CRISP: Curriculum based Sequential neural decoders for Polar code family

S. Ashwin Hebbar T! Viraj Nadkarni ! Ashok Vardhan Makkuva’? Suma Bhat' Sewoong Oh?
Pramod Viswanath !

Abstract

Polar codes are widely used state-of-the-art codes
for reliable communication that have recently
been included in the 5% generation wireless
standards (5G). However, there remains room
for the design of polar decoders that are both
efficient and reliable in the short blocklength
regime. Motivated by recent successes of data-
driven channel decoders, we introduce a novel
CurRIculum based Sequential neural decoder
for Polar codes (CRISP)". We design a princi-
pled curriculum, guided by information-theoretic
insights, to train CRISP and show that it out-
performs the successive-cancellation (SC) de-
coder and attains near-optimal reliability per-
formance on the Polar(32, 16) and Polar(64, 22)
codes. The choice of the proposed curriculum is
critical in achieving the accuracy gains of CRISP,
as we show by comparing against other curric-
ula. More notably, CRISP can be readily ex-
tended to Polarization-Adjusted-Convolutional
(PAC) codes, where existing SC decoders are sig-
nificantly less reliable. To the best of our knowl-
edge, CRISP constructs the first data-driven de-
coder for PAC codes and attains near-optimal per-
formance on the PAC(32, 16) code.

1. Introduction

Error-correcting codes (codes) are the backbone of mod-
ern digital communication. Codes, composed of (encoder,
decoder) pairs, ensure reliable data transmission even un-
der noisy conditions. Since the groundbreaking work

"Princeton University *EPFL *University of Washington.
Correspondence to: Ashwin Hebbar <hebbar@princeton.edu>,
Viraj Nadkarni <viraj@princeton.edu>, Ashok Makkuva
<ashok.makkuva@epfl.ch>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

"Equal contribution

“Source code available at the following link.

of (Shannon, 1948), several landmark codes have been
proposed: Convolutional codes, low-density parity-check
(LDPC) codes, Turbo codes, Polar codes, and more recently,
Polarization-Adjusted-Convolutional (PAC) codes (Richard-
son & Urbanke, 2008). In particular, polar codes, introduced
by (Arikan, 2009), are widely used in practice owing to their
reliable performance in the short blocklength regime. A fam-
ily of variants of polar codes known as PAC codes further
improves performance, nearly achieving the fundamental
lower bound on the performance of any code at finite lengths,
albeit at a higher decoding complexity (Arikan, 2019). In
this paper, we focus on the decoding of these two classes of
codes, jointly termed the “Polar code family”.

The polar family exhibits several crucial information-
theoretic properties; practical finite-length performance,
however, depends on high complexity decoders. This search
for the design of efficient and reliable decoders for the Po-
lar family is the focus of substantial research in the past
decade. (a) Polar codes: The classical successive cancella-
tion (SC) decoder achieves information-theoretic capacity
asymptotically, but performs poorly at finite blocklengths
compared to the optimal maximum a posteriori (MAP) de-
coder (Arikan, 2019). To improve upon the reliability of
SC, several polar decoders have been proposed in the lit-
erature (Sec. 6). One such notable result is the celebrated
Successive-Cancellation-with-List (SCL) decoder (Tal &
Vardy, 2015). SCL improves upon the reliability of SC and
approaches that of the MAP with increasing list size (and
complexity). (b) PAC codes: The sequential “Fano decoder”
(Fano, 1963) allows PAC codes to perform information-
theoretically near-optimally; however, the decoding time is
long and variable (Rowshan et al., 2020a). Although SC
is efficient, O(nlogn), its performance with PAC codes
is significantly worse than that of the Fano decoder. Sev-
eral works (Yao et al., 2021; Rowshan et al., 2020b; Zhu
et al., 2020; Rowshan & Viterbo, 2021b;a; Sun et al., 2021)
propose ameliorations; it is safe to say that constructing
efficient and reliable decoders for the Polar family is an
active area of research and of utmost practical interest given
the advent of Polar codes in 5G wireless cellular standards.
The design of efficient and reliable decoders for the Polar
family is the focus of this paper.

In this paper, we introduce a novel CurRIculum based

https://github.com/hebbarashwin/neural_polar_decoder

CRISP: Curriculum based Sequential neural decoders for Polar code family

107t

Bit Error Rate
BER

H
2

1074

-3 -2 -1 0 1 2 3
SNR
Signal-to-noise ratio (SNR) [dB]
(a)

Bit Error Rate

Training iteration

(d)

Figure 1: (a) CRISP achieves near-MAP reliability for Polar(64,22) code on the AWGN channel. (b) Our proposed
curriculum is crucial for the gains CRISP attains over the baselines; details in Sec. 4.

Sequential neural decoder for Polar code family (CRISP).
When the proposed curriculum is applied to neural network
decoder training, thus trained decoders outperform existing
baselines and attain near-MAP reliabilty on Polar(64, 22),
Polar(32, 16) and PAC(32, 16) codes while maintaining low
computational complexity (Figs. 1, 5, Table 1). CRISP
builds upon an inherent nested hierarchy of polar codes; a
Polar(n, k) code subsumes all the codewords of lower-rate
subcodes Polar(n,), 1 < ¢ < k (Sec. 2.2). We provide prin-
cipled curriculum of training on examples from a sequence
of sub-codes along this hierarchy, and demonstrate that the
proposed curriculum is critical in attaining near-optimal
performance (Sec. 4).

Curriculum-learning (CL) is a training strategy to train ma-
chine learning models, starting with easier subtasks and
then gradually increasing the difficulty of the tasks (Wang
et al., 2021). (Elman, 1993), a seminal work, was one of
the first to employ CL for supervised tasks, highlighting the
importance of “starting small". Later, (Bengio et al., 2009)
formalized the notion of CL and studied when and why CL
helps in the context of visual and language learning (Wu
et al., 2020; Wang et al., 2021). In recent years, many em-
pirical studies have shown that CL improves generalization
and convergence rate of various models in domains such
as computer vision (Pentina et al., 2015; Guo et al., 2018;
Wang et al., 2019), natural language processing (Cirik et al.,
2016; Platanios et al., 2019), speech processing (Amodei
et al., 2016; Gao et al., 2016), generative modeling (Karras
et al., 2017; Wang et al., 2018), and neural program gen-
eration (Zaremba & Sutskever, 2014; Reed & De Freitas,
2015). Viewed from this context, our results add decod-
ing of algebraic codes (of the Polar family) to the domain
of successes of supervised CL. In summary, we make the
following contributions:

* We introduce CRISP, a novel curriculum-based sequen-
tial neural decoder for the Polar code family. Guided by
information-theoretic insights, we propose CL-based
techniques to train CRISP, that are crucial for its supe-
rior performance (Sec. 3).

e CRISP attains near-optimal reliability performance
on Polar(64,22) and Polar(32,16) codes whilst
achieving improved throughput (Sec. 4.1 and Sec. 4.2).

* CRISP further achieves near-MAP reliability for the
PAC(32, 16) code with significantly higher throughput
compared to the Fano decoder. To the best of our
knowledge, this is the first learning-based PAC decoder
to achieve this performance (Sec. 4.5).

2. Problem formulation

In this section we formally define the channel decoding
problem and provide background on the Polar code family.
Our notation is the following: we denote Euclidean vectors
by small bold face letters x, y, etc. [n] = {1,2,...,n}.
Form € R",m_; £ (my,...,m;_1). N(0, I,) denotes
a standard Gaussian distribution in R™. u & v denotes the
bitwise XOR of two binary vectors u, v € {0, 1}*.

2.1. Channel decoding

The primary goal of channel decoding is to design efficient
decoders that can correctly recover the message bits upon
receiving codewords corrupted by noise (Fig. 2). More
precisely, let u = (uy,...,ux) € {0,1}* denote a block
of information/message bits that we wish to transmit. An
encoder g : {0,1}* — {0,1}" maps these message bits
into a binary codeword « of length n, i.e. * = g(u). The

CRISP: Curriculum based Sequential neural decoders for Polar code family

Learn

. [xeton | ey L\ yew R
u € {0,1}* —| Encoder dul Channel Decoder |—
* | | H—/ x
- .
~ o Noise P
Tl MSE loss -7

Figure 2: Channel decoding problem.

encoded bits « are modulated via Binary Phase Shift Keying
(BPSK), i.e. « — 1 — 2x € {£1}", and are transmitted
across the channel. We denote both the modulated and
unmodulated codewords as @. The channel, denoted as
Py x(+]+), corrupts the codeword @ to its noisy version y €
R™. Upon receiving the corrupted codeword, the decoder fy
estimates the message bits as @ = fy(y). The performance
of the decoder is measured using standard error metrics
such as Bit-Error-Rate (BER) or Block-Error-Rate (BLER):
BER(fy) £ (1/k) Y., Pl&; # u;], whereas BLER(fy) £

Given an encoder g with code parameters (n, k) and a chan-
nel Py x, the channel decoding problem can be mathemati-
cally formulated as:

0 e argmeinBER(fe), (1)

which is a joint classification of k binary classes. To train
the parameters 6, we use the mean-square-error (MSE) loss
as a differentiable surrogate to the objective in Eq. 1. It is
well known in the literature that naively parametrizing fy
by general-purpose neural networks does not work well and
they perform poorly even for small blocklengths like n = 16
(Gruber et al., 2017). Hence it is essential to use efficient
decoding architectures that capitalize on the structure of the
encoder g (Kim et al., 2018b; Chen & Ye, 2021). To this end,
we focus on a popular class of codes, the Polar code fam-
ily, that comprises two state-of-the-art codes: Polar codes
(Arikan, 2009) and Polarization-Adjusted-Convolutional
(PAC) codes (Arikan, 2019). Both these codes are closely
related and hence we first focus on polar codes in Sec. 2.2.
In Sec. 3, we present CRISP, our novel curriculum-learning
based neural decoder to decode polar codes. In Sec. 4.5 we
detail PAC codes.

