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ABSTRACT

Analytical database systems are typically designed to use a column-
first data layout to access only the desired fields. On the other
hand, storing data row-first works great for accessing, inserting,
or updating entire rows. Transforming rows to columns at run-
time is expensive, hence, many analytical systems ingest data in
row-first form and transform it in the background to columns to
facilitate future analytical queries. How will this design change if
we can always efficiently access only the desired set of columns?

To address this question, we present a radically new approach
to data transformation from rows to columns. We build upon re-
cent advancements in embedded platforms with re-programmable
logic to design native in-memory access on rows and columns.

Our approach, termed Relational Memory (RM), relies on an
FPGA-based accelerator that sits between the CPU and main
memory and transparently transforms base data to any group of
columns with minimal overhead at runtime. This design allows
accessing any group of columns as if it already exists in memory.
We implement and deploy RM in real hardware, and we show that
we can access the desired columns up to 1.63x faster compared
to a row-wise layout, while matching the performance of pure
columnar access for low projectivity, and outperforming it by up
to 2.23X as projectivity (and tuple reconstruction cost) increases.
Overall, RM allows the CPU to access the optimal data layout,
radically reducing unnecessary data movement without high
data transformation costs, thus, simplifying software complexity
and physical design, while accelerating query execution.

1 INTRODUCTION

OLTP vs. OLAP vs. HTAP. Over the past few years, large-scale
real-time data analytics has soared in popularity as more and
more applications need to analyze fresh data. This has been exac-
erbated by new technological trends like 5G, Internet-of-Things,
and the advent of cloud computing as an always-on data platform
[24, 34]. This leads to the need for database management systems
(DBMS) that can perform both Online Transactional Processing
(OLTP) and Online Analytical Processing (OLAP), known as Hy-
brid Transactional/Analytical Processing (HTAP) [63]. However,
OLTP and OLAP systems adopt very different designs. OLTP
systems are generally optimized for write-intensive workloads
aiming to support high-volume point queries using indexes. In
contrast, OLAP systems are optimized for read-only queries that
access large amounts of data. Recent efforts for HTAP systems
have been bridging OLAP and OLTP requirements by maintain-
ing multiple copies of data in different formats [18, 67] or con-
verting data between different layouts [13, 15, 51, 56, 75].
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Figure 1: Row-wise accesses have constant cost, while
columnar accesses have higher cost for higher projectiv-
ity. Ideally, the cost should be the minimum of the two.

Data Layout. Systems typically employ one of the two data lay-
outs: row-stores or column-stores. Transactional systems em-
ploy row-stores, meaning that the physical organization of data
items in memory is structured in contiguous rows. Row-stores
are ideal for queries that append a new row, update the contents
of one, or access all attributes. On the other hand, most analyti-
cal systems store data in a columnar fashion that supports fast
scans. Column-stores group together the same attribute of differ-
ent rows, allowing for efficient analytical query processing [1].
In order to bridge the analytical and transactional require-
ments, many HTAP systems use a single architecture that ingests
data in row-format, and eventually converts them into a colum-
nar format [63]. By doing so, HTAP designs aim to maintain a
single data store that can offer data freshness and eflicient analyt-
ics on that same data set. However, research on adaptive layouts
adopted by systems like H2O [8], Hyper [47], Peloton [15], and
OctopusDB [28] shows that every query has an optimal layout
that is neither a column-store nor a row-store. Supporting multi-
ple layouts, however, carries a large amount of complexity, which
leads to runtime inefficiency arising from heavy book-keeping
that also makes the code less scalable and harder to maintain.

What if the optimal layout was always available?

In other words, “what if the underlying hardware allows us to
access only the desired groups of columns while the data is stored in
memory as a row-store?” Such hardware would read only useful
data, hence having a query cost tightly correlated with projectiv-
ity as shown by the ideal line in Figure 1. It will have to access
only useful data without paying a tuple reconstruction cost. Prior
work supports adaptive layouts via code generation [8, 46, 47]
and fixes the base storage as either a row-store or a column-store,
while adapting the layout via copying only the relevant data
during query execution. Such an approach creates the need for
maintaining coherence between multiple copies upon updates.
Instead, in this paper, we propose a novel hardware design
for data reorganization that (1) can be implemented in existing
commercial platforms, (2) is capable of on-the-fly interception of
CPU-originated memory requests, and (3) of producing responses
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where the supplied data items are always transparently arranged

in the most efficient layout, while (4) the source data tables are

always stored in physical memory according to the same format —

i.e., as a row-store. We show how to integrate this new hardware

design in data systems using clean abstractions, without having

to redesign the entire database engine.

Design Goals. The proposed hardware-software co-design ap-

proach for data reorganization has the following design goals:

(A) Reduce data movement in the memory hierarchy.

(B) Always provide the optimal layout for both updates (row-
wise) and queries (only the desired columns).

(C) Support ad-hoc queries over multiple tables via run-time
hardware configuration, and an intuitive interface.

(D) Support transactional semantics via MVCC.

(E) Prototype our design as FPGA-based custom hardware.

1.1 Design Overview

Relational Memory. The proposed specialized hardware acts
as an on-the-fly data transformer from rows stored in memory
to any group of columns shipped through the memory and cache
hierarchy toward the processor. We utilize commercially available
systems-on-chip (SoCs) that include programmable logic (PL),
typically deployed on field-programmable gate arrays (FPGAs),
and a traditional multi-core processing subsystem (PS) on the
same chip. These PS-PL SoCs allow the design and deployment
of resource management primitives and create functional proof-
of-concept prototypes to assess practical performance benefits.
Specifically, we capitalize on recent advancements in repro-
grammable hardware [69] to implement programmable logic
between the memory and the processor. To ensure ease of pro-
grammability, we do not directly expose the specialized hardware
to the data system engineer. Instead, we expose a simple abstrac-
tion that allows them to request the desired column groups and
transparently use the underlying machinery. We refer to the
ability to provide an on-the-fly representation of the data that
optimizes relational operators as Relational Memory.
Ephemeral Variables. In a DBMS implementation, every rela-
tional table loaded in memory is accessible through a variable.
By default, this points to the base row-oriented representation
of the data, tailored for accessing entire rows and updating or
inserting data. To support different layouts over the same base
data, we introduce ephemeral variables, a special type of vari-
able that identifies a specific subset of columns to access. These
variables are never instantiated in main memory. Instead, upon
accessing such a variable, the underlying machinery is set in
motion and generates an on-the-fly projection of the requested
columns according to the format that maximizes data locality.
The philosophy behind Relational Memory pivots on three
main points: (1) pushing relational operators closer to data stor-
age; (2) reorganizing and compacting data items before they are
moved toward CPUs to improve locality; and (3) relying on tra-
ditional CPUs for data processing once good locality has been
achieved. Operating closer to the data also introduces opportuni-
ties to exploit memory cells’ inherent parallelism, e.g., by issuing
outstanding parallel requests to separate DRAM banks. Note that
hardware prefetching can benefit from the memory cells’ paral-
lelism as long as the accesses follow a sequential logic. However,
sitting closer to the memory, Relational Memory monitors entire
accesses and has semantic knowledge that enables it to perform
operations out of sequence and exploit inherent memory paral-
lelism. Reorganizing data to improve locality minimizes the waste
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Figure 2: Architecture and data flow of the proposed Relational
Memory Engine. The engine pushes projection closer to data and
provides the optimal layout via on-the-fly data reorganization.

of constrained CPU cache real-estate. In turn, this translates to
better efficiency for the query at hand and lower cache pollution.
Lastly, we enable seamless integration with existing DBMS by
limiting our design to data reorganization while relying on CPUs
to implement arbitrarily complex analytics.

Figure 2 shows a high-level diagram of the proposed design.
The Relational Memory Engine (RME) is located in the pro-
grammable logic between the memory and the processor. Once
triggered, RME transforms data to any desired column-group al-
lowing the processor to directly access data in the optimal layout
through pointers to ephemeral variables.

