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Abstract

Latent Gaussian process (GP) models are widely
used in neuroscience to uncover hidden state
evolutions from sequential observations, mainly
in neural activity recordings. While latent GP
models provide a principled and powerful solu-
tion in theory, the intractable posterior in non-
conjugate settings necessitates approximate in-
ference schemes, which may lack scalability. In
this work, we propose cvHM, a general inference
framework for latent GP models leveraging Hida-
Matérn kernels and conjugate computation varia-
tional inference (CVI). With cvHM, we are able to
perform variational inference of latent neural tra-
jectories with linear time complexity for arbitrary
likelihoods. The reparameterization of stationary
kernels using Hida-Matérn GPs helps us connect
the latent variable models that encode prior as-
sumptions through dynamical systems to those
that encode trajectory assumptions through GPs.
In contrast to previous work, we use bidirectional
information filtering, leading to a more concise
implementation. Furthermore, we employ the
Whittle approximate likelihood to achieve highly
efficient hyperparameter learning.

1 Introduction

Arguably the spatiotemporal structure of neural population
activity implements neural computation. Although it is
not directly observable, recovery of the (effective) latent
neural state evolution from recordings of neural activity is
possible (Paninski et al., 2010; Kao et al., 2015), and is
critical for advancing our understanding of neural computa-
tion. Strong experimental evidence supporting the existence
of low dimensional neural manifolds has fueled research
into developing statistical models that can be used to infer
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the dynamics underlying neural computation (Macke et al.,
2011; Pfau et al., 2013; Archer et al., 2014; Frigola et al.,
2014; Pandarinath et al., 2018). These methods usually
fall under the header of latent variable models (LVMs) and
posit that the observed neural activity can be sufficiently
explained by linear or nonlinear mappings of latent dynam-
ics (Pei et al., 2021). Among those, a large class of LVMs
employ Gaussian processes (GPs) to specify a priori beliefs
on the temporal structure of latent trajectories (Yu et al.,
2009; Zhao & Park, 2017; Koyama et al., 2010; Jensen
etal., 2021).

The success and ubiquitous use of GPs is due in part to
favorable properties such as universality, flexibility, and in-
tuitive control over smoothness via time/length scale and
differentiablility. However, GP inference generally lacks
scalability and non-Gaussian observations make the exact
posterior intractable. Though approximate methods like
sparse GPs (Titsias, 2009) can help, this comes at the price
of accuracy and expressiveness. Variational inference is
widely used to enable computationally efficient approxima-
tions, however, a naive implementation still requires solv-
ing a large and dense linear system with time complexity
of O(T?) and space complexity O(T?) for a sequence of
length T'.

In this work, we combine two recent developments in GP
inference, the Hida-Matérn (HM) kernels and conjugate
computation variational inference (CVI). The linear state
space representation of GP through HM kernels (Dowling
et al., 2021) allows for efficient latent trajectory inference
via Kalman filtering/smoothing. Utilizing natural gradients
of the exponential family, CVI further reduces VI to a nu-
merically elegant iterative optimization (Khan & Lin, 2017).
As a result, the conjugate variational Hida-Matérn GP
(cvHM) framework accelerates latent GP inference to lin-
ear time while maintaining flexibility of kernel choice and
computationally efficient hyperparameter optimization. Fur-
thermore, we introduce the Whittle (marginal) likelihood as
an attractive approximation for GP hyperparameter learning.

Our contributions are the following: (i) We propose cvHM,
combining Hida-Matérn GPs and CVI , as a tool for ex-
tracting latent trajectories from multivariate (neural) time
series in linear time complexity. (ii) We show that the infor-
mation filter in tandem with CVI results in a more concise
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inference scheme than the mean/variance Kalman filter; an
added bonus of using the information filter is that natural
parameters returned from simultaneous forward/backward
filters can be combined additively to give us the natural
parameters of the posterior. (iii) We show that the Whittle
likelihood approximation is more sample efficient for hyper-
parameter optimization and has a favorable time complexity
of O(LT log T'), compared to O(T'L%) of (the lower bound
of) the marginal log-likelihood, where Lg > L.

2 Background

2.1 GP models of latent trajectories

In this work, we are interested LVMs that define a lin-
ear/nonlinear mapping (2) between the latent state and ob-
served variables, and impose assumptions on the temporal
structure of latent state evolution through a GP prior (1),

z(t) ~ GP(mu(t), ka(t, 1))
yi | 2o ~ P(y | g(z))

(latent processes) (1)

(observation model) (2)

where z; = (21(t),...,z(t)) " is one of the L unobserved
latent processes modeled by a GP with mean and covariance
functions m; and k; respectively, and y; € RN represents
the observation at time ¢ that probabilistically depends on
the temporal slice of all latent processes at time ¢, z; € R-.
Once the data has been observed, the goal of Bayesian infer-
ence is to find the posterior distribution of latent processes,
p(z1. | y1.7), as well as the (hyper-)parameters of m;, k;
and g. Without loss of generality, we follow the standard
practice of setting the mean function to be zero.

The linear and Gaussian assumption provides a convenient
parameterization for the observation model (e.g. GPFA (Yu
et al., 2009))

yi=Cz +b+uv, 3)

where C is a readout matrix, b is a bias, and v; ~ N (0,R).
The linear Gaussian assumption makes it natural to appeal to
Expectation-Maximization (EM) for learning hyperparame-
ters, since the complete data log-likelihood, and posterior
can be evaluated in closed form (Yu et al., 2009; Dempster
et al., 1977). However, evaluating these closed form expres-
sions to compute the posterior still requires solving a large
linear system of equations (Rasmussen & Williams, 2005).

Despite the convenience of a tractable posterior, the lin-
ear Gaussian observation model is not always suitable for
various types of observations, e.g. point processes. Many
methods (Macke et al., 2011; Adam et al., 2016; Zhao &
Park, 2017; Pandarinath et al., 2018) thus relax the assump-
tion to non-Gaussian conditional distributions, i.e.

Yn,t | Zy ~ p(yn,t | Q(Zt)) 4

where n indexes the observation dimension and g is a
generic function. The price to pay for using a non-Gaussian

likelihood is an intractable posterior, necessitating the use of
approximate Bayesian methods. Variational inference meth-
ods combat this by choosing a tractable family of distribu-
tions to approximate the posterior, for instance, a factorized
Gaussian ¢(z) = Hlel N (my, P;), so that the evidence
lower bound (ELBO),

,z) — Dr(q(2)p(2))
&)
is maximized with respect to the variational parameters
(my, Pl)lL: 1- However, variational inference suffers from
similar scalability issues as exact GP inference; computation
of the KL divergence between Gaussian distributions with
unstructured covariance matrices scales as O(T3).

2.2 Hida-Matérn GPs: A state space view of GP

L= Eq(z) 1ng(ylzT | Z1,. ..

The state-space model (SSM) representation of stationary
GPs, that are finitely differentiable in mean-square, has
proven itself as a useful tool for reducing the time complex-
ity of GP posterior inference (Hartikainen & Sarkka, 2010;
Chang et al., 2020; Solin et al., 2018). It is easy to construct
state-space representations of GPs when their kernel can be
written as a linear combination of Hida-Matérn kernels; in
that case, the GP in tandem with its mean square derivatives
is Markovian, which allows for the use of fast inference
routines (Hida & Hitsuda, 1993; Lévy, 1956). Furthermore,
the linear combinations of Hida-Matérn kernels can approxi-
mate the covariance function of any stationary GP (Dowling
et al., 2021), making them arbitrarily expressive.