2.2. Polar codes

Encoding. Polar codes, introduced in (Arikan, 2009), were
the first codes to be theoretically proven to achieve capacity
for any binary-input discrete memoryless channel. Their
encoding is defined as follows: let (n, k) be the code param-
eters withn = 2P, 1 < k < n. In order to encode a block of
message bits u = (ug,...,u) € {0,1}*, we first embed
them into a source message vector m = (my, ..., m,) =
(0,...,u1,0,...,u2,0,...,u0,...) € {0,1}", where

my, = wand m;c = 0 for some [}, C [n]. Since the
message block m contains the information bits w only
at the indices pertaining to Iy, the set Ij, is called the
information set, and its complement Ikc the frozen set.
For the set I, we first compute the capacities of the n
individual polar bit channels and rank them in their in-
creasing order (Tal & Vardy, 2013). Then I; picks the
top k out of them. For example, Polar(4,2) has the or-
dering m; < me = mg < my and I, = {2,4},
and thus m = (0,m2,0,my4). Similarly, Polar(8,4) has
mp < mg < mg < msg < myg < mg < my < ms,
I, ={4,6,7,8} and m = (0,0,0, my4, 0, mg, m7, mg).

Finally, we obtain the polar codeword = =
PlotkinTree(m), where the mapping PlotkinTree
{0,1}" — {0,1}" is given by a complete binary tree,
known as Plotkin tree (Plotkin, 1960). Fig. 3(a) details the
Plotkin tree for Polar(4,2). Plotkin tree takes the input
message block m € {0, 1}™ at the leaves and applies the
“Plotkin" function at each of its internal nodes recursively
to obtain the codeword € {0,1}" at the root. The
function Plotkin : {0,1}¢ x {0,1}* — {0,1}?, ¢ € N, is
defined as

Plotkin(u,v) = (u @ v,v).

For example, in Fig. 3(a), starting with the message block
m = (0,mz,0,my4) at the leaves, we first obtain u =
Plotkin(0, ma) = (ma,m2) and v = Plotkin(0,my4) =
(mg4,my). Applying the function once more, we obtain
the codeword * = Plotkin(u,v) = (mg & my,mg B
My, My, m4).

Decoding. The successive-cancellation (SC) algorithm is
one of the most efficient decoders for polar codes, with a
decoding complexity of O(nlogn). The basic principle be-
hind the SC algorithm is to sequentially decode one message
bit m; at a time according to the conditional log-likelihood
ratio (LLR), L; £ log(Pm; = Oly,m;]/Pm; =
1|y, m<;]), given the corrupted codeword y and previous
decoded bits m; for i € I. Fig. 3(b) illustrates this
for the Polar(4, 2) code: for both the message bits mso and
my, we compute these conditional LLRs and decode them
via my = 1{Ly < 0} and 7y = 1{Lsy < 0}. Given
the Plotkin tree structure, these LLRs can be efficiently
computed sequentially using a depth-first-search based al-
gorithm (App. A).

As discussed in Sec. 1, SC achieves the theoretically opti-
mal performance only asymptotically, and its reliability is
sub-optimal at finite blocklengths. SC-list (SCL) decoding
improves upon its error-correction performance by maintain-
ing a list of L candidate paths at any time step and choosing
the best among them in the end. In fact, for a reasonably
large list size L, SCL achieves MAP performance at the
cost of increased complexity O(Ln logn), as highlighted in
Table 1.

CRISP: Curriculum based Sequential neural decoders for Polar code family

x = (my @ my, my @ my, my, my)

]

Plotkin

u = (my, my,) / \ v = (my, my)

Plotkin Plotkin

{ ed s

m m, my my

(a) Polar encoder

Y
Ly
<

(b) Successive cancellation decoder

Figure 3: Polar(4, 2): (a) Polar encoding via Plotkin tree; (b) Blue arrows indicate the decoding order.

3. CRISP: Curriculum based sequential
neural decoder for Polar family

We design CRISP, a curriculum-learning-based sequential
neural decoder for polar codes that strictly outperforms
the SC algorithm and existing baselines. CRISP uses a
sequential RNN decoder, powered by gated recurrent units
(GRU) (Cho et al., 2014; Chung et al., 2014), to decode one
bit at a time. Instead of standard training techniques, we
design a novel curriculum, guided by information-theoretic
insights, to train the RNN to learn good decoders. Fig. 4
illustrates our approach.

CRISP decoder. We use the Polar(4, 2) code as a guiding
example to illustrate our CRISP decoder (Fig. 4(a)). This
code has two message bits (mg, m4) and the message block
is m = (0,m2, 0, m4). Upon encoding it to the polar code-
word z € {£1}* and receiving its noisy version y € R%,
the decoder estimates the message as m = (0, 102, 0, 14).
Similar to SC, CRISP uses the sequential paradigm of de-
coding one bit 1m; at a time by capitalizing on the previous
decoded bits m ; and y. To that end, we parametrize the
bit estimate 712; conditioned on the past as a fully connected
neural network (FCNN) that takes the hidden state h; as its
input. Here h; denotes the hidden state of the GRU that im-
plicitly encodes this past information (1 «;, y) via GRU’s
recurrence equation, i.e.

h; = GRUg(h;_1,m;-1,y), i€ {1,2,3,4},
()
mi|yam<i - FCNNQ(hi)v i€ {234}3 (3)

where 0 denotes the FCNN and GRU parameters jointly.
Henceforth we refer to our decoder as either CRISP or

CRISPy. Note that while the RNN is unrolled for n = 4
time steps (Eq. 2), we only estimate bits at £ = 2 informa-
tion indices, i.e. M9 and M4 (Eq. 3). A key drawback of SC
is that a bit error at a position ¢ can contribute to the future
bit errors (> %), and it does not have a feedback mechanism
to correct these error events. On the other hand, owing to
the RNN’s recurrence relation (Eq. 2), through the gradient
it receives during training, CRISP can learn to better predict
the bits.

Curriculum-training of CRISP. Given the decoding archi-
tecture of CRISP in Fig. 4(a), a natural approach to train
its parameters via supervised learning is to use a joint MSE
loss function for both the bits (M2, 7724): MSE(2, 14) =
(112(0) —m2)? + (4 (0) —m4)?. However, as we highlight
in Sec. 4.1 such an approach learns to fail better decoders
than SC and gets stuck at local minima. To address this
issue, we propose a curriculum-learning based approach to
train the RNN parameters.

The key idea behind our curriculum training of CRISP is to
decompose the problem of joint estimation of bits (722, 1714)
into a sequence of sub-problems with increasing difficulty:
start with learning to estimate only the first bit (72) and
progressively add one new message bit at each curriculum
step (1my4) until we estimate the full message block m =
(1o, y4). We freeze all the non-trainable message bits to
zero during any curriculum step. In other words, in the
first step, we freeze the bit m4 and train the decoder only
to estimate the bit g (i.e. the subcode corresponding to

CRISP: Curriculum based Sequential neural decoders for Polar code family

@

hy —— GRU GRU GRU GRU

y > >

(a) CRISP decoder

Polar Channel N
X CRISP, — my
A NN . N
~ P <
\\~\~ MSEl()SS’,f’/
Polar Channel A A
(I’VZ2, m4) X CRISPS —_— (mz, m4)
~ N
~ -
\\\\\ MSE loss ”,/’

(b) Curriculum to train CRISP

Figure 4: CRISP decoder and its training by curriculum-learning for Polar(2, 4).

k=1):
(ma,ms = 0) = m = (0,my,0,0) 222

Channel CRISPy .
— Yy ——m2. 4

We use this trained 6 as an initialization for the next task of
estimating both the bits (7hg, 7724):
(2, ma) = m = (0,mg,0,my) *2
. Channel y CRISPy (’F?LQ, m4) (5)
Fig. 4(b) illustrates this curriculum-learning approach. We
note that the knowledge of decoding 7y when m4 = 0
(Eq. 4) serves as a good initialization when we learn to de-
code rhy for a general my € {0,1} (Eq. 5). With such a
curriculum aided training, we show in Sec. 4.1 (Figs. 1, 5)
that the CRISP decoder outperforms the existing baselines
and attains near-optimal performance for a variety of block-
lengths and codes. We interpret this in Sec. 4.4. We defer
the training details to App. E.

Left-to-Right (L2R) curriculum for Polar(n,k). For
a general Polar(n, k) code, we follow a similar curricu-
lum to train CRISPy. Denoting the index set by [, =
{i1,42,...,ix} C [n] in the increasing order of indices
i1 < ig < ... < i, our curriculum is given by: Train
6 on 1;, — Train 0 on (1h;,,7;,) — ... — Train 0
on (1, .. .,M;,). We term this curriculum Lefi-to-Right
(L2R). The anti-curriculum R2L refers to progressively train-
ing in the decreasing order of the indices in I}.

4. Main results

In this section, we present numerical results for the CRISP
decoder on the Polar code family.

4.1. AWGN channel

Data generation. The input message u € {0,1}* is
randomly drawn uniformly from the boolean hypercube
and encoded as a polar codeword # € {£1}". The
classical additive white Gaussian noise (AWGN) channel,
y=x+z 2z~ N, 02In), generates the training/test
data (y, u) for the decoder. The signal-to-noise ratio, i.e.
SNR = —10log;, o, characterizes the noise level in the
channel. Here we fix the channel to be AWGN in all our
experiments, as per the standard convention (Kim et al.,
2018b), and refer to App. D for additional results on fad-
ing and t-distributed channels. App. E details the training
procedure. Once trained, we use the CRISP models for
comparison against the baselines.

Baselines. The optimal channel decoder is the MAP es-
timator: @ = arg maxye o1}~ P[u]y], whose complexity
grows exponentially in k£ and is computationally infeasible.
Given this, we compare our CRISP decoder with the SCL
(Tal & Vardy, 2015), which has near-MAP performance for a
large L, along with the classical SC. Among learning-based
decoders, we choose the state-of-the-art Neural-Successive-
Cancellation (NSC) as our baseline (Doan et al., 2018).
NSC replaces sub-components of the existing successive
cancellation decoder with NN to scale decoding to block
lengths longer than 32. Each of these neural networks are
trained with the LLR outputs of the SC algorithm. Since
this training procedure with SC probabilities as the target is
sub-optimal, we consider an improved version with end-to-
end training (Fig. 2) for a fair comparison. We also include
the performance of CRISP trained directly without the cur-
riculum. We also compare with the curriculum training
procedure of (Lee et al., 2020) (the original work achieves
a reliability worse than SC decoding for block length 32).
All these baselines have the same number of parameters as

CRISP: Curriculum based Sequential neural decoders for Polar code family

107t

1072

1073

1074

Bit Error Rate

107

10°°

0 1 2 3 4 5 6
Signal-to-noise ratio (SNR) [dB]
(a) Polar(32,16)

107!