1.2 Contributions

Relational Memory is the first hardware/software co-design that
allows near-native access to both rows and column-groups over
data stored in a row-wise format in memory, via supporting
near-data projection. Native data access to both rows and column-
groups leads to better cache utilization and paves the way towards
a unified HTAP architecture even in the presence of queries with
very different access patterns and requirements. Our work offers
the following concrete contributions.

e We present Relational Memory, a novel SW/HW co-design
paradigm for general-purpose query engines, which ensures
that every query has always access to the optimal data layout.

e We propose ephemeral variables, a simple and lightweight
abstraction to use Relational Memory.

e We implement an FPGA proof-of-concept that demonstrates
the viability and impact of our design. The source code is avail-
able at https://github.com/ro0zkhosh/relational-memory-engine.

e We tailor a fully configurable design capable of adapting to
any query of interest and any data layout at run-time through
a user-friendly interface.

o We experimentally show that RME performs native accesses to
groups of columns as if the ideal layout is available in memory
with no extra cost to transform rows to columns, leading to
higher cache efficiency and overall performance.

2 BACKGROUND

We now introduce the necessary background concepts to present
the design of Relational Memory. First, we introduce the nuts
and bolts of the FPGA technology and the organization of PS-
PL platforms. Next, we discuss the Programmable Logic In-the-
Middle (PLIM) approach that this work builds upon. Lastly, we
discuss the key principles for data layouts.

Field-Programmable Gate Arrays. FPGAs are programmable
devices that can be configured to synthesize hardware functional
blocks [49, 81]. FPGAs are becoming increasingly popular in
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Figure 3: PLIM module instantiation on a PS-PL platform.

modern platforms because of their high parallelism, reconfig-
urability, specializability, and power efficiency. In comparison
to more traditional CPUs, co-processors, and GPUs, they do not
rely on the execution of a set of instructions. Instead, using a
bitstream mapping of a synthesized version of the logic to its
internal components, they are capable of directly emulating the
logic of any digital circuit. Because of this unique capability along
with specific data manipulation, near-perfect locality of the data,
and many levels of parallelism (e.g., pipelining), FPGA technology
has been widely used to implement specialized accelerators.

An FPGA device is organized as numerous programmable

logic blocks surrounded by an interconnect fabric. Lookup tables
(LUTs) are the main building block in programmable logic. Each
LUT is essentially an n-input, 1-output table to be configured with
an arbitrary boolean function [6, 70]. Nowadays, multi-output
LUTs are also available [85]. Multiple LUTs can be connected
using the configurable interconnect fabric. In addition to the
logic circuits, an FPGA has a small memory (registers or flip-
flops) and a larger local memory implemented as Block RAM
(BRAM), and can access large but slow off-chip memories through
the dedicated DRAM controllers. Internal memory can reach TB/s
scale bandwidth with sub-microsecond latency, whereas off-chip
memories’ bandwidth can reach GB/s [58].
PS-PL Platforms. Recent years have seen the advent of PS-PL
platforms that constitute heterogeneous Systems-on-Chip (SoC)
where a traditional processing system (referred to as PS-side) is
associated with a tightly integrated piece of programmable logic,
i.e., an FPGA (referred to as PL-side). The adoption of these plat-
forms has gained significant momentum from the recent devel-
opments by Intel [40], Xilinx [87], ETHZ [11, 29], and Microsemi
with PolarFire SoC [57]. As shown in Figure 3, the PL domain can
communicate through high-performance PS-PL interfaces (),
@, @), or Interrupt lines ((3)) with the rest of the system. On-
chip communications are carried out using a high-performance,
asynchronous, high-frequency, multi-primary/secondary com-
munication interface between functional blocks.

These platforms use the popular, open specification, and widely
adopted Advanced eXtensible Interface (AXI) protocol [14]. It sup-
ports asynchronous read and write transactions through dedi-
cated channels operating in parallel between a primary (a proces-
sor) and secondary (a memory device). In addition, the protocol
allows the primaries to emit multiple outstanding transactions.
Each sequence of transactions is identifiable via a given ID [14].
Programmable Logic in The Middle (PLIM). Traditionally,
the PL-side is used in the PS-PL platform to map hardware ac-
celerators that work in a load-unload fashion [19]. However, the
recently introduced PLIM approach [69] creates new design op-
portunities by using the PL-side as a secondary route to main
memory that can entirely or partially replace the normal route.
As illustrated in Figure 3, instead of using the normal data path
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Figure 4: Example of RME’s in-line data transformation.

(highlighted in yellow), CPU traffic can be redirected through
the PL-side before reaching main memory (highlighted in blue).
The principal advantage of PLIM is its ability to intercept, in-
spect and manipulate any PS-originated memory transactions
before they reach the main memory, creating the opportunity
to address new open challenges. For instance, PLIM mitigates
memory fragmentation caused by address coloring, by simply
manipulating each transaction address [69]. Further, PLIM can
be integrated into a broader framework in order to address chal-
lenges on memory traffic scheduling [38], or on memory-based
on-chip denial-of-service attacks from remote cores [39].
Data Layouts. A key decision for any data system is the em-
ployed data layout, which is tightly connected with the type
of workloads it primarily targets. In general, there are two ex-
tremes according to which DBMS’s store data: the n-ary storage
model (row-stores) and the decomposition storage model (column-
stores). Row-stores follow the volcano-style processing model
where data is organized as tuples, and all the attributes for each
tuple are stored sequentially [37, 64]. This design allows supe-
rior performance for OLTP workloads [7] since the queries in
transactions generally tend to operate on individual tuples. Tra-
ditional DBMS like Oracle [9], IBM DB2 [22], SQL Server [4]
follow this paradigm. In contrast, column-stores follow the de-
composition storage model. They process data one column at
a time, hence are better suited for OLAP workloads [1] where
the queries tend to operate on multiple tuples but only access
a small fraction of the attributes. Many contemporary data sys-
tems like Vertica [52], Actian Vector (formerly Vectorwise [90]),
MonetDB [21], Snowflake [26] use columnar storage. Even tra-
ditional row-stores have developed new variants that support
columnar format [18, 50, 53]. OLTP queries are more efficiently
executed in row-stores while OLAP queries are more efficient
in column-stores. Systems targeting hybrid workloads support
hybrid layouts in the form of column-groups via the flexible stor-
age model [15] or adaptive layouts [8, 28, 47]. These systems
dynamically adapt the storage layout depending on the workload
by keeping the same data in different layouts and by converting
the data between row and columnar formats for transactions
and analytics, respectively. Because of these conversions and
multiple layouts, these systems generally have high complexity,
high materialization cost, and heavy book-keeping overheads.

3 RELATIONAL MEMORY

Motivation. We now motivate the proposed Relational Memory
design. We present a sample analytical query, and we highlight
the access patterns we optimize through a low-level example.
One can think of a row in a database table as a struct of the type
struct row (Figure 4). A row-oriented table is simply an array of
rows of the type struct row [].If one wants to access only the
numeric field (num_field) from all the rows, i.e., perform column
access, this creates stride-pattern data access, where 8 bytes are



accessed every few hundred bytes of data. This is inefficient
because (1) each new row always pulls an entire cache line from
memory; (2) the large strides are not handled well by hardware
prefetchers; and (3) in general, more data is transported from the
main memory to the processors than what is strictly required for
the requested type of access. In the considered example, with a
cache line size of 64 bytes, only 1/8 of a cache line is utilized.

A column-store optimizes these types of accesses by storing
each attribute separately, hence allowing for accessing only the
numerical field through an array of num_field elements of all
rows. Indeed, in this case, only data items strictly required for the
final computation are transported from main memory, resulting
in a highly localized access pattern. However, this comes at the
cost of having an inefficient layout for insertion, deletion and
increasing tuple reconstruction costs with higher projectivity.
Near-Data Projection. To offer contiguous access to a spe-
cific column (or column-group), RME leverages the PLIM para-
digm [69], which is conceptually similar to Processing-In-Memory
(PIM) [54] and Near-Memory Processing (NMP) [17] as they all
execute logic close to memory. The key innovation of RME is that
it creates data that does not exist in main memory, which the CPU
can use as if it exists in main memory. As we demonstrate in Sec-
tion 5, our FPGA prototype provides a significant performance
advantage. Note that our long-term vision is to reap additional
benefits by embedding RME within the memory controller itself.

