Reconceptualizing Algebraic Transformation as a Process of Substitution Equivalence

Claire Wladis
CUNY

Benjamin Sencindiver CUNY

Kathleen Offenholley CUNY

In this theoretical paper, we describe how algebraic transformation could be reconceptualized as a process of substitution equivalence, and we discuss how this conceptualization affords mathematical justification of transformation processes. In particular, we describe a model which deconstructs the process of substitution equivalence into core subdomains which could be learned serially and then re-integrated, in order to make them accessible to students with lower prior knowledge in syntactic reasoning. Our aim in presenting this model is to start a conversation about what the core components of knowledge might be in order for students to reason about and justify algebraic transformation using symbolic representations.

Keywords: algebraic transformation; substitution equivalence; reasoning and justification; syntactic reasoning; cognitive load

Algebraic transformation has been identified as a core task of algebra (e.g., Kieran, 2004), yet students often struggle to transform algebraic expressions and equations correctly (e.g., Agoestanto et al., 2019; Dustin & Coleman, 2012). One reason may be that algebraic transformation is often taught procedurally. Without the connection to syntactic reasoning, students may not understand why certain transformations can be justified mathematically as preserving equivalence. For example, in the case of equations, students often do not realize that valid transformation produces an equation that has the same solution set as the original (e.g., Pilet, 2012, 2013). In this paper, we develop a theoretical model for how algebraic transformation could be reconceptualized as a process of substitution equivalence. Our model describes separate but related concepts necessary to use substitution equivalence to replace one expression or equation with an equivalent one during the problem-solving process. This model is the result of a decades-long design research experiment that we do not report on here; analysis of those data is the focus of other ongoing research (e.g., Wladis et al, 2022a, 2022b, 2022c, 2022d, 2022e). Instead, in this paper, our goal is to describe the theoretical model and its relationship to existing theory, including a discussion of its affordances in helping us to understand how learners might reason about and justify algebraic transformation.

Theoretical Framework: Generalizing Computational Versus Relational Views of the Equals Sign to Equivalence Relationships Preserved by Algebraic Transformation

Research on the equals sign distinguishes between whether students have a computational (the equals sign is a cue to compute what is on the left and put the answer on the right, which can lead to errors such as 2 + 4 = 6 + 2 = 8) or relational (the equals sign represents a relationship between two equal quantities) conception of the equals sign (e.g., Stephens et al., 2013). We could similarly generalize this beyond the equals sign to any type of equivalence such as equivalent algebraic expressions or equations. For example, a *computational view of equivalent algebraic expressions* (equations) would describe a learner who sees transformation as a command to perform some sort of procedure on the expression (equation) to produce a resulting expression (equation), without realizing that there is an equivalence relationship between the original and resulting expressions (equations) (e.g., contributing to such errors as "cancelling"

the 2x in the top and bottom of the expression $\frac{6x^2-2x}{2x}$ (e.g., Cunningham & Yacone, 2013) or to believing that $6x^2 - 2x$ could be interpreted to sometimes mean $6(x^2) - 2x$ and sometimes mean $(6x)^2 - 2x$, even though the two expressions do not produce equal outputs for most inputs of x). A relational view of equivalence of expression (equations) would view transformation as a way of replacing one expression (equation) with an equivalent one: thus, transformations are only permitted if they preserve equivalence (i.e., produce an equivalent expression [equation]). Further, reasoning about or justifying which transformations are allowed requires determining which preserve equivalence. The relational conception allows for justification of computation, whereas a purely computational conception does not. In particular, because the relational conception requires the notion of replacing one expression (equation) with an equivalent one, this is an example of substitution equivalence. Thus, algebraic transformation could be reconceptualized as a process of substitution equivalence, which could be viewed as a relational conception of algebraic transformation. This conceptualization then also links the action of transformation directly to its justification: namely, whether it is equivalence-preserving.

A Motivating Example

In order to provide a concrete example of how algebraic transformation can be conceptualized as a process of substitution equivalence, we choose one common algebraic task:

Example 1. Simplify
$$\frac{6x^2-2x}{2x}$$
 completely.

We have chosen this particular task because student errors from employing a computational rather than relational view of transformation are common (e.g., invalid "cancelling" of 2x); thus it is an illustration of some affordances of taking a relational approach. Here is one possible way that substitution equivalence could be used to begin to simplify this expression:

Step 1	$\frac{6x^2 - 2x}{2x} = \frac{6x^2}{2x} - \frac{2x}{2x}$	$\frac{6x^2-2x}{2x} \text{ has the form } \frac{a-b}{c} \text{ (where } c \neq 0 \text{), so we can use the property } \frac{a-b}{c} = \frac{a}{c} - \frac{b}{c}$ (where $c \neq 0$) by substituting $a = 6x^2$, $b = 2x$ and $c = 2x$ into the property, which gives us $\frac{6x^2-2x}{2x} = \frac{6x^2}{2x} - \frac{2x}{2x}.$
Step 2	$=\frac{(2x)(3x)}{2x}-\frac{2x}{2x}$	Because of the generalized associative/commutative property of multiplication, we can perform multiplication using any order or grouping (as long as only multiplication is involved). So $6x^2 = 6 \cdot (x \cdot x) = (2x) \cdot (3x)$.