1072

1073

Bit Error Rate

107

Signal-to-noise ratio (SNR) [dB]
(b) PAC(32,16)

Figure 5: CRISP outperforms baselines and attains near-MAP performance for Polar(32, 16) and PAC(32, 16) codes on the

AWGN channel.

CRISP.

Results. Fig. 1(a) highlights that the CRISP decoder out-
performs the existing baselines and attains near-MAP per-
formance over a wide range of SNRs for the Polar(64, 22)
code. Fig. 1(b) illustrates the mechanism behind these gains
at 0dB: the curriculum-guided CRISP slowly improves upon
the overall BER (over the 22 bits) during the training and
eventually achieves much better performance than SC and
other baselines. In contrast, the decoder trained from scratch
makes a big initial gain but gets stuck at local minima and
only achieves a marginal improvement over SC. Moreover,
we see that decoders trained using other curricula, e.g. R2L,
also fail to show significant improvements over SC (Figs.
1(b), 11). We observe a similar trend for Polar(32, 16) code
in Fig. 5(a), where CRISP achieves near-MAP performance.
We posit that aided by a good curriculum, CRISP avoids
getting stuck at bad local minima and converges to better
minima in the optimization landscape. Further, CRISP is
robust to deviations from the AWGN channel, while at-
taining similar performance gains over SC on fading and
T-distributed channels (App. D). For additional results, we
refer to App. D which highlights similar reliability gains
for other blocklengths and rates, App. C for the ablation
analysis, and App. E for the training hyperparameters and
architectures.

Sequential vs Block decoding. We note that the sequen-
tial RNN architecture for CRISP is inspired in part by the
sequential SC algorithm. Notwithstanding, we also de-
sign block decoders that estimate all the information bits
m,; in one shot given y. We choose 1D Convolutional
Neural Networks (CNNs) to parameterize this block de-
coder, CRISP_CNN. CRISP_CNN, trained with the L2R
curriculum, achieves similar BER performance as CRISP

(App. C.2).

4.2. Reliability-throughput comparison

Table 1: Throughput and reliability comparison of various
decoders on Polar(n, k).

Throughput (in Mbps) Gap to SCL, L=32 (in dB)

Decoder

(32,16) (64,22) (32,16) (64,22)
GPU CPU GPU CPU
Ne 0.17 27 0.08 15 0.80 0.40
FastSC N/A 47 NA 40 0.80 0.40
SCL, L=4 0.01 8.5 0.02 6.27 0.05 0.10
FastSCL, L=4 N/A 30 N/A 24 0.05 0.10
SCL, L=32 (MAP) 5e-3 0.81 2e-3 0.60 0.00 0.00
FastSCL, L=32 N/A 77 NA 55 0.00 0.00
NSC N/A N/A 326 0.02 N/A 0.35
CRISP_GRU (Ours) 80 0.04 38.7 0.02 0.15 0.20
CRISP_CNN (Ours) 250 0.02 133 0.13 0.15 0.20
CRISP_GRU - No curriculum 80 0.04 38.7 0.02 0.60 0.35

In the previous section, we demonstrated that CRISP
achieves better reliability than the baselines. Here we ana-
lyze these gains through the lens of decoding complexity. To
quantitatively compare the complexities of these decoders,
we evaluate their throughput on a single GTX 1080 Ti GPU
as well as a CPU (Intel i7-6850K, 12 threads). For the
GPU version, we use our implementation of SC/SCL ow-
ing to the lack of publicly available implementations. On
the other hand, for the CPU column we use an optimized
multithreaded implementation of SC/FastSC, SCL/FastSCL
(Léonardon et al., 2019) in C++ by (Cassagne et al., 2019).
As Table 1 highlights, CRISP exploits the GPUs’ inherent
optimization towards NNs to achieve excellent throughput,
whilst achieving near-SCL BER performance. We note
that CRISP_CNN (App. C.2) attains better throughput than
CRISP_GRU, while maintaining gains in BER. We posit
that further improvement in throughput can be realized us-
ing techniques like pruning and knowledge distillation. This

CRISP: Curriculum based Sequential neural decoders for Polar code family

is beyond the scope of this paper and is an important and
separate direction of future research. Note that we use
BER= 103 to compute the gap to SCL (Figs. 1(a), 5(a)).
We refer to App. F for further discussion.

4.3. Computational complexity

Running CRISP on suitable hardware architectures allows
it to attain significant throughput gains. Nevertheless, to
provide a more comprehensive performance evaluation, it’s
important to also consider other metrics such as power con-
sumption. This necessitates an analysis of the computational
complexity of the algorithm, which we present below.

The decoding complexity of SCL is O(Lnlogn), where
L represents the list size. On the other hand, CRISP em-
ploys a 2-layer GRU neural network, the computational
complexity of which is n(2h(n + 1) + 6h?), where h de-
notes the dimension of the GRU’s hidden state. The bulk of
this computational complexity involves matrix-vector mul-
tiplications; modern hardware like GPUs which allow for
significant speedups in these operations. This, in turn, al-
lows for an improved performance and efficiency of CRISP
on such platforms.

4.4. Interpretation

This section describes why L2R is a better curriculum than
others. To this end, we first claim that learning to decode
uncorrupted codewords (y = x) is critical to learning a
reliable decoder. This claim follows from the following key
observation: while training our model (sequential or block)
at a specific SNR, we observe that whenever our model
reaches SC or better performance, its BER on uncorrupted
codewords, aka the noiseless BER, drops to zero very early
in the training (App. B, Fig. 7(a)). On the other hand, when
the model gets stuck at bad minima even after a lot of train-
ing, its noiseless BER is high (Fig. 7(b)). Hence, without
loss of generality, we focus on the setting y = . Under this
noiseless scenario, we analyze how the optimal bit decoding
rules evolve for different curricula. In particular, we focus
on the least reliable bits as they contribute the largest to
noiseless BER (Fig. 8(a) and Fig. 8(b)).

For the Polar(4,4) code, Fig. 6(a) illustrates how the opti-
mal rule evolves for its least reliable bit m;. In this case,
the MAP decoding rule for m; is: my = z1z2z324. Un-
der the L2R curriculum, we arrive at this expression via
T1 — T1To — T1T2T3 — X1T2T3T4, Whereas R2L fol-
lows 1 — 1 — 1 — x1zox324. This highlights that L2R
reaches the optimal rule more gracefully by learning to in-
clude one coordinate x; at a time while this change for R2L.
(and no-curriculum) is abrupt, making it harder to learn.
Fig. 9 illustrates a similar evolution for the remaining bits
(m27 ms, m4).

More concretely, we define the notion of learning difficulty
for a bit: the number of bits multiplied in its optimal decod-
ing rule. This metric roughly captures the number of opera-
tions a model has to learn at any curriculum step. Fig. 6(b)
illustrates how it evolves over the L2R and R2L curricula
for the least reliable bit in Polar(64,22). If we take the
maximum learning difficulty over all bits, we obtain a sim-
ilar plot (Fig. 10). Note that in both the plots, the jumps
in learning difficulty are larger for R2L, thus indicating a
harder transfer than L2R, where it increases smoothly (at
most one bit per step).

4.5. PAC codes

A recent breakthrough work (Arikan, 2019) introduces a new
class of codes called Polarization-Adjusted-Convolutional
(PAC) codes that match the fundamental lower bound on
the performance of any code under the MAP decoding at
finite-lengths (Moradi et al., 2020). The motivating idea
behind PAC codes is to overcome two key limitations of
polar codes at finite blocklengths: the poor minimum dis-
tance properties of the code and the sub-optimality of SC
compared to the MAP (Mondelli et al., 2014). This is ad-
dressed by adding a convolutional outer code, with an ap-
propriate indexing I, before polar encoding to improve
the distance properties of the resulting code. More for-
mally, the message block u € {0, 1}* is embedded into the
source vector m € {0,1}" according to the Reed-Muller
(RM) indices I ,iRM): compute the Hamming weights of
integers 0, 1,...,n — 1 and choose the top k. Now we en-
code the message m via a rate-1 convolutional code, i.e.
v=cxm € {0,1}" & v; = >, ¢;m;_j, for some 1D
convolutional kernel ¢ € {0, 1}*. Finally we obtain the PAC
codeword x by polar encoding v: = PlotkinTree(v).

PAC codes can be decoded using the classical Fano algo-
rithm (Fano, 1963), a sequential decoding algorithm that
uses backtracking. Coupled with the Fano decoder, PAC
codes achieve impressive results outperforming polar codes
(with SCL decoder) and matching the finite-length capacity
bound (Polyanskiy et al., 2010). However, the Fano decoder
has significant drawbacks like variable running time, large
time complexity at low-SNRs (Rowshan et al., 2020b), and
sensitivity to the choice of hyperparameters (Moradi, 2020).
To overcome these issues, several non-learning techniques,
such as stack/list decoding, adaptive path metrics, etc., have
been proposed in the literature (Yao et al., 2021; Zhu et al.,
2020; Rowshan & Viterbo, 2021b;a; Sun et al., 2021). In
contrast, we design a curriculum-learning-based CRISP de-
coder for PAC codes trained directly from the data. We use
the same L2R curriculum to decode PAC codes.

Fig. 5(b) highlights that the CRISP decoder achieves near-
MAP performance for the PAC(32, 16) code. While Fano
decoding achieves similar reliability, it is inherently non-

CRISP: Curriculum based Sequential neural decoders for Polar code family

L2R curriculum R2L curriculum
il SN
dece | @066
No curriculum
sooe | leeee | [A
iy 2 QICICIY)
so6e | lesse
Geod | dodor
v v

(a) L2R vs. R2L for decoding m1

Learning Difficulty

 Curiculum Step
(b) Evolution of learning difficulty

Figure 6: L2R vs. R2L: (a) Bit estimates evolve more smoothly under L2R than R2L for Polar(4, 4), (b) Learning difficulty

increases more gracefully for L2R than R2L for Polar(64, 22).

parallelizable. In contrast, CRISP allows for batching, and
achieves a higher throughput, as highlighted in Table 2. Here
we measure the throughput of Fano (Rowshan et al., 2020a)
at SNR = 1 dB. We note that the existing implementation
of Fano is not supported on GPUs. These preliminary results
suggest that curriculum-based training holds a great promise
for designing efficient PAC decoders, especially for longer
blocklengths, which is an interesting topic of future research
(App. D.2).