RME creates memory aliases to expose non-contiguous

content as if it were contiguous. In other words, RME enables
accessing the same content in main memory under different
strides, but it can be accessed as if it were stored contiguously
from the perspective of the CPU. This is drastically different than
traditional scatter-gather strategies [74] initiated by typical DMA-
capable accelerators (e.g., SIMD processors). Data transformation
in RME is performed in line with the instruction stream via fine-
grained information on the exact byte-wise location of data items
useful for the computation at hand. More importantly, it allows
predicting and exploiting data reuse across processing phases.
RME receives as input the intended access stride of the query
(that maps the physical addresses of the columns to be accessed)
and then issues parallel main memory requests for the target
data. Finally, it assembles multiple entries in a single packed
cache line to be sent to the processor. This abstraction creates
non-materialized aliases of column-groups which, from the cache
perspective, pushes arbitrary subsets of columns in dense memory
addresses to the memory hierarchy. Hence, RME supports both
efficient column- and row-oriented accesses while minimizing
CPU cache pollution with unnecessary attributes.
Ephemeral Variables and Programming Model. In order to
initialize and deploy the proposed hardware, we propose a light-
weight software/hardware interface. Specifically, to use Rela-
tional Memory, a query (1) configures RME and (2) points its
output stream to the desired variable, termed ephemeral variable.
Since RME is designed to be generic and support ad-hoc queries
over multiple tables on various table geometriesl, it needs to be
configurable. This configuration is performed at run-time which
can happen very quickly (~ 0.3us). Now, we focus on the seman-
tics of ephemeral variables through an example, and we discuss
RME configuration in more detail in Section 4.2.

Suppose that a full relational table is loaded in memory and
structured as a classic 2-D array, as previously discussed. For

!By table geometry we refer to the size and the offset of each row and each column.

% Nw e ;e W o =

11
12

Qe v

(PRI

® 9o U oe W oo

©

11
12
13
14
15
16

69

instance, consider a relational table that corresponds to the array
struct row table[], where each row is defined in Listing 1.

To have direct access to a single column or a group of columns,
we create an ephemeral variable, and we register with RME. From
the CPU’s perspective, accessing the newly created ephemeral
variable is equivalent to having direct access to a subset of columns
with a packed view of the relevant fields.

Listing 1: C-style relational table row definition.

struct row {

long key; /*x 8 bytesx/

char text_fldl [8]; /% 8 bytes */
char text_fld2 [12]; /* 12 bytes x/
char text_f1d3 [20]; /* 20 bytes */
char text_fld4 [16]; /* 16 bytes x/
long num_f1ld1; /* 8 bytes */
long num_f1ld2; /* 8 bytes */
long num_f1ld3; /% 8 bytes x/
long num_f1ld4; /% 8 bytes x/
long num_f1ld5; /* 8 bytes %/

};

Following our example, to access only columns num_f1d1, num_f1d3,

and num_f1d4, we create an ephemeral variable of the type:
Listing 2: C-style ephemeral type definition.

struct column_group {
long num_f1ld1;
long num_f1ld3;
long num_f1ld4;

/*x 8 bytes x/
/* 8 bytes x/
/*x 8 bytes x/
};

After the first access, any CPU access on ephemeral variables
(that leads to a cache miss) is routed to and satisfied by the
PL, i.e., it activates the RME. The ephemeral variable with type
column_group provides access to the three desired columns as
a contiguous array. This comes with three advantages. First,
only useful information is propagated through the cache hier-
archy, dramatically reducing cache pollution and working-set
size and thus improving cache reuse and locality. Second, RME
orchestrates data access to main memory in a way that is DRAM
structure-aware to maximize throughput — much like a DMA
would. Third, having turned stride access, potentially spanning
multiple pages, into a sequential pattern over a smaller buffer
greatly improves the effectiveness of CPU-side prefetching.
The Lifetime of a Memory Access. Here, we demonstrate the
lifetime of a memory access targeting an ephemeral variable,
through a sample analytic query:

Listing 3: Sample projection+aggregation query.
SELECT SUM(num_fldl * num_f1ld4)

FROM the_table
WHERE num_f1d3 > 10;

This query requires accessing three out of ten columns of the ta-
ble, and can be evaluated using an ephemeral variable as follows:
Listing 4: Query logic in C language.

struct row the_table[];
charx QUERY =

/* Autogenerated Code Block - START=*/
ephermeral struct column_group {
long num_f1ld1;
long num_f1ld3;
long num_fld4;
};
struct column_group* cg;
cg = configure(the_table, QUERY);
/* Autogenerated Code Block - END */
long sum = 0;
for (int i = @; i < cg.length;
if (cglil.num_f1ld3 > 10) {
sum += cglil.num_fld1 * cgl[i].num_fld4;

i++) {

}
}

Note that this is a simplified code snippet. To optimize for per-
formance, one can implement state-of-the-art approaches like



predication [10, 16] to avoid branch misprediction and vector-
ization [20] to increase locality and computation efficiency. Or-
thogonally to those optimizations, we focus on minimizing data
movement. Ephemeral variables fetch only relevant columns
from memory leading to optimal cache utilization. At the con-
figuration phase, the geometry of the access is defined (i.e., the
pattern of scattered accesses on the base data according to the
database geometry based on the query — Listing 4, line 10 RHS).
Now an ephemeral variable (defined on line 9), can be pointed to
the configured RME (line 10 LHS). When the data is first accessed,
i.e., when the statement cg[0].num_f1d3 > 10 is evaluated, the
RME starts projecting only the relevant columns. We present the
design of RME in detail in Section 4.

Hardware-Assisted Data Projection. Current state-of-the-art
systems that support hybrid layouts create the desired column
groups in software; therefore, the data has to pass through the
memory hierarchy and be copied to create the desired layout.
In contrast, we propose to make any layout available on the fly
by creating an ephemeral variable. CPU accesses to ephemeral
variables are intercepted by our RME that constructs a response
to each request by packing only data of interest. Hence, from a
CPU’s standpoint, the data appears always structured according
to the optimal layout for the query. Two key benefits are: (1) we do
not duplicate data in memory as the ephemeral variables provide
a reorganized view of the original data; and (2) unlike traditional
hardware accelerators, the CPU can immediately access partial
results without having to wait for the RME to complete a full
pass over the original data. In fact, only memory requests for
non-ready cache-lines are stalled by the RME.

Updates & MVCC Transactions. While Relational Memory
offers native access to both rows and columns, the base data
are stored in memory in a row-oriented format. We treat all
ephemeral variables as read-only columns or group-of-columns
that accelerate analytical queries. Updates are handled by ac-
cessing the read/write row-oriented base data. Specifically, new
rows are appended to the base data. In order to support updates
and deletion, we use two timestamp fields for every row, thus
supporting multiple versions. The first timestamp is set when a
row is inserted to mark the beginning of its validity. The second
timestamp is set upon row deletion or replacement (by a newer
version), marking the end of its validity. Every time an ephemeral
variable is accessed, it generates the (group of) column(s) that
contains the valid rows at the time of the query. Using these
timestamps, RME supports multi-version concurrency control
(MVCC) transactions through snapshot isolation.

4 H/W DESIGN AND IMPLEMENTATION

To implement RME and offer in-memory data storage in a sin-
gle format (row-stores) while offering a re-organized view of the
same data with ideal locality (column-groups), we interpose pro-
grammable logic between the CPU and main memory. The data
organization in memory never changes, but the semantics of
memory accesses performed by the CPUs are redefined on the
fly. RME uses knowledge of the relation’s geometry to make the
accessed data appear as if they are stored in compact projections.
As depicted in Figure 5, RME is comprised of six modules:
(1) the Configuration Port, (2) the Monitor Bypass, (3) the Trap-
per, (4) the Requestor, (5) the Fetch Unit, and (6) the Relational
Buffers. RME interacts with the PS through two primary and one
secondary AXI ports. This section provides a bird-eye’s view of
RME’s operating mode and the role of its sub-components.
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Figure 5: Abstract overview of the RelBuffer components and
interconnections with the PS-side.

