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Here we investigate how college students may conceptualize symbolic algebraic properties. This
work uses the theory of Grundvorstellungen (GVs) to analyze how learners’ conceptions may or
may not align with some desired goals of instruction. Through the analysis of interviews with
students across a variety of courses, we describe several categories of conceptions, or
descriptive GVs, that emerged in the data. We expect these categorizations to be a helpful first
step in understanding learners’ thinking and improving instruction on algebraic properties.
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Mathematical properties justify transformation across mathematical domains, especially
those that rely on symbolic representation such as algebra. Despite the central role that algebraic
properties play in mathematical transformation, learners often do not use them in mathematically
valid ways (e.g., Hoch & Dreyfus, 2004; Mok, 2010) and instruction may not support students in
learning about properties explicitly enough (e.g., Barnett & Ding, 2019; Eaves et al., 2021;
Larsen, 2010). In this paper we focus on how learners identify parallel syntactic structure
between symbolic properties and mathematical objects such as expressions, and we explore how
this may relate to their conceptions of symbolic properties in algebra.

Forms and Symbolic Properties

The framework of student conceptions of symbolic properties presented here is part of a
larger structure sense model, which has been presented in more detail in other work (Wladis,
2019; Wladis et. al. 2022a, 2023a); here we focus in more detail on conceptions of symbolic
properties specifically. As part of this framework, we view a property as any mathematical
statement that may be used to transform a mathematical object into an equivalent object with a
different form. Using this definition, both axiomatic and derived statements are properties.
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Consider the examples: 1) a definition of rational exponents, written for example as: xn = /x
for all positive integers n; and 2) the statement about two equivalent equations: A- B = C &

A= g for all nonzero B. Under our model, both examples are considered to be mathematical
properties. The key characteristic is that the definition of negative exponents is a valid
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justification for replacing an expression of the form x» with one of the form ¥/x (or vice versa),
and similarly, the statement about equivalent equations is a valid justification for replacing
equations with other equivalent equations that have a particular form. Here we are interested in
how properties can be used to transform symbolic representations, so we use the term symbolic
properties to denote symbolic representations of properties. Properties are made up of smaller
sub-structures (e.g., each side of a formal property statement can be viewed as a separate object),
which are often referred to colloquially during mathematics instruction as forms (e.g., the “form”
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L c . . .
xn, \Vx,A*B=C,and A = 5 N the properties above). Here with the term “form” we are

generalizing a common practice that is often used to refer to particularly common forms used in
computation. For example, it is very common for instructors to ask students if a particular
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expression has the form ax? + bx + ¢ or whether an equation has the form y = mx + b.

This work addresses a gap in existing literature on learners’ use of mathematical properties,
where much of that literature has focused on classifying the types of errors students make when
using properties to simplify expressions or solve problems (e.g., Hoch & Dreyfus, 2004; Mok,
2010), or on learners’ justifications for why properties are true or their ability to derive properties
from arithmetic patterns (e.g., Hunter et al., 2022). Some work has focused on student structure
sense for specific properties, such as the distributive property (e.g., Schiiler-Meyer, 2017). Since
it is a critical skill for working with more complex symbolic representations (Kieran, 2011), we
focus on learners’ conceptions of symbolic properties and forms. This work aims to describe
conceptions of properties and forms more generally by building a theory of how learners’
conceptions of properties and syntactic reasoning (Wladis et al, 2022a, 2023b) are connected.

Theoretical Framework

In this work, we draw on the theory of prescriptive and descriptive Grundvorstellungen
(GVs) (or “fundamental conceptions™). Prescriptive GVs describe aspirational mental models
that we aim for learners to attain during instruction (vom Hofe, 1995); while descriptive GV's
describe students’ actual conceptions. Descriptive and prescriptive GVs are not intended to be
static, nor to present a monolithic view of what it means to learn a particular idea. Comparing
prescriptive and descriptive GVs, however, may be beneficial for instructors and curriculum
writers to assess the success of their intended goals for instruction and curriculum, and refining
materials to align with their goals for students’ thinking (Greefrath et al., 2016). We begin by
describing two related prescriptive GVs for symbolic properties (Table 1).