Table 2: Throughput and reliability comparison of various
decoders on PAC(32, 16).

Decoder Throughput (in Mbps) .. 4 SCL, 1.=128 (in dB)
GPU CPU
sC N/A 27 1.0
SCL, L=128 N/A 0.02 0.0
Fano N/A 4e-3 0.1
CRISP_GRU (Ours) 80 0.03 0.4
CRISP_CNN (Ours) 250 0.15 0.4
CRISP_GRU - No curriculum 80 0.03 0.8

5. Information theory guided curricula

In Sec. 4, we demonstrated the superiority of L2R curricu-
lum over other schemes. Here we introduce an alternate
curriculum, Noisy-to-Clean (N2C), that slightly bests the
L2R, inspired by the polarization property of polar codes.
The key idea behind N2C curriculum is to capitalize on
the polar index set I;. Recall that the set Ij, is obtained
by ranking the n polar bit channels (under SC decoding)
in the increasing order of their reliabilities (from noisy to
clean) and choosing the top k indices. Formally, given
I, = {ir1,%r2,.-.,%k} C [n] in the increasing order of
reliabilities, our N2C curriculum is given by: Train 6 on
m;,, — Train 6 on (M, ,,"M;,,) — ... — Train 6 on

(M,,,...,my,.). For both the sequential and block de-
coders, we observe that N2C is the best curriculum and
we have N2C ~ L2R > C2N = R2L (Fig. 11). This
ordering is consistent with our interpretation in Sec. 4.4
of how the learning difficulty evolves over a curriculum
(Fig. 12). For both N2C and L2R, the learning difficulty
evolves smoothly but is abrupt for C2N and R2L, thus mak-
ing transfer harder in these curricula. Note that the C2N
curriculum refers to progressively training on subcodes of
Polar(n, k): Polar(n,1) — ... — Polar(n, k) (Lee et al.,
2020).

6. Related work

To address the sub-optimality of SC at finite lengths, a pop-
ular technique is to use list decoding (Tal & Vardy, 2015;
Balatsoukas-Stimming et al., 2015), aided by cyclic redun-
dancy checks (CRC) (Li et al., 2012; Niu & Chen, 2012a;
Miloslavskaya & Trifonov, 2014). Several alternate decod-
ing methods have also been proposed such as stack decoding
(Niu & Chen, 2012b; Trifonov, 2018), belief propagation
decoding (Yuan & Parhi, 2014; Elkelesh et al., 2018). Deep
learning for communication (Qin et al., 2019; Kim et al.,
2020) has been an active field in the recent years and has
seen success in many problems including the design of
neural decoders for existing linear codes (Nachmani et al.,
2016; O’shea & Hoydis, 2017; Lugosch & Gross, 2017;
Vasic et al., 2018; Liang et al., 2018; Bennatan et al., 2018;
Jiang et al., 2019a; Nachmani & Wolf, 2019; Buchberger
et al., 2020; He et al., 2020), and jointly learning channel
encoder-decoder pairs. (O’Shea et al., 2016; Kim et al.,
2018a; Jiang et al., 2019b; Makkuva et al., 2021; Jamali
et al., 2021; Chahine et al., 2021a;b).

Earlier works on designing neural polar decoders (Gross

CRISP: Curriculum based Sequential neural decoders for Polar code family

et al., 2020) used off-the-shelf neural architectures. These
were only able to decode codes of small blocklength (< 16)
(Lyu et al., 2018; Cao et al., 2020). Later works augmented
belief propagation decoding (Xu et al., 2018; Doan et al.,
2019), with neural components and improved performance.
In (Cammerer et al., 2017a) and (Doan et al., 2018), the
authors replace sub-components of the existing SC decoder
with NNs to scale decoding to longer lengths. However,
these methods fail to give reasonable reliability gains com-
pared to SC. In contrast, we use curriculum learning to train
neural decoders, and show non-trivial gains over SC perfor-
mance. (Lee et al., 2020) consider a curriculum training of
polar decoder, but do not achieve SC reliability for block
length 32. This is owing to the sub-optimality of both the
architecture and training curriculum (the C2N scheme). In
contrast, we design a principled curriculum guided by in-
formation theoretic insights, and a neural architecture that
fully capitalizes on the sequential polar decoding. Fig. 11
and Fig. 5(a) show that these design choices are essential
for achieving the reliability gains over SC.

Recent research by Choukroun and Wolf (Choukroun &
Wolf, 2022b;a) introduces transformer-based neural de-
coders for block channel codes. A distinctive feature of
their approach is the use of a sparse attention mask, which
harnesses the structure of the parity check matrix. The ap-
plication of a similar curriculum training procedure, as used
in our work with CRISP, to these transformer-based archi-
tectures might potentially expedite the convergence process.
Furthermore, such enhancements in the training procedure
could potentially close the gap to MAP performance for
higher block lengths.

7. Conclusion

We introduce a novel curriculum based neural decoder,
CRISP, that attains near-optimal reliability on the Polar code
family in the short blocklength regime. We design a princi-
pled curriculum to train CRISP, which is crucial to achieve
reliability gains for both the Polar and PAC codes. To the
best of our knowledge, this is the first learning-based PAC
decoder to achieve near-MAP reliability with significantly
better throughput than the Fano decoder. Extending our re-
sults to medium blocklengths (100-1000) and codes outside
the Polar family are interesting future directions. While
optimizing the decoder complexity is not the primary focus
of this paper, our preliminary results already show gains in
throughput over standard methods. Further improvement in
decoding complexity whilst maintaining reliability gains is
another exciting future research direction.

Acknowledgement

Ashok would like to thank his colleague Unnat Jain for a
crucial advice about the project to switch from a RL based
approach to a supervised one, which turned out to be the
game changer for this paper. This work is supported by
ONR grants W911NF-18-1-0332, N00014-21-1-2379, and
NSF grants CNS-2002664, CNS-2002932, CCF-2312753
and CNS-2112471 as a part of NSF Al Institute for Future
Edge Networks and Distributed Intelligence (AI-EDGE).

CRISP: Curriculum based Sequential neural decoders for Polar code family

References

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J.,
Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng,
Q., Chen, G., et al. Deep speech 2: End-to-end speech
recognition in english and mandarin. In International
conference on machine learning, pp. 173-182. PMLR,
2016.

Anwar, S., Hwang, K., and Sung, W. Structured pruning of
deep convolutional neural networks, 2015. URL https:
//arxiv.org/abs/1512.08571.

Arikan, E. Channel polarization: A method for construct-
ing capacity-achieving codes for symmetric binary-input
memoryless channels. IEEE Transactions on Informa-
tion Theory, 55(7):3051-3073, Jul 2009. ISSN 0018-
9448. doi: 10.1109/tit.2009.2021379. URL http:
//dx.doi.org/10.1109/TIT.2009.20213709.

Arikan, E. From sequential decoding to channel polarization
and back again. arXiv preprint arXiv:1908.09594, 2019.

Balatsoukas-Stimming, A., Parizi, M. B., and Burg, A. Llr-
based successive cancellation list decoding of polar codes.
IEEE transactions on signal processing, 63(19):5165-
5179, 2015.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In Proceedings of the 26th annual

international conference on machine learning, pp. 41-48,
2009.

Bennatan, A., Choukroun, Y., and Kisilev, P. Deep learning
for decoding of linear codes-a syndrome-based approach.
In 2018 IEEE International Symposium on Information
Theory (ISIT), pp. 1595-1599. IEEE, 2018.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, 1., and Amodei, D. Language
models are few-shot learners, 2020. URL https://
arxiv.org/abs/2005.14165.

Buchberger, A., Higer, C., Pfister, H. D., Schmalen, L., and
Amat, A. G. Pruning neural belief propagation decoders.
In 2020 IEEE International Symposium on Information
Theory (ISIT), pp. 338-342. IEEE, 2020.

Cammerer, S., Gruber, T., Hoydis, J., and Ten Brink, S.
Scaling deep learning-based decoding of polar codes via
partitioning. In GLOBECOM 2017-2017 IEEE global
communications conference, pp. 1-6. IEEE, 2017a.

10

Cammerer, S., Leible, B., Stahl, M., Hoydis, J., and ten
Brink, S. Combining belief propagation and successive
cancellation list decoding of polar codes on a gpu plat-
form. In 2017 IEEE international conference on acous-
tics, speech and signal processing (ICASSP), pp. 3664—
3668. IEEE, 2017b.

Cao, Z., Zhu, H., Zhao, Y., and Li, D. Learning to denoise
and decode: A novel residual neural network decoder for
polar codes. In 2020 IEEE 92nd Vehicular Technology
Conference (VIC2020-Fall), pp. 1-6. IEEE, 2020.

Cassagne, A., Hartmann, O., Léonardon, M., He, K., Ler-
oux, C., Tajan, R., Aumage, O., Barthou, D., Tonnellier,
T., Pignoly, V., Le Gal, B., and Jégo, C. Aff3ct: A fast
forward error correction toolbox! Elsevier SoftwareX, 10:
100345, October 2019.

Chahine, K., Jiang, Y., Nuti, P., Kim, H., and Cho, J. Turbo
autoencoder with a trainable interleaver. arXiv preprint
arXiv:2111.11410, 2021a.

Chahine, K., Ye, N., and Kim, H. Deepic: Coding for
interference channels via deep learning. arXiv preprint
arXiv:2108.06028, 2021b.

Chen, X. and Ye, M. Cyclically equivariant neural decoders
for cyclic codes. arXiv preprint arXiv:2105.05540, 2021.

Cho, K., Van Merriénboer, B., Bahdanau, D., and Bengio, Y.
On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259,
2014.

Choukroun, Y. and Wolf, L. Denoising diffusion error cor-
rection codes. arXiv preprint arXiv:2209.13533, 2022a.

Choukroun, Y. and Wolf, L. Error correction code trans-
former. arXiv preprint arXiv:2203.14966, 2022b.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

Cirik, V., Hovy, E., and Morency, L.-P. Visualizing and
understanding curriculum learning for long short-term
memory networks. arXiv preprint arXiv:1611.06204,
2016.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2018. URL https://arxiv.
org/abs/1810.04805.

