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Abstract 

Personalized educational interventions have been shown to facilitate successful 

and inclusive statistics, mathematics, and data science (SMDS) in higher education 

through timely and targeted reduction of heterogeneous training disparities caused by 

years of cumulative, structural challenges in contemporary educational systems. However, 

the burden on the institutions and instructors to provide personalized training 

resources to large groups of students is also formidable, and often unsustainable. We 

present Individualized Pathways and Resources to Adaptive Control Theory-Inspired 

Scientific Education (iPRACTISE), a free, publicly available web app that serves as a tool 

to facilitate personalized trainings on SMDS and related topics through provision of 

personalized training recommendations as informed by computerized assessments and 

individuals’ training preferences. We describe the resources available in iPRACTISE, and 

some proof-of-concept evaluation results from deploying iPRACTISE to supplement in-

person and online classroom teaching in real-life settings. Strengths, practical difficulties, 

and potentials for future applications of iPRACTISE to crowdsource and sustain 

personalized SMDS education are discussed. 

 

  Keywords:  Personalized education, control theory, web tools, learning heterogeneity, 

adaptive assessment,   
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Designing and Sustaining Personalized Education through Individualized 

Pathways and Resources to Adaptive Control Theory-Inspired Scientific Education 

(iPRACTISE) 

1. INTRODUCTION 

A pervasive problem in education has been that students from disadvantaged 

backgrounds and traditionally underrepresented groups have not had access to the 

trainings, preparations, and support amenable for success in rigidly structured academic 

programs in areas such as Statistics, Mathematics, and Data Science (SMDS) 

(Ferrini-Mundy, 2013). Success in first-year college SMDS classes has been shown to be a 

strong predictor of persistence and retention of students in Science, Technology, 

Engineering and Mathematics (STEM) majors, and subsequent pursuit of related careers 

(X. Chen, 2013). Strong SMDS trainings are also a must for strengthening the rigor of 

scientific practices in the social and behavioral sciences (Aiken et al., 2008; Gelman, 2013; 

Gelman & Loken, 2014; Ioannidis, 2005; Nosek et al., 2012).   

Contrary to common student misconceptions, the pre-requisite training needed for 

success in SMDS education is often specific, circumventable (Brent & Mueller, 1998; 

Peck et al., 2017; Shiffler & Adams, 1995), and can be greatly facilitated by many freely 

available online resources, such as those from the Khan Academy (Khan Academy, 2017). 

Unfortunately, knowledge of the specific prerequisites they have not mastered and how 

to access relevant resources often evades students whose interests and career aspirations 

can readily benefit from such trainings. In addition, illustrations and examples used in 

foundational SMDS courses rarely resonate with or have a direct connection to applied 

science students’ research questions and data. As a result, students in many applied 

SMDS disciplines often find it challenging to translate concepts and phenomena relevant 

to their lives into mathematical concepts and procedures. 

Research on andragogy, or adult learning (Knowles, 1973), has revealed that adult 
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students learn best when: (1) they understand why something is important to know or do; 

(2) they have the freedom to learn their own way; (3) learning is experiential; and (4) 

the instructional plans build upon the students’ previous experiences, backgrounds, and 

diversity (Bryan et al., 2009; Knowles et al., 2011; Shahidian et al., 2011). The increased 

prevalence of interdisciplinary study programs and career opportunities also underscores 

the need for a next generation of students from diverse educational backgrounds to be 

trained on traditional SMDS topics. Given the heterogeneity in students’ backgrounds 

and training goals across disciplines, uniform, “one-size-fits-all” training is insufficient, 

inefficient, and does not serve any one student well (Rose, 2016). Personalized training 

interventions are effective at pinpointing and reducing students’ training deficiencies, 

especially when delivered in a timely, “just-in-time” manner. However, the burden on the 

institutions and instructors to provide personalized trainings to large groups of students is 

also formidable, and often unsustainable.  