Table 1: Two Prescriptive GVs for Symbolic Properties

Equivalence- | Symbolic properties by definition describe a valid method for replacing one
Preserving symbolic object (e.g., expression, equation) with another equivalent one, with
GV respect to a particular context-dependent pre-existing definition of equivalence
(e.g., insertion equivalence of expressions; Prediger & Zwetzschler, 2013).
Mapping GV In order for equivalence to be preserved when properties are used for

transformation, the following criteria must be met: The form on one side of the
symbolic property must be mapped bijectively (one-to-one, so that no symbols
in the symbolic object or the form are left out or used more than once) to the
symbolic object (e.g., expression, equation) so that: 1) A unified
subexpression' is mapped to each variable in the form; 2) All other symbols
are mapped to notation in the form with the same syntactic meaning (e.g.,
different notation for multiplication can be mapped to one another).

Framework for Classifying Descriptive GVs of Symbolic Properties

Our framework for classifying descriptive GVs of symbolic properties conceptualizes
students’ conceptions as existing on two axes: operational vs. structural conceptions of properties
(Sfard, 1992), and extracted vs. stipulated definitions of properties (Edwards & Ward, 2004). A
student with a structural conception thinks of properties as abstract objects (e.g., canonical
representations of particular algebraic structures), whereas a student with an operational

! By unified subexpression, we mean a substring for which placing parentheses around it would not change the
syntactic meaning of the overall object (e.g., in the expression —3x2, x? is a subexpression, but —3x is not).



conception thinks of mathematical properties as a process of computation. A student with a
structural conception sees objects as reified processes (e.g., the form a(b + ¢) is seen as an
object, and not just as the process of adding b and ¢ and then multiplying a by the result), while
a pseudostructural conception is when a student views something as an object that is not the
reification of any process (Sfard, 1992, p. 75). We see the operational/structural distinction as
relating to the prescriptive Mapping GV of Symbolic Properties, which focuses on a learner’s
ability to conceptualize forms within a property structurally as an object (although what that
reified object is may vary by learner).
Extracted definitions are definitions that one creates to describe the observed usage of a term
(e.g., a learner may extract a meaning for a property from how their instructor uses the term
during in-class computations). Stipulated definitions, in contrast, are stated explicitly, allowing
for one to consult the definition directly to determine if something fits the definition (Edwards &
Ward, 2004). We see this distinction as relating to the Equivalence-Preserving GV of Symbolic
Properties, where one key stipulated feature of properties is that they preserve equivalence (the
type of equivalence that is preserved is also based on a stipulated definition of equivalence in

that context).

Table 2: Framework to Categorize Descriptive GVs for Symbolic Properties

Extracted Definition

Stipulated Definition

to the specific forms in the
property, but the mapping is still
somewhat ill-defined and/or based
on extracted notions, such as what
“looks right”.

Operational Pseudo-process view: Learners Process view: Learners see properties
Conception of see properties as a cue to a as a cue to a computational process, but
Properties computational process, and their attend to syntactic meanings and/or

approaches are extracted from equivalence as a justification (e.g.,
prior experience rather than based | checking for appropriate operations in
on stipulated definitions. They the expression; checking that original
often draw on surface structure and resulting expressions are
rather than syntactic meaning. For | insertionally equivalent). However,
example, students may they may struggle to conceptualize
conceptualize the distributive properties as objects to which
property as an instruction to “take | structures in the expression or equation
what is on the outside of the can be mapped one-to-one, and as a
parentheses and put it next to each | result may have difficulty generalizing
thing on the inside”, regardless of the use of properties to more
the specific operations involved. syntactically complex symbolic
representations.
Structural Pseudo-object view: Learners Object view: Learners conceptualize
Conception of conceptualize a property as the property as an object, such as a
Properties something that requires mapping canonical form, to which the specific

mathematical object (i.e., expression,
equation, etc.) must be mapped one-to-
one, in such a way that preserves
syntactic meaning. They recognize
that it is this criterion that preserves
equivalence.




Methods

This study is based on 102 cognitive interviews conducted with US college students on items
from a concept inventory about Algebra topics (Wladis et al., 2018, 2023¢). Interviewees came
from 18 different courses, ranging from elementary algebra (similar to Algebra I in high school)
to Linear Algebra. In this work, we analyze students’ responses to questions that were focused
primarily on their reasoning around properties or forms, using thematic analysis (Braun &
Clarke, 2006). Our analysis was influenced by an initial theoretical stance focused on noticing
how students’ responses may reflect extracted and stipulated definitions (Edwards & Ward,
2004) or operational and structural (Sfard, 1992) conceptions, as well as the extent to which
students appeared to show evidence of Equivalence-Preserving or Mapping GVs. Through
iterative refinements, the analysis led to a more nuanced emergent framework of learners’
conceptions, or descriptive GVs, of symbolic properties, which we present here.