Doan, N., Hashemi, S. A., and Gross, W. J. Neural suc-
cessive cancellation decoding of polar codes. In 2018
IEEE 19th international workshop on signal processing

advances in wireless communications (SPAWC), pp. 1-5.
IEEE, 2018.

https://arxiv.org/abs/1512.08571
https://arxiv.org/abs/1512.08571
http://dx.doi.org/10.1109/TIT.2009.2021379
http://dx.doi.org/10.1109/TIT.2009.2021379
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

CRISP: Curriculum based Sequential neural decoders for Polar code family

Doan, N., Hashemi, S. A., Mambou, E. N., Tonnellier, T.,
and Gross, W. J. Neural belief propagation decoding of
crc-polar concatenated codes. In ICC 2019-2019 IEEE
International Conference on Communications (ICC), pp.
1-6. IEEE, 2019.

Elkelesh, A., Ebada, M., Cammerer, S., and Ten Brink, S.
Belief propagation list decoding of polar codes. IEEE
Communications Letters, 22(8):1536-1539, 2018.

Elman, J. L. Learning and development in neural networks:
The importance of starting small. Cognition, 48(1):71-99,
1993.

Fano, R. A heuristic discussion of probabilistic decoding.
IEEE Transactions on Information Theory, 9(2):64—74,
1963.

Gao, T., Du, J., Dai, L.-R., and Lee, C.-H. Snr-based pro-
gressive learning of deep neural network for speech en-
hancement. In INTERSPEECH, pp. 3713-3717, 2016.

Gross, W. J., Doan, N., Ngomseu Mambou, E., and
Ali Hashemi, S. Deep learning techniques for decod-
ing polar codes. Machine learning for future wireless
communications, pp. 287-301, 2020.

Gruber, T., Cammerer, S., Hoydis, J., and ten Brink, S.
On deep learning-based channel decoding. In 2017 51st
Annual Conference on Information Sciences and Systems
(CISS), pp. 1-6. IEEE, 2017.

Guo, S., Huang, W., Zhang, H., Zhuang, C., Dong, D., Scott,
M. R., and Huang, D. Curriculumnet: Weakly supervised
learning from large-scale web images. In Proceedings of
the European Conference on Computer Vision (ECCV),
pp- 135-150, 2018.

Han, X., Liu, R., Liu, Z., and Zhao, L. Successive-
cancellation list decoder of polar codes based on gpu.
In 2017 3rd IEEE International Conference on Computer
and Communications (ICCC), pp. 2065-2070. IEEE,
2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015. URL https://
arxiv.org/abs/1512.03385.

He, Y., Zhang, J., Jin, S., Wen, C.-K,, and Li, G. Y. Model-
driven dnn decoder for turbo codes: Design, simulation,
and experimental results. /EEE Transactions on Commu-
nications, 68(10):6127-6140, 2020.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus), 2016. URL https://arxiv.org/abs/
1606.08415.

11

Hinton, G., Vinyals, O., and Dean, J. Distilling the
knowledge in a neural network, 2015. URL https:
//arxiv.org/abs/1503.02531.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735-1780, 1997. doi: 10.
1162/neco0.1997.9.8.1735.

Jamali, M. V., Saber, H., Hatami, H., and Bae, J. H. Pro-
ductae: Towards training larger channel codes based on
neural product codes. arXiv preprint arXiv:2110.04466,
2021.

Jiang, Y., Kannan, S., Kim, H., Oh, S., Asnani, H., and
Viswanath, P. Deepturbo: Deep turbo decoder. In 2079
IEEE 20th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pp. 1-5.
IEEE, 2019a.

Jiang, Y., Kim, H., Asnani, H., Kannan, S., Oh, S., and
Viswanath, P. Turbo autoencoder: Deep learning based
channel codes for point-to-point communication channels.
In Advances in Neural Information Processing Systems,

pp. 27582768, 2019b.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L.,
Wang, F., and Liu, Q. Tinybert: Distilling bert for natural
language understanding, 2019. URL https://arxiv.
org/abs/1909.10351.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196, 2017.

Kim, H., Jiang, Y., Kannan, S., Oh, S., and Viswanath, P.
Deepcode: Feedback codes via deep learning. Advances
in neural information processing systems, 31, 2018a.

Kim, H., Jiang, Y., Rana, R., Kannan, S., Oh, S., and
Viswanath, P. Communication algorithms via deep learn-
ing. arXiv preprint arXiv:1805.09317, 2018b.

Kim, H., Oh, S., and Viswanath, P. Physical layer communi-
cation via deep learning. IEEE Journal on Selected Areas
in Information Theory, 2020.

Lamb, A., Goyal, A., Zhang, Y., Zhang, S., Courville, A.,
and Bengio, Y. Professor forcing: A new algorithm
for training recurrent networks, 2016. URL https:
//arxiv.org/abs/1610.09038.

Lee, H., Seo, E. Y., Ju, H,, and Kim, S.-H. On training
neural network decoders of rate compatible polar codes
via transfer learning. Entropy, 22(5):496, 2020.

Léonardon, M., Cassagne, A., Leroux, C., Jégo, C.,
Hamelin, L.-P., and Savaria, Y. Fast and flexible soft-
ware polar list decoders. Journal of Signal Processing
Systems, 91(8):937-952, 2019.

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/1610.09038
https://arxiv.org/abs/1610.09038

CRISP: Curriculum based Sequential neural decoders for Polar code family

Li, B., Shen, H., and Tse, D. An adaptive successive cancel-
lation list decoder for polar codes with cyclic redundancy
check. IEEE communications letters, 16(12):2044-2047,
2012.

Liang, F., Shen, C., and Wu, F. An iterative bp-cnn archi-
tecture for channel decoding. IEEE Journal of Selected
Topics in Signal Processing, 12(1):144-159, 2018.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gradi-
ent descent with warm restarts, 2016. URL https:
//arxiv.org/abs/1608.03983.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Lugosch, L. and Gross, W. J. Neural offset min-sum decod-
ing. In 2017 IEEE International Symposium on Informa-
tion Theory (ISIT), pp. 1361-1365. IEEE, 2017.

Lyu, W., Zhang, Z., Jiao, C., Qin, K., and Zhang, H. Perfor-
mance evaluation of channel decoding with deep neural
networks. In 2018 IEEE International Conference on
Communications (ICC), pp. 1-6. IEEE, 2018.

Makkuva, A. V., Liu, X., Jamali, M. V., Mahdavifar, H.,
Oh, S., and Viswanath, P. Ko codes: inventing nonlinear
encoding and decoding for reliable wireless communica-

tion via deep-learning. In International Conference on
Machine Learning, pp. 7368-7378. PMLR, 2021.

Miloslavskaya, V. and Trifonov, P. Sequential decoding
of polar codes. IEEE Communications Letters, 18(7):
1127-1130, 2014.

Mondelli, M., Hassani, S. H., and Urbanke, R. L. From
polar to reed-muller codes: A technique to improve the
finite-length performance. IEEE Transactions on Com-
munications, 62(9):3084-3091, 2014.

Moradi, M. On the metric and computation of pac codes.
arXiv preprint arXiv:2012.05511, 2020.

Moradi, M., Mozammel, A., Qin, K., and Arikan, E. Per-
formance and complexity of sequential decoding of pac
codes. arXiv preprint arXiv:2012.04990, 2020.

Nachmani, E. and Wolf, L. Hyper-graph-network decoders
for block codes. Advances in Neural Information Pro-
cessing Systems, 32:2329-2339, 2019.

Nachmani, E., Be’ery, Y., and Burshtein, D. Learning to
decode linear codes using deep learning. In 2016 54th
Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pp. 341-346. IEEE, 2016.

Niu, K. and Chen, K. Crc-aided decoding of polar codes.
IEEE communications letters, 16(10):1668—-1671, 2012a.

12

Niu, K. and Chen, K. Stack decoding of polar codes. Elec-
tronics letters, 48(12):695-697, 2012b.

O’Shea, T. J., Karra, K., and Clancy, T. C. Learning to
communicate: Channel auto-encoders, domain specific
regularizers, and attention. In 2016 IEEE International

Symposium on Signal Processing and Information Tech-
nology (ISSPIT), pp. 223-228. IEEE, 2016.

O’shea, T. and Hoydis, J. An introduction to deep learning
for the physical layer. IEEE Transactions on Cognitive
Communications and Networking, 3(4):563-575, 2017.

Pentina, A., Sharmanska, V., and Lampert, C. H. Curriculum
learning of multiple tasks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 5492-5500, 2015.

Platanios, E. A., Stretcu, O., Neubig, G., Poczos, B.,
and Mitchell, T. M. Competence-based curriculum

learning for neural machine translation. arXiv preprint
arXiv:1903.09848, 2019.

Plotkin, M. Binary codes with specified minimum distance.
IRE Transactions on Information Theory, 6(4):445-450,
1960.

Polyanskiy, Y., Poor, H. V., and Verdd, S. Channel coding
rate in the finite blocklength regime. IEEE Transactions
on Information Theory, 56(5):2307-2359, 2010.

Qin, Z., Ye, H., Li, G. Y., and Juang, B.-H. F. Deep learn-
ing in physical layer communications. IEEE Wireless
Communications, 26(2):93-99, 2019.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, 1., et al. Language models are unsupervised
multitask learners. OpenAl blog, 1(8):9, 2019.

Reed, S. and De Freitas, N. Neural programmer-interpreters.
arXiv preprint arXiv:1511.06279, 2015.

Richardson, T. and Urbanke, R. Modern coding theory.
Cambridge University Press, 2008.

Rowshan, M. and Viterbo, E. On convolutional precoding
in pac codes. In 2021 IEEE Globecom Workshops (GC
Wkshps), pp. 1-6. IEEE, 2021a.

Rowshan, M. and Viterbo, E. List viterbi decoding of pac
codes. IEEE Transactions on Vehicular Technology, 70
(3):2428-2435, 2021b.

Rowshan, M., Burg, A., and Viterbo, E. Complexity-
efficient fano decoding of polarization-adjusted convo-
lutional (pac) codes. In 2020 International Symposium
on Information Theory and Its Applications (ISITA), pp.
200-204. IEEE, 2020a.

