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In this theoretical paper, we describe how algebraic transformation could be reconceptualized 

as a process of substitution equivalence, and we discuss how this conceptualization affords 

mathematical justification of transformation processes. In particular, we describe a model which 

deconstructs the process of substitution equivalence into core subdomains which could be 

learned serially and then re-integrated, in order to make them accessible to students with lower 

prior knowledge in syntactic reasoning. Our aim in presenting this model is to start a 

conversation about what the core components of knowledge might be in order for students to 

reason about and justify algebraic transformation using symbolic representations.   

Keywords: algebraic transformation; substitution equivalence; reasoning and justification; 

syntactic reasoning; cognitive load 

Algebraic transformation has been identified as a core task of algebra (e.g., Kieran, 2004), 

yet students often struggle to transform algebraic expressions and equations correctly (e.g., 

Agoestanto et al., 2019; Dustin & Coleman, 2012). One reason may be that algebraic 

transformation is often taught procedurally. Without the connection to syntactic reasoning, 

students may not understand why certain transformations can be justified mathematically as 

preserving equivalence. For example, in the case of equations, students often do not realize that 

valid transformation produces an equation that has the same solution set as the original (e.g., 

Pilet, 2012, 2013). In this paper, we develop a theoretical model for how algebraic 

transformation could be reconceptualized as a process of substitution equivalence. Our model 

describes separate but related concepts necessary to use substitution equivalence to replace one 

expression or equation with an equivalent one during the problem-solving process. This model is 

the result of a decades-long design research experiment that we do not report on here; analysis of 

those data is the focus of other ongoing research (e.g., Wladis et al, 2022a, 2022b, 2022c, 2022d, 

2022e). Instead, in this paper, our goal is to describe the theoretical model and its relationship to 

existing theory, including a discussion of its affordances in helping us to understand how 

learners might reason about and justify algebraic transformation. 

Theoretical Framework: Generalizing Computational Versus Relational Views of the 

Equals Sign to Equivalence Relationships Preserved by Algebraic Transformation 

Research on the equals sign distinguishes between whether students have a computational 

(the equals sign is a cue to compute what is on the left and put the answer on the right, which can 

lead to errors such as 2 + 4 = 6 + 2 = 8) or relational (the equals sign represents a relationship 

between two equal quantities) conception of the equals sign (e.g., Stephens et al., 2013). We 

could similarly generalize this beyond the equals sign to any type of equivalence such as 

equivalent algebraic expressions or equations. For example, a computational view of equivalent 

algebraic expressions (equations) would describe a learner who sees transformation as a 

command to perform some sort of procedure on the expression (equation) to produce a resulting 

expression (equation), without realizing that there is an equivalence relationship between the 

original and resulting expressions (equations) (e.g., contributing to such errors as “cancelling” 



 

 

 

the 2𝑥 in the top and bottom of the expression 
6𝑥2−2𝑥

2𝑥
 (e.g., Cunningham & Yacone, 2013) or to 

believing that 6𝑥2 − 2𝑥 could be interpreted to sometimes mean 6(𝑥2) − 2𝑥 and sometimes 

mean (6𝑥)2 − 2𝑥, even though the two expressions do not produce equal outputs for most inputs 

of 𝑥). A relational view of equivalence of expression (equations) would view transformation as 

a way of replacing one expression (equation) with an equivalent one: thus, transformations are 

only permitted if they preserve equivalence (i.e., produce an equivalent expression [equation]). 

Further, reasoning about or justifying which transformations are allowed requires determining 

which preserve equivalence. The relational conception allows for justification of computation, 

whereas a purely computational conception does not. In particular, because the relational 

conception requires the notion of replacing one expression (equation) with an equivalent one, 

this is an example of substitution equivalence. Thus, algebraic transformation could be 

reconceptualized as a process of substitution equivalence, which could be viewed as a relational 

conception of algebraic transformation. This conceptualization then also links the action of 

transformation directly to its justification: namely, whether it is equivalence-preserving.  

A Motivating Example 

In order to provide a concrete example of how algebraic transformation can be 

conceptualized as a process of substitution equivalence, we choose one common algebraic task:  

Example 1. Simplify 
6𝑥2−2𝑥

2𝑥
 completely. 

