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Fig. 2: Heat map of the RME speed-up against columnar 2a

and row 2b store for varying projected and selected columns.

We implemented and deployed RME on commercially avail-

able Systems-on-Chips (SoCs) integrating an on-chip FPGA

and a traditional multi-core processor (e.g., Intel HARPv2,

Xilinx UltraScale+). By employing commercially available

CPU+FPGA SoCs, we create an immediately-usable complete

prototype capable of running realistic applications. Our design

is based on the Programmable Logic In the Middle (PLIM) [3]

approach and can be employed to achieve greater control over

memory traffic by instantiating custom logic as an intermedi-

ary between processors and main memory.

III. DATA-RESHAPE FOR REAL-TIMES SYSTEMS

RME creates a re-organized alias of the target memory

based on a software-provided configuration. RME achieves the

timeliness requirements of real-time systems by accessing only

the desired subset of data items in main memory on behalf of

the processing units before sending fully compressed cache

lines to the LLC. This mechanism effectively filters out all

undesired elements that would otherwise pollute the cache,

enabling high data locality in upstream caching layers.

Motivated by real-time applicability, first, we experimen-

tally demonstrate that RME offers efficient native accesses

to any matrix column or column group, outperforming direct

row-wise and direct columnar accesses. To perform a fair

comparison, we implement RME, the row-store (ROW), and

the column-store (COL) approach in the same memory. The

default size of each row is 64 bytes, and the column width

is 4 bytes. Each experiment was repeated 30 times, and we

reported averages and standard deviations. We run two sets of

experiments for RME: hot (when the targeted data is ready in

the internal) and cold (otherwise).

We design a synthetic benchmark (Listing 1) to test the

behavior of our engine under representative memory access

patterns. Consider the following operation: Given a matrix M,

it reads over the columns subset based on a different selection

predicate. Here, COLp1
, ..., COLpi

are projection columns

and COLs1 , ..., COLsj are selection columns.

Listing 1: Synthetic Matrix Operation

READ COLp1
, ..., COLpi

FROM M WHERE COLs1
, ..., COLsj

> k ;

A. Latency Showcase

Figures 2a and 2b show the speedup of RME compared

to the in-memory row-store and column-store. In the x- and
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Fig. 3: RME enables deterministic accesses latency.

y-axis we vary the number of projection (i) and selection

(j) columns. Figure 2a shows that when the number of

involved columns is small (≤ 4), column-store dominates

over RME (colored red). However, as the number of columns

increases due to the tuple materialization cost, the diminished

prefetching columnar access performance falls behind. In fact,

RME can be up to 2.23× faster than columnar access (bottom

rightmost cell). Figure 2b further highlights that RME always

outperforms in-memory row access by being 1.3−1.5× faster.

B. Predictability Showcase

We continue our experimentation with the benchmark above

where i = 1, j = 1, COLi 6= COLj , focusing on the

comparison between RME, direct row-wise (ROW), and direct

columnar access (COL). We access 4 byte-wide columns while

varying the row size. Figure 3 shows the absolute latency.

We note from this figure that even without having the

projected column in the Reshape Buffer in FPGA (RME cold),

RME has faster execution than both ROW and COL in all

experiments. The reason is that (1) RME better exploits the

internal memory bandwidth to fetch only the desired data

items at bus-width granularity, and (2) the CPU caches are

not polluted with unwanted fields.

RME’s latency remains virtually the same as it accesses

only the relevant data. However, answering the query via direct

access of the row-oriented data leads to poor cache utilization

as larger rows lead to higher cache pollution. Conversely, RME

exhibits stable and predictable performance regardless of the

row size. Thus, RME allows predicting and exploiting data

reuse across processing phases.

C. Real-Time Evaluation

RME outperforms the row-store layout because, by defini-

tion, it accesses fewer data. On the other hand, queries that

access fewer columns can be more efficiently evaluated from

a columnar layout. However, when the number of projected

columns is high enough (more than four in our setup), RME

outperforms the columnar layout. Further, the RME imple-

mentation used in this setup runs at only 1/3 of the maximum

FPGA frequency. Operating at a higher frequency may reduce

memory access time and increase the benefits of RME.

IV. CONCLUSION

We depart from the traditional view of memory as a flat

array of bytes. We reshape the data via near-memory compu-

tation before moving it to the CPU, resulting in improvement

of both performance and determinism of memory accesses.
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