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Abstract

We study the convergence rate of discretized Riemannian Hamiltonian Monte Carlo on sampling

from distributions in the form of e~/(*) on a convex body M C R™. We show that for distributions

in the form of e~ ® on a polytope with m constraints, the convergence rate of a family of

commonly-used integrators is independent of ||«||, and the geometry of the polytope. In particular,
the implicit midpoint method (IMM) and the generalized Leapfrog method (LM) have a mixing time
of O (mn3) to achieve € total variation distance to the target distribution. These guarantees are based
on a general bound on the convergence rate for densities of the form e ~/(*) in terms of parameters
of the manifold and the integrator. Our theoretical guarantee complements the empirical results of
Kook et al. (2022), which shows that RHMC with IMM can sample ill-conditioned, non-smooth and
constrained distributions in very high dimension efficiently in practice.

Keywords: Sampling, Markov Chain Monte Carlo, Riemannian Hamiltonian Monte Carlo

1. Introduction

Efficient sampling from high dimensional distributions is a fundamental question that arises in many
fields such as statistics, machine learning, and theoretical computer science. One class of distributions
that arises in many applications is constrained distributions, where the distribution is defined on a
constrained set. Sampling from such distribution can be an efficient way to study the geometric
properties of the constrained set when direct computation is not feasible. For instance, in systems
biology, a metabolic network is defined by a set of equalities and inequalities that represents feasible
steady state reaction rates (Lewis et al., 2012; Thiele et al., 2013). For large metabolic networks,
sampling from the constraint set can be an efficient way to simulate the biochemical network and
evaluate its capacity. In mathematics, computing the volume of the Birkhoff polytope plays a key
role in several areas, including algebraic geometry, and probability. However, computing the volume
exactly using algebraic representations can take years even for a small dimension n = 11. On
the other hand, a sampling based-algorithm can compute the volume efficiently up to dimension
half-million (Kook et al., 2022).
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Traditional samplers The current primary approach for sampling is Markov Chain Monte Carlo
(MCMC) method, which for many problems is the only known method with provable efficiency
guarantees. For general non-smooth distributions, the traditional class of samplers is the zeroth-order
samplers, which query the density of the distributions to determine the algorithm’s trajectory. This
class of samplers includes Ball walk (Lovédsz and Simonovits, 1993; Kannan et al., 1997), its affine-
invariant version Dikin walk (Kannan and Narayanan, 2012; Laddha et al., 2020) and Hit-and-Run
(Smith, 1984; Lovdsz, 1999), which avoids an explicit step size. However, this class of sampler is
inefficient in practice because it intrinsically needs a step size smaller than O(1/+/n), where n is
the dimension, to avoid stepping outside the constraint set, which leads to a bottleneck of quadratic
mixing time in dimension. Moreover, without putting the convex body into an isotropic position,
which requires expensive computation in practice, the mixing time of Ball walk and Hit-and-Run,
O(n?R?), depends on the condition number R of the convex body. The condition number of the
distributions appearing in practical applications can be large, e.g., the condition number of RECON1
(King et al., 2016), a human metabolic network, can be as large as 10°. Using Hit-and-Run to sample
from metabolic networks can be over 100 times slower than the better algorithms on this problem
(Cousins and Vempala, 2016). Sampling from the Birkhoff polytope can be prohibitively expensive
for any dimension higher than n = 20 (Cousins and Vempala, 2016).

Another class of samplers commonly used is the first-order samplers, which update the Markov
chain based on the gradient information. The mixing time of the continuous processes as well as the
various discretization methods of this class of samplers has been studied in a long line of recent works.
The most well-studied first-order samplers include Langevin algorithm (Dalalyan, 2017; Dwivedi
et al., 2018; Durmus et al., 2019; Vempala and Wibisono, 2019; Chewi et al., 2021, 2022), its variant
Underdamped Langevin algorithm (Cheng et al., 2018; Shen and Lee, 2019), and Hamiltonian Monte
Carlo (HMC) (Chen and Vempala, 2022; Chen et al., 2020; Lee et al., 2020). The mixing time of
this class of samplers also suffers from dependence on the condition number of the distributions.
Moreover, this class of samplers cannot be applied to constrained distributions directly because their
Markov chain can easily step outside the constraint set. Currently, popular sampling packages such as
Stan (Stan Development Team, 2020) and Pyro (Bingham et al., 2019) that are based on this class of
samplers are not able to handle constrained distributions, despite their effectiveness in other settings.

Non-Euclidean Samplers Given the limitations of the traditional samplers, researchers have
sought to extend these methods to non-Euclidean samplers, which leverage the local geometry of
distributions to speed up the samplers. For instance, Riemannian Hamiltonian Monte Carlo (RHMC)
extends the traditional HMC by considering the dynamics on a Riemannian manifold that uses a
non-Euclidean metric corresponding to the distribution’s local geometry. When combined with
a local metric induced by the Hessian of a self-concordant barrier function, RHMC can sample
from ill-conditioned and non-smooth distributions efficiently. A recent work (Kook et al., 2022)
showed that RHMC can achieve a 1000-fold acceleration on the benchmark dataset RECON3D (King
et al., 2016), the largest published human metabolic network, compared to previous methods. While
RHMC has demonstrated superior practical performance, the convergence rate of discretized RHMC
remains open. Lee and Vempala (2018) bounded the convergence rate of continuous RHMC in
terms of the isoperimetry and natural smoothness parameters of the associated Riemannian manifold.
However, to implement RHMC, sophisticated integrators such as implicit midpoint integrator (IMM)
or the generalized Leapfrog integrator (LM) are necessary to maintain measure-preservation and
time reversibility. Simple integrators, such as the naive Leapfrog method, are not suitable for RHMC
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as they are no longer symplectic on general Riemannian manifolds (Cobb et al., 2019). These
sophisticated integrators provide accurate discretization and efficient convergence in practice, but
their theoretical analysis is challenging. In particular, there is no theoretical guarantee that the
convergence rate of RHMC remains independent of the condition number after discretization, which
is the main motivation for using non-Euclidean samplers in our case.

In fact, analyzing discretized non-Euclidean samplers has been a persistent challenge in many
recent works. Another commonly studied class of non-Euclidean samplers is the Riemannian
Langevin algorithm (RLA) (Girolami and Calderhead, 2011), which extends the Langevin algorithm
to non-Euclidean space. A closely related process is the Mirror Langevin diffusion (MLD) (Zhang
et al., 2020), which is a special case of RLA when the metric is given by the Hessian of a
Legendre-type convex potential ¢. Many recent works have focused on obtaining the convergence
rate of discretized MLD or RLA, but many of them require strong assumptions or oracles for
accurate discretization. The analysis of Zhang et al. (2020); Jiang (2021); Li et al. (2022) and the
empirical results in Jiang (2021) suggest that unless a strong regularity assumption between the target
distribution and ¢ is satisfied, the naive integrators can lead to a bias term that exists even when the
step size tends to zero. This bias arises from the third-order error terms resulting from non-Euclidean
geometries and is hard to control. Ahn and Chewi (2021) circumvented this issue by proposing an
alternative discretization method that uses the exact solution to the Brownian motion term, but it
remains unclear whether the discretization is feasible for general ¢. Similarly, Gatmiry and Vempala
(2022) analyzed the convergence rate of RLA using an oracle to sample from the natural Brownian
motion on the manifold. Given the current limitations in our understanding of the integrators for
non-Euclidean samplers, we believe it is crucial to investigate the integrators more thoroughly and
explore alternative integrators.

Contribution We provide (to our knowledge) the first convergence rate of discretized RHMC on a
class of numerical integrators. We consider a general class of constrained distributions that can be
written as

e @) subject to x € M, (1.1)

where we assume f is a convex function and M C R" is a convex body with a (highly) self-
concordant barrier. We give theoretical guarantees showing that a large class of integrators can
maintain smoothness and condition number independence when sampling from distributions in the
form of e=® ¥ on a polytope with m constraints. In fact, many applications can be written in this
form because any log-concave density in the form of (1.1) can be reduced to

e ! subject to (z,t) € M, (1.2)

where M’ = {(x,t) : f(z) < t,x € M} is convex in (z,t). We show for distributions in the form
of e_O‘T“*’, the implicit midpoint method (IMM) and the generalized Leapfrog method (LM) have a
mixing time of O (mn?®) to achieve e total variation distance to the target distribution. In addition,
we give a general convergence result on sampling from distributions in the form of e~/(*) on a
convex body in terms of parameters of the manifold and the integrator, which can be useful for future
works that analyze the convergence rate on other integrators or distributions.

While numerical integration is a rich and active field (Hairer et al., 2006), and the study of
the local convergence of numerical estimators is quite sophisticated, we are not aware of global
polynomial-time mixing time guarantees based on commonly-used numerical integrators such as
IMM and LM. Our convergence result is the theoretical foundation of Kook et al. (2022) and extends
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Lee and Vempala (2018) to settings of practical importance. Our results apply to not only IMM
and LM, but also a more general class of symplectic and time-reversible integrators that satisfies
a sensitivity condition, which advances our understanding of integrators for RHMC and the more
general non-Euclidean samplers.

Moreover, in our algorithm, we use a Metropolis filter to correct the distribution, which is a
crucial step for high-accuracy sampling. To address the discretization issues of RLA and MLD,
applying a Metropolis filter to correct the bias is one potential solution. Nevertheless, to the best
of our knowledge, there is no analysis of general-purpose metropolized non-Euclidean Langevin
algorithm in the literature. We believe that our analysis of metropolized RHMC can provide valuable
insights into the design and analysis of future metropolized non-Euclidean Langevin algorithms.

It is important for readers to be aware that although the convergence rate we obtain is independent
of the condition number, the convergence rate is likely to be far from optimal due to the complicated
analysis of the integrators used. To couple the discretized and ideal RHMC in our analysis, we need
a step size much smaller than what is typically required in practice. Kook et al. (2022) demonstrated
that RHMC with IMM can achieve sublinear mixing times in dimension on metabolic networks and
structured polytopes including hypercubes, simplices, and Birkhoff polytopes. We believe a tighter
convergence bound is possible with more advanced analysis.

1.1. Prior work

The convergence rate of MCMC methods in sampling from a convex body has been a topic of active
research for decades (see Lee and Vempala (2022) for a more detailed discussion). The mixing
time of ball walk on isotropic log-concave density is bounded by 6(n2) from a warm start (Kannan
et al., 1997), where a convex body can be put into a near isotropic position in 5(713) membership
queries (Jia et al., 2021). Dikin walk uses the local geometry to improve the mixing rate to O(mn)
on polytopes, where m is the number of constraints. Moreover, due to its affine invariance, there is
no need to put the polytope into an isotropic position. With an LS barrier (Lee and Sidford, 2014),
Dikin walk can achieve a mixing rate of 6(712) for any polytope (Laddha et al., 2020). Geodesic walk
utilizes non-Euclidean geometry by taking a random walk on a manifold. Geodesic walk with an
exact exponential map and a Metropolis filter can converge to the uniform density in O(mn3/ 4) steps
(Lee and Vempala, 2017). Continuous RHMC avoids the use of a Metropolis filter due to its measure
preservation and time reversibility, which further improves the mixing time to O(an/ 3) (Lee and
Vempala, 2018) on uniform density. Our paper extends the mixing time result to discretized RHMC
with feasible integrators on more general distributions. Note that even an extension to distribution
¢~ needs nontrivial work to avoid dependence on quantities such as the domain diameter.

2. RHMC with numerical integrators
2.1. Basics of RHMC

Hamiltonian Monte Carlo (HMC) is one of the most widely used MCMC methods and is the default
sampler implementation in many sampling packages (Stan Development Team (2020); Salvatier et al.
(2016); Bingham et al. (2019); Kook et al. (2022)). HMC introduces an auxiliary velocity variable v
in addition to the position x, defines a joint density on (z, v), and determines its trajectory according
to the Hamiltonian dynamics. The Hamiltonian dynamics is characterized by the Hamiltonian
equations, the first-order differential equations of the Hamiltonian H with respect to  and v. The
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Hamiltonian has a natural interpretation as the total energy of a particle consisting of the kinetic and
potential energy at position x with velocity v.

The dynamic can be naturally generalized to the setting of Riemannian manifold with local
metric {g(z)},cm. A natural extension of the Hamiltonian is given by

1 1
H(z,v) = f(x)+ §ng(:n)_1v +3 log det g(z),
with g(z) viewed as a positive-definite matrix. For later use, we split H into two parts H;(z,v) =
f(z)+ 3 logdet g(z) and Hy(z,v) = v g(z) 0. Acurve (2(t),v(t)) € Mx T, M C R" x R"
is called the Hamiltonian curve if it is the solution to the Hamiltonian equations:

dr  OH B 1
at %(l‘,?}) =g(z)" v,

= 2w =~ | 950+ 3Tt Dote)) + (3000 [ %, %] ) | 2

When clear from context, the Hamiltonian curve refers to x(¢) € M only. The Hamiltonian curves
(z(t),v(t)) have several geometric properties. For a map F} : (z,v) — (x(t),v(t)),

1. Hamiltonian preservation: %H (z(t),v(t)) = 0.

2. Symplectic: DFy(z,v)" - J - DFy(x,v) = J forany t > 0 and J = { OI % }
—in
3. Measure-preservation: det(DFi(x,v)) = 1 for any ¢ > 0. Note that measure-preservation
immediately follows from symplecticity.

4. Time-reversible: Fy(x(t), —v(t)) = (x, —v).

Just as the Hamiltonian dynamics can be extended to the Riemannian setting, Girolami and
Calderhead (2011) extended HMC to a Riemannian version called Riemannian Hamiltonian Monte
Carlo (RHMC); see Algorithm 1 for its one-step description. In fact, HMC can be recovered from
RHMC using the Euclidean metric (i.e., g(x) = I).

Our goal is to sample from a probability density proportional to e~/ (@) supported on a convex
body. To this end, we use RHMC with the Hamiltonian H : M x R” C R" x R" — R, viewing the
convex body as a Riemannian manifold M with a local metric g.

2.2. Notation and setting

We use (M, g) to denote a connected and compact Riemannian manifold with a boundary and a
metric g on which a target distribution is supported. For a function f : M C R™ — R, we denote a
target distribution by 7(x) whose density is proportional to e~/ @) (ie., % ~ e~ 1®)). We use T, M
to denote the tangent space of M at x € M. We denote by 7, the projection map onto z-space (i.e.,
To(z,v) £ 2) and by i, the inclusion map (i.e., i (v) & (x,v)). We reserve h for the step size of
RHMC.
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Algorithm 1: RIEMANNIAN HAMILTONIAN MONTE CARLO
Input: Initial point x, step size h
// Step 1: Sample an initial velocity v
Sample v ~ N (0, g(x)).

// Step 2: Solve the Hamiltonian equations
Solve the Hamiltonian equations (2.1) to obtain (x(t), v(t)).

// Step 3: Metropolis—-filter (skipped for ideal RHMC)

. s . —H(z(h),v(h .
Accept z(h) with probability min (1, %) Otherwise, stay at x.

With both manifold M and tangent space T, M endowed with the Euclidean metric, we define

def

amap Iy : M x T,M — M x|, e T-M by Fy(z,v) = (x(t),v(t)), where (z(t),v(t)) is the

solution to the Hamiltonian equations at time ¢ with an initial condition (z, v). In particular, we define
def

Typp: TyM — Mby Ty p(v) = (1 0 Fy, 0iy)(v) = (h). When both M and T, M are endowed
with the local metric g, we instead use Ham, ; : T, M — M defined by Ham, ;(v) Lt x(t).

When a numerical integrator with step size h outputs (Zp,vp) by solving the Hamiltonian
equations with an initial condition (z, v), we denote F'j,(x, v) o (z1,, vy for a function Fj, : M x
T M — MxJ,cpq T2 M, where the domain and range are endowed with the Euclidean metric. We
define T’y p, : T, M — M (endowed with the Euclidean metric) by 7', 1, (v) = (7,0 F'0i5)(v) = Tp,.
We drop h from T}, 5, F}, and Tx,h if the step size is clear from context.

We assume that the domain M C R™ with a boundary is convex and has a (highly) self-
concordant barrier ¢ : M C R"™ — R (Definition 54), and that the metric g is induced by the Hessian
of the barrier (i.e., g(x) = V2¢(z)). We denote the local norm of a vector v by ||v]|, or 0]l g(z)>
and the Riemannian distance by dg (Definition 56). We use a < b to indicate that a < cb for some
universal constant ¢ > 0.

2.3. Discretized RHMC

We use ideal RHMC to denote the algorithm when the Hamiltonian equations in Step 2 is accurately
solved without any error. However, we cannot expect such an accurate ODE solver to always exist
in reality, so numerical integrators with solutions that approximate the accurate ODE solutions are
necessary. We use discretized RHMC to denote the algorithm when Step 2 of RHMC is solved by a
numerical integrator and a Metropolis-filter is used to correct the distribution.

We now define a condition of numerical integrators that plays an important role in our convergence-
rate analysis.

Definition 1 For a numerical integrator F and (x,v) € M x Ty M C R" xR", we call F sensitive
at (x,v) if there exists step size ho(x,v) such that the numerical integrator with step size h less than
ho satisfies

|DTI h(v)|
122 2m\01 - ) 998,
| DT (V)| —

6
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where v satisfies T, ,(v') = Ty p(v) and the Jacobian DT is taken with respect to the velocity
variable. In other words, the solution of the numerical integrator changes almost as fast as the
ideal solution does. Unless specified otherwise, a sensitive integrator is additionally assumed to be
measure-preserving (i.e., det(DF,(x,v)) = 1) and time-reversible (i.e., Fp,(Tp,, —vy,) = (z, —v)).

As a time-reversible numerical integrator is even-order, second-orderness automatically follows.
That is, for sufficiently small step size h > 0, dy(Zp, zp) < Cy(z,v)h? and ||vy, — Vbl g(z)-1 <
Cy(z, v)h2 for some functions of z and v, C,, and C,,. In other words, the errors of the numerical
integrator F'}, with respect to the exact ODE solver F}, grow at most quadratically in the step size h.