Figure 1. Example substitution equivalence justification for solution to Example 1

Components of a Relational View of Transformation

If a learner has no experience with reasoning syntactically, the details in steps 1 and 2 above would produce a cognitive load that is too high for a learner to understand or reproduce this solution. However, the explanations in steps 1 and 2 can be broken down in to more discrete knowledge elements (which we call subdomains) that could each potentially be learned separately, and then reintegrated later. By identifying these elements separately, we serve two goals: 1) this may allow us to better diagnose which specific conceptions are the cause of observed difficulties; and 2) this may allow us to teach substitution equivalence in smaller "chunks", limiting the cognitive load placed on learners. In Figure 2 we illustrate the model; we begin by describing each subdomain individually.

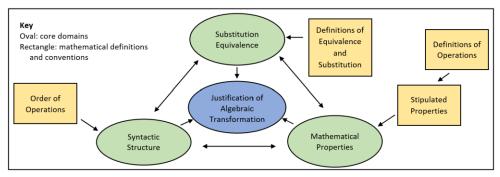


Figure 2. Model of Algebraic Transformation as Substitution Equivalence

Substitution Equivalence

To understand why $\frac{6x^2}{2x} - \frac{2x}{2x}$ can replace $\frac{6x^2 - 2x}{2x}$ in Step 1 above, a student must understand that any expression can be replaced with an equivalent one during the problem-solving process. Similarly, they must understand that if $a = 6x^2$, b = 2x and c = 2x, then a, b and c can be replaced with $6x^2$, 2x and 2x, respectively, in the property $\frac{a-b}{c} = \frac{a}{c} - \frac{b}{c}$, and the property will still be true because this is substitution of one subexpression for an equivalent one. During Step 2, they must also understand that $6x^2 = 6 \cdot (x \cdot x) = (2x) \cdot (3x)$ means that the subexpression $6x^2$ can be replaced by the equivalent subexpression $(2x) \cdot (3x)$, and the resulting expression will be equivalent to the original one. All three of these processes are facets of the concept of substitution equivalence: that one mathematical object can be replaced with another during the problem-solving process if and only if those two objects are equivalent (Wladis et al, 2022a).

Equivalence: Having a conception of substitution equivalence requires some underlying definition of equivalence, which in this case could simply be a stipulated insertion equivalence definition of expressions (Zwetzschler & Prediger, 2014, e.g., two arithmetic expressions are equivalent if they produce the same result for every possible combination of variable values). Or it could be a different definition of equivalence (e.g., a generalized equivalence relation definition). Regardless of the definition, in order to use substitution equivalence, a student has to recognize some key characteristics of the concept of equivalence more generally: that equivalence is a stable relationship between two specific objects, based on some well-defined criteria (Wladis et al, 2022a, 2022b). In other words, equivalence is a relationship (not a computation) between two objects (it requires two things to be compared) that is well-defined (it requires an unambiguous set of criteria for determining whether those two things are equivalent), and finally: two things are either equivalent or not, and they stay that way (two objects are not equivalent sometimes and not others; they don't "become" equivalent with transformation—rather, transformation reveals a pre-existing equivalence relationship).

Substitution: Using substitution equivalence also requires a more general definition of substitution, in which it is conceptualized as the replacement of one unified subexpression with an equivalent unified subexpression. For example, if a student only conceptualizes "plugging a number in" for a letter as substitution, it becomes difficult to talk about replacing $6x^2$ with $(2x) \cdot (3x)$ in the expression $\frac{6x^2}{2x}$ to generate $\frac{(2x) \cdot (3x)}{2x}$ as a process of substitution equivalence.

Thus, the domain of substitution equivalence describes the extent a learner can conceptualize equivalence as a stable relationship between two objects that meet well-defined criteria, and the extent to which the learner understands that one object can be replaced with another during the problem-solving process if and only if the two are equivalent, based on a stipulated equivalence

relationship. This is more than being able to execute more complex substitutions correctly; it includes the ability to justify transformations because they preserve equivalence, by describing the particular equivalence relationship that is preserved by that transformation.

Syntactic Structure

Understanding the concept of substitution equivalence alone is not enough to have a relational view of transformations: for example, in Steps 1 and 2 in Figure 2, in order to perform substitution correctly, it is necessary to identify the correct unified subexpressions that can be substituted out or in. Another skill that is necessary to tackle the task above is the ability to parse the intended meaning of the syntax $\frac{6x^2-2x}{2x}$ by recognizing which substrings of the expression can be treated as *subexpressions*, or which substrings of the expression could have brackets placed around them without changing the syntactic meaning of the expression (i.e., the expression would still represent the same operations on the same objects in the same order). In this example, this would mean being able to recognize that this expression has the following syntactic meaning as it is currently written: $\frac{(6(x)^2)-(2x)}{(2x)}$, and that $6x^2$ and x^2 are both subexpressions, but 6x is not.