Configuration Port. The architecture features a configuration
port that allows the DBMS to specify the location and geom-
etry (tuple width, tuple count, size, positions of the requested
columns) of the target table at runtime. This enables RME to be
runtime-configurable and hence to be used for multiple queries.
We identify seven parameters as shown in Table 1: (1) row size
R in bytes; (2) row count N; (3) software reset SW — that enables
the software layer to enforce a reset; (4) enabled columns Q, the
number of columns of interest (max 11); (5) column width Cy;,
the width of the j-th column of interest in bytes; (6) column offset
Oy;. the offset in bytes of the j-th column of interest from the
offset of the previous column of interest, j — 1; and (7) frame offset
F. Note that, the offset of column j from the beginning of the
current row is Z;C:O 04, - In our prototype implementation, the
maximum column width is 64 bytes or one full cache-line and up
to 11 non-contiguous columns can be specified. These limitations
are not fundamental to our design but only an implementation
artifact. We provide an example of how to configure the RME for
an arbitrary query on a given database on Section 4.2.
Monitor Bypass. The most central module in this architecture
is Monitor Bypass, which is in charge of managing, synchronizing,
and controlling other modules. It is responsible for (1) interacting
with the Trapper to acknowledge and answer incoming requests,
(2) collecting data coming from the Fetch Unit, (3) monitoring
the completion and availability status of each chunk of reor-
ganized data, and (4) activating the Requestor upon the first
CPU-originated request after the RME’s configuration.
Trapper. The interfacing between RME’s internal logic and the
PS-side is performed by the Trapper, which is the first module
that encounters CPU-originated memory requests targeting the
reorganized data. Upon the arrival of a CPU-originated read trans-
action, the Trapper extracts the target data address and request
ID (i.e., the tuple {A, ID}) before forwarding them to the Monitor
Bypass. This transfer is done through a dedicated unidirectional
channel. The Trapper finally formulates AXI-compatible data
responses based on the requested reorganized cache-line and the
corresponding ID (i.e., {ID, RD}) as they are made available by the
Monitor Bypass. Since the CPUs can issue multiple asynchro-
nous requests, the Trapper-Monitor Bypass interface has been
designed to handle multiple outstanding transactions.
Requestor. The Requestor leverages the data geometry passed
via the configuration interface (see Table 1) to orchestrate ac-
cess to main memory. It generates a deep sequence of request
descriptors indicating, for each row, the beginning (and length)
of valuable data within a set of bus-width-aligned transactions.
Each descriptor also indicates the positions where to store the
extracted columns. The descriptor is generated such that the re-
sulting main memory requests are always bus-width aligned and
with variable burst length, never to fetch more data than needed.
Internally, the Requestor keeps track of the absolute position
P; j at which the useful data starts for the j-th column of the i-th



Parameter symbol Address Description

Row size R base+0x00 database tuple width

Row count N base+0x04 database tuple count

Software reset N4 base+0x08 software triggered reset request
# Enabled columns Q base+0xoc amount of columns of interest
Column width Ca, base+0x10+(j*0x2) j-th column width (j € [0, 11])
Column offset 04, base+0x26+(j*0x2) j-th column offset (j € [0, 11])
Frame offset F base+0x3c filtered table frame offset

Table 1: RME configuration port: addresses and description.
row, with i € [0, N) and j € [0, Q), by computing

. J
Pi’j:R.l_‘—Zk:OOAk' (1)

The i-th descriptor generated by the Requestor is then comprised
of five parameters that depend on the platform-specific yet con-
stant bus width Byy . These are (1) the main memory address Ric}dr
to fetch the (i, j)-th chunk of useful data; (2) the burst length
Rll?’u.“t of each main memory request; (3) the position Wi“}dr in
the internal RME’s buffer where to store the extracted chunk of
data; (4) the leading Ef] and (5) trailing E?,j number of bytes
to be discarded in the response received from main memory.
These parameters are generated as shown in Eq. (2) through (6),
where the “//” operator represents the integer division and the
“%” operator represents the remainder of an integer division.

R = (P, j//B.) - By

RVt = [(Py, j%Buw) + Ca,)/Buy] &)
. Q J-1

Wi == 1) 'Zk:o Cak * 2pmg CAk @

E;,j = Pi,j%Bw (5)

E§ ;= (Pij +Ca;)%Byy (6)

Every time a descriptor is produced, it is passed to the Fetch Unit
if it is available. When requesting data from main memory, only
the locations with relevant data at the granularity of the bus
width are accessed. In order to access the desired data efficiently,
the Requestor produces descriptors that instruct a given Fetch
Unit to perform variable-length memory bursts via the Rli";m
parameter. This contrasts with a generic cache controller that
uses the burst length required to fetch an entire cache-line.

Fetch Unit. The Fetch Unit is responsible for retrieving one
fixed-size chunk of data from main memory and then directing it
to the designated place in the Reorganization Buffer. The unit is
internally structured in several sub-components, namely Reader,
Column Extractor, and Writer, which are described below.

The Reader directly interacts with the main memory controller.
It primarily produces memory requests that reflect the specifi-
cations of the descriptor passed by the Requestor. The Reader
uses the AXI protocol to perform variable-burst memory requests
towards main memory at the granularity of a single bus beat (i.e.,
bus-width, which is typically a fraction of the cache-line size).
To maximize performance, the Reader has been designed to take
advantage of memory-level parallelism. More specifically, up to
16 simultaneous transactions can be sent to and managed by the
DRAM controller. The data payload obtained by the Reader is
passed to the Column Extractor module.

The Column Extractor module extracts the individual bytes
that correspond to the portion of the columns of interest. If the
target column(s) spans multiple bus lines; it waits until all the
required data items are accumulated and indicates the output’s
validity by setting the enable signal. Once ready, the extracted
data is inserted in a buffer called packer. The data is appended to
the packer’s content until an entire cache line (i.e., 64 bytes) is
ready. Only then, the cache line is passed onto the Writer module.
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The packer limits the number of accesses to the Reorganization
Buffer, reducing the Reorganization Buffer access overhead.
Any write operation emitted by the Writer module passes
through the Monitor Bypass. The Writer receives the data from
the Column Extractor, along with the location where to store
the packed data in the Reorganization Buffer. Finally, it forms a
single write request to the Reorganization Buffer.
Reorganization Buffer. Two internal memory blocks serve as
Scratch Pad Memories (SPMs) to store the data and the metadata.
The Data SPM stores extracted chunks of data arriving from
the Fetch Unit and the Metadata SPM stores the bookkeeping
information maintained by the Monitor Bypass. For each cache-
line, the latter stores the tuple {P, ID}, where (1) P is the epoch
to which the line belongs to; and (2) ID represents the stalled
transaction ID. ID is non-null only if a transaction requesting the
line is pending. Upon cache-line delivery from the Fetch Unit, P is
updated with the current RME epoch. Next, the Monitor Bypass
interprets a status line as complete iff P matches the RME’s current
epoch. The epoch mechanism enables quick invalidation of the
content of both SPMs because changing the RME’s epoch makes
every SPM entry incomplete. The software-triggered reset relies
on this mechanism to invalidate the SPMs in a single clock cycle.

4.1 Data-path and Work-flow

We now go over the workflow of RME following a CPU-originated
read transaction. We consider two scenarios. (1) First, the case
where the requested data has already been fetched from main
memory and reorganized. Thus, it can be immediately sent to the
requesting CPU (Reorganization Buffer hit). (2) Second, the case
where the target data needs to be fetched from main memory (Re-
organization Buffer miss). We consider the two cases separately
and refer to Figure 5 as we discuss each step of the flow.