Consider a stationary GP with an M -th order Hida-Matérn
kernel,

= kH,]\/[(T; 027 b7 p)
0” cos(27b7 ) kntaem (T3 p, M + §) (6)

cov(zt, 2t 4r)

where ke (75 p, M + %) is the Matérn kernel with length-
scale p and smoothness parameter v = M + % (Ras-
mussen & Williams, 2005). Such a GP is M times dif-
ferentiable in the mean-squared sense (Jazwinski, 2007).
Even though a mean square differentiable GP is not always

Markovian, the vector process z; = [z,g,zt(l)7 e ,zt(M)]

is Markovian, where 2" is the i mean square derivative
of zs. Since Gaussainity is preserved under linear opera-
tions, the mean square derivative of a GP is also a GP, and
so it is important to be able to compute the multi-output
covariance function between a GP and its mean square
derivatives (Alvarez & Lawrence, 2011). Fortunately, com-
puting the multi-output covariance between a GP and its
mean square derivatives only requires computing appropri-
ate derivatives of the kernel function as we have the relation
that cov(2\", 29) ) = (=1)7k0+) (7) with k(+) (7), the
(i + )™ derivative of k(7) with respect to 7. Thus the
joint distribution between any two time points in the vector
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process is
P(adsra) =N ([3} , [ K"

where [KS(T)L.]. = (—=1)7k(+9) (1) is the covariance ma-
trix between the GP and its mean square derivatives 7 time
units apart. Now, as a result of the Markov property, the
joint distribution of a Hida-Matérn GP can be factored as
p(z1) [1p(2¢ | Z+—1); using the marginalization property
of Gaussian distributions, we can explicitly describe the
generative process underlying the GP as the following linear
dynamical system (LDS) (Dowling et al., 2021),

z . = A(")z; + Q(7), Q(1) ~N(0,Q(7)) (8)

where

A(7) = K(r)K(0)™! 9)
(10)
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State space representation of latent GP models The co-
variance of the vector process z; coincides exactly with
the covariance of the multi-output GP defined by the kernel
K?® (7). With the representation of stationary and finitely
differentiable GPs through the state-space representation of
the Hida-Matérn GPs, we can rewrite the generative model

defined by Eq. (1) and Eq. (3) as follows

Zzs:tJrT = Al(T)ZZS:t +€(7) (11)

y: = CHz] + b + v, (12)

where zf is formed by stacking L vector processes, i.e.
zy = [z7,,... ,zit], His a L x Lg selector matrix that

extracts z, from z7, and Lg = Zle M is the dimension
of the extended state space — the dimensionality required
to represent all L latent processes in addition to their mean
square derivatives. The LDS formulation alleviates unfavor-
able computational complexity, allows inference through the
well known Kalman filter and smoothing algorithms, and
allows posterior inference in linear time with respect to se-
quence length (Anderson & Moore, 1979; Sarkkd, 2011). In
addition, framing the problem in this manner facilitates the
use of tools and techniques from the vast literature of Gaus-
sian linear dynamical systems. Application of the Kalman
filter and smoothing algorithms to infer the posterior admit
time complexity of O(L%T) but since Lg < T the price
is negligible; in the case of large Lg an asymptotic version
of the state-space model can be used to avoid expensive
operations in the smoothing step (Solin et al., 2018). Thus,
given a stationary GP kernel (component) with exactly M
derivatives, there exists an equivalent LDS GP formed by
appending M — 1 extra latent dimensions.

2.3 Conjugate variational inference

Adapting the state-space representation (11), we can rewrite
the general form of observation model (4) into

yi |z ~p(y: | g (HzY)) (13)

Unfortunately, any non-Gaussian likelihood prohibits the
immediate use of Kalman filtering and smoothing, and ob-
scures the path to computationally feasible inference.

Recent works (Hamelijnck et al., 2021; Chang et al., 2020)
have demonstrated how conjugate computation variational
inference (Khan & Lin, 2017) can be used to exploit the
SSM representation of GPs for linear time approximate in-
ference. In a nutshell, CVI takes advantage of the fact that,
when the variational approximation and prior are in the same
exponential family, one step of natural gradient ascent! on
the ELBO reduces to a conjugate Bayesian update. Suppos-
ing that ¢(z | A) =~ p(z | y) is the variational posterior with
natural parameter A and mean parameter y, and p(z | Ag)
is the prior with natural parameter Ay, one natural gradient
step on the ELBO with learning rate « is equivalent to

4(2 | Apr1) o< exp (S\,IT(Z)) p(z | Ao) (14)
S ——

op(Ik|2)
Akg1 = (1 —ap) A

ok Vi Eqeong 1080 | 20) (15)

where X are auxiliary variables that can be considered natu-
ral parameters of pseudo observations y, and p(yi | z)
is the exponential family distribution that would have
p(z | Ao) as its conjugate prior. A principled initial-
ization for CVI is to set Ay = Ag and a; = 1 so that
A1 = > VuE,z1a0) log p(y: | 2¢). More details on CVI
are provided in App. B.

3 cvHM for non-conjugate latent GP models

Combining Hida-Matérn kernels and CVI, we propose con-
jugate variational Hida-Matérn (cvHM), an efficient learning
approach of (non-conjugate) latent GP models.

3.1 Posterior inference

Now, we are ready to formulate a procedure for posterior
inference and parameter learning when the generative model
of the data is specified according to Eq. 11 and 13. In
order to take advantage of CVI, we will consider variational
Gaussian approximations, i.e. ¢(z) = N (m, P), that can
be represented in their natural parameterization as

q(Z) = exp (ZTJZ —+ hTZ — log Z) (16)

"In App. B, we provide necessary details about exponential
family distributions and natural gradient descent
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Figure 1: Information filtering results in a more concise
inference algorithm By taking advantage of the pseudo ob-
servations being in the appropriate form for the information
Kalman filter, we can avoid converting from the natural pa-
rameter representation. Furthermore, information filtering
forward/backward is easily parallelized and more numeri-
cally stable than filtering forward/smoothing backward.

with z = (21,...,27) ", normalization constant Z, and
natural parameters J = f%P’l, h = Jm. For conciseness,
we will exchangeably use A and (h,J). A GP prior will
have natural parameters Ao = (0, —+K7.) where K77
is the Grammian evaluated over 7" points. Since the prior
is a GP, the conjugate likelihood is also Gaussian and we
can denote the pseudo natural parameters by (h J ). These
parameters can then be converted into Gaussian pseudo
observatlons y = Vh with mean z and covariance V =
-3 LJ—1. The first step of a CVI iteration, as in Eq. (14), can
now be written in a more familiar form as the following GP
regression problem
q(z [ Agy1) <N (¥x |2, Vi) - N(z | 0,Krr)  (17)
Then the pseudo natural parameters, hand J, can be updated
using the mean parameter gradient as in Eq. (15). This al-
lows each CVI iteration to be done in O(T'L%) time, where
the computational bottleneck is solving for the LDS poste-
rior in Eq. (17) Refinement of the variational approximation
through additional gradient steps proceeds by recomputing
(y, \7) solving the GP regression problem, then updating
(h,J). We summarize this procedure in Alg. 2 in App. E.

Information Filtering Until now, we have glossed over
algorithmic details of how the LDS posterior should be
computed. With the Gaussian pseudo observation, it is nat-
ural to use Kalman filter and RTS smoother to obtain the
posterior mean and covariance. However, this requires the
conversion from natural parameter space to mean-variance

space (Fig. 1.3), (hy,J;) — (3¢, V). every time after up-
dating the pseudo natural parameters according to Eq. (15)
(Fig. 1.2). Not only does this conversion introduce addi-
tional computation each CVT iteration, it is liable to intro-
duce numerical round off errors; in App. J, we show that
sidestepping these conversions in tandem with information
filtering, results in improved inference at lower floating
point precisions (results were similar using 64 bit floating
point).

Fortunately, these conversions can be avoided if instead
of computing the posterior through Kalman filtering/RTS
smoothing we use the information form of the Kalman fil-
ter (Anderson & Moore, 1979; Kailath, 1980). In this situa-
tion we can think of posterior computation as a black box
operation: the standard Kalman filter operates on (¥, Vt),
whereas the information form of the Kalman filter operates
on (flt, J +), thus avoiding parameter conversions. How this
change makes using CVI together with state-space GP priors
more concise compared to other applications of CVI with
state-space GPs in the literature, e.g. (Chang et al., 2020;
Hamelijnck et al., 2021), is explained in Fig. 1.

