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In this theoretical paper, our aim is to start a conversation about how “levels” in mathematics 

are operationalized and defined, with a specific focus on “college level”.  We approach this 

from the lens of developmental stages, using this to propose an initial framework for describing 

how learners might progress along a developmental continuum delineated by the kinds of 

reasoning/justification, generalization/abstraction, and types of conceptions that they hold, 

rather than by the particular computations learners are able to do, or the kinds of mathematical 

objects with which learners are engaging.     
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It is often assumed to be obvious whether a particular mathematics course is “college-level” 

or not; however, in practice, the transition point operationalized as “college-level” begins as 

early as Intermediate Algebra (Logue et al, 2016) and as late as Calculus I (Hsu & Gehring, 

2016). In addition, determinations about which courses “count” as college-level are often based 

on syllabi that focus primarily on a list of computational skills on specific mathematical objects 

(e.g., linear equations, trinomials), rather than on how students reason with, justify, generalize or 

conceptualize mathematical ideas.  Yet a conception of “level” that is driven more by the 

mathematical objects that are the focus of study, rather than how learners engage with those 

objects, contradicts many of the values of both mathematicians and mathematics educators about 

what high quality mathematics learning looks like. In addition, it further disadvantages students 

who may have strong higher-level thinking skills but who, for a variety of reasons, may not 

perform well on computational placement exams; currently, such students are often placed into 

non-credit bearing developmental courses that focus heavily on procedures, and which contribute 

to disparate impacts on college and economic outcomes (e.g., Bailey & Cho, 2010).  

Mathematical learning is about more than just “content” (conceptualized as the specific 

mathematical objects of study or the particular procedures that students are expected to use): 

there are other skills, knowledge and practices that are important; yet much of this is left 

unarticulated in learning outcomes, and rarely used in the determination of course level. In this 

paper, we describe an initial framework for how we might define “college-level” mathematics, or 

more specifically, a spectrum of different “levels” of learning across the K-16+ mathematics 

curriculum as characterized by the kinds of reasoning, generalization, and conceptions that might 

describe developmental shifts or progressions in learning.  This then includes a more focused 

discussion of how we might use such a framework to better articulate where the shift from K-12 

to “college level” might occur in various mathematical domains.   



Adolescent and Young Adult Development in Psychology and Neuroscience 

It is known that the brain changes physically throughout the lifespan and that the last 

significant period of remodeling begins in adolescence and culminates in the early to mid-

twenties. The parts of the brain most impacted by this last remodeling are those that control 

functions such as working memory, planning, and impulse control (Konrad et al, 2013). Based 

on this science, it is developmentally appropriate that college students should be able to interact 

with mathematical objects (e.g., algebraic expressions) in more sophisticated ways than younger 

students. Early educational literature, such as that of Piaget (1964), posited developmental stages 

for school-aged children that influence our expectations for what “grade level” means in subjects 

like math, reading, and writing. Psychology and neuroscience research acknowledge how 

understudied adolescents and young adults are and posit that much still remains to be learned 

about how brain development might impact behavior and learning (Blakemore, 2012; 

Shanmugan & Satterthwaite, 2016). In her survey of the field of adolescent brain imaging, 

Blakemore (2012) speculated about how changes in brain structure could make signal processing 

more efficient, which we speculate could have a direct impact on mathematics learning. This 

work in neuroscience compliments frameworks like that proposed by Erik Erikson (1994) for 

ongoing psychosocial development into and continuing through adulthood. Yet while it is known 

from neuroscience and developmental psychology research that college students differ 

developmentally from younger students, mathematics education frameworks have tended to 

ignore this when describing domains such as algebra that may be learned by students of widely 

varying ages. This paper seeks to explore how we might begin to conceptualize developmental 

stages as impacting how the same mathematical “objects” might be studied at different levels, 

with particular focus on what it might mean to do mathematics at the college level. 