2. iPRACTISE: INNOVATIONS AND DESIGN PRINCIPLES 

We present an online digital platform, Individualized Pathways and Resources to 

Adaptive Control Theory-Inspired Scientific Education (iPRACTISE), that can be accessed 

at https://ipractise.net. iPRACTISE was written using Shiny (Chang & et al., 2022), an R 

package that facilitates building of interactive web apps. To address the aforementioned 

obstacles to quantitative training in SMDS, iPRACTISE is designed to supplement 

traditional classroom teaching in a personalized, adaptive, and scaffolded way by providing: 

(1) digitally facilitated trainings; (2) a control theory-inspired training framework that 

modifies training recommendations based on ongoing fit between students and training 

resources; and (3) computerized adaptive assessments that help automate design and 

implementation of individualized training pathways as informed by students’ past learning 

experiences. The proof-of-concept case examples included in the present article focus on 
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topics in SMDS. However, the platform can also be used for personalizing educational 

resources and pathways in other domain areas. 

2.1. Digitally Facilitated Design, Development, and Delivery of Educational Contents. 

  The burden on instructors to provide multiple “personalized” training pathways can 

be heavy. Fortunately, the emergence of technology supporting automated, digital delivery 

of educational contents makes such student-tailored learning paradigms viable (Hiltz & 

Turoff, 2005; Kafai, 1996). There are several advantages to adopting digitally-facilitated or 

related hybrid approaches to education over traditional classroom approaches. The 

electronic format: (1) opens participation to students and scholars who otherwise do not 

have access to traditional courses; (2) eliminates the “warm-up” period typically needed in 

traditional SMDS courses to review pre-requisite topics; (3) allows participants with varying 

levels of prior knowledge to gain the background and skills electronically, and then get the 

most out of the in-person experience; and (4) provides a healthy environment for both 

delivery and receipt of real-time, personalized feedback in a non-evaluative environment. 

The didactic contents of the iPRACTISE system are designed in digital form. They 

consist both of crowd-sourced digital contents from YouTube and other widely known free 

educational platforms such as Khan Academy and Massachusetts Institute of Technology 

OpenCourseWare (MIT OCW), as well as resources developed by our investigator team. 

Among these in-house resources include the growing collection of over 60 Shiny Apps 

produced by Penn State’s BOAST project (BOAST = Book Of Apps for Statistics Teaching) 

covers statistics learning objectives from the introductory level to upper division courses for 

majors (S. L. Wang et al., 2021). Apps in the collection include expository materials on 

prerequisites, contextual examples, simulation-based explorations of concepts, and game-
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based assessments. The BOAST apps integrate well with iPRACTISE since they are open 

source (https://github.com/EducationShinyAppTeam/BOAST), developed under a consistent 

style-guide supporting users with visual disabilities, and programmed, with faculty 

supervision, by undergraduate students who choose topics that they and their classmates find 

challenging. Thus, students around the world can make use of these modules freely. 

2.2. Control Theory-Guided Training Pathways.  

In engineering, control theory is used to steer a system to stay as close as possible to 

a desired reference state (Åström & Murray, 2008; Bellman, 1964; Rivera et al., 2007; Q. Wang 

et al., 2014). Education can be viewed as a control theory problem (see Figure 1) in which 

students seek ongoing input – in the forms of classes, electronic training modules, etc. – to 

minimize the discrepancies between their actual and target (reference) performance levels. 

Preliminary promise of using control systems in education has been illustrated in a 

simulation study conducted within the context of a web-based computer adaptive practice 

and monitoring system, called the Math Garden (Klinkenberg et al., 2011), in which person- 

and time-specific training dosages obtained from a linear quadratic controller were found to 

yield increased training benefits at reduced costs compared to students’ actual observed 

training durations, and a fixed-duration training scheme (e.g., training for a constant amount 

of 14 minutes per week; Chow et al., 2022). The overarching aim of using controllers to 

accelerate accomplishment of training targets also coincides broadly with the goal of using 

adaptive assessments to steer the difficulty levels of the test items presented to students in a 

direction and magnitude that can reveal the students’ true ability levels with high precision 

and efficiency (Park et al., 2019; Weiss, 1984). 