We have chosen this particular task because student errors from employing a computational 

rather than relational view of transformation are common (e.g., invalid “cancelling” of 2𝑥); thus 

it is an illustration of some affordances of taking a relational approach. Here is one possible way 

that substitution equivalence could be used to begin to simplify this expression: 

Step 1  
6𝑥2−2𝑥

2𝑥
=

6𝑥2

2𝑥
−

2𝑥

2𝑥
  

6𝑥2−2𝑥

2𝑥
 has the form 

𝑎−𝑏

𝑐
 (where 𝑐 ≠ 0), so we can use the property 

𝑎−𝑏

𝑐
=

𝑎

𝑐
−

𝑏

𝑐
 

(where 𝑐 ≠ 0) by substituting 𝑎 = 6𝑥2, 𝑏 = 2𝑥 and 𝑐 = 2𝑥 into the property, which 

gives us 
6𝑥2−2𝑥

2𝑥
=

6𝑥2

2𝑥
−

2𝑥

2𝑥
.  

Step 2  =
(2𝑥)(3𝑥)

2𝑥
−

2𝑥

2𝑥
   Because of the generalized associative/commutative property of multiplication, we can 

perform multiplication using any order or grouping (as long as only multiplication is 
involved). So 6𝑥2 = 6 ⋅ (𝑥 ⋅ 𝑥) = (2𝑥) ⋅ (3𝑥).  

Figure 1. Example substitution equivalence justification for solution to Example 1 

Components of a Relational View of Transformation 

If a learner has no experience with reasoning syntactically, the details in steps 1 and 2 above 

would produce a cognitive load that is too high for a learner to understand or reproduce this 

solution. However, the explanations in steps 1 and 2 can be broken down in to more discrete 

knowledge elements (which we call subdomains) that could each potentially be learned 

separately, and then reintegrated later. By identifying these elements separately, we serve two 

goals: 1) this may allow us to better diagnose which specific conceptions are the cause of 

observed difficulties; and 2) this may allow us to teach substitution equivalence in smaller 

“chunks”, limiting the cognitive load placed on learners. In Figure 2 we illustrate the model; we 

begin by describing each subdomain individually.  



 

 

 

 
Figure 2.  Model of Algebraic Transformation as Substitution Equivalence 

Substitution Equivalence 

To understand why 
6𝑥2

2𝑥
−

2𝑥

2𝑥
 can replace 

6𝑥2−2𝑥

2𝑥
 in Step 1 above, a student must understand 

that any expression can be replaced with an equivalent one during the problem-solving process. 

Similarly, they must understand that if 𝑎 = 6𝑥2, 𝑏 = 2𝑥 and 𝑐 = 2𝑥, then 𝑎, 𝑏 and 𝑐 can be 

replaced with 6𝑥2, 2𝑥 and 2𝑥, respectively, in the property 
𝑎−𝑏

𝑐
=

𝑎

𝑐
−

𝑏

𝑐
, and the property will 

still be true because this is substitution of one subexpression for an equivalent one. During Step 

2, they must also understand that 6𝑥2 = 6 ⋅ (𝑥 ⋅ 𝑥) = (2𝑥) ⋅ (3𝑥) means that the subexpression 

6𝑥2 can be replaced by the equivalent subexpression (2𝑥) ⋅ (3𝑥), and the resulting expression 

will be equivalent to the original one. All three of these processes are facets of the concept of 

substitution equivalence: that one mathematical object can be replaced with another during the 

problem-solving process if and only if those two objects are equivalent (Wladis et al, 2022a).  

Equivalence: Having a conception of substitution equivalence requires some underlying 

definition of equivalence, which in this case could simply be a stipulated insertion equivalence 

definition of expressions (Zwetzschler & Prediger, 2014, e.g., two arithmetic expressions are 

equivalent if they produce the same result for every possible combination of variable values). Or 

it could be a different definition of equivalence (e.g., a generalized equivalence relation 

definition). Regardless of the definition, in order to use substitution equivalence, a student has to 

recognize some key characteristics of the concept of equivalence more generally: that 

equivalence is a stable relationship between two specific objects, based on some well-defined 

criteria (Wladis et al, 2022a, 2022b). In other words, equivalence is a relationship (not a 

computation) between two objects (it requires two things to be compared) that is well-defined (it 

requires an unambiguous set of criteria for determining whether those two things are equivalent), 

and finally: two things are either equivalent or not, and they stay that way (two objects are not 

equivalent sometimes and not others; they don’t “become” equivalent with transformation—

rather, transformation reveals a pre-existing equivalence relationship).  

Substitution: Using substitution equivalence also requires a more general definition of 

substitution, in which it is conceptualized as the replacement of one unified subexpression with 

an equivalent unified subexpression. For example, if a student only conceptualizes “plugging a 

number in” for a letter as substitution, it becomes difficult to talk about replacing 6𝑥2 with 

(2𝑥) ⋅ (3𝑥) in the expression 
6𝑥2

2𝑥
 to generate 

(2𝑥)⋅(3𝑥) 

2𝑥
 as a process of substitution equivalence.  