Proposed Mathematical Maturity Framework 

In this paper we aim to problematize and redefine the term mathematical maturity. This term 

has been used in both research and practice to describe a kind of developmental progression like 

the one we hope to focus on here. However, this term has also been used in ways that are often 

vague and ill-defined; that provide deficit framings of students (e.g., “students can’t take linear 

algebra before calculus because they don’t have the mathematical maturity for the course”); and 

that describe binary destinations (e.g., students either have “mathematical maturity” or they 

don’t) of what we conceptualize as a continuous life-long process of growth. 

Mathematical maturity is a term used widely and often without formal definition within 

undergraduate mathematics education research and practice (Braun, 2019; Lew, 2019). In some 

instances, the completion of a specific course is used as an operational definition for the sake of a 

study, but even in those cases it is generally clarified that it is not the course content but a set of 

skills and increasing sophistication in how one approaches mathematics that is being referenced 

(Faulkner, Earl, & Herman, 2019; Lew, 2019). Two recent studies sought to determine how 

those using the term “mathematical maturity” define it. Faulkner et al (2019) interviewed 

engineering faculty and Lew (2019) interviewed mathematics faculty about their use of the term. 

Common definitions provided between these studies included many types of reasoning, 

generalizing, and conceptualizing, including the ability to: make connections across 

mathematical topics; use symbolic representations; relate different representations to one another 

and recognize when they describe the same phenomenon or relationship; choose between 

different representations for the purpose of solving problems; and understand if a solution to a 

problem makes sense.  



Definition of Mathematical Maturity 

Here we offer a new conceptualization of mathematical maturity via a framework, which we 

see as a starting point for describing how learners might acquire higher-level mathematical 

thinking skills and practices as they develop over time.  We anticipate that this definition will 

evolve over time, but we present this as a first step, to start a conversation about what it means to 

learn mathematics at different “levels”.  A framework of this sort could then be used to generate 

new courses which could allow learners with missing “content knowledge” to nonetheless take a 

college-level, credit-bearing mathematics course that respects their different developmental stage 

compared to the age at which such content is traditionally introduced. For example, a course 

might require no algebra prerequisite, but allow students to engage with algebraic reasoning and 

justification at a higher level than would be expected in a typical K-12 algebra course.    

We define mathematical maturity as a spectrum with no upper bound that describes the 

extent to which learners may acquire over time the ability to 1) reason and justify; 2) generalize 

and abstract; and 3) internalize particular conceptions of specific mathematical objects that occur 

throughout the curriculum. We conceptualize the process of developing mathematical maturity as 

a combination of physiological development and the outcome of particular mathematical 

experiences acquired over time. We now briefly present a framework for describing 

mathematical maturity which we have synthesized from existing research literature (Figure 1).   

Reasoning/Justification: To what extent are students expected to be able to reason (i.e., explain to themselves 
why/how something works), justify (i.e., communicate to others how/why something works), or prove (i.e., 
justify using more formal mathematical conventions accepted within a particular context)? 
 

When reasoning, justifying or proving, what level of formality of language and convention is expected?  
(imprecise language vs. well-defined but informal language vs. formal mathematical terminology and/or 
symbols) 

Generalization/Abstraction: How generalized is a learner’s understanding expected to be (e.g., is the goal to 
understand a single example vs. a limited class of examples vs. a generic example)? 
How explicit are students expected to be about the boundaries of the problem space?  What kinds of 
connections between domains or representations are they expected to make? 

Specific Conceptions/Concept Images: In a particular domain, which particular conceptions or concept images 
are learners expected to acquire (e.g., if a process vs. object transition, what is the specific object that is 
supposed to result from reification/encapsulation)? 

Figure 2.  Mathematical Maturity Framework for Describing Developmental Progression through K-16+ 

Mathematical Curriculum, Three Possible Dimensions 



We contrast this approach with traditional conceptualization of “level” which have tended to 

focus on computations on particular mathematical objects as the primary feature which 

determines the “level” of a course (Figure 2).   