Time-reversed dynamics and bidirectional filtering In-
ference can be further accelerated by deviating from the
practice of filtering forward/smoothing backward. A fa-
vorable procedure, especially because we are working in
the natural parameterization, is to take a message passing
approach (Bishop, 2006), and filter forward while filtering
backward in parallel, then combine the statistics from each
filter to compute the full posterior. In order to perform
backward filtering for an LDS, we require the backward
representation of the generative process; for Hida-Matérn
GPs, the backward dynamics and backward state-noise are

Ab(1) =K(r)"K(0)™* (18)
Q’(r) =K(0) - K(7) 'K(0) 'K(r)  (19)

which can be used to describe the generative process given
by Eq.13 in backwards time,

ZH*AZ( )Zu+7+€z( 7) (20)

Backward filtering returns the marginal posterior statistics
of p(z¢ | yur), the filtering distribution at time ¢ given
all data after that point (We provide more details about
backward filtering in App. C.1). Thanks to the fact that the
marginal prior, and backward/forward filtering approximate
distributions are Gaussian (i.e. in the exponential family) if
we factor the marginal posterior as

N(m] ,P]) N(rﬁg,plz)
Q\Z¢ | Y1:t) Q\Z¢ | Yi+1:T
gl | yrr) oc Lo V10 8@ o) =)
pe(zt)
~——
N(0,K(0))
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Figure 2: (a) cvHM inference scales better than vLGP. Sequence length varies from 1k to 10k in intervals of 1k. Hyperpa-
rameters of both methods are kept constant. (b) Normalized ELBO (nats/bin) comparison shows same quality inference.
(¢) Van der Pol oscillator experiment. (top) cvHM inference on the 2D latents. (bottom) Time derivative of = and y, and
corresponding mean square derivatives inferred by cvHM compared to finite difference of the inferred mean; GP inferred
derivatives come at no additional cost and offer calibrated measure of uncertainty that may be useful in latent trajectory

analysis to better understand neural computation.

where Q(Zt ‘ Yt+1:T) - EQ(Zt+l‘yt+1:T)[pe(Zt+1 | Zt)] then,
q(z¢ | y1.r) = N(my,P,), and the posterior marginal
statistics can be directly read off

+ P -K(0) !
+ [Py]"'my

P!

Pt_lmt =

(22)
(23)

i.e. by adding the natural parameters recovered from the
forward/backward filter, and subtracting natural parameters
of the prior. Thus, using forward/backward filters make
computing the posterior as simple as combining the natural
parameters returned from the forwards/backwards informa-
tion filters. Thanks to stationary assumptions and linearity,
the forward and backward filtering are mutually indepen-
dent, and thus can be performed in parallel — speeding up
posterior inference by two-fold.

3.2 Learning GP Hyperparameters

Standard practice for learning hyperparameters of the
model is to use variational expectation maximization
(VEM) (Turner & Sahani, 2011). For GP regression with
a non-conjugate likelihood this would be a computational
challenge; every gradient step within the M-step requires
recomputing the KL divergence term of the ELBO. A use-
ful result from (Hamelijnck et al., 2021) is that the ELBO
can be rewritten by using the GP regression form of the
variational approximation to give

>

t

(ye | z:)
Vi | 2t)

p Zy

|:E‘I(Zt) log (V1 | zt
where po(y: | Yit-1) = Egoulp(y¢ | z:)] and
Go(zt) = Eq(z,_,151.._1)[Po(Z¢ | 2:-1)]. Written this way,
the ELBO can be evaluated in O(T'L}) time, due to the
Markov structure of the variational approximation. The
log-marginal likelihood of the auxiliary observations can be
computed using the predicted values of the Kalman filter

L£(0) +logpe(¥: | Yi:4—1)

used to compute the variational approximation. However,
the cubic scaling with Lg could be prohibitive for models
with a high-dimensional extended state-space.

Spectral Hyperparameter Optimization Although we
can evaluate the ELBO analytically, lets first rewrite it
dropping terms independent of 0, so that

L£(0) = —Dxw(q(2)pe(2)) = —Eq(z) [logpe(2)] (24)

Now, we will consider a spectral approximation’ of the
log-marginal likelihood given via Whittle’s likelihood ap-
proximation (Whittle, 1951; Beran, 2017). Let Sg(w)
Flke(7)] be the power spectral density (PSD) of the prior
GP?, and Z(w) = Flz]. Then, by plugging in Whittle’s
approximate likelihood we have

(25)

) (26)

From here, if we recall that the Fourier transform is a linear
transform (e.g. F|z] = Fz where F € RT*T is the DFT
matrix) and Gaussianity is preserved under linear transfor-
mations, the expectation can be evaluated so that

log pe(2z) —% (ZTK%%Z + log |KTT|) +C

43 (1ot + L

J

Q

Se(w;)

EQ(Z)”fJTZ‘P (27)
Se(w;)

> (28)

where g(a;) = N(a; | ijm, fJTPfj) and f; is the 5™ row
of the DFT matrix, F. Evaluating this bound has an initial

1

2
J

£(6)

~
~

<log So(w;) +

Eq(a;) [aﬂ
Se(w;)

1

2

J

(log So(w;) +

2We give an introduction to the Whittle likelihood in App. A
3F[-] is the Fourier transform; Sg(w) & ke(7) are Fourier
duals by the Wiener-Khintchine theorem.
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Figure 3: (a) We simulate a one-dimensional Gaussian LDS,
where the latent variable are sampled from a GP with kernel
kp1(7;1,1,1) then compare the log-marginal likelihood
and the Whittle approximation as an objective for hyperpa-
rameter learning (from left to right 1k/5k/10k observations);
6 denotes the parameter that maximizes objective. The log-
marginal likelihood does not seem to concentrate well on the
frequency parameter. (b) Convergence of the log-marginal
likelihood and Whittle approximation for hyperparameters
averaged over 3 random seeds; the bias for the Whittle ap-
proximation is evident, but it also appears to have better
convergence properties for b; we apply a Hann taper func-
tion before any Fourier transforms taken.

cost of O(LT logT') for the Fourier transform of L latent
processes, but each gradient step on the hyperparameters is
only as costly as evaluating the summation in Eq. (26). The
optimal hyperparameters cannot be found in closed form,
but the optimal PSD can, and may provide further intuition
in regards to using the Whittle likelihood as an objective
function. The following proposition, which we derive in
the Appendix, states that the PSD maximizing the ELBO at
frequency w; is Eq(q,) [a3].

Proposition 1 (Optimal Sg(w)) The function, S§(w) max-
imizing the ELBO at frequencies w1, . .. ,wr 2, is given by

§7 () = argmin L(5()) = Eqa,) [ @9

This suggests that optimizing the Whittle likelihood at-
tempts to bring the prior PSD closer to the expected pe-
riodogram of the posterior latent process. In Fig.3 we com-
pare the Whittle likelihood to the log-marginal likelihood
as an objective function. The Whittle likelihood allows us
to reduce hyperparameter optimization from O(L¥T) to
O(LT log T'); furthermore, the Whittle likelihood makes it
possible to take advantage of methods/theory from signal
processing in a probabilistic context.

4 Related work

Unlike models e.g. (Lawrence, 2005) using GPs to define
the functional relationship between latent and observed vari-
ables, the LVMs of our interest define a linear/nonlinear
mapping between the latent state and observed variables,
and use GP to impose a priori temporal structure of latent
trajectories; P-GPLVM (Wu et al., 2017) considers GP dy-
namics with a tuning curve function that is also modeled
by GP. Markovian linear autoregressive models, such as the
Poisson Linear Dynamical System (PLDS), are extended to
the nonlinear regime in (Wang et al., 2005; Frigola et al.,
2014; Zhao et al., 2022) by modeling the transition function
with GP; unlike cvHM which aims to extract smooth latent
trajectories, these methods in addition learn the underly-
ing law that governs neural population dynamics. Chang
et al. (2020), and Hamelijnck et al. (2021), use CVI and
the state-space representation of GPs for non-Gaussian ob-
servations, but in the context of spatio-temporal processes
without necessarily considering a latent space.