Just as substitution equivalence can be seen as a more structural than computational approach (i.e., as a relational versus a computational view), understanding syntactic structure can also be seen as a shift from thinking computationally to thinking structurally. This is related to what has been observed by Sfard (1991) and others (Asiala et al., 1997 Dienes, 1969, Dubinsky, 1991, Gray & Tall, 1994), when they observe that an expression like $\frac{6x^2-2x}{2x}$ can be viewed as a process of squaring x, then multiplying 6 by that result, then separately multiplying 2 by x, then taking that result away from the first result, then dividing that result by the result obtained after multiplying 2 by x again. Or, it can also be seen as an object that is a reification/encapsulation of a process: the anticipated final result of the process described above (whether or not one has actually carried that process out). We focus on this slightly differently by focusing on how and whether a learner is able to identify *subexpressions as objects*. This requires more than simply a reification of the process of computation, but rather, a reification of the process of the order of operations: in the computational view, a learner would conceptualize the process of the order of operations as telling us that x must first be squared, and then 6 must be multiplied afterwards by the result; in contrast, in the structural view, a learner would conceptualize the order of operations as being reified into a fixed structure where x^2 is conceptualized as a unified subobject (i.e., a subexpression) which is a part of the larger expression $6x^2$.

We call the domain that includes knowledge of how to parse algebraic symbolic representations and to identify subexpressions *syntactic structure*. This includes not just the ability to normatively interpret the symbols, but also the ability to link that interpretation to a normative justification (i.e., by explaining how the order of operations and other stipulated conventions dictate which substrings are subexpressions). Our definition of syntactic structure is closely related to the notion of *surface structure* as defined by Kieran (1989) and others in linguistics (e.g., Chomsky, 1966)¹, and is also related to Malle's *Termstrukturen*, or "expression structuring" (1993). We discuss this in detail elsewhere (Wladis et al, 2022c).

Using Mathematical Properties, or "Form Mapping"

¹ Our use of the term *syntactic structure* should not be confused with Chomsky's use, which is different.

Substitution equivalence and syntactic structure alone are not enough to justify the transformation work in Figure 1. To use the property $\frac{a-b}{c} = \frac{a}{c} - \frac{b}{c}$ (when $c \neq 0$) to determine that $\frac{6x^2}{2x} - \frac{2x}{2x}$ is equal to $\frac{6x^2-2x}{2x}$ in Step 1, a learner must do several things. First, they must map one-to-one each subexpression in $\frac{6x^2-2x}{2x}$ to each variable in the "form" $\frac{a-b}{c}$ so every symbol in $\frac{6x^2-2x}{2x}$ gets mapped to a symbol with the same syntactic meaning in $\frac{a-b}{c}$, and the mapping preserves the relative order of all the subexpressions and symbols in the expression. Second, learners must use the form $\frac{a}{c} - \frac{b}{c}$ to map the same subexpression to the same variable in $\frac{a}{c} - \frac{b}{c}$ as they did in $\frac{a-b}{c}$. Thus, the *using properties* (or form mapping) domain describes the extent to which a learner can construct one-to-one mappings from a symbolic representation to a mathematical property so that every symbol is mapped to a symbol (or syntactic convention) with the same meaning in the property, and each variable in the property is mapped to a subexpression (with the same variables mapped to the same or equivalent subexpressions).

As with the other two subdomains, this also involves a shift from a process to object view: the student must shift from conceptualizing the use of properties as plugging in one particular set of values (or variables) into the property, to thinking of the property itself as a canonical representation of a particular existing structure in the expression which they are attempting to transform. The form mapping required to use the property on more complex expressions requires that the student be able to think structurally about subexpressions as objects in the expression that they are trying to transform, as well as the relationship between these various sub-objects, and whether this is the same relationship as the relationship between various variables in the property. They must also have a relational view of equivalence, as the property must be conceptualized as a statement about the relationship between the original expression and the transformed result. A student might also reify the process of substitution into the particular form mapping object itself. There are many different objects which the student could conceptualize (the form mapping itself; the property as a canonical representation of structural relationships, etc.); the key difference is that the student is doing more than simply "moving around" symbols in the expression in an attempt to produce a pattern that "looks like" the property.

This domain includes not just the ability to use properties to correctly transform one expression or equation into an equivalent one, but the ability to reason or justify how a particular structural mapping of subexpressions and symbols in the expression/equation to various variables and symbols in the property allows us to make an argument about the equivalence of the original expression/equation and the resulting expression equation.