Figure 1: Informal model of progress through mathematics as currently conceived 

In contrast, we consider which features are most relevant to determining the “level” at which 

the same mathematical object might be learned at different points in a students’ K-16+ 

learning trajectory. We now describe each of the three dimensions of the framework in more 

detail.   

Review of Literature from which the Proposed Framework was Drawn 

Reasoning/Justification 

One of the topics that is often discussed in the literature as a way of distinguishing whether 

students have “learned” mathematics, is the extent to which and ways in which students are able 

to reason or justify in mathematics.  One of the major formal transitions in this area is when 

students are expected to generate mathematical proofs in college; substantial research has 

documented student difficulties with this.  One explanation for this is that while students have 

experienced instruction focused on specific “content”, students often do not come out of these 

courses with clear understanding of more general mathematical skills and practices, such as what 

constitutes mathematical proof (Selden & Selden, 2008).  But formal proof simply describes one 

end of a much longer spectrum of skills, perspectives and practices.  There have been extensive 

calls for students in K-12 to learn to reason and justify, long before the introduction of formal 

proof (e.g., National Governors Association Center for Best Practices [NGA] & Council of Chief 

State School Officers [CCSSO], 2010). And the processes of reasoning and justifying have been 

identified as critical mathematical skills that students may often not acquire during “standard” 

computational instruction (e.g., Mata-Pereira & da Ponte, 2017; Ball & Bass, 2003).  Thus, 

reasoning and justification describes a core skill that is critical across mathematical domains.   

Generalization/Abstraction 

Another feature of mathematical “level” that often arises in the literature is the extent to 

which students are able to generalize about mathematical objects. To date, most of the research 

on generalization has been in the realms of early algebra (Carraher et al., 2008), pattern-forming 

(Amit & Neria, 2008), and linearity (Ellis, 2007) (see Ellis et al. 2022 for a more complete list). 

Notably, Ellis et al. (2022) is the first to consider students’ generalizing activity across multiple 

domains and grade levels, ranging from middle school to undergraduates. Through their 

extensions of Ellis’ (2007) taxonomy for categorizing types of generalization, they identified 

three main types: relating, forming, and extending. This framework enabled the researchers to 

identify what they considered to be generative (i.e., productive or useful) generalizing activity, 

and discuss how generalizing was both independent and dependent of the mathematical domain. 

We see this research area, and the RFE framework in particular, as having great potential for 

helping to illuminate our eventual taxonomy of delineating college-level mathematics.  

Strongly related to generalization is the notion of abstraction. Abstraction may be defined as 

the processes that lead learners to grasp deeper understandings of mathematical structures, such 



as the underlying structure behind a vector space (Dreyfus, 2020, p. 13). Abstraction may also be 

thought of as a vertical reorganization of existing knowledge, or as a reconceptualization of 

information (as opposed to a de-construction). Many researchers have considered abstraction as 

part of a student’s cognitive development, such as Piaget’s ideas of empirical and reflective 

abstraction (Dubinsky, 2002), Thompson’s processes and objects (1985), APOS theory (Asiala et 

al, 1997), Sfard’s reification (1991), and Tall’s structural abstraction (2013).  

Conceptions/Concept Images 

A third feature that often arises in studies of learners’ progression through mathematical 

levels is the extent to which learners have particular conceptions about mathematical objects or 

concepts.  One example that has been widely discussed is the transition documented by process-

to-object theories (Sfard, 1991; Dubinsky, 1991; Gray & Tall, 1994), in which learners are 

theorized to conceptualize certain entities first as a process, and then later to reify/encapsulate 

that process into an object which can then subsequently be acted upon by even higher-order 

processes.  For example, the expression 2𝑥 could be conceptualized as a process representing 

that 2 and 𝑥 should be multiplied together.  Later, a learner may conceptualize 2𝑥 as an object 

itself, representing the process of multiplying 2 by 𝑥 or the result of multiplying 2 by 𝑥, without 

actually carrying out computation.  Then 2𝑥 can be acted on by even higher-order processes, for 

example adding it to another object, 3𝑥, to obtain the result 5𝑥.   