This family of numerical integrators turns out to cover many commonly used integrators in
practice. For example, the implicit midpoint integrator IMM) (Algorithm 2) and the generalized
Leapfrog integrator (LM) (Algorithm 3) satisfy symplecticity, time-reversibility, and sensitivity (as
shown in Section C). Measure-preservation gives the simple formula of the acceptance probability
in Step 3 of Algorithm 1. Measure-preservation together with time-reversibility plays an important
role in showing that the discretized RHMC converges to its stationary distribution with density
proportional to e~ @) (see Theorem 8 in Kook et al. (2022)).

3. Our results

We analyze the mixing time of RHMC discretized by numerical integrators commonly used in
practice, with the Hamiltonian set to be H(z,v) = f(z) + 3v' g(z) 'v + § log det g(z). Previous
analysis of RHMC was based on high accuracy numerical integrators, which are not always achievable
in practice (Lee and Vempala, 2018), and the complexity bounds were derived for uniform density
on a polytope. We extend the setting to sampling exponential densities with practically feasible

integrators. In the next theorem, we denote M, := {J:‘ eM: |]a|]§(x)_1 < 10n2log? %} for p > 0.

Theorem 2 Let 7 be a target distribution on a polytope with m constraints in R" such that

% ~ea'T for a € R™. Let M be the Hessian manifold of the polytope induced by the logarithmic

barrier of the polytope. Let A = supg % be the warmness of the initial distribution 1. Let
wr be the distribution obtained after T steps of RHMC discretized by a sensitive integrator on M.
Forany e > 0, if forx € M = and v € R" randomly drawn from N(0, g(x)), we have that with
probability at least 0.99, step size h < ho(z,v),

1020 1020 10-10 10-10
S T2 1ogl2 A hCo(@,v) < and h2C,(z,v) <
€

Vn nlog% T w/nlog%7

then dyy(mr, ) < e for T = O (mh~2log 2).

By setting C';, = C,, = 0, we can obtain the following corollary for the mixing time of the ideal
RHMC in this setting.

Corollary 3 Ler 7 be a target distribution on a polytope with m constraints in R™ such that
Yy g polytop

% ~ea'T for a € R™. Let M be the Hessian manifold of the polytope induced by the logarithmic

barrier of the polytope. Let A = supg % be the warmness of the initial distribution 1. Let

7 be the distribution obtained after T iterations of the ideal RHMC on M. For any € > 0 and step
size h = O <11/2A> there exists T = O (mn7/6 log? %) such that dry(np,m) < €.

n7/12 log
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After we compute the parameters C, and C,, of IMM and LM (see Section C and D), and identify
the sufficient conditions on the step size for their sensitivity, the following mixing times of RHMC
discretized by IMM or LM immediately follow.

Corollary 4 Let 7 be a target distribution on a polytope with m constraints in R™ such that

% ~ea'T for o € R™. Let M be the Hessian manifold of the polytope induced by the logarithmic

barrier of the polytope. Let A = supgc 7:?((5)) be the warmness of the initial distribution 1. Let

7 be the distribution obtained after T iterations of RHMC discretized by IMM on M. For any € > 0
and step size h = O (

W), there exists T = O (mn® log? %) such that dry(mp, ) < €.

Corollary 5 Let 7 be a target distribution on a polytope with m constraints in R™ such that
dr , g=a'z for a € R™. Let M be the Hessian manifold of the polytope induced by the logarithmic

barrier of the polytope. Let A = supg %5)) be the warmness of the initial distribution . Let
w7 be the distribution obtained after T iterations of RHMC discretized by LM on M. For any € > 0

and step size h = O (M), there exists T = O (mn? log? %) such that dry(mp, ) < €.

In fact, Theorem 2 comes from a general result on the mixing time of RHMC for density e~/ on
a convex body M C R"™. We provide its informal version here and defer its full statement (Theorem
24) to Section B.

Theorem (Informal) Let m be a target distribution on a convex set M C R™ and A = supg- 4 %

be the warmness of the initial distribution my. Let M be the Hessian manifold with its metric induced
by the Hessian of a highly self-concordant barrier and mr the distribution obtained after T' steps
of RHMC discretized by a sensitive integrator on M. For any € > 0, let Mﬁ C M be a convex
subset of measure at least 1 — 5. There is a step size bound hy, defined in terms of smoothness
parameters of the manifold and the integrator, so that for any step size h < hg, there exists

—2
T=0 ((thﬁ) log ?) where wMﬁ is the isoperimetry of./\/lﬁ, such that dpy(wp, ) < e.

3.1. Discussion

Suboptimal mixing time In our analysis of RHMC with numerical integrators, the main technical
bottleneck that limits the step size to O(n_?’/ 2) is the coupling argument between the ideal RHMC
and the discretized RHMC. To illustrate, suppose that the ideal RHMC maps (z,v1) to (z/,v") and
discretized RHMC maps (z, v2) to (z/,v"). In the coupling of the two processes, we need to ensure
that the ratio of the density functions of Gaussian estimated at v; and vs is close to 1, which comes

= O(1). To prove this, we use the triangle inequality as follows:

down to ‘HUIH;—I - HU2HZ—1

2 2
(Hleg—l = lloallg-1| < llox = v2llg=1 (lvallg-1 + llvallg-1)- As (villy-1 + [lvallg-1) = O(Vn)
w.h.p., we should take step size small enough so that [[v1 — v2||,-1 = O(1/y/n). Thus, controlling

|lvy Hf],l — ||v2 Hf],l ’ without the triangle inequality is potentially a way to improve the dependency
on n. An alternative approach to improve the mixing time is to directly couple two discretized
RHMC processes. However, this approach is technically challenging to carry out, so we use a detour
through the ideal RHMC by first coupling the ideal and the discretized RHMC and then relying on
the coupling result between two ideal processes.
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) . P ors | RHMC with
Coupling of ideal Olarilme erit'lg numerical integrators
ope setti
(Lemma 14) poLyIop & fore=' % in polytope
. ) (Section D)
(Theorem 2)
( Coupling between ] RHMC with
ideal and discretized numerical integrators
(Lemma 29) for e~/
\ J (Theorem 24)
Rejection probability IMM & LM RHMC with
(Lemma 32) (Section C) IMM & LM
for e=' % in polytope

(Corollary 4, 5)

Figure 4.1: Proof outline

Initialization (warmness parameter) There are several ways to initialize efficiently and avoid
a warm start penalty. For instance, one can run an O*(n?) algorithm by Jia et al. (2021) that uses
Gaussian cooling (see Section 6.2 in Cousins and Vempala (2018)) to generate an O(1)-warm start
for the uniform distribution. In detail, the cooling algorithm involves a sequence of Gaussians
truncated on the convex body, with variances increasing from small to large. The initial Gaussian is
almost contained in the body, and the last one is almost close to the uniform distribution over the
body. In each phase of the cooling algorithm, a sampler such as the Ball walk or Hit-and-Run is run.
This sample serves as a warm start to the next phase (i.e., Gaussian with larger variance).

In fact, Gaussian Cooling can be integrated into RHMC itself (see Section 6 in Lee and
Vempala (2018)), removing the dependency on log M. Specifically, we consider a sequence of
target distributions oc e~(/T®i%) with a; = 1 and the barrier ¢. In the first phase, with the minimizer
x* of f + ¢, the Gaussian with mean z* and covariance C - (V2¢(x*))~! for some constant C' > 0
provides a good warm start for RHMC to sample from the density o< e~(/*®). Then in each
subsequent phase, RHMC is started at the sample from the previous phase and runs with target
e~ (f+a:®) while decreasing «; toward 0. Since the isoperimetry of e~ (f+®i¢) js > v/, the mixing
times of RHMC in earlier phases are smaller than those in later phases and the total running time of
RHMC with cooling is dominated by RHMC in the last phase, which is the complexity of RHMC
with M = O(1).

4. Technical overview

In this section, we provide a summary of the key proof ingredients that gives the convergence rate of
RHMC with numerical integrators to samples from density e~/ () on a convex body; see Figure 4.1
for the roadmap. In Section 4.1, we review a general technique using s-conductance for bounding the
mixing time of a Markov chain. In Section 4.2, we summarize a refined analysis of the ideal RHMC
(Section A) and the technique to couple the ideal and discretized RHMC (Section B). Finally in
Section 4.3, we describe the high-level ideas of our analysis of the numerical integrators (Section C),
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IMM and LM, and how to get the results for sampling from e~'® on the Hessian manifolds of

polytopes (Section D).

4.1. Mixing time via s-conductance: isoperimetry and one-step coupling

Consider a Markov chain with a state space M, a transition distribution 7, and stationary distribution
7. We consider a lazy Markov chain to avoid a uniqueness issue of the stationary distribution. At
each step, the lazy version of the Markov chain does nothing with probability % (i.e., stays at where
it is). Note that this change for the purpose of proof worsens the mixing time only by a factor of 2.

We use a standard conductance-based argument in Vempala (2005) to bound the mixing time,
which consists of two main ingredients — the isoperimetry and the total variation (TV) distance
coupling of one-step distributions (Definition 57) starting from two close points.

Definition 6 (s-conductance) Consider a Markov chain with a state space M, a transition distribution
T and stationary distribution 7. For any s € [0,1/2), the s-conductance of the Markov chain is

def 1nf fs E(Sc)ﬂ-(l')dl’
m(S)E(s,1—s) min(m(S) — s, 7(S5¢) — )’

As shown by Lovész and Simonovits (1993), a lower bound on the s-conductance of a Markov
chain leads to an upper bound on the mixing time of the Markov chain.

Lemma 7 (Lovasz and Simonovits (1993)) Let m; be the distribution obtained after t steps of a
lazy reversible Markov chain with the stationary distribution . It follows that

H o2\"
i) < o+ 2 (123

where Hy = sup {|mo(A) — m(A)| : A C M, m(A) < s} with0 < s < 1.
We now define the isoperimetry of a subset of M.

Definition 8 (Isoperimetry) Let (M, g) be a Riemannian manifold and M’ a measurable subset of
M with t(M') > % The isoperimetry v of the subset with stationary distribution 7 is defined by

Yy = inf hm‘““%f{weM’:0<d9<S,x>g5}W(x)dx
M ScM! min(7(S), 7 (M'\S))

The following illustrates how one-step coupling with the isoperimetry leads to a lower bound on
the s-conductance. It can be proved similarly as Lemma 13 in Lee and Vempala (2018).

Proposition 9 For a Riemannian manifold (M, g), let 7 be the stationary distribution of a reversible
Markov chain on M with a transition distribution T,. Let M' C M be a subset with m(M') > 1—p
for some p < % We assume the following one-step coupling: if dg(z,2") < A <1 forz,a’ € M/,
then dpy(Tz, Ty) < 0.9. Then forany p < s < % the s-conductance is bounded below by

O, > Q(YparA).
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S
} drv(Ps, Ps): Between ideal and discretized (Lemma 29)

Oy
Figure 4.2: An illustration of our approach to one-step coupling. The thick line indicates the ideal
RHMC, and the dashed line indicates the discretized RHMC.

Proof Let S C M’ be a mesurable subset with 7(.5) € (s,1 — s). Consider a partition {S7, S2, S3}
of M’ defined by

={zeSnM :T,(S <0.05},
={zesSNnM:T,(S) <005},
S3 = M/\(Sl U 52)

Since 7(M') > 1—p > 1—s, it follows that (SN M') > 7(S) — s and 7(S°NM') > 7(S°) — s,
so it suffices to show [ 7(S¢)dm 2 ¢ A min {’/T(S NM), (SN ./\/t } The stationarity of a
reversible Markov chain 1mphes Js T2 (S%)dm = 5 ( [T 57 2(S9)dm + [g. To(S)dr).

We may assume 7(S7) > (SﬂM ) and W(SQ) > (Scﬁ./\/l ); otherwise, [ T, (S")dm(x) 2
m(SNM')orm(S N M) and thus ®g = Q(1). Note that

c 1 c
/57;(5 )dm > 5 (/SOMI\SI’E(S )d7r+/scli\SQ7§:(5)d7r>
> 7r(S3) > ¢M/A min {’R’(Sl),ﬂ(SQ)}7

where the last follows from the definition of the isoperimetry. By assumptions on 7(S7) and 7 (S2),
we conclude [¢ 7,(S¢)dm 2 1pp Amin {z(S N M), 7(S°NM')}. [ |

4.2. One-step coupling of discretized RHMC

In light of Proposition 9, we can focus on coupling the one-step distributions of the discretized
RHMC starting from two close-by points. Let P, and P, be the one-step distributions on M of the
ideal and the discretized RHMC starting from x, respectively. We use f; to denote the discretized
RHMC without the Metropolis filter. As illustrated in Figure 4.2, for two close points x and y, the
triangle inequality leads to

drv (P, Py) < drv(Pz, Pr) + drv(Pa, Py) + drv(Py, Py)
< (dTv(f;,'Px) + dTv(Px,Py) + dTv('Py,f;)) + (dTv(f;,ﬁx) + dTv(f/y,fy)) .

11
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Hence, it suffices to bound drv (P, Py), drv (f;, P.) and dry (5;, P.), respectively. We bound in
Section A the first term drv (P, Py ), the TV distance of one-step distributions of the ideal RHMC.
For the remaining terms, when numerical integrators do not preserve the Hamiltonian, a Metropolis
filter is necessary to ensure that the discretized RHMC converges to a target distribution. Due to the
filter, we need to handle a point-mass distribution at x. We address this by first bounding the second
term drv (f;, P.), the TV distance between the ideal and discretized RHMC without the Metropolis
filter in Section B.2. We then separately bound the rejection probability drty (f;, P.) in Section B.3.

4.2.1. COUPLING OF IDEAL RHMC

We summarize how to bound drv (P, Py) here (see Section A for the full version).

1

Lemma (Informal, Lemma 14) For most of x and y, and step size h small enough, if dg(z,y) < 155,

then dry(Py, Py) < O (%) dg(z,y) + %

Previous approach Lee and Vempala (2018) provided a general framework for computing the
mixing rate of RHMC on a manifold embedded in R", in terms of the isoperimetry and smoothness
parameters depending on the manifold and step size. One of the major proof ingredients is one-step
coupling: for two close points x and y, the one-step distributions at x and y have large overlap.

They use the notion of a ‘regular’ Hamiltonian curve, which enables them to handle this task in
low level, where the regularity can be understood as average behavior of Hamiltonian curves with
high probability and is quantified by some auxiliary functions. As the starting point of a regular
Hamiltonian curve changes from z to y along a length-minimizing geodesic ¢(s) joining x and
vy, they find a one-to-one correspondence between regular Hamiltonian curves started at = and y,
and bound {%dw (Pa, PC(S))‘ over s. They achieve this by quantifying the rate of changes of the
probability density (see (A.1)).

It is daunting to directly work with the exact density function, so they make use of the following
techniques: (1) Show that the determinant of Jacobian is close to A™ up to small step size by applying
a matrix-ODE theory to the second-order ODE of the Hamiltonian equation (see Lemma 59). It
allows them to work with an approximate but simpler density with the Jacobian replaced by h" (see
(A.3)). (2) Establish the one-to-one correspondence along variations of Hamiltonian curves by the
implicit function theorem; for a given endpoint z, as the starting point of a Hamiltonian curve moves
along c(s), there exists a unique initial velocity v, at each point on ¢(s) that brings c(s) to the
endpoint z in step size h (i.e., Ham,() 5 (v(s)) = 2). At the same time, by using the matrix-ODE
theory again they show that the regularity of Hamiltonian curves does not blow up along ¢(s) and
quantify how much the proper initial velocity changes.

Refined analysis Lee and Vempala (2018) bounded ‘C%dTV(P:ca PC(S))‘ in terms of smoothness
parameters, supremum bounds on some quantities defined over the regular Hamiltonian curves
starting from any point in M. However, considering all starting points leads to a weaker coupling in
the end. In fact, this makes sampling from an exponential density have dependence on the condition
number, since one of the smoothness parameters requires the supremum bound on ||| g(x)—1 OVer
x € M, which can be as large as ||c||, times the diameter of the convex body.

To achieve a condition-number independent mixing time, we work in a convex subset M,
(call a good region) instead of M, which requires refinement of the framework by generalizing the
smoothness parameters (Section A.1) and theorems in their paper accordingly. It allows us to obtain

12



RHMC WITH NUMERICAL INTEGRATORS

a stronger coupling by only considering Hamiltonian curves starting from M ,. This region is the
region M’ in Proposition 9.

This simple change, however, yields technical difficulties in following how Lee and Vempala
(2018) proceeds with the original parameters. Recall in the one-step coupling, they consider a
Hamiltonian variation along a geodesic joining two points, but the geodesic might step out of the
good region. To address this issue, we use the straight line between the points instead of the geodesic,
as the straight line is contained in M, due to the convexity. We elaborate on how the technical
details of the previous approach can be modified accordingly under the redefined parameters and
new variation curve in order to get valid one-step coupling on this smaller region in Section A.2.

4.2.2. COUPLING BETWEEN IDEAL AND DISCRETIZED RHMC & REJECTION PROBABILITY

We provide a summary of Section B, where we prove the following lemma and Theorem 24.

Lemma (Informal, Lemma 29 and Lemma 32) For most of (z,v), if step size h is small enough
and falls under a sensitivity regime at (x,v) of a numerical integrator, then drv(f;, Pr) < %0 and
— —

For the former (bound on dtvy (f;, P:)), we show that the densities of the ideal and discretized
RHMC are similar by relating two velocities v and v*, where T, (v) = T (v*). It can be reduced to

establishing a constant lower bound on pi) [PT=(0)] for the probability density p}, of Gaussian

P (v) [DTe(v*)]
N(0, g(2)).

We first define numerical integrators’ analogues of the smoothness parameters. Then, we
elaborate the idea above in Section B.2, where we study the dynamics of the ideal and discretized
RHMC. In particular, we show the existence of v* for a given v by the Banach fixed-point theorem
and a one-to-one correspondence between them, together with an upper bound on |[v — v*[| . This
upper bound allows us to bound the ratio of p} (v*)/pk(v). We note that these results heavily rely on
the stability of local norm (see Section B.1), which follows from that the local metric is given by
the Hessian of self-concordant barriers. The ratio of the Jacobian follows from the sensitivity of the
integrators.