Learning subdomains serially

The subdomains of substitution equivalence, syntactic structure, and using properties are all deeply interconnected, and are all necessary in order to conceptualize algebraic transformation as substitution equivalence. But they need not be learned all at once; the cognitive load of such a task is likely to be too demanding for learners with limited prior experience with syntactic reasoning. Thus, as a brief illustration, we demonstrate some ways in which aspects of these domains might initially be learned separately, or serially (and then later re-combined). In other contexts, this approach has been successful at improving student learning of complex ideas by reducing cognitive load (e.g., Pollock et al., 2002).

Syntactic structure and subexpressions

There are many ways that we could ask students questions that only draw on their knowledge of syntactic structure, and not require other types of complex and interrelated syntactic reasoning skills. For example, consider the following question, which limits the task not only to just identifying syntactic meanings, but also to identifying only *one* syntactic meaning at a time, significantly reducing the number of elements which must be held in working memory: "In the expression $\frac{6x^2-2x}{2x}$, what is being squared? Use the order of operations to justify your choice." In other research, we have found that many college students identify 6x as the base of the exponent instead of x (Wladis et al, 2022c), often because they have extracted their notions of which subexpressions "look right" based on experience, rather than reifying them from the process of the order of operations (even when they can recite the order of operations correctly, or use it to calculate correctly with numbers). This suggests that it may be essential to tackle syntactic structure individually, before proceeding to other syntactic reasoning skills which may be more complex and interrelated, and all of which depend upon a student first being able to identify the "right" subexpressions in an expression to be transformed.

It may also be necessary to ask students whether there is more than one right answer to this question. In our research, we have encountered students at many levels who have explained that an expression can have multiple correct meanings, where different meanings provided by the student are not equivalent (Wladis et al, 2022c). Thus, another component of this subdomain is discussing with students that all expressions must be well-defined, with one unambiguous meaning. Students may not realize that this is a core tenet of mathematics.

We note that determining whether a student has an object or a pseudo-object conception of the order of operations may be difficult to determine when looking only at "standard" problem contexts. Students have created pseudo-object mental schema precisely because they appear to mimic the subexpression structurings of expressions and equations that "work" during situations seen during instruction (e.g., Aly, 2022; Erlwanger, 1973). Often it only becomes obvious that students' justifications for choosing certain subexpressions are not mathematically valid when students are given more "non-standard" problems, or when students are asked directly how their choice of sub-expression relates to the order of operations (in our research, a common response, even from students in higher-level courses such as calculus was "it doesn't relate to the order of operations" [Wladis et al, 2022c]). Giving students explicit instruction in syntactic structure may act to mitigate this issue that has been observed elsewhere in the literature.

Substitution Equivalence

As with the syntactic structure subdomain, the substitution equivalence domain (and by extension equivalence subdomain) can be thought of as an element which could be learned separately, to reduce the cognitive load of learning syntactic reasoning all at once. For example, in this particular problem, it might be important to find out if a learner understands that replacing $\frac{6x^2-2x}{2x}$ with $\frac{6x^2}{2x}-\frac{2x}{2x}$ during step 1 is a process of replacing an expression with another equivalent expression. Some students may have a computational rather than relational view of equivalence of expressions or equations, where they see $\frac{6x^2}{2x}-\frac{2x}{2x}$ as the result of "doing something" directly to $\frac{6x^2-2x}{2x}$ and do not see an equivalence relationship between the two expressions (or may not even conceptualize equivalence as a relationship between two things, but rather as a process of computation) (Wladis et al, 2022a, 2022b). This can be seen particularly clearly when we look at the substitution equivalence that the student needs to recognize in order to perform step 2. We

could, for example, limit the cognitive load of that step almost exclusively to the process of substitution equivalence if we asked: "Suppose that $6x^2 = (2x) \cdot (3x)$. Use this fact to replace the expression $\frac{6x^2}{2x} - \frac{2x}{2x}$ with an equivalent expression, and to explain why the new expression is equivalent to $\frac{6x^2}{2x} - \frac{2x}{2x}$." As long as a student has enough understanding of syntactic structure to know that the numerator of a fraction is always a subexpression, and they understand the notion of substitution equivalence, this information should be sufficient for them to be able to replace $\frac{6x^2}{2x} - \frac{2x}{2x}$ with $\frac{(2x)(3x)}{2x} - \frac{2x}{2x}$ and to explain why the two expressions are equivalent. This can later be combined with more robust knowledge of identifying subexpressions to combine the two domains of substitution equivalence and syntactic structure, after students have had opportunities to master key conceptions in each subdomain separately.

