the statement about two equivalent equations: 𝐴 ∙ 𝐵 = 𝐶 ↔

𝐴 =
𝐶

𝐵
 for all nonzero B. Under our model, both examples are considered to be mathematical 

properties. The key characteristic is that the definition of negative exponents is a valid 

justification for replacing an expression of the form 𝑥
1

𝑛 with one of the form √𝑥𝑛
  (or vice versa), 

and similarly, the statement about equivalent equations is a valid justification for replacing 

equations with other equivalent equations that have a particular form.  Here we are interested in 

how properties can be used to transform symbolic representations, so we use the term symbolic 

properties to denote symbolic representations of properties.  Properties are made up of smaller 

sub-structures (e.g., each side of a formal property statement can be viewed as a separate object), 

which are often referred to colloquially during mathematics instruction as forms (e.g., the “form” 

𝑥
1

𝑛, √𝑥𝑛
, 𝐴 ∙ 𝐵 = 𝐶, and 𝐴 =

𝐶

𝐵
, in the properties above). Here with the term “form” we are 

generalizing a common practice that is often used to refer to particularly common forms used in 

computation.  For example, it is very common for instructors to ask students if a particular 
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expression has the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 or whether an equation has the form 𝑦 = 𝑚𝑥 + 𝑏.   

This work addresses a gap in existing literature on learners’ use of mathematical properties, 

where much of that literature has focused on classifying the types of errors students make when 

using properties to simplify expressions or solve problems (e.g., Hoch & Dreyfus, 2004; Mok, 

2010), or on learners’ justifications for why properties are true or their ability to derive properties 

from arithmetic patterns (e.g., Hunter et al., 2022).  Some work has focused on student structure 

sense for specific properties, such as the distributive property (e.g., Schüler-Meyer, 2017). Since 

it is a critical skill for working with more complex symbolic representations (Kieran, 2011), we 

focus on learners’ conceptions of symbolic properties and forms. This work aims to describe 

conceptions of properties and forms more generally by building a theory of how learners’ 

conceptions of properties and syntactic reasoning (Wladis et al, 2022a, 2023b) are connected.    

Theoretical Framework 

In this work, we draw on the theory of prescriptive and descriptive Grundvorstellungen 

(GVs) (or “fundamental conceptions”).  Prescriptive GVs describe aspirational mental models 

that we aim for learners to attain during instruction (vom Hofe, 1995); while descriptive GVs 

describe students’ actual conceptions.  Descriptive and prescriptive GVs are not intended to be 

static, nor to present a monolithic view of what it means to learn a particular idea. Comparing 

prescriptive and descriptive GVs, however, may be beneficial for instructors and curriculum 

writers to assess the success of their intended goals for instruction and curriculum, and refining 

materials to align with their goals for students’ thinking (Greefrath et al., 2016).  We begin by 

describing two related prescriptive GVs for symbolic properties (Table 1). 

 

Table 1: Two Prescriptive GVs for Symbolic Properties  

 

Equivalence-

Preserving 

GV 

Symbolic properties by definition describe a valid method for replacing one 

symbolic object (e.g., expression, equation) with another equivalent one, with 

respect to a particular context-dependent pre-existing definition of equivalence 

(e.g., insertion equivalence of expressions; Prediger & Zwetzschler, 2013). 

Mapping GV In order for equivalence to be preserved when properties are used for 

transformation, the following criteria must be met: The form on one side of the 

symbolic property must be mapped bijectively (one-to-one, so that no symbols 

in the symbolic object or the form are left out or used more than once) to the 

symbolic object (e.g., expression, equation) so that: 1) A unified 

subexpression1 is mapped to each variable in the form; 2) All other symbols 

are mapped to notation in the form with the same syntactic meaning (e.g., 

different notation for multiplication can be mapped to one another).   

 

Framework for Classifying Descriptive GVs of Symbolic Properties  

Our framework for classifying descriptive GVs of symbolic properties conceptualizes 

students’ conceptions as existing on two axes: operational vs. structural conceptions of properties 

(Sfard, 1992), and extracted vs. stipulated definitions of properties (Edwards & Ward, 2004). A 

student with a structural conception thinks of properties as abstract objects (e.g., canonical 

representations of particular algebraic structures), whereas a student with an operational 

 
1 By unified subexpression, we mean a substring for which placing parentheses around it would not change the 

syntactic meaning of the overall object (e.g., in the expression −3𝑥2, 𝑥2 is a subexpression, but −3𝑥 is not).   



conception thinks of mathematical properties as a process of computation. A student with a 

structural conception sees objects as reified processes (e.g., the form 𝑎(𝑏 + 𝑐) is seen as an 

object, and not just as the process of adding 𝑏 and 𝑐 and then multiplying 𝑎 by the result), while 

a pseudostructural conception is when a student views something as an object that is not the 

reification of any process (Sfard, 1992, p. 75). We see the operational/structural distinction as 

relating to the prescriptive Mapping GV of Symbolic Properties, which focuses on a learner’s 

ability to conceptualize forms within a property structurally as an object (although what that 

reified object is may vary by learner).   