Results and Analysis
We illustrate the framework by presenting a few excerpts from student interviews that
demonstrate different ways that students may conceptualize symbolic properties in algebra.
These examples were chosen because we felt that they reflected some of the most common types
of reasoning observed in the sample.

Operational Conceptions

In this section, we present several segments from an interview with a student (whom we call
lota) who was enrolled in an introductory statistics course that had a school algebra pre-requisite.
In these segments, lota appeared to be drawing on operational GVs of symbolic properties when
given a series of seven related questions, including the item shown below (Figure 1).

Q6: Which of the following could result from using the distributive property to rewrite the
expression (x + 2)(3x + 7)?

x+2-3x+7

x-3x+2-7

x+2-3x+2-7

(x+2)-3x+(x+2)-7

None of the above.

1 don’t know the distributive property.

o a0 o

Figure 1: One Representative Item from a Series of Seven Related Items

Each of the items asked the result of applying distributive property to a different expression.
Expressions used in other versions of this item included: Q1: (2x + 1)2; Q2: x — (2x + 1); Q3:
2(2x +1); Q4: 2(x - y); Q5: (2x + 1)%; and Q7: 2(xy). For each, Iota stated that the
distributive property could be used to rewrite the expressions: They (correctly) chose d for Q6,
and an equivalent expression that could be conceptualized as the result of the distributive
property for Q1 (2x -2 + 1-2) and Q2 (x — 2x — 1). But Iota also incorrectly chose “results” of
applying the distributive property to Q3 (2 - 2x = 2 - 1), Q4 (2x - 2y), Q5 ((2x)? + 12) and Q7
(2x2y). The specific answers that Iota chose suggest that Iota may have a purely operational
conception of the distributive property akin to the framing “The distributive property is an
instruction to take whatever is on the outside of the brackets and apply it to each ‘thing’ inside
the brackets”. At the same time, lota’s ability to conceptualize (x + 2) as a unified sub-
expression within (x + 2)(3x + 7) that could then be “distributed” to each term in the



subexpression 3x + 7 is an unusual and syntactically sophisticated skill, suggesting that Iota is
also capable of thinking structurally. When asked to explain their thinking on Q4 (2(x - y)), lota
stated “Because obviously two can distribute [makes motion with fingers as though moving the
two from right to left twice] with the one in parentheses. So two in the front can distribute to 2x
multiply by 2y. So it's gonna be 2x multiply by 2y [repeats distributive motion with fingers]—
that's the result.”

In their explanation, Iota’s focus is on describing computation, and not on verifying or
justifying the mathematical validity of that computation. This is consistent with an operational
GV. Thus, at this moment, lota appears to be drawing on a pseudo-process conception. We see
more evidence of this later in the interview when the interviewer asked Iota what the distributive
property is:

Interviewer: What is the distributive property?

Iota: Distribute property is like that you can use the main number or main groups to
distribute to each of another number or another groups.

Interviewer: So is that like here [highlighting (x + 2) in Q6], is x + 2 the main number?

Iota: It's a main group. Yes.

Interviewer: And then you apply that to each of the ones [motions to 3x and 7 in Q6]

Iota: Yes.

Interviewer: Okay. So I noticed that this one [highlights + in expression (3x 4+ 7) in Q6] has
a plus sign in between them. Is the distributive property only for the plus sign or could it
also be subtraction? Could it be multiplication or division?

Iota: So, yeah, it could be subtraction, multiplication... Could be any sign, but when you
calculate, when you are doing it, you have to do with that own sign.

Again, lota appears to conceptualize the distributive property as a process, in which whatever
is outside the brackets is multiplied by each “group” inside the brackets, while maintaining the
original operation between the multiple “groups” inside the brackets. In this case, lota appears to
be drawing on a pseudo-process GV of the distributive property. In contrast, when Iota was
interviewed about Q7 (2(xy)), they start to reveal some evidence of a process view:

Iota: sometimes when I see these kind of questions, at first [ may think its right answer is A
(2x2y), but what I normally do is I double check the answer. So I create some equations
and I double check it, it's incorrect. So for this case, I create like x is 3. Okay, let me type
it now, y is 2 (Iota types, producing the following).  y_3 y=2

2(3*2) = 2*6 =12

2"3*2*2 =24
I think it's wrong. So I say no.... I don't know why, but this is very tricky question for
me... So x and y multiply each other should be do before multiply the one outside. Now I
was thinking. I don't know, it's not look like a distributive property for me. It's look like
the way to calculate is you do the xy first because in parentheses, and after you get the
result of xy you do with the number 2. So I don't think this one is like a distributive
property... to be honest, I don't know why. I don't think it's A, but I just feel it's not.