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983

CRISP: Curriculum based Sequential neural decoders for Polar code family

Rowshan, M., Burg, A., and Viterbo, E. Polarization-
adjusted convolutional (pac) codes: Fano decoding vs
list decoding. arXiv preprint arXiv:2002.06805, 2020b.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distil-
bert, a distilled version of bert: smaller, faster, cheaper
and lighter, 2019. URL https://arxiv.org/abs/
1910.01108.

Shannon, C. E. A mathematical theory of communication.
The Bell system technical journal, 27(3):379—423, 1948.

Sun, H., Viterbo, E., and Liu, R. Optimized rate-profiling
for pac codes. arXiv preprint arXiv:2106.04074, 2021.

Tal, I. and Vardy, A. How to construct polar codes. IEEE
Trans. Inf. Theory, 59(10):6562-6582, 2013.

Tal, I. and Vardy, A. List decoding of polar codes. /IEEE
Transactions on Information Theory, 61(5):2213-2226,
2015.

Trifonov, P. A score function for sequential decoding of
polar codes. In 2018 IEEE International Symposium on
Information Theory (ISIT), pp. 1470-1474, 2018. doi:
10.1109/ISIT.2018.8437559.

Vasi¢, B., Xiao, X., and Lin, S. Learning to decode ldpc
codes with finite-alphabet message passing. In 2018
Information Theory and Applications Workshop (ITA), pp.
1-9. IEEE, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N, Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998-6008, 2017.

Wang, X., Chen, Y., and Zhu, W. A survey on curriculum
learning. [EEFE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

Wang, Y., Perazzi, F., McWilliams, B., Sorkine-Hornung,
A., Sorkine-Hornung, O., and Schroers, C. A fully pro-
gressive approach to single-image super-resolution. In
Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pp. 864-873, 2018.

Wang, Y., Gan, W., Yang, J., Wu, W., and Yan, J. Dynamic
curriculum learning for imbalanced data classification. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 5017-5026, 2019.

Wang, Z., Wohlwend, J., and Lei, T. Structured pruning
of large language models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational
Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.
496. URL https://doi.org/10.18653%2Fv1%
2F2020.emnlp-main.496.

13

Wu, X., Dyer, E., and Neyshabur, B. When do curricula
work? arXiv preprint arXiv:2012.03107, 2020.

Xu, W., You, X., Zhang, C., and Be’ery, Y. Polar decoding
on sparse graphs with deep learning. In 2018 52nd Asilo-
mar Conference on Signals, Systems, and Computers, pp.
599-603. IEEE, 2018.

Yao, H., Fazeli, A., and Vardy, A. List decoding of arikan’s
pac codes. Entropy, 23(7):841, 2021.

Yuan, B. and Parhi, K. K. Early stopping criteria for energy-
efficient low-latency belief-propagation polar code de-
coders. IEEE transactions on signal processing, 62(24):
6496-6506, 2014.

Zaremba, W. and Sutskever, I. Learning to execute. arXiv
preprint arXiv:1410.4615, 2014.

Zhu, H., Cao, Z., Zhao, Y., Li, D., and Yang, Y. Fast list
decoders for polarization-adjusted convolutional (pac)
codes. arXiv preprint arXiv:2012.09425, 2020.

https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://doi.org/10.18653%2Fv1%2F2020.emnlp-main.496
https://doi.org/10.18653%2Fv1%2F2020.emnlp-main.496

CRISP: Curriculum based Sequential neural decoders for Polar code family

A. Successive Cancellation decoder

Here we detail the successive-cancellation (SC) algorithm
for decoding polar codes. As a motivating example, let’s
consider the Polar(2, 2) code. Let the two information bits
be denoted by u and v, where u, v € {0,1}. The codeword
x € {0,1}2is given by = = (z1,22) = (u ® v,v). Let
y € R? be the corresponding noisy codeword received by
the decoder. First we convert the received y into a vector of
log-likelihood-ratios (LLRs), L,, € R?, which contains the
soft-information about coded bits z; and z, i.e.

Ly = (Ly), L")
Ply1]z1 = 0] Plyz|xg = O]>
= (lo o € R2
< : Plys|z1 = 1] & Plyz|za = 1]

Once we have the soft-information about the codeword x,
the goal is to now obtain the same for the message bits v and
v. To compute the LLRs for these information bits, SC uses
the following principle: first, compute the soft-information
for the left bit u to estimate @. Use the decoded 4 to compute
the soft-information for the right bit v and decode it. More
concretely, we compute the LLR for the bit u as:

L, =LSE(L", L) = log

where LSE(a,b) = log(1 + e**?) /(e + €b) for a,b € R.
The expression in Eq. 6 follows from the fact that «
(u®v) ®v=x1 @ xs and hence the soft-information L,
can be accordingly derived from that of 1 and 3, i.e. L.
Now we estimate the bit as & = 1{L, < 0}. Assuming
that we know the bit © = 7, we observe that the codeword
x = (4Dwv,v) can be viewed as a two-repitition of v. Hence
its LLR L, is given by

1 [2
L,=L{" (-1)"+ LY eR. (7

Finally we decode the bitas & = 1{L, < 0}. To summarize,
given the LLR vector L, we first compute the LLR for the
bit u, L,,, using Eq. 6 and decode it. Utilizing the decoded
version 4, we compute the LLR L, according to Eq. 7 and
decode it.

For a more generic Polar(n, k), the underlying principle
is the same: to decode a polar codeword x = (u @ v, v),
first decode the left child w and utilize this to decode the
right child v. This principle is recursively applied at each
node of the Plotkin tree until we reach the leaves of the tree
where the decoding is trivial. In view of this principle, the
SC algorithm for Polar(2, 4), illustrated in Fig. 3(b), can be

14

mathematically expressed as (in the sequence of steps):

y € R?
Ly= (LY, LY, LY, L) e RY,
L, = (LSE(L{), LY), LSE(LP, L{Y)) € R?,
frozen —mq = 0,
1 3 2 4
L, = LSE(LY, L¥) + LSE(LP), LW) € R,
no = 1{Ls < 0} € {0, 1},
@ = (i, 1) € {0,1}%,
L, = (L L) - (-1)* + (L), L) € B,
frozen —mg = 0,
Ly=LY + LY? eR,
my =]l{L4 < 0} S {0, 1}-

In Fig. 3(b), the above equations are succinctly represented
by two set of arrows: the black solid arrows represent the
flow of soft-information from the parent node to the children
whereas the green dotted arrows represent the flow of the
decoded bit information from the children to the parent. We
note that we use a simpler min-sum approximation for the
function LSE that is often used in practice, i.e.

LSE(a, b) ~ min(|al, |b|)sign(a)sign(b), a,b e R.

B. Interpretation

As discussed in Sec. 4.4, we observe that whenever our
decoder reaches SC or better performance eventually when
training at a specific SNR, its BER (over all the bits) on
uncorrupted codewords, noiseless BER, drops to 0 early
on in the training. Fig. 7(a) illustrates this for Polar(32, 16).
Conversely, if the model gets stuck at a BER worse than
that of SC, then we observe that its noiseless BER is also
stuck at a non-zero value. This is highlighted in Fig. 7(b)
for Polar(64,32). In particular, we notice that the least
reliable bits contribute the most to the noiseless BER, while
a majority of the cleaner bits have zero individual BER
(Fig. 8(a)). Viewed from this context, we focus on the
noiseless scenario, i.e. y = x.

As a motivating example, we first consider the Polar(4, 4)
code. Let m = (my, ma, m3, my) € {0,1}* be the block
of message bits and = € {0, 1}* be the codeword. Hence
under the L2R curriculum, the subcodes evolve as

cek=1:m— (ml,0,0,0) = T = (m1,0,070),

e k=2: (ml,mg) — (ml,mg,0,0) = T = (m1 D
WL27m27030>,

e k= 3: (m1,me,m3g) — (mi,ma,ms,0) — x
(m1 ® ma ® ms3, ma,ms3,0),

CRISP: Curriculum based Sequential neural decoders for Polar code family

—— Noiseless
CRISP-1dB
—— SC-ldB

0.15

0.10 1

Bit Error Rate

0.05

0.00

75 100 125 150

Training iterations

25 50

(a) Noiseless BER goes to zero when the model is better than SC

—— Noiseless
CRISP-1dB
—— SC-1dB,

0.4

0.31

o
IN)

Bit Error Rate

0.11

400 600 800 1000 1200
Training iterations
(b) Noiseless BER is high when the model is worse than SC

Figure 7: Evolution of training BER at 1dB and noiseless BER for CRISP.

ok =4: (my,ma,ms,my) — (M1, mg, ms,my) —
x = (m1 ®ma ®mszdmyg, my®myg, m3Dmyg,my).

Correspondingly, their optimal bit decoding rules under the
MAP evolve as

. k:1:y:w:(m1,07070)}—>m1:$1,

e k=2:y=x=(m®Smg,mg,0,0) = (1h1,me) =
(x1 ® x2, T2),

e k=3:y=x = (m ®&ms®ms,ma,ms,0) —
(M1, Mg, m3) = (x1 ® T2 ® x3, T2, 23),

ck=4:y=x = (m ®me dm3z ®my,ms
my,ms3s EB71”477714) g (m17m25m37m4) = (ml S
Ty ® T3 ® Ty, To D Ty, T3 D T4, T4).

Similarly, we can compute the subcodes and their corre-
sponding decision rules under the R2L curriculum. Fig. 9
illustrates this evolution for both L2R and R2L. For the
least reliable bit m, we observe that the L2R curriculum
reaches the optimal rule more gracefully by including one
coordinate z; at a time while this change for R2L (and no-
curriculum) is abrupt, making it harder to learn. We observe
the same trend for other bits ms, m3 and m,4. Note that for
Polar(4, 4), the reliability order is m; < mg = ms3 < my
and hence the L2R curriculum is same as N2C and R2L is
same as C2N.

For a general Polar(n, k), we can likewise compute the
optimal MAP rules using the fact that the mapping
PlotkinTree : {0,1}"™ — {0,1}" is its own inverse, i.e.
x = PlotkinTree(m) = m = PlotkinTree(x).