Although the state-space representation of cvHM with Pois-
son spiking is similar to PLDS (Macke et al., 2011), there
are important conceptual differences: PLDS explicitly spec-
ifies an LDS that governs the dynamics of the neural state,
making it necessary to learn all parameters of the transition
matrix. Additionally, although the Laplace approximation
used in PLDS is practically convenient, it negates theo-
retical guarantees of a monotonically increasing marginal
likelihood provided by the EM algorithm. In contrast, the
LDS in cvHM is determined by the small set of kernel
hyperparameters, and is fixed to a degree of mean square
differentiability. However, encoding this structure in the
prior comes at the cost of increased latent dimensionality
and inferring latent variables which do not directly modu-
late the firing rate. Additionally, while our method applies
to any model specifying prior beliefs through GPs finitely
differentiable in mean square, such as those in (Loper et al.,
2021; Foreman-Mackey et al., 2017; Solin & Sarkkd, 2014),
computing their state-space representation is not necessarily
as straightforward as it is for a Hida-Matérn GP. In App. I,
we examine the performance of cvHM on Markovian GP
baselines such as those in (Wilkinson et al., 2020).

S Experiments

In this section, we put cvHM to the test on synthetic data
and real neural recordings. First, we verify on toy data that
cvHM achieves the same performance as its latent GP model
inference counterpart, VLGP (Zhao & Park, 2017), but with
linear time complexity. Second, we compare cvHM with
GPFA and PLDS on data generated according to dynamics
of the Van der Pol system, a non-conservative oscillator
with non-linear damping, to show its performance in the
case of model mismatch. Third, we apply cvHM on real
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Figure 4: Van der Pol inference comparison of cvHM, GPFA, and PLDS. (a) Posterior means, credible intervals, and sample
trajectories drawn from each posterior. Note that PLDS samples are much rougher, even though the posterior mean is
smooth. (b) Reconstruction log-likelihood (bits per spike) based on the posterior mean trajectory (Pei et al., 2021). (¢)
Latent log-likelihood of the ground truth trajectory from the inferred posterior. (d) Marginal log-likelihood estimated via
sampling. Gray line is centered at cvHM’s median test marginal log-likelihood value.

neural recordings* taken from a monkey performing a time
interval reproduction task. Finally, we demonstrate cvHM’s
potential impact on experimental design by showcasing its
capability to handle long continuous neural recordings”.

For synthetic data experiments, we use latent trajectories to
generate spike trains from 150 neurons through a Poisson
generalized linear model (GLM) with the canonical expo-
nential as in Eq. (4). The loading weights, C and the bias,
b, are drawn randomly. We scale these parameters so that
all neurons have a realistic baseline firing rate between 5
and 20 Hz. For both real and synthetic neural data, we use
5 ms bins.

5.1 Linear time inference by cvHM

To demonstrate that cvHM achieves the same performance
as its counterpart with reduced computation time, we com-
pare against VLGP which uses low-rank Cholesky decom-
position to combat the time complexity. In this example, we
generated 1D latent trajectories from a Matérn 3/2 GP, with
variance and length scale fixed to 1 and 0.01 respectively.
To illustrate the reduction in computational complexity, we
vary the sequence length from 1, 000 up to 10, 000 bins, and
run the experiments on the exact same computing setups to
measure wall-clock time. cvHM scales linearly (Fig. 2a)
while achieving practically the same performance in terms
of ELBO (Fig. 2b).

5.2 Van der Pol oscillator

We compare cvHM against PLDS (Macke et al., 2011) and
GPFA (Yu et al., 2009) to quantify how well it performs
against models of the same class. For this comparison,
we simulate two-dimensional latent trajectories from the
classic Van der Pol oscillator (Fig. 2c, top row). Observed
spike trains (Fig. 11 in App. D) were generated from the
instantaneous latent states (z(t) and y(¢)). We let all the

‘dandiarchive. org/dandiset /000130, CC-BY-4.0
dandiarchive. org/dandiset /000129, CC-BY-4.0

methods optimize all the hyperparameters.

To quantify the goodness-of-fit for the inferred latent trajec-
tories, we calculate the log-likelihood of the true (simulated)
trajectories under the posterior inferred by each method,
i.e. logq(zy.7). The motivation for using this metric is
that the reconstruction likelihood measure (Fig. 4b) used in
the literature is designed to measure a deterministic firing
rate prediction, forcing Bayesian approaches to disregard
their posterior distributions. This results in taking the mean
latent trajectory of the posterior before evaluating the log-
likelihood of the observation. In some cases, this may not
give good insight into the quality of the inferred latent trajec-
tories. For instance, cvHM finds a higher quality variational
posterior than GPFA 6 and PLDS’ (Fig. 4a,c), while PLDS
exhibits a higher reconstruction log-likelihood (Fig. 4a). It
is interesting that PLDS tends to trade off smoothness for a
better fit to the firing rate since it has a worse posterior over
latents. Unfortunately, the latent log-likelihood measure can
only be evaluated in simulations where the true latent trajec-
tory is known. Since the time derivative of z is equal to y
for the Van der Pol oscillator, we can compare the derivative
process inferred by cvHM against its inferred trajectory for
y. In Fig. 2c we see that the mean square derivatives on
average are similar to the analytic derivatives of the sam-
pled trajectories, while providing a measure of calibrated
uncertainty. This illustrates how we can use cvHM to gain
additional insights about aspects of latent trajectories that
require knowing their time instantaneous derivatives, such
as their velocity.

5.3 Electrophysiological Recordings

Time interval reproduction task The utility of any
LVM of neural dynamics is the ability to gain qualitative
or quantitative understanding about neural computation
by examining real data. We use cvHM to examine the

Shttps://github.com/NeuralEnsemble/
elephant (Denker et al., 2018), BSD 3 license
"github.com/lindermanlab/ssm, MIT license
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Figure 5: DMFC-RSG dataset ‘eye-right’ condition. (a)
Speed of neural trajectories was easily inferred using the
mean square derivatives; aligned to ‘Go’. Results show that
peak speed decreases within increasing intervals under each
prior expectation (short vs. long contexts, see (Sohn et al.,

2019)). (b) Trajectory speeds aligned to ‘Set’. (c) Latent
trajectories.

‘short’
‘long’

DMFC-RSG dataset (Sohn et al., 2019). The DMFC-RSG
dataset includes 54 neurons over 1289 trials recorded from
dorso-medial frontal cortex (DMFC), and is known to
exhibit low dimensional dynamics. In this task a monkey
is exposed to a timing interval demarcated by two visual
cues, “Ready” and “Set”. Upon seeing the visual cue for
“Set” the monkey waits an amount of time and signifies its
prediction of the Ready-Set interval (marked “Go”). With
cvHM we examine the inferred neural trajectories and their

speeds using the mean square derivatives as shown in Fig. 5.

We find cvHM verifies the hypothesis that trajectories
under the same prior should have speeds that decrease with
increasing prediction interval. To validate our results, we
also ran GPFA and PLDS on this dataset and found the
reconstruction log-likelihood evaluated on the training/test
set of both methods to be similar (see Supplement). Again,
the utility of cvHM is apparent since to estimate the speed
of these trajectories with PLDS and GPFA required using
finite difference schemes which do not provide a calibrated
measure of uncertainty.

Long trial experiment Many neuroscientific experiments
have long trials or no inherent trial structure (O’Doherty
et al., 2017). To apply latent GP models, typically one
has to split the recording into segments for the sake of
computational cost. Practical implementations split trials

into even shorter segments for fast EM iterations (e.g.
the GPFA implementation of (Denker et al., 2018)%).