The iPRACTISE system was designed to emulate the purposes of a car’s cruise 
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control system in educational settings by automating, whenever possible, the design and 

implementation of personalized educational pathways through provision of: (1) a training 

goal specification interface that allows each user to specify their target ability level; (2) a 

training dosage optimization algorithm and corresponding training interface that select and 

deliver the training material that helps bring the user closer to their target ability levels, 

taking into consideration the user’s current ability level; (3) ongoing evaluations of users’ 

ability levels via computerized adaptive tests; and (4) repeated iterations through these 

processes. Training is made cost- and time-efficient by providing students with person-

specific recommendations for contents in need of further exposure. Control theory principles 

have also been infused into iPRACTISE’s training material selection algorithm, as we 

describe in the next section. 

2.3. Individualized Pathways to Learning that Capitalize on Students’ Past Learning 

Experiences.  

A comprehensive but inefficient training model would require that all students 

work linearly through a fixed pathway of designated training materials. In contrast, an 

individualized pathways model leverages and expands students’ existing strengths (Flint 

& Jaggers, 2021) The iPRACTISE system automates design and implementation of 

individualized training pathways in the following ways. Upon initial login, each 

iPRACTISE user is asked to take a user preference survey that records and evaluates the 

user’s selected course, training preferences on dimensions such as preferred difficulty 

level, preferred training modes (e.g., passive vs. interactive tutorial), and preferred 

length for a given training session (see Figure 2A). Then, the student is asked to take an 

assessment for the selected course, with the ability estimate of the student provided at 

the end of the assessment (see Figure 2B for a course on Introduction to R, a statistical 

software package) and later used to rank training materials in the order that best fits 
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each student’s needs. 

Computerized adaptive testing (CAT) is a method of delivering computerized 

assessments that capitalizes on pre-calibrated item pool, psychometric models, and test 

termination criteria to improve both measurement quality and efficiency at all trait levels 

(Weiss, 1982). Assessments within iPRACTISE are implemented and administered using 

the R package, Computerized Adaptive Testing with Multidimensional Item Response 

Theory (mirtCAT; Chalmers, 2016). MirtCAT provides tools to generate a web-based 

interface for creating, administering, providing results, and estimating properties as well 

as results of educational and psychological tests. The tests may be adaptive or non-

adaptive (i.e., traditional fixed-length), and used for evaluating unidimensional or 

multidimensional constructs. Within the mirtCAT, the Metropolis-Hastings Robbins-Monro  

(MHRM; Cai, 2010) algorithm, among a few other possible algorithms, is available for 

simultaneous item parameter and person ability estimation. 

Drawing on information from the assessment, iPRACTISE provides for each user 

a summary of the missed questions, a personalized course tree that displays the topics on 

which each student has not mastered, a table of training materials for each training topic 

ranked in descending order of fit to the student (see Figure 3) across p = three 

dimensions: the easiness level of the material relative to the user’s current ability, the 

estimated training time involved (in minutes) relative to the user’s preference, and fit of 

the method of delivery relative to the user’s preference. We compute an average fit as the 

Euclidean distance between the user’s specified target levels and attributes of each 

training material as: 

        Average fitiht = ∑ ሺ𝑃𝑒𝑟𝑠𝑜𝑛 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒௜௧௞ െ 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒௛௞ሻଶ
௣
௞ୀଵ                    (1) 

where i indexes person, t indexes time, h indexes training material, and k indexes 

attribute. Person Attributeitk represents person i’s attribute along the k = 1, . . ., 3 
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dimensions, including the person’s projected ability level at the current time t, 

preferred training time on each training material in minutes, and preferred method of 

training delivery. Material Attributehk represents the corresponding attribute of 

material h. Relative fit of each training material to the user on each of these three 

attributes is also computed and displayed graphically as a radar plot (see Figure 3B). 