Thus, the domain of substitution equivalence describes the extent a learner can conceptualize 

equivalence as a stable relationship between two objects that meet well-defined criteria, and the 

extent to which the learner understands that one object can be replaced with another during the 

problem-solving process if and only if the two are equivalent, based on a stipulated equivalence 



 

 

 

relationship. This is more than being able to execute more complex substitutions correctly; it 

includes the ability to justify transformations because they preserve equivalence, by describing 

the particular equivalence relationship that is preserved by that transformation.  

Syntactic Structure  

Understanding the concept of substitution equivalence alone is not enough to have a 

relational view of transformations: for example, in Steps 1 and 2 in Figure 2, in order to perform 

substitution correctly, it is necessary to identify the correct unified subexpressions that can be 

substituted out or in. Another skill that is necessary to tackle the task above is the ability to parse 

the intended meaning of the syntax 
6𝑥2−2𝑥

2𝑥
 by recognizing which substrings of the expression can 

be treated as subexpressions, or which substrings of the expression could have brackets placed 

around them without changing the syntactic meaning of the expression (i.e., the expression 

would still represent the same operations on the same objects in the same order). In this example, 

this would mean being able to recognize that this expression has the following syntactic meaning 

as it is currently written: 
(6(𝑥)2)−(2𝑥)

(2𝑥)
, and that 6𝑥2 and 𝑥2 are both subexpressions, but 6𝑥 is not.  

Just as substitution equivalence can be seen as a more structural than computational approach 

(i.e., as a relational versus a computational view), understanding syntactic structure can also be 

seen as a shift from thinking computationally to thinking structurally. This is related to what has 

been observed by Sfard (1991) and others (Asiala et al., 1997 Dienes, 1969, Dubinsky, 1991, 

Gray & Tall, 1994), when they observe that an expression like 
6𝑥2−2𝑥

2𝑥
 can be viewed as a process 

of squaring 𝑥, then multiplying 6 by that result, then separately multiplying 2 by 𝑥, then taking 

that result away from the first result, then dividing that result by the result obtained after 

multiplying 2 by 𝑥 again. Or, it can also be seen as an object that is a reification/encapsulation of 

a process: the anticipated final result of the process described above (whether or not one has 

actually carried that process out). We focus on this slightly differently by focusing on how and 

whether a learner is able to identify subexpressions as objects. This requires more than simply a 

reification of the process of computation, but rather, a reification of the process of the order of 

operations: in the computational view, a learner would conceptualize the process of the order of 

operations as telling us that x must first be squared, and then 6 must be multiplied afterwards by 

the result; in contrast, in the structural view, a learner would conceptualize the order of 

operations as being reified into a fixed structure where 𝑥2 is conceptualized as a unified 

subobject (i.e., a subexpression) which is a part of the larger expression 6𝑥2. 

 We call the domain that includes knowledge of how to parse algebraic symbolic 

representations and to identify subexpressions syntactic structure. This includes not just the 

ability to normatively interpret the symbols, but also the ability to link that interpretation to a 

normative justification (i.e., by explaining how the order of operations and other stipulated 

conventions dictate which substrings are subexpressions). Our definition of syntactic structure is 

closely related to the notion of surface structure as defined by Kieran (1989) and others in 

linguistics (e.g., Chomsky, 1966)1, and is also related to Malle’s Termstrukturen, or “expression 

structuring” (1993). We discuss this in detail elsewhere (Wladis et al, 2022c).  

Using Mathematical Properties, or “Form Mapping” 

 
1 Our use of the term syntactic structure should not be confused with Chomsky’s use, which is different.  



 

 

 

Substitution equivalence and syntactic structure alone are not enough to justify the 

transformation work in Figure 1. To use the property 
𝑎−𝑏

𝑐
=

𝑎

𝑐
−

𝑏

𝑐
 (when 𝑐 ≠ 0) to determine that 

6𝑥2

2𝑥
−

2𝑥

2𝑥
 is equal to 

6𝑥2−2𝑥

2𝑥
 in Step 1, a learner must do several things. First, they must map one-

to-one each subexpression in 
6𝑥2−2𝑥

2𝑥
 to each variable in the “form” 

𝑎−𝑏

𝑐
 so every symbol in 

6𝑥2−2𝑥

2𝑥
 

gets mapped to a symbol with the same syntactic meaning in 
𝑎−𝑏

𝑐
, and the mapping preserves the 

relative order of all the subexpressions and symbols in the expression. Second, learners must use 

the form 
𝑎

𝑐
−

𝑏

𝑐
 to map the same subexpression to the same variable in 

𝑎

𝑐
−

𝑏

𝑐
 as they did in 

𝑎−𝑏

𝑐
. 