These compromises have drawbacks on inference and
hyperparameter tuning. Fortunately, the linear time
complexity of cvHM makes it feasible to analyze the
continuous recordings in a reasonable amount of time. In

8https://github.com/NeuralEnsemble/elephant
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Figure 6: (a) Staggered trajectories of a single latent dimen-
sion. (b) GPFA inference computation time normalized by
cvHM inference computation time; for long trials, GPFA
becomes infeasible quickly. (¢) Additionally, decreasing
trial length affects the quality of inference as measured by
the ELBO; in addition to discontinuities, creating artificial
trials affects hyperparameter adversely.

this experiment, we demonstrate this and show the effect of
trial splitting using the MC-RTT dataset (O’Doherty et al.,
2017). This dataset consists of a 15 minute continuous
recording from 130 neurons in motor cortex during a
reaching task. We use a spike train of 100s (20,000 bins) as
a single trial, and split it further into 50s and 25s trials. We
fit cvHM to these 3 sets separately.

Figure 6a shows how trial splitting affects the quality of
inference. Firstly, the inferred trajectories are staggered at
the artificial trial boundaries. Secondly, the inference deteri-
orates with split (Fig. 6¢). Thirdly, the optimal length scale
tends to become small as the trials get shorter (see Fig. 12
in the Appendix). To show how inference can quickly be-
come infeasible when using similar GP methods, we com-
pare against GPFA. In order to elucidate the benefit of the
state-space approach we normalize sequence length against
a 20,000 bin long segment, and wall clock time against
cvHM’s wall-clock time to infer the posterior of the 20,000
bin long segment (Fig. 6b).

6 Discussion

In this work, we propose cvHM, a latent GP model learning
approach combining the recent Hida-Matérn framework and
CVI. We showed that cvHM provides competitive inference
with favorable linear time complexity for non-conjugate
observations. Its high computational efficiency eliminates
compromises such as the need to split long trials or use large
time bins for practical analyses of long neural recordings,
and opens a door to flexible experimental design. Moreover,
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cvHM provides posterior beliefs about the mean square
derivatives of the latent processes as a free lunch, which
exhibits potentials in providing further insights for scientific
questions. Furthermore, we introduced the Whittle likeli-
hood as an alternative objective for hyperparameter learning
of stationary GP models; in spite of bias, the Whittle likeli-
hood approximation could accelerate GP inference as well
as in other areas of machine learning.

The GP prior, as we stated early, is essentially a linear
dynamical system, so that cvHM, as well as other latent
GP models, would mismatch the underlying dynamics if
the ground truth is nonlinear. Nonetheless, this does not
imply that the inferred trajectories come from a linear DS.
Meanwhile, HM theory restricts cvHM to stationary kernels,
and could require high numerical precision if high order of
derivatives are needed. For practicability, we have found
it better to approximate smooth kernels with mixture of
low-order HM kernels to avoid ill numerical conditioning.

In future work, we aim to extend cvHM to handle autore-
gressive observations in order to capture salient details such
as neuron refractory periods (Pillow et al., 2008; Zhao &
Park, 2017), to utilize nontrivial observation models for
nonlinear population coding (e.g. hippocampal CA1 place
cells (Wu et al., 2017)), and to account for control inputs in
the dynamical system point of view. Moreover, we could
employ the sparse GPs (Wilkinson et al., 2021; Adam et al.,
2020) to further accelerate cvHM and the state-space repre-
sentation and iterative nature of CVI may shed on light on
online inference.
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A The Whittle likelihood

In the proposed inference procedure, the Whittle likelihood is used to reduce the computational complexity of hyperparameter
optimization. The Whittle likelihood has been used since its conception (Whittle, 1951) to ameliorate the computational
difficulties of evaluating the log-marginal likelihood of a Gaussian process; although this is a commonly used approximation
in the stochastic processes literature (Sykulski et al., 2019; Rao & Yang, 2021; Grenander, 1981), to the best of our
knowledge this is the first time the Whittle likelihood has been used in the context of machine learning and for approximate
Bayesian inference with non-Gaussian observations.

For the sake of accessibility, we will walk through a derivation of the Whittle likelihood; any of the aforementioned
references can be consulted for further details. Imagine we regularly sample a GP, z(t) ~ GP(0, k(7)), at T time points
and collect these observations into the vector z.7 = [21 e zT] . Then, the log-likelihood of this particular sample is

logp(z1.7) = —% (ZITK;;ZLT + log |Krr| + Tlog 27r)

Unfortunately, evaluating K;%ZLT and log | K77 | when K77 is dense scales on the order of O(T?). However, because
the observations were regularly sampled and the kernel is stationary, K+7 will be a Toeplitz matrix (constant along all
diagonals). The only necessary result to derive the Whittle likelihood, is a result from (Grenander & Szego, 1958) which
states that asymptotically, K77 can be decomposed as

Krr ~ FIDF (30)

where F is the DFT matrix, D;; = 1/Sg¢(w;), and H is the conjugate transpose. Using the fact that Fz,.p is the DFT
transform of z;.7, we can plug in these expressions to arrive at the Whittle likelihood

IIZ(wj)IIQ)

log p(z1.7) ~ —% (log Se(wj) + So(w;)
j

J

where w; = (27j)/(AT) with A the sampling interval. The Whittle approximation is a biased estimate of the log-
marginal likelihood, however, there exist improvements over the original approximation meant to reduce the approximation
bias (Sykulski et al., 2019). While this bias is unfavorable, the reduction in time complexity of hyperparameter optimization
from O(L%T) down to O(T log T) is substantial. Additionally, this allows tools/techniques from the signal processing
literature for spectral estimation to be used in the context of probabilistic inference (Rao & Yang, 2021). In Fig. 3 while
effects of the bias are evident (i.e. estimation of /), the Whittle likelihood is substantially less invariant to changes in b; the
elliptical landscape of the log-marginal likelihood, as is known for GPs (Wu et al., 2017; Rasmussen & Williams, 2005),
complicates optimization.

A.1 Optimal PSD

Proposition 1 (Optimal Sg(w)) The function, Sg(w) maximizing the ELBO at frequencies wi, . .. ,wr s, is given by
S*(wj) = agg(m%n L(S(w)) = Ey(q;) [a?] (29)

Proof: Since terms couple additively across frequencies, we can just concern ourselves with finding

S*(w;) = argmax —3 |log Sg(w;) + Lq(aj)[a?] 31
J 2 6 Wy Se (Wj)
Now, we can regard Sg(w;) as an ordinary variable — setting the usual derivative to 0, we have that
1 E, (0 ]a?
- qi”[ ;] =0 (32)
S*(ws) 5% (wy)
= §"(w)) = Eq(a,)la]] (33)

so that the optimal PSD at each wj is just the expected magnitude of the squared DFT.
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B Conjugate computation variational inference (CVI)

For completeness, we give a brief review of conjugate computation variational inference (CVI), for further details con-
sult (Khan & Lin, 2017; Khan & Nielsen, 2018). CVI is applicable when we have a hierarchical Bayesian graphical
model

z ~ po(2z) (34)
ylz~plylz) (35)

and we want to find a variational approximation to the posterior, ¢(z) = p(z | y). If ¢(z) and pg(2z) are chosen to be in the
same exponential family of distributions (Wainwright & Jordan, 2008), then ¢(z), can be factored as follows

q(z) = h(z) exp(A T(z) — A(N)) (36)

where h(z) is the base measure, A is the natural parameter, T(z) is the sufficient statistic, and A(A) is the log-partition
function (Khan & Lin, 2017). Parameters of the variational approximation are easily found through gradient ascent on the
ELBO, i.e.