RME is designed to be generic, supporting various data layouts.
Therefore, the software must initially configure RME with the
geometry of the target relation as described in §4 and depicted
in Figure 5 @ Once a core emits an AXI read request, it is in-
tercepted by the RME. Next, (1) the Trapper extracts the {A, ID}
fields and (2) pass them to the Monitor Bypass. The latter checks
whether the new request can be immediately served (hit) or if
it must be stalled (miss). The check is done using the A field to
(3) fetch the cache-line status from the Metadata SPM. Specula-
tively, (3) the (possibly valid) content of the requested cache-line
is fetched from the Data SPM.

Reorganization Buffer Hit. If the cache-line was marked as
complete, the Monitor Bypass sends its content — i.e., the tuple
{ID, RD} - to the Trapper (4). Then, the Trapper forms an AXI
compliant transaction to reply to the CPU’s initial request (5).
Reorganization Buffer Miss. If part of the data composing the
requested cache-line is missing, the request must be stalled. In this
case, the request ID is stored in the metadata SPM. Once enough
data returns from the Fetch Unit and the cache-line is complete,
the ID is removed and the {ID, RD} tuple is sent to the Trapper (4).
If the miss in question is the first miss of the frame, a signal is sent
to the Requestor to start the descriptor generation. As discussed
earlier, the Requestor has a crucial role in orchestrating the Fetch
Unit and its interaction with main memory, data extraction, and
data forwarding to the Reorganization Buffer. It prepares a series
of descriptors for the Fetch Unit using Eq. 1-6.

Upon receipt of a new descriptor, the Fetch Unit @ sends a
request for a burst of Rll.’"j.r st data responses towards main memory



at location Ri‘}dr . Once the full response is received, the Column
Extractor performs data filtering using the parameters Els.’ j and
E?’ J Next, the filtered data is inserted in the Packer before being
sent to the Reorganization Buffer using an address derived from
Wifj‘;.idr. On its way to the Reorganization Buffer, the filtered data

chunks go through the Monitor Bypass @ The latter simulta-
neously updates the record of the newly filled cache-lines in the
Metadata SPM @ By simultaneously fetching both metadata
and data records of the most recently updated cache-line (3), the
Monitor Bypass checks whether the cache-line is full. In such a
case, the Monitor Bypass immediately sends the corresponding
RD back to the Trapper (4). The Trapper then replies to the CPU
by forming an AXI response using {ID, RD} (5).

4.2 Configuring RME

We now highlight the generality and configurability of RME
and provide an example of how a user can configure the engine
through the exposed interface. RME is programmed on the PL-
side by providing a bitstream only once at system-boot time. Sub-
sequently, the DBMS configures RME by writing the necessary
parameters in the configuration port. Note that by (re)configuring,
we refer to the action of writing the memory-mapped config-
uration registers listed in Table 1 via the software layer. The
(re)configuration on average takes less than 0.3 ps. This recon-
figuration occurs at the runtime and upon any change to the
database layout or the query characteristics.

Suppose a given database table with N rows, each of size R
bytes and its first row’s address being F. Consider a Query that is
only interested in Q columns, each C4;-bytes wide and at offset
O4;. These parameters are passed through the Configuration
Port at their corresponding addresses provided in Table 1. Right
after the execution of the specific Query, a different Query’ may
be submitted, focusing on a different subset of Q” columns, C;‘j-

bytes wide at offset O’, ~on the same or a different relational
j

table stored at address F’ with N’ rows, of size R’. To start pro-
cessing Query’ we only need to update these parameters on the
Configuration Port after triggering the software reset SW; hence,
just a few write operations are enough to reconfigure RME. Note
that in our current prototype, the above process of resetting and
reconfiguring RME is also used to read from tables the size of
which is larger than the available buffer (2MB). In that case, when
the buffer is full we trigger a 1-clock-cycle reset to configure RME
to fetch data from sequential chunks of the base table by updating
only the Frame Address attribute (Fy, Fo, . . .) and triggering the
reset SW. The same reconfiguration approach is also adopted
when multiple tables are involved in query processing.

5 EVALUATION

We experimentally demonstrate that RME offers efficient native
accesses to any column or column-group, outperforming direct
row-wise and direct columnar accesses.

5.1 Target Platform

We carry out a full-stack implementation of the proposed RME.
Prior to deploying and running our design on real hardware,
we extensively validate each of the described sub-modules via
simulation-based testing (using Xilinx Vivado). The synthesized
hardware is deployed on a real platform which is used to derive
all the results presented in this section. We use a Xilinx Zynq
UltraScale+ MPSoC platform [87] (ZCU102) equipped with 4
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Cortex-A53 1.5 GHz cores, each with a private 32+32 KB L1 I+D
cache and sharing a unified 1 MB L2 cache on the PS-side. All
our experiments are performed on Linux 4.14, and all the code
is compiled using GCC 7.3.1 for AArch64. The final synthesis of
RME is integrated on the PL-side. Note that a large chunk of 2 MB
Data SPM of RME directly affects the critical path and prevents
the design from reaching higher frequencies. Thus, the presented
RME design (and thus, the PL-side) is constrained to 100 MHz (i.e.,
one-third of the maximum reachable frequency). This is purely
an implementation artifact that can be circumvented at the cost
of a few extra clock cycles by splitting the buffer in small memory
chunks connected to the Monitor-Bypass via an interconnect-like
IP. Note that, despite the constrained synthesis frequency, our
prototype already outperforms the pure row-wise and columnar
layouts as discussed in Section 5.3.

5.2 Experimental Methodology

Relational Memory Benchmark. We design a synthetic bench-
mark to test the behavior of RME under a number of representa-
tive query access patterns (both single- and multi-tables queries).
The benchmark consists of six template queries shown in List-
ing 5, focusing on projection, selection, aggregation, and join.
The queries are executed assuming that all data is in main mem-
ory. Q0 is the simplest one that calculates an aggregate of a single
column. Q1 is a projection of k columns (non-contiguous or con-
tiguous), where k can be varied. Q2 projects one column and
imposes a selection condition on a second column. Q3 performs
an aggregation (sum) over a subset of a column based on a dif-
ferent selection predicate. Q4 further generalizes Q3 by adding a
Group By statement over a third column. Finally, Q5 performs a
join query over two tables.
Listing 5: Queries 0-5

Q0: SELECT SUM(A1) FROM S;

Q1: SELECT A1, A2, ..., Ak FROM S;

Q2: SELECT A1 FROM S WHERE A3 > k;

Q3: SELECT SUM(A2) FROM S WHERE A4 < k;

Q4: SELECT AVG(A1) FROM S WHERE A3 < k GROUP BY A2;
Q5: SELECT S.A1, R.A3 FROM S JOIN R ON S.A2 = R.A2;

Implementation. We custom implement an in-memory row-
store following the Volcano-style processing model (tuple-at-a-
time) and an in-memory column-store following the column-
at-at-time processing model. To perform an apples-to-apples
comparison, we implement RME, the row-store (ROW) and the
column-store (COL) approach in the same codebase. The data
types used are char (1 byte), short (2 bytes), int (4 bytes), long
int (8 bytes), and __int128_t (16 bytes).

Experimental Setup. Unless otherwise stated, the default size of
each row is 64 bytes and the column-width is 4 bytes. Throughout
our experimentation we vary both these parameters to quantify
their impact on RME. A column-width smaller than four bytes
(one or two bytes) is used to showcase the impact of compres-
sion via dictionary encoding. Further, the data size is by default
32 MB and we increase it up to 700 MB to study the ability to
handle arbitrary table sizes. When reporting latency, we avoid
measurement anomalies by repeating each experiment 30 times
and reporting averages and standard deviations. We run two sets
of experiments for RME: hot (when the targeted data is ready
in the Reorganization Buffer) and cold (when the targeted data
is not yet in the Reorganization Buffer). Although our target
FPGA allows RME to have only 2 MB buffer, we believe that hot
execution cases can provide an overview when RME is equipped
with a larger buffer. Note that RME already outperforms tradi-
tional layouts in cold cases (discussed in Section 5.3), hence local
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Figure 6: RME outperforms direct accesses to row-

oriented memory for Q0. The projected column’s offset

does not impact RME’s performance.

buffering is not fundamental to the performance achieved. We
report both cold and hot execution time for completeness.