For the latter (bound on drv (f;, fz)), we observe that the acceptance probability comes down
to bounding the difference of the Hamiltonian at ideal and numerical solutions. To bound this, we
heavily use the stability of local norm as well as the quantitative relationships between the ideal and
discretized RHMC established above. Putting these pieces together, we can obtain the mixing-time
bound of the discretized RHMC in Theorem 24.

4.3. Analysis of numerical integrators & Parameter estimation in polytopes

To apply the framework established so far, we analyze in Section C two practical numerical integrators,
IMM (Section C.1) and LM (Section C.2), by estimating second-order parameters C,, and C,, and
quantifying their sensitivity regimes, and then apply these estimations to sampling from distribution
e Tona polytope in Section D.

Lemma (Informal, adapted to polytope setting) For most of Lx,v), both IMM and LM have
Ci(z,v) = O(n) and Cy(x,v) = O(n®/?) for step size h = O(1/\/n). The sensitivity region

is h = O(1/n) for IMM and h = O(1/n3/?) for LM.

13
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To analyze one-step process of each numerical integrator, we need to keep track all the quantities
explicitly to obtain the condition-number independence. However, the implicit nature of both
integrators lead to coupled equations for x and v, making the analysis complicated. To address
this, we handle these coupled equations parallelly by moving back and forth between local norms at
different points, where we use the stability of local norm due to self-concordance. We remark that
our approach to analyze each integrator depends on the specific implementation of the integrator, so
each integrator requires slightly different techniques in this task.

For the sensitivity, we apply implicit differentiation to the one-step equation of each integrator,
obtaining a matrix equation in the form of (I — hE)DF) = hC for matrices E,C € R?"x?",
We use matrix-perturbation theory to quantify a sufficient condition on the step size h that ensures
the invertibility of (I — hE), obtaining an equation of the form DF}, = 322 (hC'’)" for a matrix
C’ € R?™*2"_ By extracting the upper-right n x n block matrix, it follows that DT}, = I + E’ for
E' =372, (hC*)" with a matrix C* € R"*"™. Using the self-concordance of the local metric, we
get upper bounds on matrix quantities of C* including the trace, two-norm and Frobenius norm.
With E’ viewed as perturbation, we apply matrix-perturbation theory again to estimate a lower bound
on }DTh’.

Lastly in Section D, we show that M, = {af eM: HaHz(z),l < 10n2 log? %} is convex by
checking the second-order condition and that M , has large measure by using a functional inequality.
Then we compute all parameters discussed so far — isoperimetry, smoothness parameters of the
manifold and numerical integrator — for the polytope setting, putting them together to obtain the
results in Section 3.
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Appendix A. Convergence rate of ideal RHMC

Lee and Vempala (2018) provided a general framework for computing the mixing rate of RHMC
on a manifold embedded in R™. They represent the mixing rate in terms of the isoperimetry and
smoothness parameters depending on the manifold and step size. In particular, they explicitly
compute those parameters and isoperimetry for the uniform distribution on a polytope with m
constraints, concluding that the mixing rate of RHMC on the Hessian manifold induced by the
logarithmic barrier of the polytope is O (an/ 3). Notably, this mixing rate is independent of the
condition number of the polytope. Independence of the condition number is desirable in practice,
since real-world instances are highly skewed and thus make it challenging for sampling algorithms
to sample efficiently.

Going beyond uniform sampling, we would like to obtain the condition-number-independence of
RHMC for more densities. However, even an extension to an exponential density needs care to avoid
dependence on a condition number (such as the diameter of the domain).

In this section, we refine this framework by working on a subset M, instead of M and extending
the smoothness parameters and theorems developed in their paper accordingly. It enables us to
couple the one-step distributions of the ideal RHMC starting at two close points by bounding the TV
distance in terms of the smoothness parameters.

A.1. Auxiliary function and smoothness parameters

We redefine those smoothness parameters in Lee and Vempala (2018) that depend on a subset M, of
manifold (internally parameterized by p > 0) and step size h, pointing out how ours differ from the
original ones. We then develop the theory for one-step coupling based on the new parameters.

A.1.1. WORKING IN HIGH PROBABILITY REGION

When defining smoothness parameters, Lee and Vempala (2018) pays attention to “well-behaved”
Hamiltonian curves -y starting at any point in M, where the well-behavedness may be viewed as the
average behavior of Hamiltonian curves with high probability and is quantified by some auxiliary
function. Then the smoothness parameters are estimated by bounding some quantities along the
curves. To do so, they should give supremum bounds on those parameters over all points in M,
which lead to a weaker mixing rate in the end.

For a refined analysis, we apply a high-probability idea once again to starting points of curves
this time. In other words, we consider well-behaved Hamiltonian curves starting only from a good
region that has high probability. Then we couple the one-step distributions at two close-by points
only in this region. This region will serve as M’ in Proposition 9.

This simple change, however, turns out to yield technical difficulties in following how Lee and
Vempala (2018) proceeds with the original parameters. In bounding the overlap of the one-step
distributions, they deal with Hamiltonian curves and Hamiltonian variations, starting points of which
are on a geodesic between two points, but the geodesic might step out of the good region. Hence,
it leads to us considering a different path joining two points instead of the geodesic. We choose
the straight line between two points instead and carefully check if the original approach to one-step
coupling still goes through. In addition to this, we have to redefine each of the smoothness parameters
and modify most of the statements proven in Lee and Vempala (2018) accordingly, as we work in the
region smaller than the entire domain. We now formalize this approach.
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Definition 10 Let 7 be a target distribution on M such that ?T;:r ~ e 1@ Given p > 0, we call a
measurable subset M, of M a good region if it is convex and has measure w(M,) > 1 — p.

Good region for exponential density. As mentioned earlier, the necessity of a refined analysis
naturally arises in attempts to obtain a condition-number-independent mixing rate of RHMC for
f(z) = e=®'*. One of parameters in Lee and Vempala (2018) depends on sup, v, ||V f () ||§(x)_1 =

SUP e A HaH;(x)_l, but this supremum bound can be worsened by scaling up «, and even for
fixed « it can be as large as the diameter of M. To address this issue, for given p > 0 we
work on a smaller convex region that has probability at least 1 — p, in which the quantity only
depends on the dimension n and p, and set it to be a good region. To be precise, we will take

M, = {m eM: HVf(:E)Hz(I),l < 10n2log? %} for the exponential densities.

A.1.2. AUXILIARY FUNCTION ¢ WITH PARAMETERS ¢y AND /1

Initial velocities of Hamiltonian trajectories drawn from A/(0, g(z)~!) can be large even though it
rarely happens, as seen in the standard concentration inequality for Gaussian distributions. Since
those worst-case trajectories lead to a weaker coupling, Lee and Vempala (2018) focuses on “well-
behaved” Hamiltonian trajectories rather than all trajectories. They formalize this idea by defining
an auxiliary function ¢, which measures how regular a Hamiltonian trajectory is, along with two
parameters ¢y and ¢;.

Definition 11 Arn auxiliary function ¢ with parameters {y and {1 is a function that assigns a
non-negative real value to any Hamiltonian curve with step size h, such that

* Forany x € M, we have

where v is a Hamiltonian trajectory starting at x with an initial random velocity drawn from

N(0,g(z)™).

* For any variations , starting from M, with () < £y, we have

d
P

<6 (Hjswsm)

15D O)] ) |
’Ys(o) 'YS(O)

where the variations -y, satisfy the Hamiltonian equations, and Dg denotes the covariant
derivative of the velocity field 7. (0) along a curve of starting points of the variations.

In the original definitions, the parameter ¢ is defined over the Hamiltonian curves starting from
any x € M, and the parameter ¢; is defined over the variations starting from any = € M with
¢ (73) < EO-

Intuitions behind these parameters can be understood in the following way. The auxiliary function
¢ measures how regular Hamiltonian trajectories are, and ¢ serves as a threshold that allows us to
consider only Hamiltonian curves with regularity below the threshold, while it is large enough to
capture most trajectories.
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To see the role of ¢1, we run through a high-level idea for one-step coupling. For a given endpoint
z, we consider the set of regular Hamiltonian curves -, stating at x with £(v,) < %EO, which takes
into account most trajectories due to the definition of £y. Along the straight line joining x and ¥y, we
smoothly vary the starting point of the Hamiltonian curve to obtain a Hamiltonian curve -y, starting
at y with the same endpoint z and then find a correspondence between v, and ~y,. In doing so, it is
desirable to maintain the regularity of Hamiltonian curves. In other words, the auxiliary function
should not change rapidly so that /() is still bounded by ¢;. We enforce this situation via the
parameter /1 that bounds the rate of change of the auxiliary function, dsé (vs), along the straight line.

A.1.3. SMOOTHNESS PARAMETERS R, Ro, R3

In relating the regular Hamiltonian curves ~y, and -,, some quantities naturally arise from the
proof. We begin with the definition of Riemannian curvature tensor and then define three important
parameters that govern those quantities.

Definition 12 The Riemannian curvature tensor is a map R : V(M) x V(M) x V(M) — V(M)
for V(M), the collection of vector fields on M, defined by

R(u,v)w = Vo, Vyw — Vo, Vyw — Vi jw  for u,v,w € V(M),

def

where V is the Levi-Civita connection on M, and [u,v] = Vv — Vyu is the Lie bracket of the

vector fields u and v.

Definition 13 Given an auxiliary function ¢ with parameters {y and {1 and the operator ®(,t) :
V(M) = V(M) defined by ® (v, t)u = Dypu(y(t) — R(u, v (£))7'(t),

* Ry is a parameter such that for any t € [0, h] and any Hamiltonian curves -y starting from
M, with step size h and () < {y

1207, )Ly 2 B g1 (0 @03 0201y < B

* Ry is a parameter such that for any t € [0, h|, any Hamiltonian curves vy starting from M,
with step size h and ((v) < o, any curve c(s) starting from ~(t) and any vector field v(s)
along the curve c(s) with v(0) = ~/(t),

SRZ.(’

where v(s) in ® indicates a Hamiltonian curve at time t starting with an initial condition

(c(s), v(s)).

* R3 is a parameter such that for any Hamiltonian curves -y starting from M, with step size h
and £(vy) < Lo, if ((t) € Ty )M is the parallel transport of the vector v'(0) along v, then

dc

d
£Tr<1>(v(s)) I

+h IIst(8)|s=o||7(t)> )

s=0 s=01l~(t)

sup [ (7, £)C(t) ) < Rs.
tel0,h]
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A.2. One-step coupling and convergence rate

In this section, we bound the TV distance of two one-step distributions of the ideal RHMC starting at
two close points in terms of the redefined parameters and step size. The following result is a slight
tweak of Theorem 29 in Lee and Vempala (2018).

. . 1/5Y |
Lemma 14 For z,y € M, and step size h < min (105;1/2, (103%%1) ) if dg(z,y) <

1
Tog in (1, o ) then

1 1
dry(Ps, Py) < O (h +h° Ry + hRs) do(@,9) + 55-

This provides the convergence rate of the ideal RHMC for a general density e~/, which is a
slight generalization of Theorem 30 in Lee and Vempala (2018).

Proposition 15 Let n be the distribution obtained after T steps of a lazy ideal RHMC with the
0(9)

stationary distribution 7 satisfying % ~ e @) Let A = sup ScM 7;( ) be the warmness of an

initial distribution 7o. For any € > 0, let p = 5% and M, a good region. If step size h satisfies
1 I 1 1
h? < ——— h° < h*Ry + h°R < Jg @nd h < o min (1,
S T00R, " S 10sRze, R TS o aa = oo i By )

where the parameters are defined in Definition 11 and 13, then for the isoperimetry Yz, of M,
there exists T = O ((thMP) log %) such that dry(rp, ) < e.

Toward this result, we walk through how each lemma and theorem should change so that they
can be put together well, along with the modified smoothness parameters and auxiliary function. We
start with the formula of the probability density of the one-step distribution at x.

Lemma 16 (Lee and Vempala (2018), Lemma 10) The probability density of one-step distribution
of RHMC atx € M C R" is

pe(z)= > |DHamyy(v,)| ! 9 (Z)J exp <_1 H%Hi) . (A.1)
vz:Hamy p (vz)=2 (27T) 2
défp;:(vw)

Note that the velocity v, is normalized by g(:r)_l, since the domain of Ham,, ;, is endowed with

the local metric g(z). In the Euclidean coordinate, the density can be rewritten as

_ iy
pe(2)= D [DTaa(e)]” M(),GXI’(_Q}‘”m”;(z)—l)

vl Ty p(vh)=2

= Y DTl i), (A2)

0T 0 (V5)=2
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where p? is the probability density of the Gaussian distribution N'(0, g(x)). This relation follows
from v/, = g(x)v, and | DT, p,(v})| = % (see the proof of Proposition 30) for 2’ =
g(x)||g(x

Hamg, j,(vy) = Ty (V).

We can derive (A.2) in the following way as well. Intuitively, the probability of moving from z to
z through one step of RHMC is the summation of the probability of choosing a proper initial velocity
that brings z to z, which is the probability density function of (0, g(x)) divided by | DT}, 5 (v%,)|.
This Jacobian term comes from the change of variables used when moving back from the position
space z to the velocity space v’,.

High-level idea. We are ready to run through a high-level idea of the one-step coupling proof in
Lee and Vempala (2018). For two close-by points, it is plausible that the probability densities at x
and y are similar, and one should relate those two densities to quantify how close they are, which in
turn results in a bound on the overlap of two one-step distributions. It is a Hamiltonian curve that
enables them to handle this task in low level. Then they find a one-to-one correspondence between
the set of regular Hamiltonian curves from x and y.

As one varies a starting point of a regular Hamiltonian curve from z to y along a curve ¢(s)
joining x and y, one should quantify how fast each term in (A.1) changes. To this end, they first
prove that the determinant of Jacobian is close to 1" and that Ham, ;, is locally injective, which
makes it possible to work with an approximate but simpler density

HOE DY Mexp <—; |vx||i> : (A3)

ve:Hamy, p, (ve)=2

Next, they prove the following on variations of Hamiltonian curves; for a given endpoint z, as the
starting point of a Hamiltonian curve moves along c(s), there exists a unique initial velocity Ue(s) at
each point on ¢(s) that brings ¢(s) to the fixed endpoint z in step size h (i.e., Ham,(,) ,(ve(s)) = 2).
At the same time, they prove that the regularity of Hamiltonian curves, ¢ (%(S)), does not change
too rapidly along ¢(s), quantifying how much the proper initial velocity changes as well. These are
enough to achieve one-step coupling in terms of only R;. For further improvement, a more accurate
estimate (A.4) of the determinant of Jacobian is used instead, leading to an improved bound via R»
and Rs.

Following this approach, we elaborate on how each of the proof ingredients can be formalized
under the redefined parameters. The first ingredient about the local injectivity of Ham, ;, and an
approximation of its Jacobian follows from Lemma 22 in Lee and Vempala (2018) by restricting
starting points of Hamiltonian curves to M, in the statement.

Lemma 17 Let (t) = Ham, ;(v,) be a Hamiltonian curve starting at x € M, with £(~y) < £y
and step size h satisfying h> < 1/Ry. Then DHamy, j, is invertible and

—/h t(h_t)Trcb(t)dt < W.
o h

1
log EDHamxvh(vx)

10

As a corollary, we obtain the following estimate on the Jacobian of the Hamiltonian map.

Corollary 18 Let (z(t),v(t)) be the Hamiltonian curve starting with (x,v) € M, x T, M, where

T, M C R" is endowed with the local metric g(x). For step size h with h? < m, and
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v € Ty M with {(Ham, +(v)) < £y, we have

he~ 80 < | DHamy,, p,(v)| < he00 .

Namely, | 7 | DHam, j,(v)| — 1| < 0.002

The next one is the local uniqueness and existence of Hamiltonian variations, obtained by
adjusting Lemma 23 in Lee and Vempala (2018).

Lemma 19 Ler v(t) = Ham, ((v,) be a Hamiltonian curve starting at x € M, with £(~y) < £y
and step size h satisfying h?> < 1/Ry. Let x = v(0) and z = ~y(h) be its endpoints.

e For a neighborhood U of v € M, and neighborhood V' of v, there exists a unique smooth
invertible vector field v : U — V such that v(x) = v, and z = Hamy, 5, (v(y)) for any y € U.

* Forn € T, M, we have that |V (2|, < 55 [nll, and |0+ Vyv(z)|, < SRik|nll,.

o Let v5(t) = Ham) 5 (v(c(s)) be a variation of vy along a path c(s) in U with c(0) = x
Os
and ¢ (0) = n. Fort € [0, h], we have H Vas(t) < 5|nll, and || Dsv5(t)|

\SZOHW) s=olby <

% Il

The first item reveals the local uniqueness and existence of proper initial velocities at any starting
point around x. The second item bounds how fast the initial velocity at = change in a given direction
7. The last item extends the second result to each point on 7(¢).

The corresponding result in Lee and Vempala (2018) is made for all regular Hamiltonian
curves from M. Since its proof relies on Lemma 17 to apply the implicit function theorem to
f(y,w) = Ham, j,(w) and also on the definition of R; for the second result, the statement should
be restricted to Hamiltonian curves starting from M.

We can now prove that regular Hamiltonian curves starting at « with an endpoint z can be
smoothly varied along the straight line between x and y, with the regularity of variations almost
preserved.

Lemma 20 Let y(t) = Hamy ;(v,) be a Hamiltonian curve starting at x € M, with £(v) < $4g
and step size h satisfying h* < 1/Ry. Let x = v(0) and z = ~(h) be its endpoints. Fory € M,
and f = ﬁ, let ¢(s) = sf + x be a straight line joining x and y with ¢(0) = x and c(s') = y.

< 1 mi Lo
Let 8" < 156 min (1’£1>'

* There exists a unique velocity field v along c such that z = Ham,q) 5, (v(c(s))). Furthermore,
this vector field is also uniquely determined by c(s) and v(c(s)) on c(s).

* ((Ham, ) 5 (v(c(s))) < £o for all s.

