Poster Session 111 AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

)
Py Temporally Layered Architecture for Adaptive, Distributed and

Continuous Control
Extended Abstract
Devdhar Patel

University of Massachusetts Amherst
Ambherst, USA
devdharpatel@cs.umass.edu

Francesca Walsh
University of Massachusetts Amherst
Ambherst, USA
fnwalsh@umass.edu

Joshua Russell
University of Massachusetts Amherst
Ambherst, USA
jgrussell@cs.umass.edu

Tauhidur Rahman
University of California San Diego
San Diego, USA
trahman@ucsd.edu

Terrence Sejnowski
Salk Institute for Biological Studies
San Diego, USA
terry@salk.edu

Hava Siegelmann
University of Massachusetts Amherst
Ambherst, USA
hava@cs.umass.edu

ABSTRACT

We present temporally layered architecture (TLA), a biologically
inspired system for temporally adaptive distributed control. TLA
layers a fast and a slow controller together to achieve temporal
abstraction that allows each layer to focus on a different time-scale.
Our design draws on the architecture of the human brain which
executes actions at different timescales depending on the envi-
ronment’s demands. Such distributed control is widespread across
biological systems because it increases survivability and accuracy in
certain and uncertain environments. We demonstrate that TLA can
provide many advantages over existing approaches, including per-
sistent exploration, adaptive control, explainable temporal behavior,
compute efficiency and distributed control. We present two differ-
ent algorithms for training TLA: (a) Closed-loop control, where
the fast controller is trained over a pre-trained slow controller, al-
lowing better exploration for the fast controller and closed-loop
control where the fast controller decides whether to "act-or-not" at
each timestep; and (b) Partially open loop control, where the slow
controller is trained over a pre-trained fast controller, allowing for
open loop-control where the slow controller picks a temporally
extended action or defers the next n-actions to the fast controller.
We evaluated our method on a suite of continuous control tasks and
demonstrate the advantages of TLA over several strong baselines.

KEYWORDS

Reinforcement learning; Continuous Control; Distributed Control;
Temporal Abstraction

ACM Reference Format:

Devdhar Patel, Joshua Russell, Francesca Walsh, Tauhidur Rahman, Terrence
Sejnowski, and Hava Siegelmann. 2023. Temporally Layered Architecture for
Adaptive, Distributed and Continuous Control: Extended Abstract. In Proc.
of the 22nd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2023), London, United Kingdom, May 29 — June 2, 2023,
IFAAMAS, 3 pages.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 — June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION

The success of deep reinforcement learning (DRL) comes from an
RL agent acting at a constant frequency. Usually, this frequency is
much faster than the average human response time [3]. However, a
higher response frequency increases the energy consumption for
processing inputs and performing actions. Fast actions also cause
more jerky behavior, which might cause damage or discomfort
to humans interacting with the RL agent. Additionally, a faster
response time increases the task horizon, making it more difficult
to train the agent. On the other hand, a slower response time forces
the RL agent to take longer “macro” actions without supervision
leading to poor performance.

An ideal solution to this issue would be to act fast only when
necessary and to reduce the action frequency at other times. To
this end, we propose Temporally Layered Architecture (TLA): a
reinforcement learning architecture that layers two different net-
works with different response frequencies to achieve distributed
temporally adaptive behavior. To avoid an exponential increase
in the number of actions, each network has a constant response
frequency - one fast and one slow. However, the RL agent can use
their combination to adapt its response frequency. The temporally
layered architecture allows TLA to easily abstract hierarchical tem-
poral knowledge into layers that focus on different time-frames. We
introduce two different modes of control for TLA: (a) TLA-C: Closed-
loop control, where the fast controller is trained over a pre-trained
slow controller and (b) TLA-O: Partially open loop control, where
the slow controller is trained over a pre-trained fast controller. We
demonstrate faster convergence with both TLA variants, as well
as increased action repetition with the closed-loop approach and
fewer decisions with the partially-open loop approach. Our work
highlights that a temporally adaptive approach has similar benefits
for Al as has been demonstrated in biology and is an important
direction for future research in artificially intelligent control.

2 METHODS

The TLA consists of two deep RL networks acting at different
timesteps in order to abstract different temporal information about
the task. In our experiments, for simplicity, the slower timestep is
picked to be a multiple of the faster timestep: £554, = 1- 4. Thus,
for each action the slow agent picks, the fast agent picks n actions.

http://crossmark.crossref.org/dialog/?doi=10.5555%2F3545946.3599093&domain=pdf&date_stamp=2023-05-30

Poster Session 111

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

l Environment | AUC | Avg. Return ‘

| | TD3 [TempoRL [TLA-O | TLA-C [TD3 | TempoRL [TLA-O | TLA-C |
Pendulum 0.86 [0.86 0.92 [0.98 [-147.82(30.84) | -148.22(30.24) [-149.97(31.6) | -149.64 (32.03)
MountainCar | 0.5 | 0.65 0.56 | 0.97 [0(0) 56.39(46.05) | 37.4(45.81) | 94.19 (0.48)
Inv-Pendulum | 0.97 | 0.95 053]0.99 [1000 (0) 995.83(12.48) | 1000(0) 1000 (0)
Inv-DPendulum | 0.9 | - - 0.98 [9359.82(0.07) - : 9358.94(0.82)
Hopper 0.64 | - - 0.67 [3405.53(130.04) | - - 3454.15(190.17)
Walker2d 0.57 | - - 0.74 [4080.99(448.3) | - : 4008.8(633.34)
Ant 0.63 | - - 0.63 | 4406.36(1047.34) | - - 3643.76(828.52)