Interviewer: So this strategy that you were doing, replacing x and y with numbers and seeing
if they were the same—if you did that for number six, for example, would you get the
same answers?



Tota: Oh, that's a good question. I don't... Yeah. Right. I don't know... I didn't... I didn't try.
But...  mean, I'm just, I'm looking at it right now. Yeah, it should be the same. Because
it should be only one value. Mm-hmm.

In this excerpt, there is evidence of both process and pseudo-process conceptions. For the
first time lota shows evidence of the prescriptive Equivalence-Preserving GV, when they
substitute numbers to check whether the expression resulting from their distributive property
transformation in Q7 produces the same output as the original expression, at least for one value.
When they observe that the results are not equal for that value, they question their use of the
distributive property to replace 2(xy) with 2x2y. Thus, we see evidence of a process GV.
However, their approach still draws on extracted meanings and some pseudo-process
conceptions: they mention several times “feeling” that the distributive property is not right here
or describing whether the expression “looks like” the distributive property should be used. They
did not call on their process GV on the other six similar distributive property questions, until the
interviewer asked them whether this would be true for those questions as well. At that point, [ota
saw the relevance to other questions by drawing on their knowledge of the distributive property
as an equivalence-preserving transformation. However, lota specifically describes how the way
the items “looked” cued them not to take time to call on their equivalence-preserving GV in this
context (and instead cued a pseudo-process approach). It may be that Iota would benefit from
instruction, tasks, and assessments that aim to explicitly link their pre-existing equivalence-
preserving GV about properties to actual calculation procedures. One component of this may be
to focus more on checking and justifying calculation than calculation alone.

Pseudo-Object Conception
We now present an interview with an elementary algebra student, Eta, where they were asked
to interpret whether (2x + 1)(3x — 5) could be viewed as equal to the form (a + b)c.

Consider (2x + 1){3x — 5 in its current form (don"t rewrite it or do anything to it), |5 there any
part of {2x + 1}{3x — 5) which could be equal to {a + 0)c if we pick the right expressions to

represent o, &, and ¢7
¢/ [+

al

b, Yes if c = 3x
..L.. s, 0l L= 1

d Yes, foc=3x-5

e Yes,fo=3

Figure 2: Eta’s response to whether (2x + 1)(3x — 5) can have the form (a + b)c

Eta: 2x could be a then the one would be b, then the ¢ would be 3x. So, then I said that if ¢
is equal to 3x then it would make sense.... I'm just doing it by order by the first number,
second number, third number. Maybe that's not the best way, but that's what I was doing.

Interviewer: What’s being multiplied in each case [pointing to the expression]?

Eta: Two is being multiplied by three. Two is also being multiplied by the negative five. The
same thing for the one, the one is being multiplied by three and then the one is also being
multiplied by the negative five.

Here Eta appears to be drawing on a pseudo-object conception by mapping sub-expressions
to variables in the form “in order”, i.e., mapping the “first subexpression” to the first variable,
the “second subexpression” to the second variable, etc., without attending to the grammatical
meaning of syntactic structures in the expression. In (2x + 5)(3x — 5), Eta initially does not
attend to the second set of brackets while they are mapping subexpressions to the form (a + b)c;



however, when questioned further, Eta is able to identify that both terms in (3x — 5) will
eventually be multiplied by each term in (2x + 1). This suggests that Eta’s pseudo-object GV of
properties likely does not stem directly from a failure to recognize the syntactic meaning of the
second set of brackets, but that instead, this likely stems from a disconnect between the way that
Eta interprets the syntactic meaning of expressions, and what information they focus on when
trying to map that syntactic structure to a form. Eta does not identify the current syntactic
meaning of (2x + 1)(3x — 5) as the subexpression 2x + 1 being multiplied by the
subexpression 3x — 5, but rather conceptualizes this expression as having the syntactic meaning
of something like 2 -3 -x2+2-—5+1-3-x + 1-5 (which while equivalent to (2x +

1)(3x — 5), technically has a different syntactic meaning). By perceiving it as the result of
expansion rather than its current literal meaning, Eta is obscuring the structure needed to map
this expression to the form (a + b)c. Thus, this computational view of syntactic structure
appears to be negatively impacting Eta’s GV for symbolic properties. Because of this, Eta might
benefit from instruction that more explicitly discusses the differences between expressions that
have the same syntactic structure vs. expressions that are equivalent, and that explicitly links the
syntactic structure of expressions and equations to form mapping. This may better enable Eta to
draw on their existing knowledge of syntax, symbolic structures, and forms as objects.