Compared to the original result, we use a straight line instead of a unit-speed geodesic between
x and y, as the geodesic might escape the good region M ,. The first item implies that there exists
an initial velocity v(c(s)) at each point ¢(s) such that we can reach the fixed endpoint z via the
Hamiltonian trajectory with the initial condition (¢(s), v(c(s)). The second item indicates that the
regularity of such Hamiltonian trajectories is preserved up to constant along the straight line.
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Proof The first result can be proven similarly as in Lee and Vempala (2018). For the second, we

denote by s the Hamiltonian trajectory starting at c¢(s) with the proper initial velocity v(c(s)).

We note that s = ||y — z||, and dfi(ss) = B. By self-concordance of g, we have that ||B]|,) <

(1+ [Jlz —c(s)]l,) 18], <1+ . Thus by Lemma 19,
5 5
1Dsv(s)les) < o 1Bllegs) < 57 1+ llz = els)llz)
and
() < £ >+/S’ L y(y)| ds < 2 w/sl 1Bl + 2 18y ) @
Ty) = £\ Vx o |ds Vs)| AS = 5 0 1 ; o(s) T 5 c(s) ) @5

1 7 1
< 550 + 015 - 5(1 +5) < 560 + 015 -4

< £07

where we used that 1 + s’ < 1.01 and s’ <

1 Ly
100 ¢4 * .

The next two lemmas provide bounds on some quantities via Ry and R3, which are modifications
of Lemma 34 and 32 in Lee and Vempala (2018).

Lemma 21 Let vy be a family of Hamiltonian curves joining c(s) and z defined in Lemma 20 with
0(vs) < o and step size h satisfying h* < 1/Ry. Then,

h —
/0 t(hh t)iT@ (v(0) dt| < O (W*Ry)

Recall that -y, given in Lemma 20 has a starting point in M, with £(-y,) < £y. Since its original
proof uses the definition of Ry and Lemma 19, and they are applicable to regular Hamiltonian
curves starting from M, with £(ys) < /o, the original proof of this lemma still works with our new
definitions of the parameters.

Lemma 22 Let v(t) = Ham, ;(v,) be a Hamiltonian curve starting at x € M, with £(~y) < £y
and step size h satisfying h* < 1/Ry. Then,

h
3 [Vn @2 < 1w, m), |+ 352 Rs Il

We can follow its original proof by using Lemma 19 and the definition of R3, as the regular
Hamiltonian curve considered starts at € M. We are now ready to prove Lemma 14.
Proof of Lemma 14 Let c(s) be the straight line joining  and y, contained in M, due to the

convexity of M,. We denote ¢ ¥ min (1, é—%). For x € M,, let V, be the set of velocities v,

such that £(Ham, ;(v;)) < 34o. Note that P (V) < 155{ by the definition of (o, where P} is
the one-step distribution over velocities (not position) at x. Since c(s) is contained in M, and
~(t) = Ham, 4 (v,) has regularity at most 1¢,, Lemma 20 guarantees the existence of a family of

Hamiltonian variations v;(t) joining ¢(s) and y(h) with £(~y,) < £y forall s € [0, |ly — || ,].
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We define an approximate probability density p.(s) of p.(s), where p,() is the probability density
of P¢(s). Driven by Lemma 17, for z € M we define

_ d(f |g Ham )’ h t(h—t)
pc(s)(Z) = 2w Hamg(g) 5 (v)=2 (27Th2)" exp <_/0 h Tr®(vs, t)dt | -exp | — ||7)Hc(s

def
—PS(S)( v)

(A4)
which is obtained by using exp (— Oh t(hh_t) Tr@(t)dt) in place of ‘DHamC(S)’h(v)‘_l in pz(z)
(see (A.1)).

We now relate p(s) to p(s). Note that the ratio of the summand of p()(2) and p.(s)(2) is equal

n exp( fh t(h t) Tr<I>('ys,t)dt>

|DHamC<S)Yh ’7

to ﬁg(s) (v)/pg(s) (v) = (see (A.1)). Due to ¢(~s) < {y, we can apply

Lemma 17 to y5(t), obtaining

(oo o (- Jy e ) @&
exp | — < — < exp .
10 |DHamc(S | 10

Using the conditions on the step size h, we can show that for C 14 103£

2 2 2 2
exp((h R1)>§1+2(h 1) §1—|—2min<1 7&] >§C

10 10 10107 1034,
Thus, the ratio is bounded below by C~! and above by C, and it implies that
O™1 - Py (V) < By (V) < C- D (). (A.5)

By Lemma 20, for each v,, € V,, with Ham,, ;,(v,) = # there is a one-to-one correspondence between
v, and vy, where v, satisfies Ham, ;(v,) = z. For this vy, (A.5) leads to

pg(vz) - pg(vy) <C-: ﬁg(vx) —-c! 252(%)
= (02 ) c! (”9&) +C~ (ﬁg(”x) - ﬁg(vy))
< (02 - 1) pa:(vx) +C~ (pa:(vx) - ﬁg(vy)) . (A.6)

In a similar way, we can show that

(C2 = 1) p2wa) + C (2(02) — 3(wy)) < p2A(0a) — 2(0y). A7)
Using this,
pe(2) —py(z) = > ) — D> vy
vg:Hamg p, (vg)=2 vy:Hamy j (vy)=2
< 3 P (va) + > (P2(v2) = P(vy)) s (AB)
Ve Ve Hamy, p(ve)=2 Vg €V Hamy, p (vg)=2

where in the inequality we only left v, such that Ham,, 5 (v,) = # and that v, is the counterpart of
vy € V, given by the one-to-one correspondence.
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We now bound the TV distance between P, and P, as follow:

drv(Pz, Py) /Pz z)| dz
= / Z p;D vy )dz + / Z ]pg(vx) — pg(vy)‘ dz
( ) z%vz Ham, h(vz) z Vg €Vt Ham:c h(vz) z
< PHVS +(C? -1 O (vg)dz
oA (V) + ( ) > P2 (V)

Z ve€Va ‘Hamg, p, (vz)=2

+2/ Z |ﬁ2vz)—ﬁ2vy‘dz
v €V Hamy p (ve)=2
17 1

< .
< 00 100 pm v)dv + 2 pc(s (Ve(s)) | dsdz
Z 0y €V Ham, p, (vz)=2
d o
< = +2// Z %pc(s)(vc(s)) dz ds, (A.9)

v €Vy:Hamy p (ve)=2

dﬁfFS
where we used that [;, p%(v)dv < 1 in the last inequality, and v,(y) is the initial velocity at c(s)
corresponding to v, € V,, (via the one-to-one correspondence).
Let us bound Fj in terms of the parameters. From direct computation

d ht(h—t) d , 1d 2\ o
%pc(s) (UC(S)) = <_A h %Trq)(’ys(t))dt - 5% HUC(S)HC(S) pc(s) (Uc(s))'

Due to ]52(5) (vc( )) < 2pc<s)( o(s )), we have

Eitan| <2 (| [ D L mon] + 5| ol

As £(ys) < £y due to Lemma 20, it follow from Lemma 21 that

) st

hitth—t) d 1]d
F, < 4/ Z </0 - dSTrq)('y;(t))dt‘ + = 5 ’ ch (s) HC(S )pg(s)(vc(s))dzz
UxEVx Hamz h( ):z
d
<0 (hQRz) / py(v)dv + 2/ Z Ts HUC(S)Hi(s) pg(s)(vc(s))dz

Ve EVy: Hamx n(ve)=z2
<O (h*Rs) + 2/
{v K(Hamc( y,h(v) )<€o}

déf S

H ”c(s pc s)( )d’U,

where we used that fo pi(v)dv < 1 again for the first term and that £(-ys) < ¢, as well as the change
of variable with z = Ham_(,) 5 (v(c(s))) for the second term.
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We now bound S in terms of R3. As £(vs) = £(Ham,y) 5 (v(c(s)))) < fo, we use Lemma 22 to
show that

d ., o
75 Illecs)

().,

We recall from the proof of Lemma 20 that H %c(s) HC(S) < 1.01. In addition to this, as v is a Gaussian

S = Ee('YS)SZO

< + 6hR3E )<y || 7-c(s)

]Eg('Ys)Seo

S

vector with respect to the local metric, ‘<v, d%c(s)>c(s) } = O(1) with high probability, which easily
follows from the standard concentration inequality for the Gaussian distributions. Therefore,

1
Substituting this back to the inequality for F}, we have
2 1
Fs<O|(h R2+E+hR3 .

Putting this to (A.9), it follows that

1 1
dTv('Px,'Py) <0 <h2R2 + E + hRg) Hl‘ — yllz + %

1

Too- it follows that

Due to || — y|,(,) < 2dg(x,y) by Lemma 64 and (<

1 1
< 2 - —
drv(Pz, Py) < O (h Ry + 5 + hR3> de(z,y) + 5000

Using this one-step coupling, we can prove Proposition 15 on the mixing time of the ideal RHMC
for a general density e~/
Proof Due to the assumptions on the step size h, Lemma 14 implies that if dy(z,y) < h, then
drv(Pz, Py) < ﬁ. By Proposition 9 with p = s = 5%, we can obtain the following lower bound
on the s-conductance:

O, =0 (thp) .

By Lemma 7, we have

o2\
dTv(Wt,W) SSA—I—A(l— 28> .

Therefore, it suffices to choose 7' = O ((hl/) M,) - log %) to ensure dyy (77, ) < €. [ |
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Appendix B. Convergence rate of discretized RHMC

We bound the remaining two terms, drv (f;, P,) in Section B.2 and drv (P, f;) in Section B.3,
obtaining a result on the one-step coupling of RHMC discretized by a numerical integrator with
parameters C, and C,. To analyze the convergence rate of the discretized RHMC, we define
additional parameters.

Definition 23 Given an auxiliary function {, a good region M, and step size h, we define new
parameters My, M, Mo, M5 and £y, (1, R;.

* M, is a parameter such that for any t € [0, h] and any Hamiltonian curve -y starting at
x € M, with step size h and ((~y) < £y

n< M and |[Vf(y()5-1 < M.

* My is a parameter such that for any t € [0, h] and any two Hamiltonian curves 1,2 starting
at x € M, with step size h and ((~y;) < o fori =1,2

IV (1) = V2 ()l g ()1
[v1(t) = 2],

< M.

* Let vy be any Hamiltonian curve vy starting from (x,v) € M, x T, M with step size h and
U(y) < Ly. Let Z;’s be intermediate points produced by a numerical integrator with step size
h and an initial condition (z,v). We define M to be the smallest number such that for any

t €[0,h]

F((0) — £(z;)] -
-z, S VMifordlj

We define M3 to be the smallest number such that for any t € [0, h]

197 (5()) = V £y
RGEEE

< M5 forall j.

o Let Wp be a convex subset of M that contains Ty, and ~y(h). We call an auxiliary function
¢ symmetric if {(Ham,, 5 (v)) = {(Hamy ,(—")) for Fy(z,v) = (2/,v"). For a symmetric
auxiliary function !, the parameters (o, 1 and Ry are defined as in Definition 11 and 13 with
M, in place of M,,.

Note that such Wp always exists, as M is convex. We are now ready to formalize the informal
statement on the convergence rate of RHMC with a sensitive integrator for a density e~/ on the
Hessian manifold induced by the highly self-concordant barrier of M.

Theorem 24 Let 7 be a target distribution on a convex set M C R"™ and A = supg- g %
be the warmness of the initial distribution my. Let M be the Hessian manifold with its metric
induced by the Hessian of a strongly self-concordant barrier and wr the distribution obtained
after T steps of RHMC discretized by a numerical integrator on M. For any € > 0, let p =

sy and M, any good region. If step size h guarantees the sensitivity of the integrator and
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2 L_mh5< b Ry R2Ry <1, h < — min (1,0 h%L

- maX(Rl,Rl)’ - 103R%€1’ 2 3=0 0= 1010 ’61 ’ T n+ VM -|—]\427
10710 A 1 10710

hCy(z,v) < , h2Cy(z,v) <1079 min | 1, =, , h2Cy(2,0) < ———

o(@v) < Vn o(@0) < b n+ /M + /Mj o(mv) < n+ My

forz € Myandv € Vg, = {v €R™: v, < 128/n, {(Ham, ((g(z)"1v)) < %170} (see

(B.1)), where the parameters are defined in Definition 11, 13 and 23, then for the isoperimetry ),
of M, there exists T' = O ((thp) - log %) such that dry(np,m) < e.

B.1. Stability via self-concordance

We summarize computational lemmas used in coupling one-step distributions and bounding rejection

probability. Going forward, the self-concordance of g is repetitively used to relate local metrics g at

two close points (see Lemma 25). We recall that (1— || — y||g($))29(93) =g(y) = mg(az)
g(x

for the local metric ¢ induced by the Hessian of a self-concordant barrier when ||z — y||g(;p) <c< L
It implies that the local norm of a vector with respect to g(z) is within a constant factor of the local
norm with respect to g(y) (and vice versa). Namely, for a vector v we have [|v]|;,y < O(1) - [Jv]] ()
and [|v]|5,) < O(1) - [|v][y(,)- It enables us to move back and forth between the local metric g(z)
and g(y) whenever x and y are sufficiently close in the local metric g(x) or g(y).

Lemma 25 Let g(z) = V2¢(x) for some highly self-concordant barrier ¢.

« (1—ly — zllg))?g(x) = g(y) = WQ(Q?)-

|Dg(@)v v+ < 20l0l2,)-
* IDg()[v,0] = Dy(w)lo, vl < ey o Iy = #lgey
« [ Dg(a)lw, v] ~ Dg(a) e, wlllyiy 1 < 2l — wllygy 10+ w0y -

Proof The first fact follows from Theorem 4.1.6 in Nesterov (2003). The second fact follows from
Lemma 4.1.2 in Nesterov (2003). To be precise,

HDQ(LU)[U,U]HQ(I)fl = ! ﬁnax—l Dg($)[vavau] <2 ani(w) :
Ullg(a)=

The third fact is from the following calculation:
1Dg(y)[v, v] = Dg()[v, v]llg(z)-1

1
SAHD%@H%@—xMMuy—ﬂ%mlﬁ

1
1
S ||D29($+t(y—$) v,0,Yy =T | T —x —1dt
(Al—ﬂm—ﬂm@ ) )

1
6
< 115 o y—ap 19— 2l gty dt

/0 1= tlly — @fly@ " o@Hly=o) g(a+t(y—2)
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1
6
< dt - ||v QI Y— x| oz

/0 1=ty alli ooy = oo

_ 6
T (= ly = zllg@)

0o lly = ol

where the third and fifth line above follow from the first fact, and the fourth line follows from
Proposition 9.1.1 in Nesterov and Nemirovskii (1994).
The fourth fact is from the following calculation:

|Dg(@)[o, v] — Dg(a)fw, w]ll ()

:” |I|IlaX 1DQ(.’L’)[’U,’U,U] - Dg(af)[w,w,u]

Ullg()=

= | ﬁnax . Dg(z)[v — w,v,u] + Dg(x)[w,v — w, u]
Ullg ()=

= max Dg(x)[v—w,v,u]+ Dg(z)v—w,w,u]
l[wllg(zy=1

= max Dg(z)v—w,v+ w,u
||U||g(g;):1

S Inax 2”1)_ng(2) ‘|v+w||g(:v) Hqu(z)
||u||g(x):
<2|jv —w|

o) 10+ 0l g0 -

Lemma 26 For z,2’ € M, let g = g(z) and ¢’ = g(2'). Let 6, := |z — 2’|, < 0.99 and

by = [lv = v'[| g1
L (1-0(5:))g = ¢ = (1+0(d:))g-
2. (1-0(0.))g =g = (1+0(5))g
31-00:)g ' =g 2 (1+00)g7"
4. (1-000,))g ' 297 2 (1+0())g" "

7. ‘g/ sgi| <1406, & ]gag |, s1+000).
8. \g%g'*% JS1400) & Hg*%g’% LS 1+0(0.).
9. |[g7 = ¢~ ||, S 0 llpllys -

10. |lg7'p = g4l , < lIp = ally—1 + O(3z) llall -
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11, |Gk (a,0) = G )|, < 60+ O) [0 -1 -
12. || 52 (@, 0) = G2 @ )| o1 S G+ 8 [0l g ([olly=1 + [0l g-1) + nde + [V f () = V()]
Proof The first four lemmas follow from Lemma 25-1. For 5 (and 6, 7, 8 similarly), using 3
(1— 0@ < g2g""'g7 < (1+0(8,))1.
Thus —O(5,)] < I — g2g'"'g% < O(6,)I. Also by the definition of two-norm, it follows that

Fact 9 follows from the following computation:

1 1
292

g ) <14 0(6,).

It =g Mwll, = |1 = g9 <0 Ipl, 1 (Fact)

Fact 10 follows from the following computation:
lg™'p =g tall, <[l —a) + (97" =9 Nl < lIp = dll -1 + O) llall -1 -
| ———
Fact 9

Fact 11 follows from the following computation and Fact 10:

OH H
Hav(:p,v) —— (]| = Hg_lv — g’_lv'Hg < 6y + O(6y) Hv’”g_1 .

0
ov p

For Fact 12, we note that

OH OH

%(at,v) - %(rc’, V') = (Vf(z) = Vf(a')

1 1
=5 (Dglgv.g7 0] = Dg' [¢7 v, g 0]) + 5 (Tr(g™" Dg) = Ta(g" ' Dy'))

= —% Dg[g7'v,g" "] — Dg' [g7'v.g 0] + Dg [g7 0,97 v] — Dg' [¢ v, 9]

F S

1
+3 Tr(g~'Dg—¢g'~'Dg)+ Tr(g ' Dg — g"ng’)) + (Vf(x) = V().
T R
For F', by the third fact in Lemma 25

1 1
a=ay ool lle =2l = gy 005+ 6o S Sa ol

[Fllg-1 S

For S, by the fourth fact in Lemma 25
1Sy S NSllg-1 S [lg™ v =g~
< (Hv -

< (&J + 6, ||v|!g—1) (”“”g'—l + |

}g_lv + g/_lv’|

g/ /

gt 00 [0l 1) (ol s + [

glfl) .

g

)

31



KOOK LEE SHEN VEMPALA

For T, using the stochastic estimator of trace

|Te (9" Dg — ¢~ Dg)||,-» = max Tr((g~" —g'"!)Dylu])

[[ullg=1

= max Tr (g%(g‘1 —g’_l)Dg[U}g‘%)

[[ullg=1

1, _ _1
= max E. oy [+ o207 — g )Dolulg 3]

l[ullg=1

= max EDg [u,g’%z, (97" —9’71)952}

lull, =1

< 2E max |[[ull, Hgiéz
|ull ;=1 g

[ll g
Fact 9
1
< O@E 2l ||o3] _, = 06 215
= 0(ndy).