Extracted definitions are definitions that one creates to describe the observed usage of a term 

(e.g., a learner may extract a meaning for a property from how their instructor uses the term 

during in-class computations). Stipulated definitions, in contrast, are stated explicitly, allowing 

for one to consult the definition directly to determine if something fits the definition (Edwards & 

Ward, 2004). We see this distinction as relating to the Equivalence-Preserving GV of Symbolic 

Properties, where one key stipulated feature of properties is that they preserve equivalence (the 

type of equivalence that is preserved is also based on a stipulated definition of equivalence in 

that context).   

 

Table 2: Framework to Categorize Descriptive GVs for Symbolic Properties 

 

  Extracted Definition Stipulated Definition 

Operational 

Conception of 

Properties 

Pseudo-process view: Learners 

see properties as a cue to a 

computational process, and their 

approaches are extracted from 

prior experience rather than based 

on stipulated definitions. They 

often draw on surface structure 

rather than syntactic meaning.  For 

example, students may 

conceptualize the distributive 

property as an instruction to “take 

what is on the outside of the 

parentheses and put it next to each 

thing on the inside”, regardless of 

the specific operations involved.   

Process view: Learners see properties 

as a cue to a computational process, but 

attend to syntactic meanings and/or 

equivalence as a justification (e.g., 

checking for appropriate operations in 

the expression; checking that original 

and resulting expressions are 

insertionally equivalent).  However, 

they may struggle to conceptualize 

properties as objects to which 

structures in the expression or equation 

can be mapped one-to-one, and as a 

result may have difficulty generalizing 

the use of properties to more 

syntactically complex symbolic 

representations.   

Structural 

Conception of 

Properties 

Pseudo-object view: Learners 

conceptualize a property as 

something that requires mapping 

to the specific forms in the 

property, but the mapping is still 

somewhat ill-defined and/or based 

on extracted notions, such as what 

“looks right”.   

Object view: Learners conceptualize 

the property as an object, such as a 

canonical form, to which the specific 

mathematical object (i.e., expression, 

equation, etc.) must be mapped one-to-

one, in such a way that preserves 

syntactic meaning.  They recognize 

that it is this criterion that preserves 

equivalence.   



Methods 

This study is based on 102 cognitive interviews conducted with US college students on items 

from a concept inventory about Algebra topics (Wladis et al., 2018, 2023c).  Interviewees came 

from 18 different courses, ranging from elementary algebra (similar to Algebra I in high school) 

to Linear Algebra.  In this work, we analyze students’ responses to questions that were focused 

primarily on their reasoning around properties or forms, using thematic analysis (Braun & 

Clarke, 2006). Our analysis was influenced by an initial theoretical stance focused on noticing 

how students’ responses may reflect extracted and stipulated definitions (Edwards & Ward, 

2004) or operational and structural (Sfard, 1992) conceptions, as well as the extent to which 

students appeared to show evidence of Equivalence-Preserving or Mapping GVs. Through 

iterative refinements, the analysis led to a more nuanced emergent framework of learners’ 

conceptions, or descriptive GVs, of symbolic properties, which we present here.  

Results and Analysis 

We illustrate the framework by presenting a few excerpts from student interviews that 

demonstrate different ways that students may conceptualize symbolic properties in algebra.  

These examples were chosen because we felt that they reflected some of the most common types 

of reasoning observed in the sample.   

 

Operational Conceptions 

In this section, we present several segments from an interview with a student (whom we call 

Iota) who was enrolled in an introductory statistics course that had a school algebra pre-requisite. 

In these segments, Iota appeared to be drawing on operational GVs of symbolic properties when 

given a series of seven related questions, including the item shown below (Figure 1).  

Figure 1: One Representative Item from a Series of Seven Related Items 

Each of the items asked the result of applying distributive property to a different expression. 