Using Properties/Form Mapping

As with the syntactic structure and substitution equivalence domains, the using properties/form mapping domain can also be thought of as an element that could be learned separately, in order to reduce the cognitive load of learning syntactic reasoning all at once. For example, in this particular problem a student could be asked: "Let $a = 6x^2$, b = 2x and c = 2x. Then use the property $\frac{a-b}{c} = \frac{a}{c} - \frac{b}{c}$ (where $c \neq 0$) to explain why $\frac{6x^2-2x}{2x} = \frac{6x^2}{2x} - \frac{2x}{2x}$." In this example, students need to have a basic idea of substitution equivalence, but they do *not* need to be able to identify the subexpressions of $\frac{6x^2-2x}{2x}$, as this has already been done for them. Thus, a task like this could be used to allow students to practice their knowledge in the domain of using properties, without yet requiring substantial knowledge of syntactic structure, and thus reducing the learner's cognitive load by allowing them to focus on fewer domains at a time.

After a leaner has had the opportunity to master substitution equivalence and syntactic structure, these separate conceptions that have been learned serially could be reintegrated with the using properties domain to complete questions like Example 1 without being given the specific values for a, b and c. Then, once the conceptions necessary to engage with these types of problems have been mastered, students could be given questions where they need to choose the particular property that could be fitted to the structure of a given expression (or equation); after that, they could be asked to select the property which serves a particular goal (e.g., producing an equivalent expression without parentheses, or with a particular form, etc.); and finally, after mastering each of these serialized tasks, they could progress to being asked to plan out the usage of a sequence of properties necessary to accomplish some larger goal.

Conclusion

In this theoretical paper we have aimed to identify and explore some necessary (but not necessarily sufficient) types of knowledge that are essential for students to be able to transform algebraic expressions and equations with understanding (by which we mean, to be able to reason about and justify these transformations in mathematically valid ways). We have framed this around the lens of substitution equivalence, with the aim of deconstructing complex knowledge structures into simpler component subdomains which could be learned serially before being reintegrated, to allow students with low prior knowledge in syntactic reasoning to build up this knowledge in ways that do not overload working memory. Our hope in presenting this model is to start a conversation about how we could more explicitly address reasoning and justification when teaching, and assessing learners' knowledge in, algebraic transformation.

References

- Agoestanto, A., Sukestiyarno, Y. L., Isnarto, Rochmad, & Lestari, M. D. (2019). The position and causes of students errors in algebraic thinking based on cognitive style. *International Journal of Instruction, 12*(1), 1431-1444. https://doi.org/https://files.eric.ed.gov/fulltext/EJ1201364.pdf
- Aly, G. (2022). Benny, Barbara, and the Ethics of EdTech. *Journal of Humanistic Mathematics*, 12(2), 98-127.
- Arán Filippetti, V. (2017). A structural equation modeling of executive functions, IQ and mathematical skills in primary students: Differential effects on number production, mental calculus and arithmetical problems. *Child Neuropsychology*, 23(7), 864-888. https://doi.org/10.1080/09297049.2016.1199665
- Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1997). A framework for research and curriculum development in undergraduate mathematics education. *MAA Notes*, 37-54.
- Attewell, P., Lavin, D., Domina, T., & Levey, T. (2006). New evidence on college remediation. *Journal of Higher Education*, 77(5), 886-924. https://doi.org/10.1353/jhe.2006.0037
- Bailey, T., Jeong, D. W., & Cho, S. W. (2010). Student progression through developmental sequences in community colleges. *Community College Research Center, Columbia University*, 45
- Booth, L. R. (1989). A question of structure or a reaction to: "The early learning of algebra: A structural perspective. In S. Wagner, & C. Kieran (Eds.), *Research issues in the learning and teaching of algebra: The research agenda for mathematics education, volume 4* (4th ed ed., pp. 56-59) The National Council of Teachers of Mathematics. https://doi.org/10.4324/9781315044378-5
- Brathwaite, J., Fay, M. P., & Moussa, A. (2020). Improving developmental and college-level mathematics: Prominent reforms and the need to address equity. (CCRC Working Paper No. 124). Community College Research Center. Retrieved from https://files.eric.ed.gov/fulltext/ED609226.pdf
- Broadbent, D. E. (1958). Perception and communication. New York: Oxford University Press.
- Campos, I. S., Almeida, L. S., Ferreira, A. I., Martinez, L. F., & Ramalho, G. (2013). Cognitive processes and math performance: A study with children at third grade of basic education. *European Journal of Psychology of Education*, 28(2), 421-436. https://doi.org/10.1007/s10212-012-0121-x
- Carlson, M., & Oehrtman, M. (2005). Research sampler 9: Key aspects of knowing and learning the concept of function. *Mathematical Association of America*.
- Carlson, M., Oehrtman, M., & Engelke, N. (2010). The precalculus concept assessment: A tool for assessing students' reasoning abilities and understandings. *Cognition and Instruction*, 28(2), 113-145. https://doi.org/10.1080/07370001003676587
- Chomsky, N. (2013). 7. the logical basis of linguistic theory. In F. Kiefer, & P. van Sterkenburg (Eds.), *Eight decades of general linguistics* (pp. 123-236) Brill. https://doi.org/10.1163/9789004242050 009
- Clark, J. M., Cordero, F., Cottrill, J., Czarnocha, B., DeVries, D. J., St. John, D., Tolias, G., & Vidakovic, D. (1997). Constructing a schema: The chase of the chain rule? *The Journal of Mathematical Behavior*, 16(4), 345-364.