5.3 Experimental Results

Column Offset does not Impact Performance. Our first ex-
periment shows the impact of column offset on RME, on an
in-memory row-store and on an in-memory column-store. Fig-
ure 6 shows the execution time of Q0 where we calculate the sum
over one column. Table S has 64-byte rows and the width of A; is
4 bytes. In the x-axis, we vary the offset of the projected column,
and the four different lines correspond to the RME hot, cold, direct
row-wise (ROW) access and direct columnar (COL) access. Fig-
ure 6 shows that the projected column A;’s offset O4, generally
does not affect performance, especially for the in-memory row
and column store and for hot RME. We further observe three
spikes (at 13 to 15, 29 to 31, and 45 to 47) for the cold cases. This
is attributed to the fact that, while most of the time, the 4 bytes
of interest would fit within a bus-width (16 bytes) — leading the
Requestor to create a read transaction with a burst length of 1 -
when the offset plus the data size does not fit in a single bus width
(e.g., 13+4, 29+4, 45+4, ...), the Requestor emits read requests
with a burst length of 2, increasing access latency. Since the offset
of the target column has minimal impact, in the remainder of our
experiments, we use column offset 0.

We further note from this figure that even without having the

projected column in the Reorganization Buffer (RME cold), RME
is 14% faster than a direct in-memory row-store access (ROW),
while RME hot access is 50% faster than ROW. The reason is
that (1) RME better exploits the internal memory bandwidth to
fetch only the desired data items at bus-width granularity, and (2)
the CPU caches are not polluted with unwanted fields. For this
single-column experiment, the latency for COL is, as expected,
lower than both ROW and RME. The reason is that Q0 has no
materialization (tuple reconstruction) cost. Next experiments
show that this behavior changes for higher projectivity.
RME Enables Native Columnar Accesses. Our second ex-
periment shows that RME can efficiently access and propagate
through the cache hierarchy individual columns when reading
row-oriented data. We now evaluate Q1 with k = 3 where the
three target columns are not contiguous, with offsets O4, = 0,
Oa, = 24, and Oy, = 24 (ie., A3 has offset 0+24+24=48 from
the beginning of the row) respectively. All three columns have
the same width, which is varied between 1 and 16 bytes. Fig-
ure 7 shows the normalized execution time of Q1. We compare
the time to access the data directly from the in-memory row-
store, through RME (both hot and cold accesses), and against
in-memory columnar format.

We observe that RME outperforms ROW irrespectively of
whether accesses are cold or hot. The takeaway is threefold. First,
accessing a group of columns via RME delivers the data with
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RME outperforms row-oriented direct memory accesses,
making our prototype an accelerator that can offer the op-
timal data layout at a lower latency than DRAM.
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Figure 8: RME has stable performance irrespectively
of projectivity when compared with row-wise memory
accesses. Further, RME outperforms columnar accesses
when projecting more than 4 columns in Q1.

the optimal layout and outperforms ROW. Second, RME achieves
an average latency that is comparable to pure columnar accesses.
Specifically, Figure 7 shows that for column size 16 bytes, Q1 is
faster through RME rather than through a pure column-store.
Therefore, data can be simply stored row-wise in memory while
any hybrid layout can be delivered by the RME with (almost) no
row-to-column data transformation cost. Third, the performance
of RME remains virtually unchanged irrespective of whether the
data is ready in the Reorganization Buffer and RME can actually
achieve almost the same degree of benefit for the cold cases. Hence,
for the remainder of the text we primarily focus on the cold
cases while performing some experiments for both hot and cold
accesses to showcase some subtle performance differences.
RME Supports Compression via Dictionary Encoding. Fig-
ure 7 also shows that RME benefits remain approximately the
same as we use fewer bytes to represent the data. Note that in
this experiment we have the same domain and we use fewer
bytes to represent it exploiting dictionary encoding. We observe
that irrespectively of the degree of compression, the benefit of
RME over the ROW and COL baselines (which employ the same
dictionary encoding) remains the same.

RME has Stable Performance when varying Projectivity.
When comparing with columnar accesses, we also have to take
into account the tuple materialization cost. In our next experi-
ment, we vary the projectivity from 1 to 11 columns for 4 byte
wide columns. Figure 8 shows that for low projectivity (between
1 and 4) reading from a columnar data layout is faster than RME.
For projectivity of more than 4 columns, RME outperforms direct
columnar accesses because of the tuple reconstruction cost. In
addition, through our profiling, we observe that the prefetcher
can recognize up to four parallel sequential streams of accesses,
which helps the columnar accesses for low projectivity. Overall,
RME consistently outperforms direct row-wise accesses that pol-
lute the caches with unwanted fields and outperform columnar
access beyond a projectivity threshold.
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RME Offers Efficient Near-Memory Projection. We now dis-
cuss the performance of Q2 that has around 90% selectivity. Q2
benefits by fetching only the two desired columns instead of the
entire row, while the selection of Q2 takes place on the software
side. The performance graph is shown in Figure 9a. We observe
that RME offers faster execution in both cold and hot cases. Note always outperforms in-memory row access.
that RME particularly outperforms columnar access as the col-
umn width increases. Figure 10a shows that the performance
gain of RME increases for larger row size (up to 1.4x). We note
that RME’s latency remains virtually the same as it accesses only
the relevant data. However, answering the query via direct access
of the row-oriented data leads to poor cache utilization as larger
rows lead to higher cache pollution. Conversely, RME exhibits
stable and predictable performance regardless of the row size.

(a) Speedup - RME vs Columnar  (b) Speedup - RME vs Row

Figure 11: (a) Columnar access performs well when the
total number of columns is small (< 4). RME dominates
when the total number of columns goes beyond 4. (b) RME

line size. This happens more frequently due to the low selectivity.
As a result, the 2x increase in efficiency in the cache utilization
is offset by the overhead of routing through PL memory.

RME Enables Optimal Projection-Selection Queries. In this
experiment, we compare RME’s performance with the in-memory
row-store and in-memory column-store while varying the num-
ber of columns for projection and selection in a query. Figures 11a
and 11b show the speedup of RME compared to the in-memory
columnar access and in-memory row-oriented access. In the x-
and y-axis we vary the number of projected columns and the
number of columns used for selection from 1 to 10 where the
base table has 16 columns (4-byte wide). For this experiment, if
the total number of columns used by projection and selection
is below 11, distinct columns are selected. Beyond that, some
columns might be picked more than once due to our current de-
sign constraint of accessing up to 11 columns. Figure 11a shows
that when the total number of columns for projection and selec-
tion is small (< 4), column-store dominates over RME (lower left
corner of the heatmap — colored red). However, as the number of

Selection, Projection, and Aggregation Queries. We now con-
sider the more complex queries Q3 and Q4, that test selection,
projection, aggregation, and group by. The selectivity of Q3 and
Q4 is less than 10%. Similarly to before, we stress the RME us-
ing two different sets of experiments. Figure 9b (10b) show the
normalized (absolute) latency of Q3 when varying the column
size with fixed row size (varying the row size with fixed column
size). RME has faster execution than both ROW and COL in all
experiments for Q3. For Q4, the Group By cost dominates the
execution time. Therefore, the performance improvement of RME
is reduced, as shown in Figures 9c and 10c. However, RME dom-

inates over direct row-wise access anfi dlrect.columnar access column increases, due to the tuple materialization cost and the
for both 03 and Q4 (complex query with multiple operators) in diminished prefetching benefits, columnar access performance

terms of execution time. We note that both 03 and Q4 have a falls behind RME. In fact, RME can be up to 2.23X faster than
performance drop with 16-bytes columns. This is because in some

X ; columnar access (bottom rightmost cell). On the other hand, Fig-
cases we need to fetch data spanning 32-bytes, i.e., half the cache

ure 11b highlights that RME always outperforms in-memory row
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Figure 12: RME performs join faster than traditional row-
store join by minimizing data movement.