For R, in a similar way that we bounded || T'[[ ;-1

|72 (4~ Dg — g~ D) - = |

_1 _1 _1 _1
E. N (0,1) (Dg[g’ 22,9'722] = Dg'lg'" 22,4 22])“971

<E HDg[g’*%z,g’*%Z] — Dg'lg"" 22,9 27] -
Use Lemma 25

< O(6,)E ‘ gz )z < O(6:)E |12]l5

= O(ndy).

By adding up these bounds, we obtain
192 (@, 0) = G (@, 0|1 S (8 0 lolymr ) (Iollyms + 10y ) + by + IV £ (2) = T F ()] -1
|
We now bound the partial derivatives of H with respect to  and v. For H; and H» given by
Hi(z,v) = f(z) + %log det g(x) and Ha(z,v) = év—rg(x)_lv,

we recall from (2.1) that

OHy, L

B (x,v) =V f(x)+ §Tr(g Dg),

W(a},v) = §Dg[g v,g v] and W@:’U) =g .

Lemma 27 Forxz € M and g := g(x), the following inequalities hold.
0Hi(z,v)
A IR
OHy(x,v) OHs(x,v) 2

R I e L
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OH1(z,v)
Proof For =5,

H 0H,(z,v)

—1
5 g~ Dyg)

< HVf(a:) + %Tr(gleg)

1
< IVl + 5T

-1 -1

g g g

Note that

_1 max Tr( “1Dglu])

1
“Tr(g~'D
H 5 r(g~ Dg) 3 e

gfl

By self-concordance, for any h € R™ we have h' Dglu]h < 2 HhH; and thus Dg[u] < 2g, resulting
in g_%Dg[u]g_% < 21. Then

Tr(g~ ' Dglu]) < 2Tr(I) < 2n.

OHs(x,v)

For =552
0Hy(x,v) 3
(s [ P
g

OHs(z,v)

For =222
8H2(a:,v) 1 1 1 2 )
Hax < |gPeloteg el < gl = Tl
9 g

where the second step follows from Lemma 25. m

B.2. Coupling between ideal and discretized RHMC

We bound drv (f;;, P.), the TV distance between the one-step distributions of the ideal RHMC and
the discretized RHMC without the rejection step. We use P, to indicate f;; for simplicity in this
section only. We denote by p, and P, the probability density functions of P, and P, respectively.
We let g = g(x) and g, = g(x¢).

Let us elaborate on our approach. We work with the Euclidean metric this time, as we find it
easier to handle numerical integrators with the Euclidean representation. As mentioned in (A.2), the
one-step distributions P, and P, of the ideal and discretized RHMC on M are the pushforwards
by T}, and T, of the Gaussian distribution of initial velocities on the tangent space T, M. Thus, it
follows by the change of variables that for z = T}, (v*) = T, (v) these two probability densities on
the different spaces (one on M and another on 7, M) are related as follows. For p}, the probability
density function of N'(0, g(x)),

_ Py (V") AN i (v)
px(z) - ) Z . |DT$(U*)| and pz(z) - Z ‘DT ’

UTJC

We aim to couple these v* and v on T, M. In this coupling, we can exclude ‘bad’ velocities, as
long as such velocities have small measure. To see this, let i} ; be a set of bad initial velocities of
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measure € < 1 and V7 s00d be the rest. Assuming a one-to-one correspondence between v and v* for
v e VZE ., we have that forz e M,

good?

dry(P,.Py) = sup / (P(2) — pa(2))dz

ACMJ A
Pz (v) (V)
< _Pe) d
_Asél}\)/l/A 7 ZU:) Z}DT ‘ *TZ ‘DT (v*)| z

piv) )
S/z d”f&%/ Z Z(\Dnm |DT<*>|>dz

bad

) pi(v) p3(v*) [DT4(v)]
= P; (Vaa) +:1c1/1\)/l/ Z ‘DT ‘ (1_ pi(v) \DTI(U*N) a2

i T (v)=

where P} is N'(0, g(z)), and in the third line we used the one-to-one correspondence between v and
() [DT= ()]
Pz (v) |DTe(v*)]

v* to pair them in the summation. If we show thaton v € V* 00d the term of 1 —
bounded by a small constant (say, 1), then

D * p; v
dTV(Pz,P ) < P (Vi)ad +77 Sup / Z m(()mdz
veVir Taw)=z 1
<PV +n [ pie)de
good
- P*(‘/bad) +7IP*( good)
<n+(1-nk.

By taking ¢ sufficiently small, we can bound dtv (P, P;) smaller then 1/10.
For each x € M, our bad set V. ; of velocities is the union of the following sets:

V1 = {U cR": ||UH971 > 128\/5},

Vo = {v e R™: Z(Hamm(g(:zj)_lv)) > ;fo} )

and thus .
Vitoa = {1} eR": vl ;-1 < 128y/n, £(Hamy (g(x) 'v)) < 250}. (B.1)

We remark that a velocity v € R™ should be normalized by g(x) ! before feeding into Ham, 4, since
the domain 7, M of Ham, ; is endowed with the local metric. Since the standard congentration
inequality for the Gaussian distributions implies that P;(V}) < ﬁ, and the definition ¢y implies
that P} (V2) < 1&5. it follows that P (ViZ,) < 0.02.

B.2.1. DYNAMICS OF IDEAL AND DISCRETIZED RHMC

We study the dynamics of the ideal and discretized RHMC.
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Proposition 28 For x € M, andv,v' € VE ., let g := g(x) and h step size satisfying

good ’

10~10 10-10 1 l NG
2 < 2 < 2 0 <
h Y VAR ,Cr(x,v)h 1010mm( €1> Cr(x,v)h < 1010 -
@ @ ® @

Fort € [0, h], we let (x4, v;) and (x},v;) be the Hamiltonian curves of the ideal RHMC at time t
with initial conditions (x,v) and (x,v"), respectively. Let (T,v) be the point obtained from RHMC
with a sensitive second-order numerical integrator with the step size h and initial condition (x, v).

def def def _
Let ¢ = SuptE[O,h] ||,It - x;“y(a;t)’ ¢ SuptE[O h ||Ut U{EHg(a:t)*l and Ft(U) = g(l't) 1(Ut - U)‘

L lz =z, = O (tv/n + t*(n + VM) < 1 and [|[v — vill,-1 = O (t(n + v/ My)).

2. (I =o(1) llvn = vplly-1 < ¥ < (T +0(1)) [lo =0y

3. (L=o(1) | Te(v) = Ta ()], < ¢ < (1 +0(1))hp < (1 +o(1)hflv =],

4. [[Te(v) = Ty ()], < Ljv = '] ;-1 for some L < 1/10.

5. For z = T, (v), there exists v* € R™ with z = T}, (v*) such that £(Ham, ;(g(z) " *v*)) < fo

and [[v — v*||,-1 = O (%) HTx(v) —T.(v) Hg. Moreover, there is a one-to-one correspondence
between v and v*.

Proof of 1. For 0 < ¢ < h, let us define ¢(t) := ||z — z¢[|, and 9)(¢) := ||v — v¢|| ,~1. Note that

do(t)  do*(t)  d
T @

=9 (%;I(xt,vt)>Tg(xt — ).

2|z — x|, v —x) gz — )

Hence,

|z — x
g

lg

e —all, o0 ]—‘( 2 o) ofe—2)

< oOH
= %(l’ta Ut)

and |¢'(t)] < ‘ (¢, vt) H When [z — x|, < 1 for 0 <t < h, since the local norms at z and
¢ are within a small constant factor as follows, we have

o
ov

0H
<2 Ha(xt,vt) =2|vell,-1  (Lemma 27)
v gt !

< Aolly-1 < 4o = vl g-1 + [vll 1),

(55t7 Ut)
g

and thus

# (1) < 10%i +4(t) it o~ ], < . B.2)
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Similarly, we can obtain

and thus | (¢)] < | %—g(xt,vt)Hg,l. If [z —af],, < 1 for 0 < ¢ < h, then by Lemma 27

oH
Ham(.%'t,vt) < 2(||’Ut”§;1 + vV M1 + n) ( S Mp)
gfl
<2 (4llwll- + My +n)
<2 (8(ol-1 + e = oll}-) + VM +n) (- (a+b)? < 2(a + 1Y)
< 10% + 16¢%(t) + 2/ My,
and thus

: 1
W(t) < 10% + 169°(t) + 24/ My if [lz — a4, < T (B.3)

Now let us solve the coupled inequalities (B.2) and (B.3). When v (t) < 1000¢(n + /M), (B.3)
becomes

Y'(t) < 1050 4 24/ My + 16 - 10%% (n 4 /M7)?,
and this inequality holds up until % satisfying foh (1097 + 2¢/M; + 16 - 10°¢%(n + /M7)?) dt <

1000h(n + v/M7). We can check that for any h < 1710 (i.e., condition (D)) this integral
y vV n+V/ My &
n 1

inequality is satisfied. Recall that we have to ensure that ¢(t) < % for t < h. By substituting
P (t) < 1000t(n + /M) into (B.2), we have

¢ (t) < 103\/n + 4000t(n + /M),
as long as ¢(t) = ||zt — x|, < 1. Itis straightforward to see that for ¢ < h one has

n 2000

3 2 -7
B(t) < 10°v/nt + 2000¢%(n + /M;) < 10 /A 100
1
106°
Proof of 2. From the firstitem, ||z — 2|, < |2 — 2|, + [lz — 23], < 1075. Due to Lemma
26, we can switch the local norms among ¢, g; = g(z;) and g; = g(«}) by losing a multiplicative
constant like 1 + 1074,

For 0, = ||z — zéHgt and 0, = |lv; — Ué”gt_l’

t(OH OH
_ / i T / /
v —v +/0 <8:1: (zs,vs) o (ass,vs)> ds o

oH OH
%(%Ut) - %(9027%/5)

<

/
Jloe = will, =

< HU — 1;’”971 + O(h) sup
¢ t€[0,h]

-1
i

<o —o/[|, -+ +O(h) sup
¢ te|o,

> (@0 elforllgm) el [l 0) + (M)
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where the last step follows from Lemma 26-12. By the first item and (D, we have [[v¢[| -1 , [[vf][ ;-1 <

7v/n + /M and thus
Jor = ot < [lo— /], + O (111\/” + VAL + 6 (n+ /O + M2)>
< (1+o(1)) o — /||, s +O(h)w (\/n + /My + b (n+ /M + M2)> ,

where we used ¢ < (1 4 o(1))O(h)v that we prove in the next item. Taking the supremum over
t € [0, h], we obtain

(1 — O(h) (\/n—i- \/ﬁl+h(n+ \/E+M2))) ¥ < (14 0() o=/,

Taking a sufficiently small constant in /& and using (D), it follows that ¢/ < (14 o(1)) [lv — v'[| -1
Proof of 3. By Lemma 26-11,

toH
th - Jj{f”gt = H / a xsyvs - <.’13 + 0 o (CCS,’US)dS)
gt
oOH
< O(h) sup Ty, v — (), v}
) g |y ) = G|

O(h) (w+¢ n+\/ﬁ1).

By using (D and taking the supremum over ¢ € [0, h] and a sufficiently small constant in , we obtain
the inequality of ¢ < (1 + o(1))O(h)v as we promised, and the second item implies that
& < (1+0(1)O() o =]
Proof of 4. By Lemma 26-12,
HFt(v) - Ft(v/)H = Hgfl (v —v) — gé 1(”1& - U/)Hgt
< o —v = 0/ + O [l — |, 0§ — /]|,
t

<6 <O(h(n+v/F))

. ‘ /Ot <%];I($S’US) — %]j(;gg,v;)) ds o +0 (h <n+ \/M)) ¢
SO(h)t:}é%] %Z(xt,vt) %Z(xiavé) ) O(h (n+\/ﬁ1))¢

9t

We can bound the first term by O(h?) (\/ n++vM +h (n + My + Mg)) 1 by following the

proof of the second item. Using the second and third items with the condition (I), and taking a
sufficiently small constant in A, for some L < 1/10

ITa(w) = D), S B2\ n+ VM 4+ 0 (0 /A + M) + B2 (/M) o =

<Ll =],
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Proof of 5. Let 2 = T, (v) forv € V2

s0od- We show that the map defined on u € Vgom = {0 €
R u—o/|,1 < 4v/i) by

1 1
T(u) =u— EQTx(U) + 9%

is Lipschitz in u with respect to the local norm g—!, and then apply the Banach fixed-point theorem

to obtain the unique fixed-point v*. Note that it satisfies g(T,(v*) — T'3(v)) = 0 and thus T, (v*) =
Ty(v).

For Lipschitzness, let (24, u;) and (z}, u;) be the Hamiltonian curves of the ideal RHMC starting
from (z,u) and (z, u’) for u, v’ € Vgom, respectively. Observe that

1
1) =Y @) yr = |fu =o' = 59 (Tolw) = T@))| (B.4)
-
! 1 h -1 -1,/
= ||u—u _h/ g(gt Ut — Gy Ut)dt
0 g*l
1 " 1 1 " —1 ! 1 " /
= <I—g/ g; dt)u— (I—g/ gr dt)u —/ g (De(u) — Ty(u)) dt
nY |, nY ), h -
1 h -1 1 4 1—1 ;1 h /
=7 / (I —gg, ")dt u—g / (I —gg, ")dt ) u _h/ g(Ft(u)—I‘t(u))dt
0 0 0
11k
< =) + (L = L]+ H/ o (Tu(u) — To(u)) dt
0 g*l
<[ ulu = )| oo + [ (Tu = L) || ;- + sup ||[Te(u) = Tu(@)]],
t€(0,h]
< [ Lulw = )| oo+ || (La = L)t || oo +L [ =[] (B.5)

F S

where the last inequality follows from the fourth item.

For F', let p = v — v/ and observe that

1 [ _ _
Il < 5 [ = a0 ol e < s 0= g0 el

<O(1) sup Hl—g%gflg%
te[0,h]

[pll,-1 < OQ) sup |l — a4l [Ipll,—
2 te[0,h] g

S (h\/ﬁ—l- h? (n + M)) |u— u'Hg,l . (First item)
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For S, we can bound it as follows:

1 [ _ _
[(Tu = L)w'|] -1 < h/o lg(at™" — g || - dt < SE)IZ] (g™ = g D,
< sup ||( (g7 ' =g g, S SUP e :th o/ g,

te[0,h]

< o\/n+ VM <hyn++/M; \m—uu,y (Third item)

Substituting the bounds on F' and S into (B.5) with a small constant in / taken, we can conclude that
700 = Ty < 5 =
g7t T 3 g1

Next, we show that the image of Y is included in Vjon. For u € Vgom,

T~ ol = 0= v~ o(Ta(u) ~ Talv))
g1
::u—v—;mnmo—nw»+iwnw»4u@»gl
< u—v—%g(Tx(u)—Tx(v)) ) - T,
g1

Repeating the proof for the first item' (see (B.4)), we can bound the first term by £ [|u — v|| ;-1 and
thus by 2/n, due to u € Vgom. By Lemma 64 and @), we can bound the second term by
1 = 2 = 2
EMHM—TA@H<EdGWMJ}@D§
Putting them together, we obtain || T (u) — v[[,-1 < 4y/n.
By the Banach fixed-point theorem, there is a unique fixed point v* of T such that T, (v*) =
T, (v) and

Co(z,v)h? < 2v/n.

* 1 *
1T () = v llg—r < 5 llv = v7llg-1 .

Moreover, || T (v)
Relating these two inequalities, we obtain

F9(Te ) = 2)]| o1 2 o = "]l 1= [| T (v) = T (o)),

HU_U*Hg—l HT x(v)Hgf1 .

~h

We now show a one-to-one correspondence between v € Vi 4 and v*. Let Fj,(z,v) = (22, v2)
and Fj,(z,v*) = (z,v"). By the reversibility of the Hamiltonlan trajectories, we have a one-to-one
correspondence between v* and v’ in a sense that Fj,(z,v*) = (z,v') and Fj,(z, —v') = (z, —v*).
Similarly, we also have a one-to-one correspondence between v and vo. Thus, it suffices to show a
one-to-one correspondence between vy € T, M and v’ € T, M.

1. For u € Viom, we might have ||u[|,—: > 128/n though, it is still bounded above by 132/n. The proofs of the

second to fifth items can be exactly reproduced for Vieiaxed 8 {U’ cR™: HUI ||g—1 < 132/n}, leading to a similar
conclusion like [|T(u) = T(u')||,-1 < (5 + €) [lu — || ,—1 for a small constant € > 0.
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Consider the straight line between z and 3. We have that [z — 25|, = |T2(v) — Tu(v) Hg <
2C,(z,v)h? < 10~ mln( ) by @ and ¢(Hamg, 5 (—g(x2) " tv2)) = {(Ham, ,(g(z)"tv)) <

{o/2 by the symmetry of /. Due to @, we can apply Lemma 20 to xo with an initial velocity
- g(:z:g )~ 1vg. Thus, a one-to-one correspondence between v" and vy follows, and we also have that
lo > £(Ham.,,(—g(2)~'v")) = {(Hamg p(g(z) " v*). =

B.2.2. ONE-STEP COUPLING

As elaborated in Section B.2, it suffices to prove that for v € Vg4 the term of 1 — z;t;(g;v*)) ‘ 5;;( Si))h is
bounded by a constant smaller than 1.