The iPRACTISE system is designed to recommend training materials that are 

close to, but slightly more difficult than the individual’s current ability level. We refer to 

this recommended level of difficulty as the person’s projected ability level. This attribute 

is computed as: 

        Projected abilityi = max [θit + weighti (Target abilityit − θit), (1 + weighti)θit] ,      (2) 

where θit denotes person i’s current ability level at time t as available from a 

computerized assessment (adaptive or fixed-length), weighti represents a scalar 

weight, currently set to an arbitrary constant of 0.5, that determines the intensity of 

the user’s training progression, and may be altered in the future to be empirically based 

as more data become available. Target abilityit represents person i’s target ability as 

assessed using the standard normal quantile (z-score) of each student’s sliding scale 

response to the survey question, “What is your training goal? To be as good as or better 

than what percentage of people pursuing education on the same topic?” In other words, 

iPRACTISE determines a person’s projected ability level either based on a small 

projected increase as proportionate to the person’s ability level, or as proportionate to 

the person’s current deviation in ability level compared to their specified target ability 

level, both controlled by weighti.  

To provide a pseudo-numeric (i.e., ordinal) scaling to the attribute of training 

delivery method, we rank the four types of delivery method, namely, “stuff to read”, 
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“try as you read”, “video to watch”, and “app to play with”, based on their increasing 

engagement of distinct sensorimotor channels for information acquisition, namely, with 

visual, visual + audio, and visual + audio + motor inputs, respectively (Petty, 2010). 

We did not standardize each of these attributes prior to calculating the Euclidean 

distances between the training materials and the users’ attributes. Given these attributes’ 

original scales, the average fit measure tends to weigh deviations in training time from 

the user’s specified more heavily than other attributes. In addition to this overall fit 

measure, we also provide users with a percentage of fit measure across each of the 

training attributes, as summarized in the radar plot shown in Figure 3B. Given these 

choices, the user then has the option to follow the system’s recommendations, or browse 

other training materials of choice. 

3. PROOF-OF-CONCEPT STUDIES 

We present three proof-of-concept studies aimed at illustrating some of the 

hurdles, challenges, and solutions encountered by the iPRACTISE team in developing, 

utilizing, and evaluating the strengths and weaknesses of the system in supporting SMDS 

trainings. Studies that provided data for these case examples were approved by the lead 

institution’s Institutional Review Board under study numbers STUDY00009286 and 

STUDY00018662. All participants provided consent for use of their de-identified data for 

the purposes of enhancing the design and educational goals of iPRACTISE. 

3.1. Study 1: Development and Evaluation of Personalized Assessments in iPRACTISE 

Using CATs 

In this study, we describe the challenges encountered in developing and delivering a 

personalized CAT via iPRACTISE to evaluate students’ mastery of training resources from 

the BOAST project (S. Wang, Zhang, Messer, Wiesner, & Pearl, 2021). The specific Shiny 

apps we used as training resources provided expository materials on characteristics of 



11 
 

  

different discrete and continuous probability. We summarize some proof-of-concept results 

validating the utility of using CAT as an assessment tool even under limited historical data 

for item calibration purposes, and delineate some of the instructor utility and resources 

available in iPRACTISE for educators interested in using iPRACTISE to design and deliver 

their own adaptive assessments in the future. 

Consistent with common procedures of adaptive test developments (Thompson 

& Weiss, 2011), we used historical non-adaptive student performance data from n = 53 

users of the BOAST shiny apps recruited from a probability theory class. Using these 

students’ responses to the items, we estimated the parameters of the items (e.g., item 

difficulty levels) using a Rasch model (Rasch, 1960), one of the simplest item response 

theory (IRT) models, expressed as 

                                           𝑝൫𝑦௜௝௧ ൌ 1ห𝜃௜௧൯ ൌ  
ଵ

ଵା௘௫௣ሺఏ೔೟ା 𝜓ೕሻ
 ,                                 (3) 

where yijt = 1 indicates that student i’s response to item j is correct at time t (and 0 

otherwise), θit corresponds to student’s i ability on a unidimensional construct at time t, 

and 𝜓j is an intercept, commonly referred to as the easiness level of item j. The items 

spanned four major topics (basics, univariate models, multivariable techniques, and limit 

theorems) as designed by the course instructor. Even though other more complex (e.g., 

unidimensional models with item-specific discrimination parameters, multidimensional 

models) are available in mirtCAT, we chose the Rasch model for its relative simplicity 

under the constraints of limited data available for calibration purposes. We estimated 

parameters of the Rasch model using the MH-RM algorithm (Cai, 2010; see online 

Appendix for details). 