Expressions used in other versions of this item included: Q1: (2𝑥 + 1)2; Q2: 𝑥 − (2𝑥 + 1); Q3: 

2(2𝑥 ÷ 1); Q4: 2(𝑥 ⋅ 𝑦); Q5: (2𝑥 + 1)2; and Q7: 2(𝑥𝑦).  For each, Iota stated that the 

distributive property could be used to rewrite the expressions: They (correctly) chose d for Q6, 

and an equivalent expression that could be conceptualized as the result of the distributive 

property for Q1 (2𝑥 ⋅ 2 + 1 ⋅ 2) and Q2 (𝑥 − 2𝑥 − 1). But Iota also incorrectly chose “results” of 

applying the distributive property to Q3 (2 ⋅ 2𝑥 ÷ 2 ⋅ 1), Q4 (2𝑥 ⋅ 2𝑦), Q5 ((2𝑥)2 + 12) and Q7 

(2𝑥2𝑦).  The specific answers that Iota chose suggest that Iota may have a purely operational 

conception of the distributive property akin to the framing “The distributive property is an 

instruction to take whatever is on the outside of the brackets and apply it to each ‘thing’ inside 

the brackets”.  At the same time, Iota’s ability to conceptualize (𝑥 + 2) as a unified sub-

expression within (𝑥 + 2)(3𝑥 + 7) that could then be “distributed” to each term in the 

Q6: Which of the following could result from using the distributive property to rewrite the 

expression (𝑥 + 2)(3𝑥 + 7)? 

a. 𝑥 + 2 ⋅ 3𝑥 + 7  

b. 𝑥 ⋅ 3𝑥 + 2 ⋅ 7  

c. 𝑥 + 2 ⋅ 3𝑥 + 2 ⋅ 7  

d. (𝑥 + 2) ⋅ 3𝑥 + (𝑥 + 2) ⋅ 7  

e. None of the above.   
f. I don’t know the distributive property. 

 



subexpression 3𝑥 + 7 is an unusual and syntactically sophisticated skill, suggesting that Iota is 

also capable of thinking structurally.  When asked to explain their thinking on Q4 (2(𝑥 ⋅ 𝑦)), Iota 

stated “Because obviously two can distribute [makes motion with fingers as though moving the 

two from right to left twice] with the one in parentheses. So two in the front can distribute to 2𝑥 

multiply by 2𝑦. So it's gonna be 2𝑥 multiply by 2𝑦 [repeats distributive motion with fingers]—

that's the result.”   

In their explanation, Iota’s focus is on describing computation, and not on verifying or 

justifying the mathematical validity of that computation. This is consistent with an operational 

GV.  Thus, at this moment, Iota appears to be drawing on a pseudo-process conception.  We see 

more evidence of this later in the interview when the interviewer asked Iota what the distributive 

property is: 

Interviewer: What is the distributive property?  

Iota: Distribute property is like that you can use the main number or main groups to 

distribute to each of another number or another groups. 

Interviewer: So is that like here [highlighting (𝑥 + 2) in Q6], is 𝑥 + 2 the main number?  

Iota: It's a main group. Yes. 

Interviewer: And then you apply that to each of the ones [motions to 3𝑥 and 7 in Q6]  

Iota: Yes. 

Interviewer: Okay. So I noticed that this one [highlights + in expression (3𝑥 + 7) in Q6] has 

a plus sign in between them. Is the distributive property only for the plus sign or could it 

also be subtraction? Could it be multiplication or division?  

Iota: So, yeah, it could be subtraction, multiplication... Could be any sign, but when you 

calculate, when you are doing it, you have to do with that own sign.  

Again, Iota appears to conceptualize the distributive property as a process, in which whatever 

is outside the brackets is multiplied by each “group” inside the brackets, while maintaining the 

original operation between the multiple “groups” inside the brackets.  In this case, Iota appears to 

be drawing on a pseudo-process GV of the distributive property.  In contrast, when Iota was 

interviewed about Q7 (2(𝑥𝑦)), they start to reveal some evidence of a process view: 

Iota: sometimes when I see these kind of questions, at first I may think its right answer is A 

(2𝑥2𝑦), but what I normally do is I double check the answer. So I create some equations 

and I double check it, it's incorrect. So for this case, I create like 𝑥 is 3. Okay, let me type 

it now, 𝑦 is 2 (Iota types, producing the following).   

 

   

 

      I think it's wrong. So I say no.... I don't know why, but this is very tricky question for 

me... So x and y multiply each other should be do before multiply the one outside. Now I 

was thinking. I don't know, it's not look like a distributive property for me. It's look like 

the way to calculate is you do the 𝑥𝑦 first because in parentheses, and after you get the 

result of 𝑥𝑦 you do with the number 2. So I don't think this one is like a distributive 

property... to be honest, I don't know why. I don't think it's A, but I just feel it's not. 

Interviewer: So this strategy that you were doing, replacing x and y with numbers and seeing 

if they were the same—if you did that for number six, for example, would you get the 

same answers?  