Object Conception
In this interview with Theta, an elementary algebra student, we asked them to interpret

2x%(y-1)
2

whether could be viewed as equal to the form (ac—b) (where ¢ # 0).

"
dx-|w—1i}

Considar = in its current farm [don't rewrite it of do anything to i), Egun_’f"

if we pick the rught eXpressions to represent a, b, and o7
a. Na

- b wrqueal to —

B Yes, if b=x T

. Yes,if f=rx° |
(F ves.it b=y-1 j
Figure 3: Theta’s work mapping a multi-term expression to a variable in a form

Theta: I felt like D was the best option because looking at the example a and b over c the
first equation fit that like a could be 2x? squared and b could be y — 1 and ¢ could be 2.

Interviewer: Did the parentheses impact your decision?

Theta: Yes.

Interviewer: How?

Theta: Because I saw that the y — 1, I saw it as separate from 2x2. And I know that looking
at the second one that a and b in order for them to be multiplied they would most likely
have to have parentheses around them. And I saw y — 1 in parentheses so I just...
Basically, looking at them all as substitutes like as soon as I saw a and b over c like I was
just putting in my head okay, 2x? squared is a, y — 1 is b, and the two is equal to c.

In this excerpt, Theta appears to be drawing on an object GV of properties. They identify

2x2(y-1)

mathematically valid subexpressions in , and identify which of these should map to each

variable in the form so that the syntactic structure is preserved. The interviewer then asked
Theta to identify different syntactic structures in the expression, and Theta was able to do so
accurately without further prompting. This is similar to the learners who were able to “treat a



compound term as a single entity” when using the distributive property (Schiiler-Meyer, 2017).
Theta also discusses brackets from an object view (as a grouping mechanism rather than a cue to
a procedure [see Wladis, et al, 2022b]) by describing how they “separate” 2x2 from y — 1. This
suggests that Theta has an object view of syntactic structure that they draw on to develop an
object view of symbolic properties, because it enables them to identify the subexpression

(2x%)(y-1)
2

. b .
structures that produce a one-to-one mapping from to the form aT so that syntactic

structure is preserved. In addition, Theta’s conceptions of substitution and substitution
equivalence (see Wladis et al, 2020) appear to be related to their conception of properties,
because they mention substitution when describing how the subexpressions related to the form.
Theta’s explanations are unusually structural here, compared to other students in the sample at
all course levels. Theta was part of an intervention that was focused on explicitly teaching
students the prescriptive GVs presented here (as well as others related to syntactic structure and
equivalence)?, so this may have influenced their GV formation. While we can draw no causal
conclusions based on this evidence, Theta’s responses indicate that some algebra students are
capable of reasoning structurally about symbolic properties.

Conclusion

In the vignettes presented here, all three students have prior knowledge that may be helpful to
leverage when using symbolic properties to transform algebraic expressions or equations. In
some cases, the learners drew on that prior knowledge in robust ways. In other cases, that prior
knowledge was not cued or viewed as relevant in the moment by the learners as they answered
questions about how they make sense of forms and symbolic properties. This may explain some
of the results found in existing literature, where students made various computational errors
when working with algebraic properties to transform expressions or equations (e.g., Hoch &
Dreyfus, 2004; Mok, 2010). Future research is needed to better understand how these
conceptions connect to computation and prior knowledge; we continue to investigate these
relationships in ongoing research. However, these results shed light on learners’ reasons for
working with symbolic properties in particular ways, which may be helpful in experimenting
with different approaches to tailoring instruction to learners with different conceptions of
symbolic algebraic properties. For example, learners who conceptualize a property as an
instruction to perform a particular symbolic manipulation without connecting it to the
Equivalence-Preserving GV (pseudo-object view) might benefit from tasks that engage them to
justify their use of properties by linking transformation back to whether equivalence is preserved.
In contrast, learners with a process view might benefit more from tasks that engage them in
conceptualizing subexpressions as unified objects and give them opportunities to practice
mapping these subexpressions to variables in forms in ways that preserve syntactic structure.
The particular types of tasks or instruction that are beneficial to different learners may vary
based on their conceptions of properties. This research is just a first step towards understanding
student conceptions of symbolic properties in algebra, and significantly more research is needed.
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