Previous simulation studies on CAT designs and corresponding estimation of item 

properties often suggested desired sample sizes that are challenging to attain in real-life 

instructional settings, especially for more complicated item response models (Flaugher, 

2000). For example, Yoes (1995) suggested that 500 to 1,000 examinees are needed per 
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item for the three-parameter IRT model. More practical perspectives have also been 

brought up by others. For instance, Linacre (1994) reported that when the Rasch model 

was assumed, with a reasonably targeted sample of 50 persons and 10 or more items, 

there is 99% confidence that the estimated item difficulty is within +/−1 logit of its 

stable value – an uncertainty level that is arguably satisfactory, or useful enough for 

most practical purposes. With 200 persons, there is 99% confidence the estimated 

value is within +/-0.5 logit. 

We fitted the Rasch model to the BOAST calibration data from 53 users on 120 

test items. Each student took a test set consisting of overlapping and a subset of 

distinct items selected from the total item pool, where the number of assessment items 

varied (min = 4, max = 56, mean = 18.23, median = 14, SD = 14.39). Of these items, 23 

of them were not administered to any students, and were thus excluded in the item 

parameter estimation process. The course instructor provided supplementary expert 

ratings of the easiness levels of these 23 items to build up a CAT module for the 

complete item bank. We then designed and implemented an adaptive test with a pool 

of 120 items, with item easiness levels comprising a mixture of the instructor’s expert 

ratings of 23 items, as well as 97 items with properties estimated using the calibration 

sample. We obtained a new test sample of n = 49 students who completed the new 

adaptive test. 

Scoring of the person-specific ability estimates, 𝜃௜, at fixed (based on estimates 

from the calibration sample and instructors’ expert ratings) values of 𝜃௜ was performed 

by finding the maximum of the posterior distribution of 𝜃 (MAP). Delivery of the CAT 

test also required determination of the item selection criteria and a stopping rule. We 

used the default option in mirtCAT, the maximum information criterion, as the item 

selection criterion. This dictated that the system sequentially choose the next most 

informative item for individual i (i.e., an item that maximizes the Fisher information, 
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െ𝐸 ൬
డమ௅௅൫𝑦௜ห𝜃௜ ,𝝍൯

డఏ೔డఏ೔
೅ ൰, or equivalently, minimizes the standard error around the ability 

estimate for that person). Other available item selection criteria (for details see 

(Chalmers, 2016) included random selection of items, selection of items based on the 

Kullback-Leibler information, and other criteria that are relevant for multidimensional 

IRT models (e.g., the D-rule, which selects an item that maximizes the determinant of the 

joint Fisher information matrix; and the T-rule, which maximizes the trace of the joint 

Fisher information matrix). Finally, we specified a stopping rule such that the adaptive 

test would terminate for each user when the minimum standard error (min_SEM) for the 

user’s ability estimate was less than 0.3, or when the change in ability estimate for the 

user (delta_thetas) was less than 0.1 in successive items. Using these criteria led to 

adaptive tests that consisted of an average of 10.86 (median = 11; range = 9-13, SD = 

0.78) items for each student. As a contrast, allowing students in the calibration sample to 

access the BOAST trainings and subsequent assessments led to use of 17.32 items 

(median = 13, range = 4-54, SD = 13.82). We adopted the default options in mirtCAT for 

other adaptive test estimation details (see Chalmers, 2016). 

A scatterplot comparing the initial item easiness ratings used in the adaptive test 

(based on estimates from the calibration sample and instructor’s expert ratings) and the 

updated item easiness estimates after combining all available data across samples are 

shown in Figure 4A. The plot indicated generally strong correlation between the two sets 

of item easiness estimates (r = .73), with more notable discrepancies among items in the 

mid-range difficulty levels.  