Iota: Oh, that's a good question. I don't... Yeah. Right. I don't know... I didn't... I didn't try. 

But... I mean, I'm just, I'm looking at it right now. Yeah, it should be the same.  Because 

it should be only one value. Mm-hmm. 

In this excerpt, there is evidence of both process and pseudo-process conceptions.  For the 

first time Iota shows evidence of the prescriptive Equivalence-Preserving GV, when they 

substitute numbers to check whether the expression resulting from their distributive property 

transformation in Q7 produces the same output as the original expression, at least for one value.  

When they observe that the results are not equal for that value, they question their use of the 

distributive property to replace 2(𝑥𝑦) with 2𝑥2𝑦.  Thus, we see evidence of a process GV.  

However, their approach still draws on extracted meanings and some pseudo-process 

conceptions: they mention several times “feeling” that the distributive property is not right here 

or describing whether the expression “looks like” the distributive property should be used.  They 

did not call on their process GV on the other six similar distributive property questions, until the 

interviewer asked them whether this would be true for those questions as well. At that point, Iota  

saw the relevance to other questions by drawing on their knowledge of the distributive property 

as an equivalence-preserving transformation.  However, Iota specifically describes how the way 

the items “looked” cued them not to take time to call on their equivalence-preserving GV in this 

context (and instead cued a pseudo-process approach).  It may be that Iota would benefit from 

instruction, tasks, and assessments that aim to explicitly link their pre-existing equivalence-

preserving GV about properties to actual calculation procedures.  One component of this may be 

to focus more on checking and justifying calculation than calculation alone.   

 

Pseudo-Object Conception 

We now present an interview with an elementary algebra student, Eta, where they were asked 

to interpret whether (2𝑥 + 1)(3𝑥 − 5) could be viewed as equal to the form (𝑎 + 𝑏)𝑐.   

 

  

 

 

 

 

Figure 2: Eta’s response to whether (𝟐𝒙 + 𝟏)(𝟑𝒙 − 𝟓) can have the form (𝒂 + 𝒃)𝒄  

Eta: 2𝑥 could be 𝑎 then the one would be 𝑏, then the 𝑐 would be 3𝑥. So, then I said that if 𝑐 

is equal to 3𝑥 then it would make sense…. I'm just doing it by order by the first number, 

second number, third number. Maybe that's not the best way, but that's what I was doing. 

Interviewer: What’s being multiplied in each case [pointing to the expression]?  

Eta: Two is being multiplied by three. Two is also being multiplied by the negative five. The 

same thing for the one, the one is being multiplied by three and then the one is also being 

multiplied by the negative five.  

Here Eta appears to be drawing on a pseudo-object conception by mapping sub-expressions 

to variables in the form “in order”, i.e., mapping the “first subexpression” to the first variable, 

the “second subexpression” to the second variable, etc., without attending to the grammatical 

meaning of syntactic structures in the expression.  In (2𝑥 + 5)(3𝑥 − 5), Eta initially does not 

attend to the second set of brackets while they are mapping subexpressions to the form (𝑎 + 𝑏)𝑐; 



however, when questioned further, Eta is able to identify that both terms in (3𝑥 − 5) will 

eventually be multiplied by each term in (2𝑥 + 1).  This suggests that Eta’s pseudo-object GV of 

properties likely does not stem directly from a failure to recognize the syntactic meaning of the 

second set of brackets, but that instead, this likely stems from a disconnect between the way that 

Eta interprets the syntactic meaning of expressions, and what information they focus on when 

trying to map that syntactic structure to a form.  Eta does not identify the current syntactic 

meaning of (2𝑥 + 1)(3𝑥 − 5) as the subexpression 2𝑥 + 1 being multiplied by the 

subexpression 3𝑥 − 5, but rather conceptualizes this expression as having the syntactic meaning 

of something like 2 ⋅ 3 ⋅ 𝑥2 + 2 ⋅ −5 + 1 ⋅ 3 ⋅ 𝑥 + 1 ⋅ 5 (which while equivalent to (2𝑥 +
1)(3𝑥 − 5), technically has a different syntactic meaning).  By perceiving it as the result of 

expansion rather than its current literal meaning, Eta is obscuring the structure needed to map 

this expression to the form (𝑎 + 𝑏)𝑐.  Thus, this computational view of syntactic structure 

appears to be negatively impacting Eta’s GV for symbolic properties.  Because of this, Eta might 

benefit from instruction that more explicitly discusses the differences between expressions that 

have the same syntactic structure vs. expressions that are equivalent, and that explicitly links the 

syntactic structure of expressions and equations to form mapping.  This may better enable Eta to 

draw on their existing knowledge of syntax, symbolic structures, and forms as objects.   