Lemma29 Fforx € M,andv € V

200> let step size h guarantee the sensitivity of a numerical
integrator at (x,v), and satisfy

h? < 107 2<L_10C’(acv)hz<imm 1l10 C(a:v)h<#
B n—l—\/Ml—&—Mg’ B Rl B 1010 é_l T - 1010\/77.

) ©) ©) ©)
Then drv(fx,Px) < %

Proof For given v € V* s00d> Proposition 28-5 (D ~ @ required) and the order of the numerical
integrator ensure that there exists v* € T;M such that T, (v*) = Ty(v) and [lv —v*|[ -1
Cr(z,v)h < W by @. As pZ is the probability density function of N'(0, g(x)),

‘1°g<p;z<v>>‘_‘”“ -1 = Nellga] < o™ = wllyms (Iollys + Be7llym1) < 55

and thus the ratio of 2z (( )) is bounded below by 0.999. Also, the sensitivity of the numerical

integrator yields |‘ o U))“ > 0.998. Hence, for any v € V%4

pi(v*) [ DT (v)]
pi(v) [ DTy (v*)]

and the claim follows. [ |

1-—

< 0.003,

We finish this section by providing a sufficient condition on the step size for the sensitivity of a
numerical integrator, which we find useful later when checking the sensitivity of IMM and LM.

age T . . 2 1 . ..
Proposition 30 Let x € M, and v € Vi, Let step size h satisfy il, < i ynRE " addition
to the step-size conditions in Proposition 28. A numerical integrator T, j, is sensitive at (z,v) if

| DT, (v)| > \/leforx =T.(v).

Proof By Proposition 28-5, there exists v* such that T, (v*) = T (v) and £(Ham,.;(g(z)'v*)) <
lo. Let us estimate | DT, (v*)|. Recall that Ham,, ;, is the Hamiltonian map from 7, M to M, where
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both spaces are endowed with the local metric g. Even though T, has the same domain and range,
these spaces are endowed with the Euclidean metric. Therefore, we can relate 7', to Ham,, j, by

T, (v*) = (idpm—grn 0 Hamy, p, 0 idge 7, M) (g(x)flv*),

where id o(_, g~ is the embedding with transition of metric from g(z) to the Euclidean, and idgn 7, A
is the embedding with transition of metric from the Euclidean to g(z). Note that we have to normalize
v* by g(z)~! before Ham, ;, takes it as input. Using this formula and the chain rule,

|DT,(v*)| = | Didposgn (2) | [DHamy, 5 (9(z) "' 0*)| | Didrn 7, m(g(2) ' 0")|
<Jo)| 2o (14 g ) -l o)l
h™ 2
= Vl@Ns@)] (”1000)’

where we used Corollary 18 for / in the second line. Hence, if ‘DT@"(U)‘ > (107 HA

, then
lg(z")lg(z)]

|DT.(v)] _ 11076
>

> 0.998.
DT, (v*)] = 1+0.002 =

B.3. Bound on rejection probability
Lastly, we bound the rejection probability dry (P, Pa).

Lemma 31 Forz,2’ € M, let g = g(x) and g’ = g(2'). If for some 0 < 6, < 1 and 0 < §, we
have ||z — 2'||, < 05 and ||v —V'[| ;-1 < 8y, then

|[—H (') + H(z,v)| < © (|£(2) = £@)| + (0 0l + 02+ 0y lolly-1 ) +nds )
where the Hamiltonian is H(xz,v) = f(z) + v’ g(z)"'v + L logdet g(x).
Proof We consider each term separately. For the second term,

S%}’UTQ 11} ngll‘_i_ ‘T/l /Tg/ 10/'

N4

F

For F', we have F' < O(6,) ||vH§,1 by Lemma 26-3. For S, it follows that

/
<o

/
/—1 HU + v

1—1
<01 H’U—’UH (vl _1—|—Hv H ,
< 0(1)bu(dy + [[v][4-1).

glfl

S = ’HUHZ/fl — Hv’| 2
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Therefore, the second term is bounded by O(1) <5x Hv||3,1 + 62 + 4, ||v||g,1).
For the third term,

1 1
3 (log det g(x) — log det g(x’))‘ =3 ‘log det g’_%gg'_% < O(ndy),

where the inequality follows from Lemma 26 and the fact that the determinant is the product of
eigenvalues. u

Since the ideal RHMC preserves the Hamiltonian along its Hamiltonian curve, H(z,v) =
H(xp, vp). Hence, we can obtain a lower bound on the acceptance probability by computing either

) e~ H(@n,vn) ) e~ H(@n,0n)
min | 1, —THEw) or min | 1, Hnon |
Lemma 32 Let (zp,vy) and (T,0) be the points obtained by the ideal RHMC and discretized

RHMC with a sensitive numerical integrator starting at x € M, withv € ga(j)od‘ If the step size h
satisfies

10—10
2 <
T n++M + My’

~10 —10
o Colw,v) € o,

< . h?
n+ /M + /M; n+ /My

then the rejection probability of the Metropolis filter is bounded by 1073,

h2C,(x,v)

Proof We use the first condition on the step size to obtain [jvp[/,-1 = O (h(n+ /D)) =
O (\/ n++/ Ml) by Proposition 28-1. Then the claims follows from

Ary (P Pa) < 10° (8,3/D5 + 8, (n+ lonll3-1 ) + 60 (80 + llonlly-1 ) )

< 106p2 <C’x(a:, v) (n + /My + \/Mf) + Cy(z,v) <C’U(x,v)h2 +1/n+ \/M>>
<107'+107* +107* <1077,
where we used the second and third step-size conditions in the last inequality. |

Putting three main parts together, we obtain the result on the mixing rate of RHMC discretized
by a sensitive numerical integrator.
Proof of Theorem 24 By Lemma 14, 29 and 32, we have drv(Py, Py) < -5 if dg(z,y) < h for
x,y € M,. Then the claim follows by reproducing the proof of Proposition 15. |

Appendix C. Numerical integrators

We examine two numerical integrators commonly used in practice, the implicit midpoint method
(IMM) in Section C.1 and the generalized Leapfrog method (LM) in Section C.2. To this end, we
bound C, and C),, the second-orderness parameters, and then find a condition on step size for the
sensitivity. We note that these integrators are symplectic (so measure-preserving) and time-reversible
(see Hairer et al. (2006)).
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C.1. Implicit midpoint method

For an initial condition (x,v) and step size h, the implicit midpoint method attempts to find the
solution (2, v") for the following implicit equation:
8H<x+x’ v—l—v’) aH(:c—i-a:’ v—l—v’)

/: hi ,:_hi
T U R AT " U T

In general, these implicit equations require several iterations so that an initial guess for this equation
converges to the fixed point (z’, v’).

In this section, we consider a variant of IMM in Algorithm 2 instead. It has computational
benefits over the original IMM, since iterations for finding the fixed point of the integrator run with
a simpler Hamiltonian Hy(z,v) = 1v' g(z)~'v instead of H = H; + Hy. We then prove that if
forz € M, andv € V;{ , step size h satisfies h? (n + \/M) < 10719, then IMM is second-order

200
with Cy(z,v) = O (n+ /M) and Cy(z,v) = O (x/n + /M (n+ /M + M2*)> Moreover,

—10 —5
if the step size h satisfies h2 < min 10 10 ) in addition to the step-size conditions in
p — (n+\/ﬁl)2 9 \/ﬁRl p

Proposition 28, then IMM is sensitive at z € M, and v € Vo4

Algorithm 2: Tmplicit Midpoint Method
Input: Initial point x, velocity v, step size h

. de _ OHi(zw) dv _  OHi(x,v)
// Step 1l: Solve = =5, % =—"05;
Setxi1 + xand v1 + v — %8H187(z,v)‘
3 3 €z
// Step 2: Solve % = aHg(f’”), b —8Hg(;f’”) (Implicit)

Find (z2,v2) such that
3 3

OH, /T1L+T2 V1 +V2
T2 =x1+h 2 3 3, 3 3 ,
3 3 ov 2 2
OH, /T1L+T2 V1 +2
Vs = v1 — b2 3 3 2 3.
3 3 ox 2 2
d OHi(z,v) d OH; (z,
// Step 3: Solve d—fzilag)xv),d—g:— 18(;”)
Set x1 <+ x2 and 11 %vg—@% T2,vz ).
3 3 2 Ox 37 3

Output: z1 vy

C.1.1. SECOND-ORDER

Lemma 33 Forz € Myandv € Vi, let g = g(x) and h step size of IMM with h? (n + \/Ml) <

10710, Let (%,v) be the point obtained from RHMC discretized by IMM with the step size h and
initial condition (z,v).

1 |lz = 7|, = O (hy/n + h2 (n+ VL)) and |[v — ]|, = O <h (||Vf(gz)||g,1 o+ m))
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2. Cy(w,v) = O (n++/M).

3. Cylw,v) = O (Vn+ VI (n+ v/ + M) ).

Proof of 1. LetZ = 2> = T,(v) and v1,v2, ¥ be the velocity points obtained when starting with
3 3 3

(z,v). Then zp;q and vyiq satisfy

-1
Ty =1 + hg, iqVmids (C.1)
= Do la o o gLy .
U% = 'U% =+ 9 9mid [gmidvmldagmidvmﬂ] )
1 +x2 v1+v2 .
where Ziq = —35—, Umid = —5— and gmia = g (Tmid). Since ||Z — ng L= ng - xH —
m 3 9mid
0 as h — 0, we can take hg > 0 such that Ha: 2 — T < Tloo for h < hg with the equality held at
3 9mid

h:ho,oerg—xH Sﬁlooforanyh>0.
3 9mid

We start with the former. By adding v1 to the second line of (C.1) and dividing by 2, we have
3

h2 _ _
hovmia = hov% + ZOngid (9 Vmids g Vmid] - (C2)

As ng — a;” = ho ||vmid|| ok from the first line of (C.1), taking the g;ﬁld-norm on both sides of
3 g mi

mid

(C.2) and using Lemma 27 yield

1

1000 = "o llvmiallgy,

h3 1
< 0 2 < ‘ -
- h‘O ‘ + 2 valngmild - ho ,U% gr:nld + 2000’

V1
3lg-L
1

1
and we obtain 5555 < ho

vi|l . Recallthat |z — |, < 1/1000 for h < ho, so we can swap
3190iq i
the local norms between z,,;q and x due to Lemma 26, losing a multiplicative constant like 1.001.

Using Lemma 27 on the first step of the numerical integrator,

oo s =100 o] <1001 (Jflly-1 + ho (n+v/3E)) C€3)
3 gmid 3 9~
< 200/ + 2ho (n n \/M1> .
Due to 1/2000 < hg ‘ vi|l _, ,itfollows that
3Mgmia
1
< ‘ vi|| < 200v/mho + 202 (n n \/Ml) ,
2000 sllgly
. . 1 1
and solving this for hg we have hg > m. For the case of ‘ T 2= ngmid < 1005 for any

h > 0, we can simply think of hg as oco.
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Now for h < hg, we can obtain from (C.1)

le2 =2 <nlomallz (C4)
3 9mid mid
2
‘ U% B v% . <h ||Umingr;ild '
. . . 1
Using this and h vaing;ild = ’a:§ — ngmid < o5 We can bound HUming;ﬂld by
7}% — 'U% 1 9
Il = o3+ S5, < ol + 50 el
mid
< 1
< [loa]l -, + 505 Imiallzs,
and thus
2000
all o <222 < 200V + 2k (n+v/31) Cs
lomially—2 < 7509 |2 S Vn+2h (n 4/ M (C5)

Putting this back to (C.4) for step size h < m, we have

ng _ a:H < 200h\/1 + 2h? (n+ \/ﬁl> ,
3 Jmid
vz vy _, <1250 (n+v/201).

gmid

Hence by substituting the step size into above and switching local norms properly, we have
ng —xH <1078,
3 g

By applying Lemma 27 tov = v2 — gaH L (xz ,V2 ) in the third step, we also have
3

2
3 oz 3

V2 — V1

3 3 -1 -1

|

3

ol <l
o v||g1_HU va| _, , ,

‘gl+n+125(n+\/ﬁ1)+(n+\/ﬁ1)>
‘g_l—l-n—i—\/ﬁl).

< 1.001h <HVf(a:§)

< 200h (HVf(xg)
In conclusion,
|~ @ll, < 200h/7+ 357 (n+ /My )
9= vlly-1 < 2008 (| VF@)l-1 +n+ /1)

Proof of 2. Fort € [0, hl, let (x4, v¢) be the Hamiltonian curve of the ideal RHMC at time ¢ starting
from (x, v). Recall that for g; = g(x)

h h
H
Ty(v) =z + / o (24, v)dt = = + / g; tudt,
o Ov 0

Lv)=T=z+ hgr;ildvmid.

N
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Thus,

I7:0) - T, = |

h
s = (5 [ et = (a4 ha o)
h 1 1
= H / (95 vt — giqUmid) dt
0

< htren[(é)l,}li} g ve — gx:lildvmingmid

9mid

9mid

By Lemma 26-11,

97 vt = grmiavmiall,, S e = vmiall =1 + lze = zmiallg,, loelly—1,

<5l
2 o U% gr;ild

1 J—
+ 2 (th o xHQmid + [l — xHQmid) Hvt”g;ild

< (o= ulr + o=y

+ Hvt — V2
Imid

)

+ (e = ally + llze = 2ll, + 17 = 2ll,) (e = vll,-s + lo],-1)

)

+ (e = @lly + 17 = 2lly) (llee = vllg-s + llolly—1)

o= vl + o= v

]
1

Sy T

V1 — V2
3 3

Using our bounds on ||z — ||, [|[z: — ||, and [[v[| ;-1 , [lvr — v][ ;-1

v — V1
3llg
we conclude that max;c(g p) Hgflvt — g;ildvmingmid < 10*h (n + \/Ml), and thus

1’

|Ta(v) ~ To ()], < 1052 <n + \/M) .

Proof of 3. From the algorithm,

vV =V — Oh %(iftyvt)dt
=y — oh %}j(ajt,vt)dt - Oh 8;5:2(%, vy)dt,
0= 03 = g g 309) =0y b i i)~ )
=v— g (%Ij(x,v) + %T(xg,vg)) - haa}f<xmidavmid)-
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Thus,
lon =l ©o
= /oh (%(l‘t,vt) - % <%(z,v) + %(ﬂf%v”%))) dt + /Oh (%@tvvt) - %(zmidvvmid)) dt -
< htlen[&%] %(Z’hvt) - % (%(%U) + %(x%,u%)) -
g mid
s | o = e v

Imid

S
We separately bound F' and S. For F, by following the proof of Proposition 26-12, we have

FSn (nvt = tllys + |[or = vz ) + M3 (Jln = all, + llon — 21l ) -

Using our bounds on ||z — 2|, , [|[zn — x|, and [[v; — v[[ =1, [|[v — v2 , we obtain
3 g*l

P < (n+van)" 4 nyhn o+ Vans.

We remark that the smoothness of f guarantees that M3 is bounded by some constant for all
sufficiently small h.

Similarly for S, we have that for 6, = ||v; — vmiall -1 and 6z = [[z¢ — Tmiall,, .,
mid mi

5.5 g, (B A sl ) (sl + el )

Using our bounds on ||z — z||,, [|[z: — ||, and [[v[| ;-1 , [lve — v][ ;-1

V—701

it follows that
3/2
Ssh(n+van)" .

Substituting the bounds on F' and S into (C.6) we can conclude that

lon — oll,-1 < 10'°K2\/n + /20y <n + /M + M;) .

C.1.2. SENSITIVITY

We use Proposition 30 to show that IMM is sensitive. Here we assume that log det g(z) is convex in
M, which is the case for the logarithmic barriers of polytopes.

Lemma34 Forx € M, andv € wooa U log det g(x) is convex in x, then IMM is sensitive

10—10 105
(n+vaI)? Vi

at (x,v) for step size h satisfying h?> < min ( > and the step-size conditions in

Proposition 28.
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Proof Let F(z,v) = (Z,7) and T (v) = Z. We lower bound | DT, (v)| . Recall that one iteration
of IMM consists of three steps with input (z, v) and output (z1, v ), as described in the following
diagram:
X Y Z
(z,0) — (SU;, Ul) — (xz,vz) = (z1,v1) ,

where each of the maps X, Y and Z is defined by

h OHq(x,v)
X — _cZnss

H mids Ymi H. midy Ymi
)—(:céJrha 2(Tmid; Umia) - OH(Tmia, v d)>7

Ov 3 0z

pOH (x2,v2)
) = mg’vg_i# ,
373 ox

+z v1+va — .
for ziq = 45— and vyiq = 25—=. Due to T(v) = 7, 0 (Z oY o X)(x,v), it follows that

DT, (v) is the upper-right n x n submatrix of D(Z oY o X)(x,v). From direct computation, we
have

\)

T

DX (z,v) = i ?.},
_[P @

DY(zyv) =1 g S]’
(1 0

D2(wg o) =| 1}7

and dueto D(ZoY o X) = DZ - DY - DX we have DT, (v) = Q. Thus, it suffices to focus on
the second step only (i.e., the map Y').
Now let us represent the map Y in a compact way. With two symbols

0o I,

_ | ® 2n _
r—{U]ER andJ—[_In 0

2nx2
:|ERTL><TL’

the second step can be rewritten as

r

=71+ hJV(m,u)HQ(Tmid)y

3

where 7, = [ i* ] for x € {1, 2, mid} and Hy(x,v) = Jv' g(z)~'v. Differentiating both sides

by r%,
o Iy, + hJV? Ho(rmiq) L o + 1973
= T'mi a o .
87@ 2n 2 d 2 2n 26’/“;
3 3
org
As DY (ri1) = =2, we have that
3 (91"11§

h h
<Ign — QJVQHQ(Tmid)> DY <T%> =1y, + §JV2H2(Tmid).
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, we have

G(xmid) <IQn - hJVQHQ(Tmld)> G(xmld 1G(xm1d)DY < %) CTV(«Tmid)i1

xmld

= G(Zmia) <I2n + —JV2Hy(1miq)
and

) G(2mia) !

r1
3

(1271 - ZG(xmld)Jv HZ(Tmld $mld ) :I:mld DY
h
= Ion + 5 G (Tmia) TV Ha (rmia) G (Tmia) (&%)

Let us look into the term B & G (Tmiq) I V2 Ho(71miq) G (2mia) ~*. By direct computation, for block
matrices By, By, Bs, B4 of size n X n we have

245 5]

Bs By
02 82
g(xmid)% avgz (Tmid) dgz (Tmid) - g(xmid)*%
- _1 2 2 1
gomia)F | | =SB mia) — (552 (rmia)) 9(wmia)?
and thus
_1 _ _1
By = g(xmid) 2l)g(lamid) [g(l'mid) 1Umid] g($mid) 2, (C.3)

B2 = Ina

1
B3 = g(¥mia)" 2 ( — Vg9 (@mid) " Dg(2mia)9(Tmia) " Dg(2mid)9(Tmia)  Vmid

1

_ _ 1
+2Umldg($mid) 'D?g(@mia)g(Tmia) 1Umid>g($mid) 2

=

1 1 _ _ _
= 31 + 59(Tmia) 2D?g(Tmia) [9(@mid) ™ Umid, 9(Tmia) " Vmia) 9(Tmia) "2,
Now we bound the operator norm of B; for each i € [4] as follows.