15

To concretely compare different curricula, we define the no-
tion of learning difficulty for a bit: the number of codeword
bits multiplied in its optimal decoding rule. This metric
roughly captures the number of multiplication operations
a model has to learn at any curriculum step. For exam-
ple, for Polar(4, 4), the learning difficulty for m; evloves
asl - 2 — 3 — 4 for the L2R curriculum and as
0 — 0 — 0 — 4 for the R2L curriculum. Fig. 10 illustrates
the evolution of learning difficulty (taking maximum over
all bits) for Polar(32, 16) and Polar(64, 22) codes. We ob-
serve here that the jumps in the learning difficulty are larger
for R2L, thus indicating a harder transfer than L2R, where
it increases smoothly (at most one bit per step).

Fig. 12 highlights a similar phenomenon for Polar(64, 22)
for L2R, R2L, N2C and C2N curricula. We observe that the
learning difficulties of the L2R and N2C curricula evolve
smoothly while that of R2L. and C2N are abrupt. Corre-
spondingly, their final BER reliability performance follows
the order N2C ~ L2R < R2L ~ C2N (Fig. 11).

B.1. Error analysis

To interpret the CRISP decoder, we compare its bitwise error
patterns against the SCL decoder. As shown in Fig. 8(b), we
plot the contribution of each bit to the block error rate; we
condition on having no previous errors. We observe that the
typical error events of CRISP, unlike CRISP_CNN, closely
resemble that of the SCL decoder. This aligns with our ex-
pectation since CRISP uses a sequential decoding paradigm
similar to that of the successive cancellation framework.

CRISP: Curriculum based Sequential neural decoders for Polar code family

Bit Error Rate
IS o© o o
N w IS wn

©
fay

o
=)

100 150 200 250

Training iterations

0 50

(a) Bitwise BER for clean and noisy bits

CRISP CRISP_CNN sC SCL

(b) Bitwise contribution to the total BLER

Figure 8: Error analysis for Polar(64, 22) : (a) Noiseless BER for the two least reliable bits gets stuck at 0.5 whereas it
converges to 0 for the two most reliable bits, (b) Contribution of each bit (conditioned on no previous errors) to the BLER.

Bit 1 Bit 2 Bit 3 Bit 4
8000
@l@ e | @ ®¢® ®
& l@ ® | @ Xa) ® | ® @1® ®
i‘f&"@ﬁ J 0oed ! oYclclc); J ©06d

(a) L2R curriculum

Bit | Bit 2 Bit 3 Bit 4
i@,@i@f@‘
déee | @ead
& 0o ® | ® 90)
ddee | eesd
y v

(b) R2L curriculum

Figure 9: Evolution of the MAP decoding rules for L2R and R2L for Polar(4, 4). Dotted lines indicate new coded bits being

introduced into the decoding rule at each curriculum step.

C. Ablation studies

Recall that our CRISP decoder consists of the sequential
RNN (512-dim hidden state) trained with the L2R curricu-
lum. To understand the contribution of each of these com-
ponents to its gains over SC, we did the following ablation
experiments for Polar(64, 22) code.

C.1. Effect of model size

We fix the decoder to be GRU and consider different model
sizes via the hidden state size h € {256,512}, and different
curricula among {L2R, R2L, Without curriculum (w/o C)}.
Fig. 13(a) demonstrates that the accuracy gains of the L2R
curriculum are more pronounced for smaller models (h =
256). On the other hand, we observe minimal reliabilty
gains for L2R with large models (h = 512). We also tried

16

other sequential architectures such as LSTMs (Hochreiter
& Schmidhuber, 1997) and Transformers (Radford et al.,
2019), but found GRUs to be the best (App. D).

C.2. Sequential vs. block decoding

The sequential GRU architecture for CRISP is inspired in
part by the sequential SC algorithm. Alternatively, we also
design CRISP_CNN, a block decoder parameterized by
1D Convolutional Neural Networks (CNNs). CRISP_CNN
estimates all the information bits m; in one shot given y.
Similar to sequential decoders, curriculum learning; in par-
ticular, the L2R scheme works the best for block decoding
in achieving near-MAP reliability.

Fig. 14(b) compares RNNs and CNNs in terms of BLER
for Polar(64, 22) with L2R and R2L curricula. We observe

CRISP: Curriculum based Sequential neural decoders for Polar code family

Learning Difficulty

I T!rai;linsg iterations
(a) Polar(32, 16)

i

Training iterations
(b) Polar(64, 22)

Learning Difficulty

Figure 10: Evolution of the learning difficulty for L2R and R2L.

sc

SC-List, L=32
L2R (CRISP)
RaL

107t

Preett

NC
on

1072

1073

Bit Error Rate

1074

0 1 2

3 4
Signal-to-noise ratio (SNR) [dB]
(a) Polar(32, 16)

sc

SC-List, L=32
L2R (CRISP)
ROL

Prittt

N
on

Block Error Rate

-1 0

1 2
Signal-to-noise ratio (SNR) [dB]
(b) Polar(64, 22)

Figure 11: Choice of curriculum is crucial to obtain gains over SC. Information-theory guided curricula N2C and C2N are
marginally better than the L2R and R2L schemes respectively.

that RNN-based decoders (CRISP) are more reliable in
terms of BLER than CNNs; in contrast, RNNs and CNNs
achieve similar BER performance (Fig. 14(a)). Further,
we observe that the error patterns corresponding to bitwise
contribution to the total BLER for the RNN model resemble
that of SC-List, as opposed to CNN models (Fig. 8(b)). We
show the evolution of validation BER for CNN training in
Fig. 15(a). We see that the C2N curriculum performs worse
than the N2C curriculum.

D. Additional results

We present our additional results on the Polar code family
with various decoding architectures such as CNNs and trans-
formers, with BLER reliability, and for longer blocklengths
(n = 128). Recall that the CRISP decoder uses the GRU-
based RNN (Fig. 4(a)) trained with the L2R curriculum.

17

D.1. Additional results for polar codes
D.1.1. ROBUSTNESS TO NON-AWGN NOISE

In this section we evaluate CRISP trained on AWGN on
non-AWGN settings. We test CRISP on a Rayleigh fad-
ing channel, and T-distributed noise. As shown in Fig. 16,
CRISP retains its gains when tested on a Rayleigh fading
channel. Further, as demonstrated in Fig. 17, CRISP is very
robust to T-distributed noise and marginally outperforms
SCL at higher SNRs. These experiments suggest that the
CRISP decoder inherits the robustness inherent to nearest
neighbor decoding even though this was not explicitly fea-
tured in the training — this intuition is further justified by our
experiments showing that the typical error events of CRISP
match that of the optimal SCL (MAP) decoder (App. B.1)

D.1.2. GENERALIZATION TO UNSEEN CODEWORDS

We emphasize that the CRISP decoder does not rely on
memorizing codewords to achieve its high performance. We

CRISP: Curriculum based Sequential neural decoders for Polar code family

Learning Difficulty

5 6 7 8 5 1 11 12 13 14 15 1 17 18 13 20 21 2

Training iterations

(a) Noisiest bit

6 1 2 3 4

T

5 1 2 3 4

Learning Difficulty

5 6 7 8 8 D 11 12 15 18 15 16 17 18 15 20 21 2

Training iterations

(b) Maximum over all bits

Figure 12: Evolution of learning bit difficulty for different curricula for Polar(64, 22).

107t

1073

Bit Error Rate

107%

10°°

-1 0 1 2 3 4

Signal-to-noise ratio (SNR) [dB]
(@)

-2

5

Bit Error Rate

[20000 40000 60000 80000 100000 120000 140000

Training iteration

(b)

Figure 13: Ablation plots: (a) Choosing the right curriculum is critical when model size is smaller, (b) The number of
iterations to train CRISP on each subcode using the L2R/N2C curriculum are not critical to the final performance achieved.

demonstrate this on a Polar(64, 22) codebook consisting
of 222 codewords, where we randomly selected subsets
comprising of the codebook as training data, and held out
the remaining codewords for evaluation. We observe in
Fig. 15(b) that the CRISP decoder trained on a limited set
of codewords does not lead to performance deterioration.
This shows that our training method learns the structural
patterns inherent to Polar and PAC codes, rather than just
memorizing the codewords.

D.1.3. CRISP FOR CRC-POLAR CODES

In practice, polar codes with successive cancellation list
decoding is used in conjunction with a cyclic redundancy
check (CRC) outer code. The message u € {0,1}F is
encoded by a systematic cyclic code of rate kTm to obtain
a vector m € {0,1}*. We obtain the codewords via the
normal polar encoding procedure on m. CRISP can be used
to decode such CRC-Polar codes by considering m as the
input to the polar code block. As shown in Fig. 18, CRISP

18

achieves near-MAP reliability when CRCs of length 3 and
8 are used for a Polar(64, 22) code.

D.1.4. SCALING TO LARGER CODES

Curriculum training can be used to train even larger codes
and obtain gains over naive training methods. However, we
observed that our models were only able to achieve a reliabil-
ity marginally better than SC. As shown in Fig. 21, CRISP
performs similar to SC decoding on the Polar(128, 22) code.
We believe that it is possible to close the gap with MAP
with more training tricks.

D.1.5. RESULTS WITH TRANSFORMERS

We also experimented with transformer-based architecures
(Vaswani et al., 2017) for our decoder. In particular, we tried
an autoregressive transformer-decoder network (similar to
GPT (Brown et al., 2020) that does sequential decoding)
and the transformer-encoder network (similar to BERT (De-
vlin et al., 2018) that does block decoding). Preliminary

CRISP: Curriculum based Sequential neural decoders for Polar code family

107t

1072

1073

Bit Error Rate

107%

107

-1 0 1 2 3 4

Signal-to-noise ratio (SNR) [dB
(@)

-2

10°

H
<

Block Error Rate

-3 - - 0 1 2 3

1
Signal-to-noise ratio (SNR) [dB
(b)

Figure 14: a) CNN decoder achieves near-MAP BER performance with L2R curriculum.
b) CRISP achieves near-MAP BLER for Polar(64, 22). CNN is slightly worse.

107!

1072

Bit Error Rate

1073

0 50000 100000 150000 200000

Training iteration

(a)

Polar(64,22) - generalization

(b)

Figure 15: (a) L2R curriculum helps CNN to achieve near-optimal reliability

results indicate that these transformer-based models are less
reliable compared to RNNs and CNNs (Fig. 19). In addi-
tion, these models take a greater number of iterations (E) to
train on each of the subcodes than RNNs and CNNs during
curriculum training. Transformer training is sensitive to
architectural and hyperparameter choices and is computa-
tionally expensive. We believe that with the right training
tricks, transformer-based models can be used to decode
larger codes. This is ongoing work.