While students may switch back and forth between process and object conceptualizations, the 

ability to utilize an object conception is typically considered to be further along the 

developmental spectrum than using process conceptions alone (e.g., Sfard, 1991).  Many higher-

level mathematics courses also require object conceptions: for example, while arithmetic is 

rooted in a process conception of numerical computation, algebra requires that these same 

calculations be reified or encapsulated into objects (i.e., expressions/equations that can 

themselves be transformed using higher-order processes).  Similarly, as algebra becomes more 

complex, students may be required to reify the process of the order of operations on algebraic 

expressions into subexpressions as objects (i.e., substrings of expression/equations that must be 

treated as unified objects); for example, this kind of higher-order structuring is necessary in order 

to perform function composition, u-substitution, or the chain rule in calculus. In fact, we can 

envision a larger progression in which one process is reified into an object, which is acted upon 

by higher-order processes which are themselves reified into an object, which is itself acted upon 

by even higher-order processes, etc. This progression has tended to be studied as individual shifts 

for one particular entity going from a process to an object, rather than discussed as a larger 

progression with many different shifts; however, original process-to-object theories precisely 

pointed out how reified objects became the focus of yet higher-order processes (Sfard, 1991), 

thus implying the existence of a larger progression containing many layers of more and more 

complex reified objects.  Process to object views are likely not the only kinds of conceptual 

shifts that are expected of students as they progress through the mathematics curriculum; we 

present them here only as one example of how a key characteristic that determines the “level” of 

a mathematics course is the set of particular conceptions that learners are expected to internalize.   

Brief Illustrative Example: The Distributive Property 

In order to illustrate some of the affordances of the Mathematical Maturity Framework, we 

present one example of how this framework could be used to map out learning goals for the same 

object (the distributive property) at different stages of the K-16+ trajectory (Figure 3). The 

distributive property is first encountered in 3rd-5th grade, but is also the subject of study 



throughout the K-16+ curriculum. Currently, much focus is on which objects learners are 

expected to transform using the distributive property, yet research has documented extensive 

difficulties that students have in using the distributive property appropriately at many different 

levels (e.g., Malle, 1993; Schüler-Meyer, 2017). This may be because instruction often focuses 

on computation divorced from reasoning and justification. However, reconceptualizing the 

distributive property as a learning object by thinking about the types of reasoning, generalization, 

and conceptions students might use, could help us to shift our conceptions of how we determine 

the mathematical “level” of a particular course.   

 

Algebra I (8-12th grade): Learners are expected to understand the symbolic representation 𝑎(𝑏 + 𝑐) =
𝑎𝑏 + 𝑎𝑐 as a pattern in which 𝑎, 𝑏 and 𝑐 of the property represent objects (simple terms that are the 
product of a number and variable(s)).  They are expected to conceptualize simple subexpressions such 
as 𝑝𝑥 and 𝑞𝑦 as reified objects representing generic unknown numbers.  The property is seen to hold 
because it represents two processes that produce the same numerical output for every possible 
numeric input from the domain into the expression which is being “transformed” by the property.  
They may or may not be expected to use an area model of multiplication to reason about or justify 
this idea, but they are not expected to prove the property, nor necessarily to generalize to algebraic 
objects with other forms.  

Intro college-level algebra (lower-level undergraduate): Learners are expected to conceptualize the 
distributive property as a one-to-one mapping of specific reified subexpressions to 𝑎, 𝑏 and 𝑐, 
respectively, in the property.  Thus 𝑎, 𝑏, and 𝑐 are seen as representing generic algebraic 
subexpressions and the specific reified subexpressions which are being mapped to variables in the 
property are seen as representing generic numerical values.  The property is seen to hold because it is 
the process of replacing one expression with another equivalent one (substitution equivalence).  The 
property is understood to be generalized to a generic number of terms, and students are able to 
describe this clearly but somewhat informally, and to justify why this is the case using an area model 
of multiplication.   Reasoning and justification are expected, with well-defined language and some 
limited formal symbolism and terminology, but proof is not expected.   