[1B1l[ = [ Ball
1

_1 _ _1
=  max  p'g(Tmia) 2Dg(Tmia) [9(Tmia) " Vmid] 9(Tmia) " 2q
p,a:Ipllo,llgllo <1

1 _1
= Hll)aéXDg(ymid) [g(fmid)_lvmidag(xmid)_zpag(xmid) QQ]

1

< ZH;E?IXHg(mmid)_lvmidH ‘g(xmid)_iq

_1
‘g(xmid) 2p

g(xmid)

g(xmid) ‘g(xmid

_ —1
= 2max||g(@mia) " vmiall .. 121l Nl < 2 lemiall, -1

§O< n+\/ﬁ1),

49



KOOK LEE SHEN VEMPALA

where we used (C.5) guaranteed by the condition of h? (n + /M) < 10~ (D in Proposition 28).
For By and B3, we have

B2 =1,

— — 1 1
1Bsll < |[Bu* + QMPH A D) [9mia) ™ vmias 9mia) a9 (mia)~2p. 9(rmia) 34
27 2=

1

1 1
‘g(xmid) 2p

<0 (n +V 1) + 3max 9 (Emia) " vmiall} ‘g(mmid)’iq

=0 (n+ V) + O (n+ /A ) max [l gl
=0 (n + \/E) )

where the second inequality for || Bs|| follows from the highly self-concordance of ¢. Due to HB||
Z?Zl | B;|l, we have H%BH =0(h (n ++/Mj)). Hence, the condition of 7% (n + /M )
10719 ensures that the inverse of I, — §B exists, and it can be written as a series of matrices,

(Ign - ZB) o = i(hB/?)i.

=0

9(Zmid) 9(Tmia)

IN \/\

By substituting this series into (C.7),

Glama)DY (r}) Glowia)™ = S (hB/2) (12n - ZB) S (B2 + Z hB/2)
=0

i=0
i .
=In+2) (hB/2)'.
i=1
By multiplying [ I, 0 }T to the left and [ IO } to the right on both sides,
n
1 1 > 0
9(2mia)2 DT (v)g(zmia)2 = Z T (hB/2)! [ I ] :
— n

From (C.8), B is of the form
_ C I,
b= [ —-C?+R -C ]
where C' € R™*" is symmetric and R € R™*"™, and thus by Lemma 58

1

DT, (v)g(zmia)2 = h > _(h*R/2),
1=0

=

g(ajmid)

1 1 e
where R = 39(mia) 2 D2g(Zmia) [9(Tmia) " Vmids 9(Tmia) " Vmid] 9(xmia) 2. Thus for B =
> (hPR/2)!

1

Eg(xmid)

N
[N

DT, (v)g(rmiq)2 = I+ E. (C.9
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We now bound its operator norm, trace and Frobenius norm. It is easy to see that

mmsij( @+vf))

Tr(E) < ; <h;Tr(R)>i < ; <h;n (n + \/M)) ;
LIS €S i (n+ i)

where we used the following estimations

IRll, <O (n+v/25)

1 _1 _ _ _
QEpNN(OJ)pTg(ﬂ?mid) 2 D?g(2mid) [9(Tmid) " Vmids 9 Vmid)9(Tmid)

rol—
]

Tr(R) =

NI

B _ 1 _
< ED?g(zmia) [g(iﬁmid) Yomids 9(Tmid)  Vmid, 9(Tmid) 2P, 9(Tmia) 2P

<EfJvwiall}, Ipll3 = O (n (n+v/301))
IRl < Vi IRy = O (Vi (n+VaT)) .

Therefore, the step-size condition of h? (n + /M ) < 10719 ensures that these three quantities
can be made smaller than 10~8. Applying Lemma 60 to (C.9), we have

¢T(B) — B < ‘ig(xmidﬁpn(v)g(wmid); < ¢T(E) Bl
and thus -
DT, (v)| > (1 —-107%) . ———.
| } ’g(xmidﬂ

Since log det g(z) = log det V2¢(z) is convex in z, it follows that

T1+x2
log|9(2mid)| = log | <3’23) ‘ (log )g 1)| + log ’g 2) ) 5108 ’g z1)9(z2)
= log V/|g(2)|lg(2)],
and thus }DT ‘ > % Due to the step-size conditions of h2\/nR; < 107° and in
g9(x)llg(z
Proposition 28, we can use Proposition 30 to conclude that T'.(v) is sensitive at (x,v). [

C.2. Generalized Leapfrog method (Stormer—Verlet)

We now analyze the generalized Leapfrog method (Algorithm 3), which is symplectic and reversible
in the Riemannian settings. In a similar way we analyzed IMM, we show that if step size h
satisfies h?2 (n + 4/ Ml) < 10719, then LM is second-order for z € M, and v € Vood with
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Cyp(z,v) =0 (n + \/Ml) and Cy(z,v) = O <\/n + /My (n + My + M2*)> Next, if the step

. : 2 . 10—20 10—° . .. . .. . .o
size h satisfies h* < min <n2 (VI Vi Rl) in addition to the step-size conditions in Proposition

28, then LM is sensitive at z € M, and v € gﬁod.

Algorithm 3: Generalized Leapfrog Method

Input: Initial point x, velocity v, step size h

// Step 1: Update v (Implicit)

Find v1 such that vi + v — %6}]8(“”’“),
2 2 x

// Step 2: Update z (Implicit)

Find z1 such that
h (OH o0H
T —x+§ <8v (x,v%) +E (ml,v%>> .

// Step 3: Update v (Explicit)

Set v + 1}% — %% (1’1,1%).

Output: z1 v;

C.2.1. SECOND-ORDER

Lemma 35 Foraz € Myandv € Vg, let g = g(x) and h step size of LM with h? (n + \/Ml) <
10719, Let (%, D) be the point obtained from RHMC discretized by LM with the step size h and initial
condition (z,v).

I |lz — 7, = O (hy/n + h2 (n+ VIL,)) and ||lv — ¥ ;-1 = O (h (HVf(:z)ng,l ot \/M))
2. Cy(z,v) = O (n++/M).

3. Cy(z,0) =0 (\/n+ VI (n+ \/E+M;)).

Proofof 1. LetZ = 21 = T, (v) and v1(= v),v1 be the velocity obtained from LM with the initial
2
condition (z,v) and the step size h. Let g1 = g(x1). Asvi — vas h — 0, we can take hg > 0
2

v1
2

such that A (’

Tt Hgl_lvé > < ﬁ for h < hg with the equality held at h = hq. Thus for
g~ g

1
- < 500-

From the first step of Algorithm 3 and Lemma 27, for step size h < hy it follows from z € M,
that
h 2
| < folly-1 + = (\/M1+n+] >
1 2 g1
< ﬁ andv € V¥

Multiplying h to both sides, and using h ‘ s00d>

hghowehaveh}

V1
2

v

1 V1
21lg— 2

V1
2

9=
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1§150h\/ﬁ+h;<\/ﬁ+ )+—‘

2

h
< 150 + <\/M n ) n mh

From the second step of Algorithm 3 and Lemma 27, for step size h < hg

h
|21 =z, < 3 é xl,vl 2 ‘

and thus its is obvious that ||z — x| g < 5—(1)0. We now lower bound hg as follows:

d

V1
2

Vi1
g 2

)

2 g*l

and thus

V1
2

<200y + A2 (n + \/M1> . (C.10)

g-

V1
2

1
= )
2llg

g + Hgl_ V1

1 —1
500:}1@( V1 g71+"gl U% g> Sho( ’Ué g71+1.1‘v% gl>
§3ho‘v;
2 g-
< 600hoy/n + 3h2 (n + \/Ml) :

where in the first inequality we switched the local norm at from z; to z due to [|z1 — x|, < = and

used (C.10) in the last inequality. Therefore, hy > 1

1 .
———=—— and forstep size h < ———
T 1044/ nt+/ M p — 105v/n+VM
we have

|z — 1], < 600hy/n + 3142 (n + \/Ml) ,
, < h(20000n +v/211) .

2

g

Similarly, we can bound Hvl — U1
2

) by Lemma 27:
-

Hvl — ’U1

\ A

V1

2 >
51 .-1
2 Imid

h||OH h
| < h )
2 H ox (%,’%)Hgl =9 (HVf(xl)\g 1 —i—n—l—‘

< 40000h (HVf(zl)ng +n+y Ml) ;

and thus by adding it to the inequality for Hv — v we have

g
o= v1l,-1 < 40000 (||Vf(x1)||gfl tn+ \/Ml) .

53



KOOK LEE SHEN VEMPALA

Proof of 2. Fort € [0, hl, let (x4, v¢) be the Hamiltonian curve of the ideal RHMC at time ¢ starting
from (z,v). Recall that

h H h
T,(v) =x+ / a—(:nt,vt)dt =x+ / g[lvtdt,
o Ov 0

— h
Tx(v):f::c+§(g_1+gf1)v%
Thus,
- h
HTx(v)—TI(v)Hg: ‘ (m+/0 gtlvtdt) - <x+ 5 (g 1+gf1) v%) )
_ " Ll 1 d
= gy Ut 2(9 + 91 )v% t
g
Lo 1

<yl g ey

By Lemma 26-11,

_ 1, _ _ 1 = _
9t 1Ut_§(g 1"‘91 1)” Sg”gt 1Ut_g lvl
p 2

1 + 1 Hgilvt — gilvl
2 g 217 L 73l

§ Hvt — UL
2

g Tz =l oy

o=y |+ el el

)

+ (e = @lly + llz = 21, ) (lloe = vlly-s + ol ) -

S (o= ol ooy

Using our bounds on [[z1 — z|, , [|z¢ — x|, and [[v]| -1, [[ve — v ;-1 ,
that
maxyeo,z] Hgt_lvt — gx;ild”mingmid < 10*h (n + \/Ml) and thus

vV — U1
2

- we conclude
-

| 72(0) = Tav)]], < 10"? (n + V/3L1) .

Proof of 3. From the algorithm,

hoH
Vp = U — 0 %(xtvvt)d@
_ hoH
T T 90 (xl’v%)
B h OH h 0H (x,v)
YT %0 (xl’vé> 2 dr
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Thus,
B 1 (oH oH h1(oH OH
l[vn, — o] 41 ‘ /0 5 <8x(ﬂct,vt) = B (xl,%)) dt —I—/O 3 (ax(a:t,vt) = (x,v)) dt .
h O0H OH h O0H OH
<= - i = = i ,
- 2tIen[(?,}}§] Ox (s, ve) Ox <x1,v%>Hg T 2te[0 h] Ox (s, vi) Ox () g-1
s
For 6, = Hvt —oill | and 0, = ||z — 71 Hg, we use Proposition 26-12 to show that

In a similar way, S can be bounded as follows:

S<h(n+\ﬁ) + M6,

Using our bounds on [lz1 — x|, , [lz: — z||, and [[v][ ;-1 , lor — [ -1, ‘ v — 1

F+S<h (n+ M1)3/2 + h/n+ /M Mj.

2 g_l
Substituting the bounds on £ and S, we can conclude that

3/2
o =l < 107 <<” +/0n) / mz\@) n.

C.2.2. SENSITIVITY

We show that for some step size h the generalized Leapfrog integrator is sensitive at (x,v) for
z € Mpand v € Voo

Lemma 36 Forx € M, andv € Vi, LM is sensitive at (z,v) if step size h satisfies h? <

. 10—10 10— . .. . ..
min (n2 (/) \/ﬁ&) and the step-size conditions in Proposition 28.

Proof Let T, (v) = Z = x1. We lower bound | DT, (v) ’ It suffices to look into the determinant of
composition of first two steps in Algorithm 3, since the third step only changes v. The first two steps
are

Differentiating the first equation with respect to v, we have

ov 2
%:In—ﬁaH (
ov 2 0x0v

55



KOOK LEE SHEN VEMPALA

and so

h 8*H Q1
I+ - 2 =1, A1
< 3 Oxdv (w,v;)) ov 11

Differentiating the second equation with respect to v, we obtain

s (2 () e () 222 () )

v 2\ 02
Collecting all 9z /0v terms from this equation, for g = g(x) and g1 = g(x1)

<[n — Z{?;J;;) (acl,vé)> % = g C?;f; (x,v%> + (?;fj <x1,’0§>> 8;5

Ch, h 0*°H -

2

where we used (C.11). Hence,

o1 h 0*H gl gt h 0*H -
_— = In — ( 5 Z__Zl In a ( I )
ov h ( 2 9w \"! v%)) 2 + 2 9w\ 3
h _4 1 g gt h 4 —1 -
(In — 591 Do En U%D ) (Int 597Dy 970 ]
1 h _1 _ ST L1 gl grty L h _1 _ _
= tat (1= o Do [o ') ot (S0 ) ot (1t 5 ima o7t

Due to the concavity of log-determinant in the set of positive definite matrices, we have

ol
N———
L
YQ\
NI

-1 -1
g T9 1 -1 -1 1
log|=———| > = (log|g™ | + log |g = log ——,
9 2( ‘ ’ ’ 1 ‘) /‘g‘ ’91’
and thus
— . 8%1
|DT,(v)| = rm
B -1 -1

h
I, + 59‘%Dg [g_lv

h _1 B
I, — 591 *Dgy [91 IU%] g °

N

Z -
Vlgllgl

For E < %gféDg [g_lv;} gfé, as bounded in (C.8), we have that
2

h
1Bl < 5 o] -
Tv(E) < hn ‘ wll
2 971
hy/n
I1Blp < =5 oy -
2 1010 : . .
Due to h* < W (nVAT) it follows from (C.10) that ’ U1 - <0 (\/n + \/Ml). This condition

also allows us to make all these three quantities smaller than 10~°. By Lemma 60,

—1
>1-10"8.

I _ﬁ _%D -1 _%
n =591 " Dgi |9 v | 91
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Similarly, we obtain

h
Lf+§yélm[g*vﬂg

1
2

and thus ‘DTm(U)‘ > %. Using the step-size conditions in Proposition 28, we use
g(x)l|lg(x

Proposition 30 to show that T, is sensitive at (z,v). [

Appendix D. Convergence rate of RHMC in polytopes

In this section, we present the mixing times of the ideal and discretized RHMC for an exponential
density in a polytope. We set f(x) = o'z for a € R™. For a full-rank matrix A € R™*" and
b € R™, the polytope is represented by {z € R™ : Az > b}, equipped with the logarithmic barrier
o(z) = =S, log(a x — b;), where a; is the i'" row of A and b; is the i*" entry of b. We can
check by direct computation that the logarithmic barriers are highly self-concordant. We view this
polytope as the Hessian manifold M induced by the local norm g(z) = V2¢(z). We denote a slack
vector by s, = Az — b € R™ and its diagonalization by S,, = Diag(s,) € R™*"™. We also define
A, = S;'Aand s, = Agv for v € T, M, where T, M is endowed with the local metric g. One can
check by direct computation that V2¢(z) = A} A,.

In this setting, we can compute all the parameters we have defined, obtaining the mixing time of
RHMC discretized by a sensitive numerical integrator.

D.1. Isoperimetry of convex set

An isoperimetry inequality is one of the two main ingredients for bounding the mixing rate. We use
the Riemannian version of some isoperimetry inequality. To state it, we need another distance called
Hilbert distance in addition to Riemannian distance d .

Definition 37 For a convex body K, the cross-ratio distance di:(z,y) between x and y is

|z —yllp—ql

d —
k(@) lp—zl|ly —q|’

where p and q are on the boundary of K such that p, x,y, q are on the straight line Ty and are in
order. The Hilbert distance dp between x,y € K is

dp(z,y) = log(l + di(z,y)) = log <1 + MM) _

P —zl|ly —q|
For sets X and Y, we define d.(X,Y') = inf e x yey di(x,y) for x € {K, H, ¢}.

Lemma 38 (Vempala (2005), Theorem 4.4) Let m be a log-concave distribution supported on a
convex body K. Let S1, 5, S3 be a partition of KC. Then,

W(Sg) Z dK(Sl, 52)71'(51)71'(52).

The following lemma is a generalization of Theorem 26 in Lee and Vempala (2017) to a subset
K.
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Lemma 39 Let w be a log-concave distribution supported on a convex body K, and ¢ a self-
concordant barrier of K. Let K' be a convex subset of K, and S1, S2, S3 a partition of K'. Then

> dy(S1,52)

r(Sa)n(K') = ot

(S1)7(S2),

_ dy(z,y)
where G = SUDy yek Ty (zy)"

Proof Applying Lemma 38 to the distribution 7x defined by 7 restricted to X', we have
7(S3)m(K) > dicr (S, S2)m(S1)m(S2).

Due to K’ C K, one can check di/(S1,S2) > dic(S1,S52) by simple algebra. As dic(z,y) >
dp(z,y), it follows that

dy(S1,52)

< dg(51,52)
m(S3)m(K) > — <3 o

- d¢(51,52)
dp(S1,52)

7'&'(51)71'(52) 2 W(Sl)W(SQ).

We now define the symmetric self-concordance parameter of the barrier ¢.