Thus, the using properties (or form mapping) domain describes the extent to which a learner can 

construct one-to-one mappings from a symbolic representation to a mathematical property so that 

every symbol is mapped to a symbol (or syntactic convention) with the same meaning in the 

property, and each variable in the property is mapped to a subexpression (with the same variables 

mapped to the same or equivalent subexpressions).  

As with the other two subdomains, this also involves a shift from a process to object view: 

the student must shift from conceptualizing the use of properties as plugging in one particular set 

of values (or variables) into the property, to thinking of the property itself as a canonical 

representation of a particular existing structure in the expression which they are attempting to 

transform. The form mapping required to use the property on more complex expressions requires 

that the student be able to think structurally about subexpressions as objects in the expression 

that they are trying to transform, as well as the relationship between these various sub-objects, 

and whether this is the same relationship as the relationship between various variables in the 

property. They must also have a relational view of equivalence, as the property must be 

conceptualized as a statement about the relationship between the original expression and the 

transformed result. A student might also reify the process of substitution into the particular form 

mapping object itself. There are many different objects which the student could conceptualize 

(the form mapping itself; the property as a canonical representation of structural relationships, 

etc.); the key difference is that the student is doing more than simply “moving around” symbols 

in the expression in an attempt to produce a pattern that “looks like” the property.  

This domain includes not just the ability to use properties to correctly transform one 

expression or equation into an equivalent one, but the ability to reason or justify how a particular 

structural mapping of subexpressions and symbols in the expression/equation to various 

variables and symbols in the property allows us to make an argument about the equivalence of 

the original expression/equation and the resulting expression equation.  

Learning subdomains serially 

The subdomains of substitution equivalence, syntactic structure, and using properties are all 

deeply interconnected, and are all necessary in order to conceptualize algebraic transformation as 

substitution equivalence. But they need not be learned all at once; the cognitive load of such a 

task is likely to be too demanding for learners with limited prior experience with syntactic 

reasoning. Thus, as a brief illustration, we demonstrate some ways in which aspects of these 

domains might initially be learned separately, or serially (and then later re-combined). In other 

contexts, this approach has been successful at improving student learning of complex ideas by 

reducing cognitive load (e.g., Pollock et al., 2002). 

Syntactic structure and subexpressions 



 

 

 

There are many ways that we could ask students questions that only draw on their knowledge 

of syntactic structure, and not require other types of complex and interrelated syntactic reasoning 

skills. For example, consider the following question, which limits the task not only to just 

identifying syntactic meanings, but also to identifying only one syntactic meaning at a time, 

significantly reducing the number of elements which must be held in working memory: “In the 

expression 
6𝑥2−2𝑥

2𝑥
, what is being squared? Use the order of operations to justify your choice.” In 

other research, we have found that many college students identify 6𝑥 as the base of the exponent 

instead of 𝑥 (Wladis et al, 2022c), often because they have extracted their notions of which 

subexpressions “look right” based on experience, rather than reifying them from the process of 

the order of operations (even when they can recite the order of operations correctly, or use it to 

calculate correctly with numbers). This suggests that it may be essential to tackle syntactic 

structure individually, before proceeding to other syntactic reasoning skills which may be more 

complex and interrelated, and all of which depend upon a student first being able to identify the 

“right” subexpressions in an expression to be transformed.  

It may also be necessary to ask students whether there is more than one right answer to this 

question. In our research, we have encountered students at many levels who have explained that 

an expression can have multiple correct meanings, where different meanings provided by the 

student are not equivalent (Wladis et al, 2022c). Thus, another component of this subdomain is 

discussing with students that all expressions must be well-defined, with one unambiguous 

meaning. Students may not realize that this is a core tenet of mathematics.  

We note that determining whether a student has an object or a pseudo-object conception of 

the order of operations may be difficult to determine when looking only at “standard” problem 

contexts. Students have created pseudo-object mental schema precisely because they appear to 

mimic the subexpression structurings of expressions and equations that “work” during situations 

seen during instruction (e.g., Aly, 2022; Erlwanger, 1973). Often it only becomes obvious that 

students’ justifications for choosing certain subexpressions are not mathematically valid when 

students are given more “non-standard” problems, or when students are asked directly how their 

choice of sub-expression relates to the order of operations (in our research, a common response, 

even from students in higher-level courses such as calculus was “it doesn’t relate to the order of 

operations” [Wladis et al, 2022c]). Giving students explicit instruction in syntactic structure may 

act to mitigate this issue that has been observed elsewhere in the literature.  