Table 1: Average normalized AUC and average return results. The standard deviation is reported in parentheses. TLA-O and
TLA-C represent the open and closed loop forms of TLA, respectively. We highlight all results that are better than the baseline

(TD3). All results are averaged over 10 trials.

| Environment | Action Repetitions | Decisions |

| | TD3 | TempoRL | TLA-O | TLA-C | TD3 | TempoRL | TLA-O | TLA-C |
Pendulum 7.50% | 23.02% 14.32% | 69.84% | 200.00 | 159.96 183.95 | 200.00
MountainCar - 70.81% 13.10% | 67.77% | 999 138.98 616.67 | 77.3
InvertedPendulum 1.12% | 55.29% 60.87% | 46.15% | 1000 445.2 392.8 1000
InvertedDPendulum | 0.96% | - - 49.41% | 1000 - - 1000
Hopper 3.43% | - - 21.74% | 996.61 | - - 989.41
Walker2d 2.00% | - - 29.87% | 990.57 | - - 942.36
Ant 0.58% | - - 22.73% | 975.82 | - - 943.62

Table 2: Average action repetition percentage and decisions for each algorithm. Action repetition percentage represents the
fraction of consecutive actions in an episode for which the actions are identical. Decisions represent the number of times in an
episode a new action was computed. All results are averaged over 10 trials.

2.1 Closed-loop temporally layered architecture
(TLA-C)
In this setting, the slow network is pre-trained at a larger timestep.
A larger timestep allows the network to better explore the environ-
ment and thus converge to an optimal policy faster. However, the
optimal policy for the slow network might achieve a lower average
return due to the longer timesteps. We then train the fast network
on top of it so that the faster agent is acting in an environment
where the actions are already being performed by the slower agent.
To achieve this, we consider a residual action that is the combina-
tion of the actions picked by the fast and slow networks. During
training, the fast network is penalized for taking actions with large
magnitudes. After training, we threshold fast actions so that only
actions above the threshold are performed in the environment. By
thresholding the fast action when its influence on the final action
is low, we reduce jerky behavior, promoting long smooth actions.

2.2 Open-loop temporally layered architecture
(TLA-O)

In this setting, we allow partially open loop control by allowing

the slow controller to gate the computation of the fast controller.

This is achieved by training a slow agent over a pre-trained fast
controller. The actions of the slow agent are augmented to include

2831

a binary gate output g € {0, 1} that gates the activation of the
fast network. Gating the fast network reduces the compute cost in
addition reducing the jerk.

3 EXPERIMENTS

To evaluate our algorithms we measure their performance on seven
continuous control tasks, including five from the MuJoCo [6] suite,
using the OpenAI Gym interface [2]. The neural networks are
implemented and trained using the PyTorch framework [4]. We
also compare TLA-O with TempoRL [1], a method that learns an
additional action-repetition policy which decides on the number of
timesteps to repeat a chosen action.

Tables 1 and 2 show the Area under curve (AUC) for learning
speed, avg. return, action repetition percentage, and avg. decisions
for each algorithm. Note that since open-loop control is difficult,
we only run it on simple environments. For open loop control,
the frequency of the slow network was four times slower than
the fast network. For the rest of the environments, it was set to
twice as slow. Fast network frequency is set to the default for the
environment. As demonstrated, TLA-C learns significantly faster
while increasing action repetitions (thus reducing jerk). On the
other hand, TLA-O also reduces the number of decisions required
for control, thus conserving compute energy. The full paper on this
work is available online [5].

Poster Session 111

ACKNOWLEDGMENTS

This material is based upon work partially supported by the Defense
Advanced Research Projects Agency (DARPA) under Agreement
No. HR00112190041. The information contained in this work does
not necessarily reflect the position or the policy of the Government.

REFERENCES

[1] André Biedenkapp, Raghunandan Rajan, Frank Hutter, and Marius Thomas Lin-
dauer. 2021. TempoRL: Learning When to Act. In ICML.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:arXiv:1606.01540

OpenAl 2018. OpenAl Five. https://blog.openai.com/openai-five/. Accessed:2022-

08-12.

E

2832

=

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran
Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

Devdhar Patel, Joshua Russell, Francesca Walsh, Tauhidur Rahman, Terrance
Sejnowski, and Hava Siegelmann. 2022. Temporally Layered Architecture for
Adaptive, Distributed and Continuous Control. arXiv preprint arXiv:2301.00723
(2022).

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine
for model-based control. In 2012 IEEE/RSY International Conference on Intelligent
Robots and Systems. IEEE, 5026-5033. https://doi.org/10.1109/IROS.2012.6386109

https://arxiv.org/abs/arXiv:1606.01540
https://blog.openai.com/openai-five/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/IROS.2012.6386109

	Abstract
	1 Introduction
	2 Methods
	2.1 Closed-loop temporally layered architecture (TLA-C)
	2.2 Open-loop temporally layered architecture (TLA-O)

	3 Experiments
	Acknowledgments
	References