access by being 1.3 — 1.5x faster. To summarize, RME outper-
forms the row-store layout because by definition it accesses less
data. On the other hand, queries that access fewer columns can
be more efficiently evaluated from a columnar layout, however,
when the number of projected columns is high enough (more
than four in our setup), RME outperforms the columnar layout
as well. And it does so in spite of the relatively low synthesis fre-
quency (100 MHz). Operating at a higher frequency may further
reduce memory access time and increase the benefits of RME.
RME Reduces Data Movement for Joins. When considering
queries that join multiple tables (Q5), RME helps to project only
the relevant columns, that is, the columns of the join attributes
and the column(s) projected in the SELECT statement of the query.
In this experiment, we join using a state-of-the-art hash-based
join algorithm with a single-pass hash table generation, which is
then probed by the second relation. Half of the entries of the outer
relation have a match in the inner relation. Figure 12a shows
the normalized query latency while varying target column sizes.
We observe that joining through RME gives a benefit between
5% and 10% compared to row-wise access. RME outperforms
the columnar join as well, providing up to 10% improvement.
Figure 12b compares the execution time of this query for different
row sizes. RME reduces the total runtime by up to 12% depending
on the row width. The graph also shows that the CPU overhead
(solid portion of the bars) of hashing constitutes the majority
of the runtime which is constant across RME, direct row and
columnar access, while RME can optimize the data movement by
up to 41% as the row size increases because of its lower cache
misses, better-strided accesses, and higher cache utilization.
RME Scales with Data Size. RME supports arbitrary data sizes
despite having a small data SPM due to the space limitations
imposed by the platform. To evaluate RME’s scalability, we use
the widely adopted TPC-H [80] benchmark. The current RME im-
plementation supports columns of arbitrary size but not variable
length. So, the variable length columns of the TPC-H benchmark
are converted to fixed size via padding. To test RME’s scalability,
we execute TPC-H Q1 and Q6 in larger tables ranging from 11 MB
to 692 MB. Here, the data size for each query is chosen based on
the size of target columns. Since Q1 uses more attributes than
Q6, the data size for Q1 is smaller than the one for Q6. When
the size of target columns is larger than the data SPM, RME re-
fills the data SPM. Every time we fill the data SPM, we use the
lightweight reset mechanism introduced in Section 4. Figure 13
compares running Q1 and Q6 using RME vs. direct columnar and
direct row access while varying data sizes. Here, the size of target
columns is shown in parenthesis. Since Q1 consists of group by
and sorting, the execution time is similar for all layouts as shown
in Figure 13a because the CPU overhead of the query dominates
the data movement cost. On the other hand, Figure 13b shows
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Figure 13: RME scales with data size and shows stable per-
formance in practical queries such as TPC-H Q1 and Q6.

(2) (4) (8) (16) (32) (64)(128)

— ROW [J COL [ RME Cold

[

£10 S
S 1.

[J]

3

0.5

£

<]

Z 0.0

1 2 3 4 5 6 7 8 9
Projectivity (Number of target columns)

10

Figure 14: RME outperforms row-wise and columnar ac-
cesses as the projectivity grows when MVCC is employed.

that Q6 benefits regardless of the data size, since data movement
is the bottleneck, and RME offers the optimal layout.

RME Supports Lightweight MVCC. RME supports concur-
rency control by using two timestamps that indicate the begin-
ning and the end of the validity of each row. RME treats the
timestamps as additional columns to fetch and check the valid-
ity of data in software. We re-run the projectivity experiment
with MVCC to evaluate the impact of concurrency control, and
show the result in Figure 14. RME supports fetching (up to) 11
distinct groups of columns as shown in Table 1. Since we treat the
timestamps as target columns, the maximum number of target
columns decreases by one. Note the timestamps can be brought
together since they are contiguous. Similarly, it is possible to use
all 11 groups of target columns when the target column lies right
next to the timestamps. As shown in Figure 14, RME exhibits
even better performance compared to Figure 8 as RME gains
more in higher projectivity.

Cache Performance and IPC. The benefits from RME observed
so far can be further explained if we take a careful look at two key
microarchitectural metrics: number of L2 cache misses (refills)
and Instructions Per Cycle (IPC) (normalized to the row-wise
baseline). Figure 15 shows the two metrics for queries Q1, Q2, Q4,
and Q5. First, we focus on the L2 refills shown in Figure 15a. We
observe that RME enables significantly better cache L2 utilization
compared to direct row accesses. Since Q5 is more CPU-intensive,
the benefit of RME is less prominent whereas for the other queries,
the L2 utilization can be as high as 100x. When RME is hot, it
also dominates direct columnar accesses especially for smaller
column widths. When RME is cold, we observe an increase in
the number of L2 refills, likely due to the prefetching stream
experiencing slightly higher memory latency. Nonetheless, the
overall effects of the sequential access stride provided by RME are
clearly reflected in the measured IPC (Figure 15b). Here, RME in
general dominates both row-wise and columnar accesses. Despite
efficiently reducing L2 refills, the IPC improvement offered by
RME is contained for Q5 because of its CPU-bound nature.
RME Supports HTAP Workloads Efficiently. Our experimen-
tal analysis shows that RME supports HTAP workloads efficiently
without requiring multiple copies of the data. Analytical queries
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Figure 15: Performance counter measurements for all queries and target memories (Normalized over Row-wise)

Area Report
Resources LUT FF BRAM DSP
Utilization (%) 2.78  0.68 60.69 0.08

Table 2: Post-implementation area report for the RME design

via RME match or even outperform their column-oriented imple-
mentation and transactional accesses are efficiently supported
via lightweight hardware-assisted MVCC. Arbitrarily complex re-
lational queries can be implemented from the software side while
RME ensures they always use the optimal layout. Overall, our pro-
totype supports HTAP via offering native in-memory columnar
accesses over data that is stored in row-oriented format.

5.4 PL Resource Utilization

After the synthesis and the implementation of the design on the
ZCU102 development board using Vivado 2017.4, we obtained
reports regarding the PL resources utilization of the RME design.
As shown in Table 2, the area utilization never exceeds 3% except
for BRAM, for which we purposefully maximize the size of the
SPMs to improve the performance of RME. The compactness
of the design paves the way for more ambitious revisions (see
Section 6) and means that the proposed architecture could fit in
smaller PS-PL platforms such as the Arty Z7-10 [86], making our
approach a good fit for edge and cloud computing as well.

6 DISCUSSION

We now discuss the interaction of RME with various classical
database systems decisions and modules, and potential exten-
sions on the hardware front, ranging from memory technology
organization to DRAM controller integration.

Data Compression. Relational Memory natively supports dic-
tionary and delta (frame of reference) encoding that are fre-
quently used in state-of-the-art column-store systems [1, 2, 91].
Note that both can be used in row-oriented data, and hence,
they can benefit any groups of columns requested by ephemeral
variables. Another compression scheme used in column-store
systems is a run-length encoding (RLE) [2]. Contrary to dictio-
nary and delta encoding, RLE has an expensive decoding step
and relies on data. RLE achieves typically higher compression
rates but it is applicable only for sorted data and is more impact-
ful for low-cardinality columns; hence, it is not preferred over
dictionary and delta compression [91].

Indexing and Execution Strategies. Typically row-store sys-
tems employ indexes, which can be useful when updating the
data and for selective queries. In column-store systems (and in
some modern row-store systems) [50, 52], column projections
are used as a special type of index. RME makes such projections
possible without having to materialize them. This has deep im-
plications on the architecture of database systems, since at query
time, the query engine may access the data using (i) the base
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row-oriented version of the data, (ii) an index (if it exists), (iii) the
desired columns projected from RME. In this paper, we provide
the hardware infrastructure for this and showcase the benefit
of accessing any data layout on a per-query basis. One of the
opportunities that are enabled through the RME design, is the
development of a novel full-fledged hybrid query engine that can
alternate between row-at-a-time and column-at-a-time operating
over the same base data.