Definition 40 (Laddha et al. (2020)) For a convex body K C R", the symmetric self-concordance
parameter Uy of K is the smallest number such that for any v € K

D(xz) CKN (22— K) C \/vgD(x),
where D(z) = {y ER™: |ly — 2l g2p() < 1} is the Dikin ellipsoid at .

In general, it is known that vy = O(ué) for the self-concordance parameter v4 (see Definition
54), but a tighter bound of 7, = O(v4) holds for important barriers such as the logarithmic barrier
and Lee-Sidford barrier Lee and Sidford (2014).

Lemma 41 (Laddha et al. (2020), Lemma 2.3) dy(x,y) < \/Tedu(x,y) for any x,y € K.
Using Lemma 39 and 41 together, we have

dy(S1,52)
\/@

and it implies that the isoperimetry of X' is at least 1//Tg. As vy = O(m) for the logarithmic
barrier, s > 1/1/m for a convex subset X'

m(S3)m(K') = (S1)7(S2),

D.2. Good region M,

Taking a proper good region M, plays an important role in establishing a condition-number
independent mixing rate of RHMC for an exponential density in a polytope. To this end, we
set our good region to

M, = {JT eM: HaH;(z),l < 10n? log? <:)> } :

To establish the isoperimetry of M, following Section D.1, we check its convexity in the following
lemma. Note that the assumption in the lemma is satisfied by the logarithmic barriers.
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Lemma 42 [f the fourth directional derivative of ¢ is positive (i.e., D*¢[a, a,b,b] > 0), then M p IS
convex.

Proof Let Y(z) := o' g(z)'a = o' (V2¢(x)) ' a. It suffices to show that Y'(z) is convex. Note
that Y (2) 9g(x)
r) _ T 199\% -1
oz, — @ 9@ g ()

and thus its directional derivative in h = (hq, ..., hy,) is

) h= Z hi <s(x)T agg) s(:v)) ,

«,

% al‘z 63318:1:] aIL‘Z a.Tj
9%g(x) 9g(x) . 109(x)
_ T 9 T 1
@) e, )+ 25(0) =5 Pgla) ()
Therefore,
2y 29() 9g(x) N\ (9y(a) A
DY Z hihjs 81: 0z, s(x) +2 ZZJ: < oz, s(z)hi | g(x) oz, s(x)h;
T
_1 (9g(x)
— i ) 1 )
= D*¢[h, h, s(x +2Z< Sor° ) g(z) ( o, s(x)h]> .
The first term is non-negative due to the assumption, and the second term is also non-negative since
g(x)~ ! is also positive semi-definite. [

Next, we show that M, takes up probability of at least 1 — p over the stationary distribution ,
() T )

where dd x exp(—a ' z).
Lemma 43 7(M,) >1—p.
Proof Let g = g(x). For ||| -1, note that

T

|l -1 = max «'u
x
9@ ]l 0y =1
—a'z— min ozTy <a'z— min aTy,
ly—all,=1 yeM

where the first equality is due to duality of norms and the last inequality follows from the well-known
fact that the Dikin ellipsoid at x is inside M.
By Lemma 61 with ¢ = o/ ||a||, and T = 1/ |||, we have

Epor o'z <n—i—mino¢—r .
om0 x] < Inin 'y
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Then, by Lemma 62 we have E[(a'z — minge o' y)?] — Ela "z — minge s o Ty]? < n so that
E[(a"z — mingepm o y)? < n + n?. By Lemma 63, we have

1
Pr |a'z — min « y>2<log+1>n}§p.
T yeM P

D.3. Auxiliary function ¢/ and smoothness parameters 1

In this region M, and step size h, the parameters M7, Mo and M7, My (see Definition 23) are
computed by

1
M, = max (n ||a||§(w),1) < 10n2log? <> 7
P
1
M; < [la]2) 1 < 1072 log? (p) ,
Mo, M} = 0.

We use the following auxiliary function ¢ proposed in Lee and Vempala (2018) and symmetric
auxiliary function /:

() = max < 53], . 53l s+t |l o ) 1540l N 540l N [540) ]l
t€[0,h] f+2M1/4 2M11/4 Viogn + 2h+/M; Vn nt/4 Viogn

_ Isvolly syl (-

)= t?(?}ﬁ](mel/” oM/ +\/10gn+2h«/M1)'

This measures how fast a Hamiltonian trajectory approaches the facets of a polytope in the local
norm.
We make simple observations based on the self-concordance of g.

Proposition 44 Ler M, o {x e M: HOZHE(Q;)A < 20n? log? (%)} and vy be any Hamiltonian

curve vy starting atx € M, withv €'V,

200" If step size h satisfies h?> < 10711 min <11 1>,

nlog n ? Cy(z,v)

then xj, and T, are contained in M, o

Proof Due to the assumption on the step size, we can use Proposition 28-1, obtaining ||z — v(t), <
0 (t n+ /M ) -0 (u /nlog %) < L Also, ||z — 23|, < e — (Bl + [Iv(h) — Znl, <

1 + h?Cy(x,v) < 1. The claim follows from the self-concordance of g(z), due to Hosz(,Y(h))_l
2 2
(4 2 — 1)) o2+ < 2012108 L and [lal2,, )+ < 4 lal2 1 < 2007 log? 1

| VAN

As in Lee and Vempala (2018), we can represent the parameters £, /1 and the smoothness
parameters 1?1, Ra, R3 in terms of M. The original proof in Lee and Vempala (2018) relies on the
fact that ||V f(~y(¢ ))H (t)-1 < M for any time ¢ € [0, k] and any regular Hamiltonian curves.

In our setting, ||V f(y ( ))Hg(w(t))*l < 2M; for any time t € [0, h] if h? < i?og%, we can simply

reproduce Lemma 54~59 by replacing M; by 2M;.
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Lemma 45 Consider a Hamiltonian trajectory -y starting at x € M, with an initial (normalized)
velocity randomly chosen from N'(0, g(x)~1Y), with step size h satisfying h*nlog % <107, Forn
large enough, if s satisfies sh = O (n), then

1. ly
> < — — .
P, ({(y) >128) < Too TR <1, sh>

As we shortly see in Lemma 49, we have {1h = O <h2M11/4> =0 (ﬁ), and thus ¢,
nlog -
can be used in place of s in this lemma.
Lemma 46 Let vy be a Hamiltonian curve starting at x € M, with £(~y) < £y < 256 and step size
h satisfying h?nlog % < 107, Then

sup ||‘1>(%t)”Fq(t) < I
te[0,h]

with Ry = O (\/ Ml).

Lemma 47 Let v be a Hamiltonian curve starting at & € M, with () < £y < 256 and step
size h satisfying h*nlog % < 107, Foranyt € [0, h], any curve c(s) starting from ~v(t) and any
velocity field v(c(s)) on ¢(s) with v(¢(0)) = v(y(t)) = v/ (t), we have that

n

1/4
with Ry = O <\/nT41+ ﬁM1h2+M;L+V”};W>,

dc

d
'dSTrq)(v(c(s)) 7

+MWM$NWJ

5=0 s:(]) ~(t)

Lemma 48 Let vy be a Hamiltonian curve starting at x € M, with £(~y) < £y < 256 and step size
h satisfying h*nlog % < 107, Let ((t) be the parallel transport of the vector ' (0) to ~y(t). Then

sup H(I)(’%t)C(t)H'y(t) < R3
te[0,h]

with Rs = O (\/M1 Togn + MY/ 4n1/4h).

Lemma 49 Let v, be a Hamiltonian variation starting at x € M, with {(7y,) < £y < 256 and step
size h satisfying h’nlog % < 107, Then

1
§O<My%+nﬂ%n>ﬂ

and thus {1 = O (M11/4h+ h\/lloﬁ)‘

d

‘zsg(’ys) %’75(0)

+ || DAL (0)]] ) :
25 (0) 7s(0)

For /g, /1, R1, we can repeat the arguments so far for regular Hamiltonian curves starting from
M, in which ||oz||§(7(t))_1 is within a constant factor of M. Therefore, these three parameters also
have the same bounds in Lemma 45, 46 and 49 up to a multiplicative constant factor.
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D.4. Convergence rate of RHMC with numerical integrators

Now that we estimated all the parameters, we can put them together and state the mixing time of
RHMC discretized by a sensitive numerical integrator.

Theorem 2 Let 7 be a target distribution on a polytope with m constraints in R™ such that Z—; ~

ea'w for a € R™ Let M be the Hessian manifold of the polytope induced by the logarithmic
barrier of the polytope. Let A = supg s % be the warmness of the initial distribution 1. Let
T be the distribution obtained after T steps of RHMC discretized by a sensitive integrator on M.
Forany e > 0, if forv € M = and v € R" randomly drawn from N(0, g(x)), we have that with

probability at least 0.99, step size h < ho(z,v),

1 —20 ]_ —20 1 —10 1 —10
= 7/12?1/2/\ WOy (2,0) < 2 B2 (0 0) < -2 and h2C, (2, v) < —2
n og/* <

vn ' ~ nlog? _\/@’

then dyy(rwr, ) < € for T = O (mh~?log %)

g
at least 0.99 by the definition of ¢y. We check the conditions on the step size in Theorem 24. Let

p = 5x. We first bound My, M7 by 20n? log? % and set M to 0. Substituting these to Lemma 49,
46, 47 and 48, we have

1 1
0 S hy/nlog —+ —,
p h

1
Rl S.; n10g77
p

Proof We first note that V7, = {v € R" : £ (Ham,; (g(z) 'v)) < 128}, the measure of which is

1
1 1 ynlogs /ml
R2 5} n3/2 logf + h2n5/2 10g2 . - P + nhogn’
p p

1 1
R3 < ny/lognlog = + hn™/*1og®? -
P p
Dueto h < %, direct computation leads to h? max (Rl, Rl) ,h® R%Kl /o, h3Ro+h?R3 <
P
1 and h < min (1, %’). The rest of conditions on the step size, hCy(z,v) < 1[1/%20, h2Cy(z,v) <
0= and h2C,(z,v) < 10_101 , guarantee that

nlog % /nlog :

< 10720 ;2 < 10-10 mi b 1 2 < 1071
hCy(z,v) < NG h*Cy(z,v) <10~ min ( 1, L AT ) h=Cy(x,v) < T

As the isoperimetry is lower bounded by ﬁ, Theorem 24 results in the mixing time of 7' =

O (mh=?log %) that ensures dyy (77, 7) < €. [ |

By setting C,,, C), to 0, we can obtain the mixing time of the ideal RHMC for exponential
densities in polytopes.
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Corollary 3 Let m be a target distribution on a polytope with m constraints in R™ such that g—g ~

e’ for a € R™ Let M be the Hessian manifold of the polytope induced by the logarithmic
7o (S)

barrier of the polytope. Let A = supgc (S) be the warmness of the initial distribution 1. Let
7 be the distribution obtained after T iterations of the ideal RHMC on M. For any € > 0 and step
size h = O <11/2A> there exists T = O (mn7/6 log? %) such that dry(np,m) < €.

n7/12 log

D.4.1. IMPLICIT MIDPOINT METHOD
In the polytope setting, we can explicitly compute C,(z, v) and C,(z, v) of IMM in terms of n and
p.

Lemma 50 Forx € M,andv eV}

wood L€l h be step size of IMM with h?nlog % < 107!, Then

1 1
Cyp(z,v) =0 <n10g p) , Cy(z,v) =0 <n3/2 log3/2 p) ‘

Proof By Lemma 33-2, it follows that
1 1
Cy(x,v) =0 (n—i— \/M1> <n+nlog— =0 (nlog> .
p p

For C,(x,v), we first note that M} = 0 due to V2 f(x) = 0. Thus by Lemma 33-3, we have

3/2 .
Cy(z,v) S (n + \/M1> =0 <n3/2 log®/? ;) .
|

We can also specify a sufficient condition on the step size for the sensitivity of IMM in the
polytope setting.

Lemma 51 Forxz € M), v € V:gfgod and step size h with h2n? log % < 10719 IMM is sensitive at
(z,v).

Proof Note that log det g(z) is convex in M, since the volumetric barrier defined by log det V2¢(x)
is convex in x (Lemma 1~3 in Vaidya (1996)). Thus, the claim follows from Lemma 34. |

Substituting the estimates of C(x,v) and C,(x,v) as well as the sufficient condition for the
sensitivity to Theorem 2, we prove that the mixing rate of RHMC discretized by IMM for an
exponential density in a polytope is independent of the condition number and || ||,

Corollary 4 Let 7 be a target distribution on a polytope with m constraints in R™ such that ‘;—g ~
e’ for o € R™ Let M be the Hessian manifold of the polytope induced by the logarithmic

barrier of the polytope. Let A = supg % be the warmness of the initial distribution . Let

wr be the distribution obtained after T iterations of RHMC discretized by IMM on M. For any e > 0

and step size h = O (W), there exists T = O (mn?log? %) such that dry(mp, ) < €.
Proof We can check that the step size h = O W) satisfies all the conditions in Theorem 2.
Hence, it suffices to choose 7' = O (mn?log® %) to obtain dry (77, 7) < €. [ |
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D.4.2. GENERALIZED LEAPFROG METHOD

We now compute the mixing rate of RHMC discretized by LM. For LM, we have the same results on
Cy(z,v) and Cy(x,v) as IMM.

Lemma 52 Forx € M,andv € woo» L€t h be step size of LM with h?nlog % < 10710, Then

Cyp(z,v) =0 (nlog 1> , Cy(z,0) =0 <n3/2 log3/? 1> _
p P

For the sensitivity, LM requires a slightly stronger condition on step size compared to IMM,
which follows from Lemma 36.

Lemma 53 Forx € M, v € Voo and step size h with h2n3 log% < 10720, LM is sensitive at

(z,v).

We prove that the mixing rate of RHMC discretized by LM for an exponential density in a
polytope with m constraints is also independent of the condition number.

Corollary 5 Let 7 be a target distribution on a polytope with m constraints in R™ such that ‘é—g ~
e’ for a € R™ Let M be the Hessian manifold of the polytope induced by the logarithmic

barrier of the polytope. Let A = supg % be the warmness of the initial distribution 1. Let

T be the distribution obtained after T iterations of RHMC discretized by LM on M. For any € > 0
and step size h = O (1>, there exists T = O (mn? log? %) such that dry(mp, ) < €.

3/2 A
n3/ log £

Proof For step size h = O ( , LM is sensitive in M, x V}° by Lemma 36, and we can use

1
n3/2 log %
the estimates of C,, and C), proven in Lemma 52. Thus, this step size satisfies all the conditions in
Theorem 2. Hence, it suffices to choose T' = O (mn3 log3 %) to obtain dry (7, 7) < €. [ ]

Appendix E. Definitions

Definition 54 (Self-concordant barrier) A self-concordant barrier ¢ : K C R™ — R is a function
such that ¢(z) — oo as x — OK and that | D f*(z)[h, h, h]| < 2 (D?f(z)[h, h])3/2f0r allz € K
and h € R™. If |Df4(x)[h, h,h, hH <6 (Dgf(x)[h, h])2 is also satisfied for all h, then ¢ is called
a highly self-concordant barrier.

Definition 55 (Self-concordance parameter) For a self-concordant function ¢, the self-concordance
parameter of ¢ is the smallest non-negative real number vy such that

|D(x)[h]|* < vgD*¢()[h, h],

where D f(x)[h] is the directional derivative of f along direction h and D?f(x)[hy, hs] is the
second-order directional derivative of f along directions hi and ho.
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Definition 56 (Riemannian length and distance) Let ¢ : R™ — R be a self-concordant function. For
all = € RY, we define the local norm induced by V>¢(z) by

1Pllg2g@y = /BT V2 (2)h.

For any smooth curve ¢ : [0, 1] — R"™, we define the length of the curve as

dt.
V2(c(t))

For any x,y € RY, we define the distance dy(z,y) to be the infimum of the lengths of all piecewise
smooth curves with ¢(0) = x and ¢(1) = y.

Definition 57 (Total variation distance) For probability distributions P and () supported on K, the
total variation distance (TV distance) is defined by

drv(P,Q) = sup (P(A) —Q(A)).

Appendix F. Lemmas

Lemma 58 Forn € N and matrix X € R?>"*2" of the form

C I,
X‘[—CMR —c}

with a symmetric matrix C' € R™™™ and matrix R € R™"™", we have

o R" 0
A= { R'C —CR" R" |’
i _ [ RC R
Rl —CR*C —CR"

The claim immediately follows from induction.

Lemma 59 (Lee and Vempala (2018), Lemma 7) In the Euclidean coordinate, the Hamiltonian
equations in (2.1) can be represented via the second-order ODE as follows:

dx
Dti = [L($>,

dt
% 0) ~ N0, 9() ™),

where Dy is the covariant derivative along the Hamiltonian trajectory x(t) and p(z) <= —g(z) 'V f(z)—
39(2) "' Tr [g(x) "' Dg(x)] .

Lemma 60 (Lee and Vempala (2018), Lemma 64) For matrix E € R™*" with ||E||, < i, we
have
logdet (I + E) — TrE| < | E||% .
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Lemma 61 (Kalai and Vempala (2006), Lemma 4.1) For a unit vector ¢ € R", constant T' and
convex set K C R", we have

Epon {ch} < nT + min CTJ:,
zeK

T

c x

where T is a probability density proportional to e” T .

Lemma 62 (Nguyen (2013), Corollary 6) Let w be a log-concave density proportional to exp(—V')
on R"™. Then,

Varzer (V(x)) < n.

Lemma 63 (Lovasz and Vempala (2007), Lemma 5.17) Let X € R"™ be randomly chosen from a
log-concave distribution. Then for any R > 1,

p (yX\ > R\/IEX2> < e R,

Lemma 64 (Nesterov et al. (2002), Lemma 3.1) Suppose ¢ : R" — R is self-concordant and
K C R™ is convex. Forany x,y € K, i

o Ifdy(x,y) <6 — 0% < 1forsome0 <8 <1, then ||y — || g2p(m) < 0

* If6 = |l — Yllgeg@ < L then § — 56% < dy(x,y) < —log(1 - d).
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