 

Object Conception 

In this interview with Theta, an elementary algebra student, we asked them to interpret 

whether 
2𝑥2(𝑦−1)

2
 could be viewed as equal to the form 

(𝑎𝑏)

𝑐
 (where 𝑐 ≠ 0).  

 

 

 

 

 

Figure 3: Theta’s work mapping a multi-term expression to a variable in a form 

Theta:  I felt like D was the best option because looking at the example 𝑎 and 𝑏 over 𝑐 the 

first equation fit that like 𝑎 could be 2𝑥2 squared and 𝑏 could be 𝑦 − 1 and 𝑐 could be 2.  

Interviewer: Did the parentheses impact your decision?  

Theta: Yes. 

Interviewer: How? 

Theta: Because I saw that the 𝑦 − 1, I saw it as separate from 2𝑥2. And I know that looking 

at the second one that 𝑎 and 𝑏 in order for them to be multiplied they would most likely 

have to have parentheses around them. And I saw 𝑦 − 1 in parentheses so I just...  

Basically, looking at them all as substitutes like as soon as I saw 𝑎 and 𝑏 over 𝑐 like I was 

just putting in my head okay, 2𝑥2 squared is 𝑎, 𝑦 − 1 is 𝑏, and the two is equal to 𝑐.  

In this excerpt, Theta appears to be drawing on an object GV of properties.  They identify 

mathematically valid subexpressions in 
2𝑥2(𝑦−1)

2
, and identify which of these should map to each 

variable in the form so that the syntactic structure is preserved.  The interviewer then asked 

Theta to identify different syntactic structures in the expression, and Theta was able to do so 

accurately without further prompting.   This is similar to the learners who were able to “treat a 



compound term as a single entity” when using the distributive property (Schüler-Meyer, 2017).  

Theta also discusses brackets from an object view (as a grouping mechanism rather than a cue to 

a procedure [see Wladis, et al, 2022b]) by describing how they “separate” 2𝑥2 from 𝑦 − 1.  This 

suggests that Theta has an object view of syntactic structure that they draw on to develop an 

object view of symbolic properties, because it enables them to identify the subexpression 

structures that produce a one-to-one mapping from 
(2𝑥2)(𝑦−1)

2
 to the form 

𝑎𝑏

𝑐
 so that syntactic 

structure is preserved.  In addition, Theta’s conceptions of substitution and substitution 

equivalence (see Wladis et al, 2020) appear to be related to their conception of properties, 

because they mention substitution when describing how the subexpressions related to the form.  

Theta’s explanations are unusually structural here, compared to other students in the sample at 

all course levels.  Theta was part of an intervention that was focused on explicitly teaching 

students the prescriptive GVs presented here (as well as others related to syntactic structure and 

equivalence)2, so this may have influenced their GV formation.  While we can draw no causal 

conclusions based on this evidence, Theta’s responses indicate that some algebra students are 

capable of reasoning structurally about symbolic properties.   

Conclusion 

In the vignettes presented here, all three students have prior knowledge that may be helpful to 

leverage when using symbolic properties to transform algebraic expressions or equations. In 

some cases, the learners drew on that prior knowledge in robust ways. In other cases, that prior 

knowledge was not cued or viewed as relevant in the moment by the learners as they answered 

questions about how they make sense of forms and symbolic properties.  This may explain some 

of the results found in existing literature, where students made various computational errors 

when working with algebraic properties to transform expressions or equations (e.g., Hoch & 

Dreyfus, 2004; Mok, 2010).  Future research is needed to better understand how these 

conceptions connect to computation and prior knowledge; we continue to investigate these 

relationships in ongoing research.  However, these results shed light on learners’ reasons for 

working with symbolic properties in particular ways, which may be helpful in experimenting 

with different approaches to tailoring instruction to learners with different conceptions of 

symbolic algebraic properties.  For example, learners who conceptualize a property as an 

instruction to perform a particular symbolic manipulation without connecting it to the 

Equivalence-Preserving GV (pseudo-object view) might benefit from tasks that engage them to 

justify their use of properties by linking transformation back to whether equivalence is preserved.  

In contrast, learners with a process view might benefit more from tasks that engage them in 

conceptualizing subexpressions as unified objects and give them opportunities to practice 

mapping these subexpressions to variables in forms in ways that preserve syntactic structure.  

The particular types of tasks or instruction that are beneficial to different learners may vary 

based on their conceptions of properties.  This research is just a first step towards understanding 

student conceptions of symbolic properties in algebra, and significantly more research is needed.   
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