Relational Memory vs. Fractured Mirrors. In this paper, we
take a big step from the fractured mirrors approach [66, 67] to
offer access to both a row-store and a column-store version of
the data, along with everything in-between (arbitrary groups of
columns), without maintaining multiple copies of the data.
Relational Operators in Hardware. The fundamental rela-
tional operators are projection, selection, sorting, aggregation,
group-by, and join. This paper focuses on projections that require
the capability to fetch a subset of the data residing in memory
(projecting the desired columns). We implement near-data projec-
tion as a proof of concept which lays the groundwork for pushing
more processing to hardware. Future work includes implement-
ing selection, aggregates, and join pre-processing in hardware.
RME in Multi-threaded Environment. RME can naturally ex-
ploit multi-threaded parallelism as long as all threads access the
same data frame. In the current prototype, distinct threads cannot
access different RME data frames as a software-triggered reset is
needed. This forces the software to proceed frame by frame with
appropriate thread-level synchronization. Furthermore, concur-
rent accesses can be optimized by employing multiple fetch units
that work in parallel, an optimization left for future work.
Portability. Our design uses standard Verilog language for the
hardware design and C for benchmarks. Hence, the migration to
other FPGA chips such as Altera or other processors would not
require comprehensive changes. Although the primary target of
our prototype is a Xilinx UltraScale+ platform [87], RME can be
deployed on many platforms such as Intel’s Stratix [40], ETH’s
Enzian [11, 25, 29], and Microsemi’s PolarFire [57] thanks to the
generic AXI interfaces it uses. In addition, RME can be deployed
on platforms using other protocols for interfacing between the
PS and the PL sides. This will require the modification of Trapper
and Reader (e.g., changing the AXI interface to PCle), or to use

“bridging IPs” that convert one protocol to another.

Extensions. We now discuss two major future directions.

Towards Higher Memory Controller Utilization. The proposed Re-
questor module can be extended to interface with multiple Fetch
Units in order to decouple the request descriptor generation and
the extraction of relevant data. This extension would open the
door to performance improvements by exploiting the memory
organization. For instance, the DRAM technology is structured




around BANKS that can be accessed near-simultaneously, pro-
viding higher bandwidth [36, 44]. The extension would require
the Fetch Units to indicate their availability and, if all the Fetch
Units are busy, stall the Requestor until one to become avail-
able. Ideally, the optimal number of Fetch Units should maximize
the memory bandwidth utilization while keeping the memory
controller below its saturation point.

Memory Controller Integration. Unlike direct access to DRAM,
RME forces transactions to cross through a lower-frequency
domain, i.e., that of the PL (100 MHz in our case). This clock
domain crossing also introduces additional delay for every trans-
action [38, 39, 69]. Nonetheless, as we observe in our experiments,
the benefits unlocked by RME fully offset the described effect.
This observation showcases the impact of our long-term vision.
On one hand, our RME is expected to provide bigger performance
benefits in newer platforms with better PS-PL integration and
lower-latency communication interfaces. Moreover, the ability to
offer significant performance advantages even at low frequencies
makes RME suitable for integration within the main memory
controller, pushing the RME functionality inside the controller.

7 RELATED WORK

Hybrid Layouts. Following the one size does not fit all rule [78],
many HTAP systems use the row-format to ingest data and then
convert it to columnar-format for analytical processing [63]. Ex-
amples include SAP HANA [32], Oracle TimesTen [51], Mem-
SQL [75], BatchDB [55], and L-store [71]. These HTAP systems
fuse the data ingestion and data analytics pipelines. The op-
timal layout is more often neither a column-store or a row-
store [8]. Systems like H2O [8], Hyper [47], Peloton [15], and
OctopusDB [28] use adaptive layouts depending on the query
patterns. For example, OctopusDB maintains several copies of
a database stored in different layouts by maintaining a logical
log as its primary storage and then creating secondary physical
layouts from this log. HyO dynamically adapts the storage layout
depending on the workload by materializing parts of the data
based on the query and as the workload changes, the storage
and access patterns keep adapting. Peloton also uses an adap-
tive policy, however instead of an immediate policy, it adopts an
incremental data reorganization policy. BatchDB proposes the
logical separation of analytical queries and transactional updates
using (i) data replication, (ii) batch scheduling of queries and
updates, and (iii) efficient algorithms for updates [55]. On the
other hand, L-Store combines the real-time processing of trans-
actional and analytical workloads within a single unified engine
by introducing a novel update-friendly lineage-based storage ar-
chitecture [71]. All these systems need to store multiple layouts
of the data and need to convert between formats which increases
the complexity, materialization overhead and maintenance cost.
FPGA in DBMS. FPGAs can be integrated either by using it as a
filter or as a co-processor to accelerate the workload [31, 41-43].
In the former approach, the FPGA is used as a decompress-filter
between the data source and the CPU to improve the effective
bandwidth. This approach has been adopted by systems like
AxleDB [72], Netezza [33], Mellanox [61], and Napatech [60]. In
contrast, in the latter approach, the FPGA can access the host
memory directly and communicate with the CPU via shared
memory, thus avoiding the extra copying of data from/to the
device memory. Systems like DoppioDB [76], Oracle DAX for
SPARC [62] have deployed FPGAs as co-processors. Another
technique is to integrate FPGA to the CPU as an I/O device
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especially where CPUs are the bottleneck. Here the CPU and the
FPGA have their own memories. Upon requests from the CPU,
the FPGA copies the data from the host memory to the device
memory, then it processes the data, writes the results back to the
device memory after processing, and finally copies the results
back to the host memory. Systems like Kickfire’s MySQL Analytic
Appliance, dbX have implemented this architecture [23, 73].

There have been attempts to accelerate various DBMS opera-
tors like selection [79], aggregation [27], compression [65], de-
compression [30], sort [89], group by [3], and joins [35, 88]. More-
over, there are approaches to off-load the query itself. Examples
include Ibex [82], Q100 [83, 84], and FQP [59]. These approaches
receive the SQL query as an input, process the query on the hard-
ware, and pass only the result to CPU. These approaches reduce
the computation needed from and the data transfer to the CPU,
however, they are not generic enough to support ad-hoc queries.
Another interesting line of work is query accelerators in the net-
work layer [5, 12, 48, 68, 77] accessing non-local memory. These
works aim to reduce the number of network traversals to access
non-local memory, data movement inefficiencies, and network
overhead by accelerating operators. Particularly, Farview [48] ac-
celerates a wide range of operators such as projection, selection,
aggregation, grouping, and encryption/decryption.

Although many FPGA-based accelerators report high through-
put, the low bandwidth between FPGA and host memory (or CPU)
is a bottleneck [45]. Thus, designing accelerators is challenging
for systems with unpredictable memory access patterns.

In contrast to these approaches, we present a new approach,
RME, that transparently transforms data from rows to columns
with the help of an FPGA-based accelerator. The strength of our
proposed RME is that it does not require any specific implemen-
tation for each use case. Rather, RME provides the optimal data
layout while any ad hoc query’s logic can be implemented in soft-
ware. Hence, RME does not require any data duplication which
results in good generalization and wide applicability.

8 CONCLUSION AND FUTURE WORK

In this paper, we present Relational Memory, a new design that
offers efficient access to both row-oriented and columnar lay-
outs. We build on recent developments in reprogrammable hard-
ware to implement logic between the memory and the processor,
which is able to on-the-fly convert rows to arbitrary groups of
columns. Our approach pushes projection from software to hard-
ware and enables native access to row- and column-oriented data
layouts. Our prototype implementation accesses arbitrary groups
of columns at no additional latency than accessing directly the
optimal data layout.

Overall, pushing projection to hardware via Relational Mem-
ory opens up possibilities for radical changes in various database
systems components including physical design, indexing, query
processing, and query optimization. Further, more relational op-
erators can be implemented in hardware as generic combinable
building blocks (selection, aggregation, group by, join prepro-
cessing) reducing the CPU burden. Finally, the low-end hardware
used in our prototype underlines that it is feasible to integrate
RME in memory controllers, widening its impact.
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