A At aval(N) (37)

However, the computation of the KL term can present a significant computational challenge — scaling on the order of
O(T3L3) for Gaussian distributions with dense and unstructured covariance matrices. Furthermore, gradients of the ELBO
may not provide a suitable ascent direction in the space of probability distributions (Salimbeni et al., 2018). Alternatively,
the natural gradient can be used to take advantage of the information geometry of exponential family distributions (Amari,
1998). The natural gradients are given by F(X) 'V L where F(X) = E,(,x)[V3 log q(z)] = V3A(A) is the Fisher
information matrix. The inverse Fisher information matrix prohibits naively employing natural gradient descent for large 7.
However, the Fisher information matrix can be entirely avoided by considering another parameterization of the variational
distribution in terms of its mean parameters, defined as the expectation of the sufficient statistic®

B(A) = Eqg2)[T(2)] = VAA(N) (38)

where the natural parameters are also a function of the mean parameters'?, i.e., we can write (). By the chain rule, natural
gradient (w.r.t. A) of ELBO can be simply written as the gradient w.r.t. the corresponding mean parameters:

FA)'VAL=FA) N (Vau) VL=V, L. (39)
Therefore gradient ascent on the ELBO can be done through updates without Fisher information matrix,
>‘k’+1 = Ap + akF()\k)*lvMﬁ = Ap + Oékvukﬁ. 40)

where o, > 0 are step sizes. Using these parameterizations, (Khan & Lin, 2017) showed the Kullback-Leibler (KL)
divergence between the prior and posterior simplifies as V,,Dk1.(¢(z)||p(z)) = Ao — A, where Ag are the natural parameters
of the prior, p(z). Hence, the natural gradient ascent steps become

Akl = Ak + ar(Xo — Ap) + o Zvuqu(zt) log p(ys | 2t)- (41)
t

Iterative updates can be transformed into the following two step procedure (Khan & Lin, 2017) using an auxiliary variable A
such that

Abt1 = Ak + Ao (42)
Air1 = (1 —ap) Ay, + oy, Z Vi Eqezy log p(ye | 2t) (43)
t

where care should be taken to note the dependence between p;,, and A;. Note that (42) resembles a Bayesian posterior
calculation with a conjugate prior, while (43) updates the natural parameters A, of the (approximate) likelihood. This
would suggest that the first step can be thought of as a Bayesian posterior calculation, where X are associated with
pseudo-observations y conjugate to the prior.

The natural parameters should be in the minimal exponential family form; here minimal is a technical requirement on the linear
independence (always achievable) of sufficient statistics so that there exists a one-to-one mapping from the natural to the mean
parameterization.

10The log-partition function in the natural parameters and the negative entropy in the mean parameters form a dual (Wainwright &
Jordan, 2008).
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Algorithm 1 Backward information filter

1: Input: yi.7, Vi.r, A%, Q% Qo
2: initialization:

3 hT+1 ~—0

4 Jpgpq —%le

55 h«C'Vly, t=1,....,T
o

7

8

J,«C'v;'C t=1,...,T
:fort=Tto1ldo
: “*prediction step*
9: L+ Jiy +APTQPAY
10: flt — Q_bAbL_lht+1
11: J, < Q- QPAL1ATQ?
12:  *update step*
13 J < J,+J,
14: ht — jt -+ jt
15: end for
16: Return: Ji.7,hq.p

C Probabilistic filtering for posterior inference

C.1 Backward filtering

Consider the following LDS modeled forward in time,

Ziy1 = Az + € (44)
v = Cz, +n, (45)

In our context, this model encodes our a priori belief about the latent dynamics. Associated with the SSM that runs forward
in time, is an SSM that runs backward in time

Zy = AbZt+1 + 6? (46)
ye =Cz + 1, 47)

where € ~ N'(0,Q"(7)) is the backward state-noise and A® is the backward-time dynamics. In general the backwards
dynamics and state-noise satisfy the following equations (Kailath, 1980)

Al =S ATS;! (48)
Qg+1 =S - A?—&-lst-‘rlA?Il (49)

where S; = E,5(2,,2,.1) [ztth +1] . When the prior dynamics is a Hida-Matérn GP and all data are sampled at intervals of T,
then S; = K(7) for all ¢ and the dynamics/state-noise are given by

e
S
i
=

(r)"K(0)™! (50)
K(0) - K(7)"TK(0)"'K(7) (51)

o
=
=
\]
2
|

respectively. Now, any filtering algorithm could be used in order to compute the backwards filtering distribution given by
p(z¢ | yr.1). For example, if we know p(z;41 | y¢+1.7), then the predict and update steps of recursive inference are

p(2ze | Yer1:1) = Epar s lyeiar) Po(Ze | Zeg1)] (52)
P(Zt | yt:T) & P(Yt | Zt)p(zt | Yt+1:T) (53)
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C.2 Combining statistics from forward/backward filters

The dual filtering approach described in the main text is the preferred method for recovering statistics of the LDS posterior
compared to more common filter forward/smooth backward algorithms — especially in the context of variational inference
where the natural parameterization is often more helpful. More than that, dual filtering approach allows us to combine the
natural parameters returned from both filters to easily compute posterior statistics.

From the forward filter, we recover ¢(z; | y1.;) for all ¢, through the natural parameters . At the same time, from the
backward filter, we recover ¢(z; | y:.7) through the natural parameters (h?, J?); however, we require the natural parameters,
(h?,J%), of the backward predictive distribution, ¢(z; | y:11.7), to compute the posterior. Fortunately, they are just a
byproduct of running the backward filter.

Q(Zt | }’1:T) x Q(Yt+1:T \ Zt)q(Zt | Y1:t) 54
N(m),P})
Q(Zt | yl:t) q(Zt ‘ yt“rl?T), (55)
pe(Zt)
~——
N(0,K(0))

where ¢(z: | Yi11.7) = Eq(zyiilyiirr)[Po(Ze1 | 2¢)] then, q(z; | y1.7) = N(my, Py), and the posterior marginal
statistics can be directly read off

P! = + [Py~ — K(0)~* (56)
P;'m; = + [P} 'm} (57)
or, we can just substitute the natural parameter representation so that
J, =3 +3°-K(0)! (58)
h; =h/ +h® (59)

C.3 Information filter

Whereas, the traditional Kalman filtering algorithm uses recursive updates for the latent state mean/covariance, the
information filtering algorithm uses recursive updates for the natural parameters of the latent state (Anderson & Moore,
1979). Recall, Kalman filter updates are given according to

P,=P,—-P,C’(CP,C" +V,)"'CP, (60)
— (P +CTv; o) 1)

so that,
P,'=P;'+C'V;'C (62)

Just as easily, we can plug in the expression for P; = AP;_; AT + Q — invoking the Woodbury identity again reveals that
P,'=Q-QAT(AP, AT + Q1) 'AQ (63)

INustrating that it could be advantageous to consider a recursion for P, !instead of P; — especially if the latent dimensionality
is significantly smaller than the number of neurons (which is often the case for neuroscience experiments). More in depth
treatment can be found in standard texts such as (Anderson & Moore, 1979; Kailath, 1980).

D Experimental details

D.1 More comparison to the latent GP counterpart

In the main text, we presented the normalized ELBO on a test set of the toy data generated from GP latents. Here we show
BPS (bits-per-spike) and normalized ELBO measures in Fig. 7 to further verify that cvHM performs qualitatively the same
as vLGP.
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Figure 7: cvHM vs vLGP: BPS/normalized ELBO on train/test splits of the toy data used for verification. cvHM performs
qualitatively the same as VLGP in terms of all metrics.

Figure 9: Van der Pol oscillator: cvHM predictions of future latent states of the. Before dash line: approximate posterior
mean in blue, After dash line: predictive mean in red Colored shade: the 95% credible interval. Predictions of the y
dimension are able to capture salient features such as the sharp peak and asymmetric behavior about it.

D.2 Van der Pol oscillator predictions

With the expressiveness of Hida-Matérn kernels, we can predict (forecast) future latent states. For the Van der
Pol oscillator experiment we wondered how well cvHM could predict future latent states in the absence of data.
Since the Van der Pol system evolves according to nonlinear dynamics, a sufficiently
expressive covariance function is needed per dimension in order to make accurate
predictions. We can easily construct expressive Hida-Matérn kernels through linear
combination; we use 6, 2-ple Hida-Matérn kernels for the « dimension, and 30, 2-ple
Hida-Matérn kernels for the y dimension.

neurons

The kernels over the y dimension are initialized so that they cover a range of frequencies
from 0 Hz to 70 Hz. In order to isolate how expressive a kernel we can create, we further
initialize the loading matrix and bias to the true values. During inference, we optimize
all hyperparameters of all kernels. Fig. 9 shows that cvHM can perform prediction well
at the cost of having a large expanded latent space.