- Crisp, G., Taggart, A., & Nora, A. (2015). Undergraduate latina/o students: A systematic review of research identifying factors contributing to academic success outcomes. *Review of Educational Research*, 85(2), 249-274. https://doi.org/10.3102/0034654314551064
- Cunningham, R.F., & Yacone. E. (2013). Algebra textbooks' and teachers' methods: Simplifying rational expressions. *International Journal of Research in Educational Methodology*, 4(1), 457-468.
- Cuoco, A., Goldenberg, E. P., & Mark, J. (1996). Habits of mind: An organizing principle for mathematics curriculum. *Journal of Mathematical Behavior*, 15(4), 375-402.
- Desimone, L. M., & Long, D. (2010). Teacher effects and the achievement gap: Do teacher and teaching quality influence the achievement gap between black and white and high- and low-SES students in the early grades? *Teachers College Record*, 112(12), 3024-3073.
- Dienes, Z. P. (1960). Building up mathematics. London: Hutchinson Educational.
- Dienes, Z. P. (1969). Building up mathematics. Hutchinson Educational.
- Dubinsky, E. (1991). Constructive aspects of reflective abstraction in advanced mathematics. In L. P. Steffe (Ed.), *Epistemological foundations of mathematical experience* (pp. 160-202). New York, NY: Springer. https://doi.org/10.1007/978-1-4612-3178-3_9
- Dustin, D. L., & Coleman, M. (2012). Tapering timbers: Finding the volume of conical frustums. *Mathematics Teacher*, 105(7), 500-505.
- Edwards, B. S., & Ward, M. B. (2004). Surprises from mathematics education research: Student (mis)use of mathematical definitions. *The American Mathematical Monthly*, 111(5), 411-424. https://doi.org/10.1080/00029890.2004.11920092
- Engage^{ny} (2015). *EUREKA MATH, New York state common core mathematics curriculum*. Retrieved from: https://www.engageny.org/common-core-curriculum
- Erlwanger, S. H. (1973). Benny's conception of rules and answers in IPI mathematics. *Journal of Children's Mathematical Behavior*, 1(2), 7-26.
- Fischer, E. M. J. (2007). Settling into campus life: Differences by race/ethnicity in college involvement and outcomes. *The Journal of Higher Education*, 78(2), 125-161. https://doi.org/10.1080/00221546.2007.11780871
- Gold, R. (1958). Roles in sociological field observations. *Social Forces*, *36*(3), 217-223. https://doi.org/10.2307/2573808
- Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity, and flexibility: A" proceptual" view of simple arithmetic. *Journal for Research in Mathematics Education*, 25(2), 116-140. https://doi.org/10.2307/749505
- Haberman, M. (1991). The pedagogy of poverty versus good teaching. *Phi Delta Kappan*, 73(4), 290-294.
- Hoch, M., & Dreyfus, T. (2004). Structure sense in high school algebra: The effect of brackets. In M. J. Høines, & A. B. Fuglestad (Eds.), *Proceedings of the 28th conference of the international group for the psychology of mathematics education* (3rd ed., pp. 49-56). Bergen, Norway: PME.
- Hoch, M., & Dreyfus, T. (2005). Students' difficulties with applying a familiar formula in an unfamiliar context. In H. L. Chick, & J. L. Vincent (Eds.), *Proceedings of the 29th conference of the international group for the psychology of mathematics education* (3rd ed., pp. 145-152). Melbourne, Australia: PME.
- Hoch, M. (2003). Structure sense. Paper presented at the *Paper Presented at the Third Conference for European Research in Mathematics Education*, Bellaria, Italy.