Abstract algebra (upper-level undergraduate or graduate): Multiplication and addition are 
conceptualized as abstract binary operations on an (often abstract) set, with 𝑎, 𝑏 and 𝑐 in the property 
representing generic set elements.  Operations are defined axiomatically.  The distributive law itself 
has been reified into an object: a property which a given set and pair of operations may or may not 
have.  Learners are expected to prove, using formal mathematical terminology and symbolism, 
whether or not the left or right (or both) distributive properties hold for a given set with a given pair 
of operations (or for a larger class of sets with pairs of operations).   

Figure 3.  Examples of how levels of understanding of the distributive property might differ (as described by 

student learning goals) in high school versus lower/upper-level college, even when the objects which are the focus 

of the distributive property (algebraic expressions) are similar 

The descriptions in Figure 3 are just one example of how we might describe learning 

outcomes which depict different levels of learning for a common mathematical “object”.  For 

students in the theoretical “intro college level” algebra class described in Figure 3, no extensive 

prerequisite proficiency in algebraic computation is required–however, once the learner starts 

working with the distributive property, higher-level reasoning/justification, 

generalization/abstraction, and reified objects are expected to be used and learned as a part of the 



curriculum. This is just one brief example of how using the Mathematical Maturity Framework 

as a tool for developing and describing learning in college-level mathematics may help us to shift 

our focus from computations on specific objects, to how students are learning to reason about, 

generalize and conceptualize specific key mathematical ideas as they progress along their 

mathematical learning trajectories up to and through college.   

Conclusion 

Our aim in presenting this framework is to shift our discussion of “college-level” 

mathematics (and levels in mathematics more generally) away from a focus on specific 

computations or particular mathematical objects, and towards a focus on reasoning, generalizing, 

and particular conceptual shifts. This reconceptualization can be particularly important from an 

equity perspective, since conflating computational skills with reasoning ability can be 

particularly detrimental to some of the most marginalized students. One example of this is 

developmental mathematics in college. The term “developmental” is often used to describe 

courses that are not “college-level”, but this definition is ill-defined in the research literature 

(Wladis et al, 2022) and may be circular (e.g., a course is developmental because it does not earn 

college credit and does not earn credit because it is not “college-level”).  Most students in 

college are in fact re-taking mathematics which they already took in high school (e.g., 70% of 

those who attended college the year after graduating HS had already taken at least one math 

course above Algebra II [IES, HLS, 2009], and 52% of students who enroll in Calculus I in 

college have taken calculus previously (Sadler & Sonnert, 2016), yet what makes some of the 

courses that students repeat in college “college-level” and others not is unclear.  We see this as a 

critical equity issue in mathematics: many college students (particularly those from more 

marginalized groups) are labeled “developmental” in college (with both stigma and practical 

barriers attached to these labels) because they are deemed “not ready for college-level work”, yet 

what it means to be ready for college-level work is not well-defined.  

The transition from high school to college is also not the only transition point in mathematics 

learning in college that has been documented to be difficult for students.  For example, many 

students struggle with the transition to proof in undergraduate mathematics (Selden & Selden, 

2008).  One reason the observed difficulty with many transition points into and through college 

mathematics may be that as a community we have not yet clearly enough articulated the specific 

goals of instruction, as defined in terms of particular types of higher-order thinking skills such as 

reasoning, generalization, and specific conceptions of mathematical concepts; nor have we 

adequately described on a larger-grained scale how we might expect students to progress through 

these developmental stages as they mature mathematically. This paper is an attempt to start a 

conversation about the potential of reframing “college-level” classifications based on specific 

high-level thinking skills, rather than organizing it around the specific mathematical objects to be 

studied or the particular calculations to be made.  Our hope is that this will lead to more 

productive and equitable ways of teaching and assessing students in college, and across the K-

16+ mathematics spectrum.   
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