D.3 DMFC-RSG

For the DMFC-RSG dataset, we analyzed all four conditions: ‘hand-left,” ‘hand-right,’
‘eye-left,” ‘eye-right’ using cvHM, GPFA, and PLDS. Using the different methods we
examine time instantaneous speed of neural trajectories either aligned to ‘Set’ or ‘Go’.
We fix the latent space to be three-dimensional for the purposes of visualization as
well as qualitative metrics of performance. Fig. 10 shows that in terms of BPS and

time

Figure 8: Observed spike
counts and the ‘true’ latent tra-
jectories for the VDP system.
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log p(y | E[z]) log p(y)
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Figure 10: DMFC-RSG: BPS and log-marginal-likelihood for GPFA, cvHM, and PLDS per trial. Log-marginal-likelihood
is calculated using a Monte-Carlo estimate with 100,000 samples from the posterior. A soft rectification was used in order to
transform the output of GPFA to fitting rate for log-marginal-likelihood.

log-marginal-likelihood, cvHM and GPFA perform similarly while PLDS lags behind. Be aware that the true dynamics in
nonlinear and cvHM and GPFA have a larger effective dimensionality in SSM point of view. In section K, the inferred speed
of latent trajectories by all the three methods are plotted in Fig. 16, 17, 18,and 19.

D4 MC-RTT

To see how ‘trial splitting” affects the hyperparameter tuning, we examined the estimation of length scale using the MC-RTT
dataset where we used a spike train of 20,000 bins but split it into trials of lengths 25, 50, 250, and 1250 bins. In Fig. 11, we
see that the optimal length scale inferred for one of the latent dimensions decreases monotonically with increasing trial lengths.

E c¢vHM implementation details trial length

E.1 Initialization 0.8

For cvHM, we initialize the readout matrix, C, using factor analysis and the bias, b, using

the average firing rate. Except for the first experiment to compare performance with vLGP, 0.4

hyperparameters are optimized in variational EM style. For optimization of the readout matrix,

bias, and kernel hyperparameters we use PyTorch (Paszke et al., 2019) in combination with 0.0 Iy

SciPy (Virtanen et al., 2020). '

E.2 c¢vHM Algorithm 08

We describe the exact cvHM learning algorithm that uses dual information filtering along with

CVI for inference in Alg. 2. There, Q. is the stationary covariance of the dynamical system 0.4

defined by (A, Q), and hg and Jg are the prior natural parameters; which in our case will be I

0 and K77 respectively. 0.0 2 . .
102 108

E.3 Hyperparameters using log-marginal likelihood

Figure 11: Inferred
lengthscales of the two
latent dimensions for
MC-RTT as a function of
trial length

+ Zlogp(yt | ¥1:6-1) (64)
¢

Discussed in the main text, the ELBO (represented below), for the models considered can be
recast as

p(ye | zt)
£(0) = Z Eq(zt) log m
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Algorithm 2 cvHM Algorithm

1: Input: yi.r, Vir, A, Q, A, Q, Qoo ho, Jo

2: initialization:

3:  *initialize the variational approximation to the prior*
4: hy.p < hy

5: Jl:T — J()
6
7
8

*initialize pseudo natural parameters*
h, + VuinEq(zt)[logp(yt |z:)], t=1,...,T
T, HVHEQ)Eq(zt)[logp(yt |z,)], ¢t=1,...,T
9: repeat
10:  *bidirectional filtering*
11: (h{T’J{T) <—Flltel‘FOI‘W&I‘d(h1 T;Jl A, Q, QOO)
12:  (hé,, J1 r) + FilterBackward(hy.7, 1.7, A®, Q*, Q..
13: JteJlTJrJlT Q!
14: ht<—h1T—|—h1T
15:  *update pseudo natural parameters*
16:  hy « (l—a)ht—|—aV <1)E azollogp(y: | z¢)], t=1,....,T
17: J, (1- a)Jt + avungq wllogp(ye | z)], t=1,...,T
18: until convergence
19: Return: Ji.7,hy.p

We see that, with parameters of the variational approximation fixed, only the log-marginal-likelihood of pseudo observations
contributes to the gradient with respect to hyperparameters. Then,

VoLl =Ve» logp(§: | J1:-1) (65)
=Vp ) log (/ p(3e | 27)p(27 | yu_1>> (66)
Vo> tog ([N |20 VONG |y, [P7) i) (67)
= Vo( - (30— Hm;) "Ry (3, — Hm;) — L log |R|) (68)

where R; = HP, H' +V,, and m, =Agm;_;,withP;, = AgPt,lA;r + Qg are the predictive means and covariances
at time ¢, computed using the filtering step statistics; they depend on the kernel hyperparameters through the transition
matrix, A, and the state noise Q. In order to verify hyperparameter optimization, we draw spike trains whose intensity are
modulated by a Matérn 3/2 GP while varying the kernel lengthscale. We use variational EM to estimate the hyperparameters
of the prior as shown in Fig. 12.

E.4 Poisson likelihood gradients
For the update to the first natural parameter we have
h, = (1 — Oz)hk_l + ahg
+aVm Z Eq(z,2) logp(y: | 2t) (69)
t

letting I, s = Eq(z,|x) 10g p(Yn,¢ | 2¢), we have through the chain rule and natural parameter properties (Hamelijnck et al.,
2021) that

Vm()\)ln,t = len,t - 2vPln,trnt (70)
= Cn (yn,t - Arn,t) + Arn,tcncl—mt (71)
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Figure 12: Optimal length scale estimated from the data during the M-steps. We initialized the prior length scale randomly
(4 realizations) about the true value to see how optimization performed. In most cases, the hyperparameters converged with
a relatively small number of M-steps. The oscillation is likely attributed to the fact that we cap the gradient within 10-25%
of current value at each optimization step.

where 7, s = exp(CTTL + b, + %CTT, P;C,,). For the update to the second natural parameter we have

J, = (1 —04)ka1 + ady

+aVax Y By x logp(y: | z) (72)
t
where
Valne = Ve (Yo Chpmy — Ary, ¢) (73)
=—3AC,C) 1y (74)

F Latent process velocity

A by-product of inference using the SSM representation of Hida-Matérn GPs is that all mean square derivatives of the latent
trajectories are inferred for free. Those mean square derivatives are equal to the sample path derivatives with probability
one (Doob, 1990) and may reveal useful information about latent trajectories inferred. One possibility, is using the mean
square derivatives to probabilistically interpret the speed and acceleration at which neural trajectories evolve. In the context
of neural dynamics this can be useful; as an example, the velocity of latent neural dynamics is an interesting metric that may
be used to substantiate or disprove certain hypothesis of neural computation (Sohn et al., 2019). While similar conclusions
could possibly be drawn through strategies like finite differences, they would not provide a calibrated measure of uncertainty.
We examine this in the experiments section.

G PLDS with extended state-space

Our comparisons with PLDS in the paper used the same latent dimensionality. However, the state-space dimensionality of
cvHM will necessarily be inflated due to the need to propagate mean square derivatives of the latent processes. In Fig. 13
we show the result of an additional experiment where PLDS is also given an extended state-space.