D.2. Additional results for PAC codes

CRISP maintains its good performance even in block error
rate, as we show in Fig. 20(b). Fig. 20(a) compares RNN's
and CNNs in terms of BER for PAC(32,16) code with
L2R and R2L curricula. We observe that while both RNN's
and CNNs outperform SC, RNNs achieve slightly better

19

BER reliability than CNNs. On the other hand, Fig. 20(b)
highlights that CNNs achieves an SC-like BLER.

E. Experimental details
We provide our code at the following link.

Data generation. Note that for any Polar(n,k) or
PAC(n, k)) code, the input message m is chosen uniformly
at random from {0, 1}*. We simulate this by drawing i.i.d.
Bernoulli random variables with probability 1/2. We follow
a similar procedure to generate a batch of message blocks (in
{0, 1} B**) with batch size B, both during training and in-
ference. For the AWGN channel, the batch noise (in RBxm)
is accordingly generated by drawing i.i.d. Gaussian samples
from NV (0, 02).

https://github.com/hebbarashwin/neural_polar_decoder

CRISP: Curriculum based Sequential neural decoders for Polar code family

Polar(22,64) - Rayleigh fading test

—— SC
—+— SC List L=32
CRISP

107!

BER

1072

(a) Polar(64, 22)

Polar(16,32) - Rayleigh fading channel

(b) Polar(32, 16)

Figure 16: CRISP achieves good reliability on Rayleigh fading channels

Polar(22,64) - T-distribution y =5

—— SC
—— SC List L=32
CRISP

107!

BER

1072

1073

SNR

(a) Polar(64, 22)

Polar(16,32) - T-distribution, y =5

(b) Polar(32, 16)

Figure 17: CRISP matches SCL reliability on T-distributed channels

Hyper-parameters. For training our models (both se-
quential and block decoders), we use AdamW optimizer
(Loshchilov & Hutter, 2017) with a learning rate of 1073,
At each curriculum step, corresponding to training a sub-
code, we choose the SNR corresponding to which the op-
timal decoder for that subcode has BER in the range of
1072 ~ 107! (Kim et al., 2018b). This ensures that a signif-
icant portion of training examples lie close to the decision
boundary. It is well known that using a large batch size is
essential to train a reliable decoder (Jiang et al., 2019a); we
use a batch size of 4096 or 8192.

E.1. Sequential decoders

We present the architectures and training details for our se-
quential decoders. We consider two popular choices for our
sequential models: RNNs and GPT. We also note that it is a
standard practice to use feacher forcing to train sequential

20

models (Lamb et al., 2016): during training, as opposed to
feeding the model prediction m; as an input for the next
time step, the ground truth message bit m, is provided as an
input to the model instead (Fig. 4(a)). Student forcing refers
to using the same 771, as an input.

E.1.1. RNNs

Architecture. We use a 2-layer GRU with a hidden state
size of 512. The output at each timestep is obtained through
a fully connected layer (as shown in Fig. 4(a)). The network
has 2.5M and 600K parameters for block lengths 64 and 32.
As shown in Figure 22, 2-layer-LSTM and 3-layer-GRU
models achieve similar performance. We choose a 2-layer
GRU for our experiments since it allows for faster training
and has fewer parameters.

CRISP: Curriculum based Sequential neural decoders for Polar code family

Polar(22,64) - CRC-length=3

10!

1073

(a) Polar(64, 22)

Polar(22,64) - CRC-length=8

(b) Polar(32, 16)

Figure 18: CRISP performs well on CRC-Polar code

107t

Bit Error Rate

1073

-2 -1 0 1 2 3 4

Signal-to-noise ratio (SNR) [dB]
(a) GPT-based architecture (sequential decoding)

—-— MAP

Bit Error Rate

-2 -1 0 1 2 3 4

Signal-to-noise ratio (SNR) [dB]
(b) BERT-based architecture (block decoding)

Figure 19: Transformer performance on Polar(32, 16).

Training. We use the teacher forcing mechanism to train
our models. We found that teacher forcing gives a better
final performance in terms of both BER and BLER, whereas
student forcing only provides gains in the BER reliability
(Fig. 23). We observed that student forced training achieved
sub-optimal performance for larger block lengths. Empir-
ically we observed that the number of iterations spent on
training each intermediate subcode of the curriculum is not
critical to the performance of the final model (Fig. 13(b)).
To train CRISP for Polar(64,22), we use the following cur-
riculum schedule: Train each subcode for 2000 iterations,
and finally train the full code until convergence with a de-
caying learning rate. This training schedule required 13-15
hours of training on a GTX 1080Ti GPU.

21

E.1.2. GPT

Architecture. The model consists of 6 transformer blocks
with masked self-attention and GELU activation. The mul-
tiheaded attention unit has 8 heads in each block, and an
embedding/hidden size of 64 is used throughout the network.
The output vectors of the final transformer block are passed
through a linear layer to estimate each bit sequentially. The
model has 350K parameters for blocklength 32.

Training. For training the GPT-based transformer, we use a
teacher forcing mechanism. Here, we observed that the de-
coder takes a greater number of iterations (40, 000) to train
on each of the subcodes than RNNs and CNNs (2,000 —
10, 000) during curriculum training of Polar(32, 16). For
a fixed batch size, GPT also takes significantly longer to
train (12 hours) compared to CNNs (3 hours) and RNNs (4
hours) on GTX 1080 Ti GPU.

CRISP: Curriculum based Sequential neural decoders for Polar code family

107t

1072

1073

Bit Error Rate

1074

0 1 2

3 4
Signal-to-noise ratio (SNR) [dB]
(a) BERs PAC(32, 16)

Block Error Rate

4 5

[dB]

o 1 2

3
Signal-to-noise ratio (SNR)
(b) BLERs PAC(32, 16)

Figure 20: With correct choice of curriculum, CNNs match the BER performance of CRISP on PAC(32,16). However, they

are sub-optimal in BLER.

Block Error Rate

-4 3 2 -1 0

Signal-to-noise ratio (SNR) [dB]
(b) BLERSs Polar(128, 22)

Figure 21: CRISP matches SC reliabilty on Polar(128, 22).

107
o 1072
I
o~
56 1073
&3
=10t
m
1075
5 4 -3 -2 -1 0
Signal-to-noise ratio (SNR) [dB]
(a) BERs Polar(128, 22)
E.2. Block decoders
E.2.1. CNNs

Architecture. For block decoding using Convolutional
Neural Networks (CNNs), we use a ResNet-like architecture
(He et al., 2015), with the primary difference being the
use of 1D convolutions instead of 2D. The model has 10
1D-convolutional layers with residual connections skipping
every two consecutive layers. Each convolutional layer has
64 channels, which are flattened at the penultimate layer
and fed as an input to a fully-connected neural network
with one hidden layer. We use the GELU (Hendrycks &

Gimpel, 2016) activation function throughout the network.

The model has 2.5M parameters for blocklength 64.

Training. We train the CNN model for 5, 000 iterations for
each intermediate subcode of the curriculum. In the last step

22

of the curriculum, we train it for 100, 000 iterations with
a decaying cosine annealing schedule for the learning rate
(Loshchilov & Hutter, 2016).

E.2.2. BERT

Architecture. The model consists of 6 transformer blocks
with unmasked self-attention and GELU activation. In each
block, the multiheaded attention unit has 8 heads, and an
embedding/hidden size of 64 is used throughout the network.
The output vectors of the final transformer block are passed
through a linear layer to estimate all the bits in one shot.
The model has 350K parameters for blocklength 32.

Training. We train this model on each intermediate subcode
for around 10, 000 — 20, 000 steps. Thus the BERT-based
decoder achieves better reliability than its GPT counterpart

CRISP: Curriculum based Sequential neural decoders for Polar code family

Bit Error Rate

103

-2 = 0 1

1 2
Signal-to-noise ratio (SNR) [dB]
(@)

Block Error Rate

-3 - - 0 1 2 3

1
Signal-to-noise ratio (SNR) [dB
(b)

Figure 22: Polar(64, 22): LSTMs and GRUs achieve similar reliability.

107t

-
=)
0

Bit Error Rate

1074

0 1 2 3 4 5
Signal-to-noise ratio (SNR) [dB]
(@)

Figure 23: Training CRISP using student

despite fewer training iterations (Fig. 19).

F. Reliability-complexity comparison

Two important metrics in evaluating a decoding algorithm
are the decoding reliability and complexity. In this paper, we
focus on optimizing the BER performance; the main goal of
our paper is to design a curriculum based decoder for Polar
and PAC codes that can achieve near-optimal reliability per-
formance as opposed to the current data-driven approaches
that only match the SC. In Sec. 4.2, we demonstrated that
CRISP achieves excellent inference throughput on GPUs.
We also see that the decoding complexity of CRISP can be
further improved with a hardware-aware neural architecture.

We believe that neural decoders, coupled with the recent
advances in distillation (Sanh et al., 2019) and pruning of
neural networks (Hinton et al., 2015; Wang et al., 2020; An-

23

Block Error Rate

0 1 2 3 4 5
Signal-to-noise ratio (SNR) [dB]
(b)

forcing results in sub-optimal BLER.

war et al., 2015) far larger than ours (E.g., 110M for BERT
vs. 2.5M for CRISP), can achieve even better runtimes.
For instance, TinyBERT ((Jiao et al., 2019)) uses knowl-
edge distillation to learn a model 9.4x faster on inference
compared to the parent BERT. Coupled with efficient GPU
implementations, which are optimized for vector-matrix
multiplications, and the aforementioned compression tech-
niques, we believe neural decoders offer a great potential
for fast and reliable channel decoding. It is important to
note that inference throughput is hardware and software
dependant. In Table 1, we report throughput numbers of the
optimized C++ multithreaded implementation of SC/SCL
decoding on CPU using the aff3ct toolbox ((Cassagne et al.,
2019)). There has been progress in developing GPU im-
plementations of SCL ((Cammerer et al., 2017b; Han et al.,
2017)). Since we could not find publicly available imple-
mentations of these works, we report throughput numbers
of our implementation.