Substitution Equivalence 

As with the syntactic structure subdomain, the substitution equivalence domain (and by 

extension equivalence subdomain) can be thought of as an element which could be learned 

separately, to reduce the cognitive load of learning syntactic reasoning all at once. For example, 

in this particular problem, it might be important to find out if a learner understands that replacing 
6𝑥2−2𝑥

2𝑥
 with 

6𝑥2

2𝑥
−

2𝑥

2𝑥
 during step 1 is a process of replacing an expression with another equivalent 

expression. Some students may have a computational rather than relational view of equivalence 

of expressions or equations, where they see 
6𝑥2

2𝑥
−

2𝑥

2𝑥
 as the result of “doing something” directly 

to 
6𝑥2−2𝑥

2𝑥
 and do not see an equivalence relationship between the two expressions (or may not 

even conceptualize equivalence as a relationship between two things, but rather as a process of 

computation) (Wladis et al, 2022a, 2022b). This can be seen particularly clearly when we look at 

the substitution equivalence that the student needs to recognize in order to perform step 2. We 



 

 

 

could, for example, limit the cognitive load of that step almost exclusively to the process of 

substitution equivalence if we asked: “Suppose that 6𝑥2 = (2𝑥) ⋅ (3𝑥). Use this fact to replace 

the expression 
6𝑥2

2𝑥
−

2𝑥

2𝑥
 with an equivalent expression, and to explain why the new expression is 

equivalent to 
6𝑥2

2𝑥
−

2𝑥

2𝑥
.” As long as a student has enough understanding of syntactic structure to 

know that the numerator of a fraction is always a subexpression, and they understand the notion 

of substitution equivalence, this information should be sufficient for them to be able to replace 
6𝑥2

2𝑥
−

2𝑥

2𝑥
 with 

(2𝑥)(3𝑥)

2𝑥
−

2𝑥

2𝑥
 and to explain why the two expressions are equivalent. This can later 

be combined with more robust knowledge of identifying subexpressions to combine the two 

domains of substitution equivalence and syntactic structure, after students have had opportunities 

to master key conceptions in each subdomain separately.  

Using Properties/Form Mapping 

As with the syntactic structure and substitution equivalence domains, the using 

properties/form mapping domain can also be thought of as an element that could be learned 

separately, in order to reduce the cognitive load of learning syntactic reasoning all at once. For 

example, in this particular problem a student could be asked: “Let 𝑎 = 6𝑥2, 𝑏 = 2𝑥 and 𝑐 = 2𝑥. 

Then use the property 
𝑎−𝑏

𝑐
=

𝑎

𝑐
−

𝑏

𝑐
 (where 𝑐 ≠ 0) to explain why 

6𝑥2−2𝑥

2𝑥
=

6𝑥2

2𝑥
−

2𝑥

2𝑥
.” In this 

example, students need to have a basic idea of substitution equivalence, but they do not need to 

be able to identify the subexpressions of 
6𝑥2−2𝑥

2𝑥
, as this has already been done for them. Thus, a 

task like this could be used to allow students to practice their knowledge in the domain of using 

properties, without yet requiring substantial knowledge of syntactic structure, and thus reducing 

the learner’s cognitive load by allowing them to focus on fewer domains at a time.  

After a leaner has had the opportunity to master substitution equivalence and syntactic 

structure, these separate conceptions that have been learned serially could be reintegrated with 

the using properties domain to complete questions like Example 1 without being given the 

specific values for a, b and c. Then, once the conceptions necessary to engage with these types of 

problems have been mastered, students could be given questions where they need to choose the 

particular property that could be fitted to the structure of a given expression (or equation); after 

that, they could be asked to select the property which serves a particular goal (e.g., producing an 

equivalent expression without parentheses, or with a particular form, etc.); and finally, after 

mastering each of these serialized tasks, they could progress to being asked to plan out the usage 

of a sequence of properties necessary to accomplish some larger goal.  

Conclusion 

In this theoretical paper we have aimed to identify and explore some necessary (but not 

necessarily sufficient) types of knowledge that are essential for students to be able to transform 

algebraic expressions and equations with understanding (by which we mean, to be able to reason 

about and justify these transformations in mathematically valid ways). We have framed this 

around the lens of substitution equivalence, with the aim of deconstructing complex knowledge 

structures into simpler component subdomains which could be learned serially before being 

reintegrated, to allow students with low prior knowledge in syntactic reasoning to build up this 

knowledge in ways that do not overload working memory. Our hope in presenting this model is 

to start a conversation about how we could more explicitly address reasoning and justification 

when teaching, and assessing learners’ knowledge in, algebraic transformation.  
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