H Non-conjugate Gaussian observation example

To demonstrate the ability of cvHM to handle variety of non-conjugate cases, we consider nonlinear Gaussian observations
readout from the latent state according to the following generative model

Z)1.7 ~ gP(O,kl(T)) = 1,.. 7L (75)
YH,t NN(Yn,t | Q(Zt);ai) n = 17"'aN (76)
g(z;) = exp(C 2, +b,,) (77)

Following the prescription earlier, the only adjustments we need to make to infer the latent trajectories are to cal-
culate the derivatives of the expected log-likelihood under our variational approximation. Doing so, we have for
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log q(z) log p(y | E[z])
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Figure 13: cvHM vs PLDS: For observations that read out L latent variables, the dimension of cvHM’s latent space will be
M =" M; when the [ latent variable is modeled by an M;-ple Hida-Matérn GP. We compare cvHM with M; = 2 and
M5 = 2 to PLDS with latent dimensionality of 2 and 4. (a) log-likelihood of the ‘ground truth’ under the posterior for cvHM
and PLDS2 and PLDS4 (2 and 4 respectively denote the dimensionality of the latent space imposed). (b) bits-per-spike (c¢)
comparison of posterior for PLDS2 and PLDS4; PLDS4 has been projected down from 4 dimensions to 2.

lpt = Eqezn log p(yn.t | z¢), the gradients for the mean and covariance are:

1
vmtln,t = _Tcnrn,t [Tn,t - Yn,t}
O-n

1
th ln7t = _O__QCnC;ern,t [rn,t - yn,t]
n

Fig. 14 shows the result of inference under this generative model when the true latent trajectories are generated according to
the Lorenz system. In this case, we were able to analytically calculate the expected log-likelihoods; in general this may not
always be possible, in which case we can resort to a sampling scheme to approximate the intractable expectations required
for CVL

1st dim 2nd dim 3rd dim
a b

== POSterior mean == true trajectory

Figure 14: Nonlinear readout example: (a) cvHM infers accurate latents for the Lorenz system, observations are nonlinear
readouts of a linear projection of the latent state; shading indicates the 95% credible interval (b) mean inferred trajectories
plotted in 3D

I Comparisons against other Markovian GPs

In the main text, comparisons were made against models aimed at finding structured representations of data where prior
beliefs are specified according to GPs (e.g. PLDS, GPFA, and vLGP). Here, we compare approximate GP regression with
Hida-Matérn kernels versus popular Markovian GPs (Hartikainen & Sarkka, 2010; Solin et al., 2018; Hamelijnck et al.,
2021); we choose two common baselines that use Poisson likelihoods from Wilkinson et al. (2020).

Coal dataset The coal mining dataset reports the 191 coal mining explosions that killed 10 or more people in Great Britain
from 1851 to 1962 (Wilkinson et al., 2020). In order to make a fair comparison, we parameterize a GP similar to (Hamelijnck
et al., 2021) by using a second order Hida-Matérn GP, and a Poisson likelihood with canonical link function so that the
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\ No. PTS. (x1000)

LIKELIHOOD | 1 10 25
EXACT -445+14.4 -1.55+0.72 -0.557 £ 0.680
WHITTLE -8.5+3.52 -1.02+0.66 -0.408 £+ 0.121

Table 1: Quantifying latent state recovery using Whittle versus exact log-likelihood. In Fig. 3 we highlighted the
difference between the loss landscape generated by the exact log-likelihood versus the Whittle approximation; here, we
explore the Whittle approximation’s effect on latent state recovery in the approximate inference setting. Numbers show the
log-likelihood of the latent trajectories under the approximate posterior.

generative model is

p(z1.1) = N(z1.7 | 0, Kpr) (78)
p(ys | z¢) = Poisson (y; | Aexp(z + b)) (79)

where A is the bin size and b is the bias. We use the Whittle likelihood and bidirectional information filtering and
calculate a 10 fold cross validated negative predictive log marginal likelihood of 0.955 & 0.16, whereas the Markovian
GP baselines used in (Wilkinson et al., 2020) achieve a 10 fold cross validated log marginal likelihood of 0.922 +
0.11, when using the same data splits. cvHM performs worse on this dataset, possibly because the bias introduced by
the Whittle approximation is significant in this low data regime. We show the inferred posterior intensity in Fig. 15b.

a
Aircraft accidents dataset. The aircraft accidents dataset is an- 30

other dataset that is well modeled by a Poisson likelihood. For a fair
comparison against the approximate GP regression methods reported
in (Wilkinson et al., 2020), the GP prior kernel is constructed as

Airline accidents

Ny
o

intensity

o

k() = otk (73 2,0,p1) + 05k ai (153, ba, po)

9 .
+ os5km (T3 g, bs, p3) 1920 1940 1960 1980 2000
(year)

cvHM achieves a 10 fold cross validated negative predictive log b
marginal likelihood of 0.142 4 0.01 on this dataset which is the same 4
as results reported in (Wilkinson et al., 2020). As a consequence
of this dataset being larger than the coal dataset, cvHM is able to
achieve results on par with other Markovian GP baselines even though £,
it uses an approximation of the Gaussian log-marginal likelihood. The

inferred posterior intensity is plotted in Fig. 15a. 1

J Ablation studies

Coal mining

intensity

1860 1880 1900 1920 1940 1960
t (year)

We tease apart some factors of cvHM that may make it preferable over
a traditional/standard implementation that does not incorporate use of
the Whittle likelihood or bidirectional information filtering with a few

Figure 15: a) Mean airline accidents intensity and
the 95% credible interval. b) Mean coal mining
explosion accidents and 95% credible interval.

short experiments.

Whittle likelihood and latent variable recovery In the main paper, it was empirically shown that the Whittle approximation
may produce a favorable loss landscape for hyperparameter optimization. Given that variational EM is an iterative algorithm,
we would expect that improvements in hyperparameter estimates lead to improvements in the variational approximation to
the posterior of latent trajectories.

Motivated by this, we consider a simple experiment where Poisson spiking is generated by a latent state simulated from
a noisy Van der Pol oscillator like in Fig. 4. Over 3 random seeds, we generate datasets of different number of trials,
then measure the average log probability of the inferred latent trajectories when using the Whittle approximation or exact
log-marginal likelihood — the results are reported in Table 1.

Information filtering improves lower floating point results In this small experiment, we investigate how recovery of
latent trajectories differs when using the information or covariance form of the Kalman filter. Data is generated from Poisson
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FLOATING PT.  FILTER

SEED No.

1

2 3 4 5

32 BIT COVARIANCE -52,035,944  -50,464,916  -52,000,688 -52,378,684 -51,895,720
INFORMATION | -52,030,328 -50,463,748 -51,997,296 -52,370,120 -51,893,184
64 BIT COVARIANCE | -51,920,061 -50,352,983 -51,884,765 -52,261,973 -51,780,153
INFORMATION | -51,920,061 -50,352,983 -51,884,765 -52,261,973 -51,780,153

Table 2: Effect of filter type on latent variable recovery. The average log-probability of latent trajectories for each seed
is plotted as a function of the type of filter used, and the floating point precision. Only when dropping the floating point
precision down to 32 bits do we see the benefit of using the information filter over the standard covariance filter.

observations with Van der Pol dynamics, similar to the previous experiment; over 5 random seeds, we draw 15 trials of
length 1000, and then perform inference using either the information form of the Kalman filter, or the covariance form.

For each seed, the average log probability of latent trajectories is calculated and plotted in Table 2. For 64 bit floating point,
there is no advantage to using the information filter. However, results for the covariance filter are consistently worse across
each seed when the floating point precision is brought down to 32 bits.
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K DMFC-RSG figures

cvHM GPFA PLDS

Figure 16: DMFC-RSG: eye-left condition. Similar to the eye-right condition presented in the main text, we can see that
cvHM and GPFA recover latent trajectories which have peak speeds that decrease with respect to increasing intervals within
the same prior. This effect is harder to see in the trajectories inferred by PLDS.

cvHM GPFA

“Set"— “Go”

Figure 17: Condition: eye-right. Neural trajectory velocities for the eye-right condition as presented in the main paper.
Again, PLDS seems to have inferred trajectories with an effective lengthscale that is too small.
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Figure 18: Condition: hand-left. In comparison to the conditions requiring an eye saccade to indicate interval predictions,
trajectories seem to end at higher speeds as seen in ‘Go’ to ’Set’

cvHM GPFA PLDS

“Set”— “Go” “Set”— “"Go” “Set”"— “Go”

Figure 19: Condition: hand-right. cvHM inferred trajectories for this condition are distinctly different than those it inferred
in the three other conditions; the "bump’ like characteristic of the speed exists in short prior but not so much the long prior;
additionally the average trajectory speed dips from its starting value for all interval times.
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