- Hoch, M., & Dreyfus, T. (2006). Structure sense versus manipulation skills: An unexpected result. In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), *Proceedings of the 30th conference of the international group for the psychology of mathematics education* (Vol. 3 ed., pp. 305-312). Czech Republic: Charles University Prague.
- Hockett, C. F. (1958). A course in modern linguistics. *Language Learning*, 8(3-4), 73-75. https://doi.org/10.1111/j.1467-1770.1958.tb00870.x
- Kaput, J. J. (1979). Mathematics and learning: Roots of epistemological status. In J. Clement, & J. Lochhead (Eds.), *Cognitive process instruction* (pp. 289-303). Philadelphia, PA.: Franklin Institute Press.
- Kaput, J. J. (1998). Transforming algebra from an engine of inequity to an engine of mathematical power by "algebrafying" the K-12 curriculum. Paper presented at *The Nature and Role of Algebra in the K-14 Curriculum: Proceedings of a National Symposium*, 25-26.
- Kaput, J. J. (1991). Notations and representations as mediators of constructive processes. In E von Glasersfeld (Ed.), *Radical constructivism in mathematics education* (Kluwer Academic Publishers ed., pp. 53-74). https://doi.org/10.1007/0-306-47201-5_3
- Kieran, C. (1989). The early learning of algebra: A structural perspective. In S. Wagner, & C. Kieran (Eds.), *Research issues in the learning and teaching of algebra* (pp. 33-56). Reston, VA: National Council of Teachers of Mathematics.
- Kieran, C. (2004). The core of algebra: Reflections on its main activities. In K. Stacey, H. Chick, & M. Kendal (Eds.), *The future of the teaching and learning of algebra: The 12th ICMI study* (pp. 23-33). Springer.
- Kirshner, D., & Awtry, T. (2004). Visual salience of algebraic transformations. *Journal for Research in Mathematics Education*, 35(4), 224-257. https://doi.org/10.2307/30034809
- Knuth, E. J. (2000). Student understanding of the cartesian connection: An exploratory study. *Journal for Research in Mathematics Education*, 31(4), 500-507. <u>https://doi.org/10.2307/749655</u>
- Knuth, E., Stephens, A., McNeil, N., & Alibali, M. (2006). Does understanding the equal sign matter? evidence from solving equations. *Journal for Research in Mathematics Education*, 37(4), 297-312.
- Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. *Educational Studies in Mathematics*, 40(2), 173-196.
- Malle, G. (1993). *Didakitsche probleme der elementaren algebra*. Vieweg. https://doi.org/10.1007/978-3-322-89561-5
- Matz, M. (1982). Towards a process model for high school algebra errors. *Intelligent tutoring systems* (pp. 25-50). London: Academic Press.
- Mejia, M. C., Rodriguez, O., & Johnson, H. (2019). What happens when colleges broaden access to transfer-level courses? evidence from California's community colleges. Public Policy Institute of California.
- Morgan, C., & Watson, A. (2002). The interpretative nature of teachers' assessment of students' mathematics: Issues for equity. *Journal for Research in Mathematics Education*, 33, 78-110. doi:10.2307/749645
- Moschkovich, J., Schoenfeld, A. H., & Arcavi, A. (1993). Aspects of understanding: On multiple perspectives and representations of linear relations and connections among them. In T. A. Romberg, E. Fennema & T. P. Carpenter (Eds.), *Integrating research on the graphical representation of functions* (pp. 69-100) Lawrence Erlbaum Associates.

- Novotná, J., & Hoch, M. (2008). How structure sense for algebraic expressions or equations is related to structure sense for abstract algebra. *Mathematics Education Research Journal*, 20(2), 93-104.
- Novotná, J., Stehlíková, N., & Hoch, M. (2006). Structure sense for university algebra. In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), *Proceedings 30th Conference of the international group for the psychology of mathematics education* (4th ed., pp. 249-259). Prague: PME.
- Oehrtman, M., Carlson, M., & Thompson, P. W. (2008). Foundational reasoning abilities that promote coherence in students' function understanding. In M. P. Carlson, & C. Rasmussen (Eds.), *Making the connection: Research and teaching in undergraduate mathematics education* (pp. 27-42) Mathematical Association of America. https://doi.org/10.5948/UPO9780883859759.004
- Pearn, C., & Stephens, M. (2004, June). Why you have to probe to discover what year 8 students really think about fractions. In *Mathematics education for the third millennium: Towards 2010. Proceedings of the 27th Annual Conference of the Mathematics Education Research Group of Australasia. Townsville, Australia* (pp. 27-30).
- Pilet, J. (2012). Parcours d'enseignement différencié appuyés sur un diagnostic en algèbre élémentaire à la fin de la scolarité obligatoire: modélisation, implémentation dans une plateforme en ligne et évaluation (Doctoral dissertation, Université Paris-Diderot-Paris VII).
- Pilet, J. (2013). Implicit learning in the teaching of algebra: Designing a task to address the equivalence of expressions. In *Proceedings of the 8th congress of the European Society for Research in mathematics education* (pp. 510-519). Ankara, Turkey: Middle East Technical University and ERME.
- Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. *Learning and Instruction*, 12, 61-86. https://doi.org/10.1016/S0959-4752(01)00016-0
- Prediger, S., & Zwetzschler, L. (2013). Topic-specific design research with a focus on learning processes: The case of understanding algebraic equivalence in grade 8. In T Plomp, & N Nieveen (Eds.), *Educational design research: Illustrative cases* (pp. 407-424) SLO.
- Sfard, A. (1991). On the dual nature of mathematical conceptions. *Educational Studies in Mathematics*, 22(1), 1-36. https://doi.org/10.1007/BF00302715
- Sfard, A. (1992). Operational origins of mathematical objects and the quandary of reification-the case of function. In G. Harel, & E. Dubinsky (Eds.), *The concept of function: Aspects of epistemology and pedagogy* (Vol. 25 ed., pp. 59-84) Mathematical Association of America.
- Sfard, A. (1995). The development of algebra: Confronting historical and psychological perspectives. *The Journal of Mathematical Behavior*, *14*(1), 15-39. https://doi.org/10.1016/0732-3123(95)90022-5
- Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. *Journal for Research in Mathematics Education*, 26(2), 114-145. https://doi.org/10.2307/749205
- Simon, M., Saldanha, L., McClintock, E., Akar, G. K., Watanabe, T., & Zembat, I. O. (2010). A developing approach to studying students' learning through their mathematical activity, 28(1), 70-112. https://doi.org/10.1080/07370000903430566
- Steffe, L. P., & Kieren, T. (1994). Radical constructivism and mathematics education. *Journal for Research in Mathematics Education*, 25(6), 711-733.

- Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In R Lesh & A E Kelly (Ed.), *Research design in mathematics and science education* (pp. 267–307). Hillsdale, NJ: Erlbaum.
- Stephens, A. C., Knuth, E. J., Blanton, M. L., Isler, I., Gardiner, A. M., & Marum, T. (2013). Equation structure and the meaning of the equal sign: The impact of task selection in eliciting elementary students' understandings. *The Journal of Mathematical Behavior*, 32(2), 173-182. https://doi.org/10.1016/j.jmathb.2013.02.001
- Stigler, J. W., Givvin, K. B., & Thompson, B. J. (2010). What community college developmental mathematics students understand about mathematics. *MathAMATYC Educator*, *1*(3), 4-16.
- Tall, D., Thomas, M., Davis, G., Gray, E., & Simpson, A. (1999). What is the object of the encapsulation of a process? *The Journal of Mathematical Behavior*, 18(2), 223-241. https://doi.org/10.1016/S0732-3123(99)00029-2
- Thompson, P. W. (1989). A cognitive model of quantity-based algebraic reasoning. Paper presented at the *Annual Meeting of the American Educational Research Association*.
- Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the foundation of mathematics education. Paper presented at the *Annual Meeting of the International Group for the Psychology of Mathematics Education*.
- Thompson, P. W. (2013). In the absence of meaning... In K Leatham (Ed.), *Vital directions for mathematics education research* (pp. 57-90). New York, NY: Springer. https://doi.org/10.1007/978-1-4614-6977-3 4
- Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In J. Cai (Ed.), *Compendium for research in mathematics education* (1st ed., pp. 421-456) National Council of Teachers of Mathematics.
- Towers, J., & Davis, B. (2002). Structuring occasions. *Educational Studies in Mathematics*, 49(3), 313-340. https://doi.org/10.1023/A:1020245320040
- Treisman, A. (1964). Selective attention in man. *British Medical Bulletin*, 20(1), 12-16. https://doi.org/10.1093/oxfordjournals.bmb.a070274
- Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. *Educational Studies in Mathematics*, 56(2-3), 209-234. https://doi.org/10.1023/B:EDUC.0000040410.57253.a1
- Wladis, C., Sencindiver, B. and Offenholley, K. (2022a). What Do We Want Students to Learn About Equivalence Beyond Equality? Prescriptive and Descriptive "Grundvorstellungen" of Equivalence.
- Wladis, C., Sencindiver, B. and Offenholley, K. (2022b). Analyzing students' definitions of generalized equivalence beyond equality: How do students conceptualize equivalent equations?
- Wladis, C., Sencindiver, B. and Offenholley, K. (2022c). A Framework for Analyzing Student Thinking around Mathematical Syntax: Chunking, Subexpressions, and an Object View of the Order of Operations.
- Wladis, C., Sencindiver, B., Offenholley, K., Jaffe, E., & Taton, J. (2022d). A Model of How Student Definitions of Substitution and Equivalence May Relate to Their Conceptualizations of Algebraic Transformation. *Proceedings for the 12th Congress of the European Society for Research in Mathematics Education (CERME12)*, Bolzano, Italy: ERME.
- Wladis, C., Sencindiver, B., Offenholley, K., Jaffe, E., & Taton, J. (2022e). Modeling Student Definitions of Equivalence: Operational vs. Structural Views and Extracted vs. Stipulated Definitions. In Karunakaran, S. S., & Higgins, A. (Eds.). *Proceedings for the 24th Annual*

- Conference on Research in Undergraduate Mathematics Education, (pp. 708-715). Boston, MA.
- Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. *Journal for Research in Mathematics Education*, *27*(4), 458-477. https://doi.org/10.5951/jresematheduc.27.4.0458
- Zwetzschler, L., & Prediger, S. (2013). Conceptual challenges for understanding the equivalence of expressions A case study In B. Ubuz, C. Haser & M. A. Mariotti (Eds.), *Proceedings of the 8th Congress of the Europea Society for Research in Mathematics Education (CERME 8 in antalya 2013)* (Ankara, METU University ed., pp. 558-567)