In terms of precision (SE) of the ability estimates (see Figure 4B), the precision in 

ability estimates obtained in this study was commensurate with that reported by Linacre 

(1994) at a similar sample size. Higher precision in ability estimates was observed in the 

adaptive (mean SE in ability estimates = 0.71; SD = 0.04) than the calibration sample 

(mean SE = 0.74; SD = 0.26). These summary statistics suggested that the adaptive 
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test gave rise to more homogeneous (SD of the SE = 0.04 compared to 0.26) levels of 

precision (or conversely, uncertainty) across different values of student ability. To 

further highlight the effects of the adaptive test, we compared a subset of students from 

the calibration and adaptive samples who were exposed to a similar range of test lengths 

(8-10 items). We found that ability estimates based on the adaptive test were consistently 

characterized by higher precision (i.e., lower SEs) in student ability estimates (mean SE 

in ability estimates = 0.84 and SD = 0.06 in the calibration sample; mean SE = 0.75 

and SD = 0.03 in the adaptive sample). Thus, unlike standard fixed-length tests that 

are designed to target the “typical” students (e.g., students at the median performance 

level in a class), adaptive tests deliver specialized items to reduce the uncertainty 

around each student’s ability estimate even under similar test lengths.   

Admittedly, substantial variability in person ability estimates was still present given 

the limited sample size for item calibration, person ability scoring, and number of items, 

and test lengths. Nevertheless, the study provided some proof-of-concept results on the 

feasibility and utility of adding adaptive tests to existing online SMDS training and 

assessment tools even under finite sample and item sizes. Ongoing efforts are underway to 

update item easiness estimates as new data become available. For instance, the BOAST 

project has, since the conclusion of the adaptive test, accumulated data from n = 1179 

diverse users from around the world across a broader array of test items. These data were 

not available as “historical data” for item pre-calibration purposes during the adaptive 

testing phase for the comparisons to fixed-length test described in this study, but will be 

used to update the model and item parameters in iPRACTISE in future iterations. For the 

overlapping items, updated item easiness estimates based on this new, expanded data set 

were found to correlate moderately strongly (r = .51) with the item easiness estimates in 

the previous iteration of item bank in iPRACTISE combining data from the calibration and 

adaptive samples.  

Nevertheless, the proof-of-concept results from this study still underscored the 



15 
 

utility of using CAT as an assessment tool even under limited historical data for item 

calibration purposes, but also the need to make adaptive test design, implementation, and 

delivery more accessible to instructors and educators across multiple domains. To 

facilitate efforts along this line, iPRACTISE is now equipped with an instructor module 

to allow instructors to design and implement their own adaptive tests, and a dashboard to 

inspect student progress and learning deficiencies (see screenshots in Figure 5). The 

iPRACTISE system does not currently automate test item creation and content balancing. 

Rather, it provides course and test design interfaces to allow instructors to specify the 

structure of topics and subtopics for a new course based on existing examples in our course 

archive, upload new test items that map onto these specified topics and subtopics, and 

customize other assessment settings, for instance, as a fixed-length or adaptive test. In the 

case of the latter, if a pre-calibrated model (such as the Rasch model used and calibrated in 

the present example) does not exist, the instructor is encouraged to work collaboratively 

with the developer team to specify the nature of the model and other adaptive test settings 

(e.g., for alternatives to the default options) to be adopted for real-time estimation of 

students’ ability levels. 

3.2. Study 2: Insights from Using iPRACTISE to Support R Learning  

This study describes our work in crowd-sourcing training and assessment contents for 

a course on Introduction to R, and share insights from a psychometric analysis of the 

assessment items used to support R learning. R is a programming language that has gained 

tremendous traction and usage across multiple scientific disciplines. Across institutions, 

such as those to which the co-authors and other collaborators are affiliated, R is being taught 

independently and as separate classes across multiple departments. Elsewhere, introductory 

R workshops are routinely offered with simplified data (e.g., no missingness), or on 

specialized topics with discipline-specific examples. In high demand but clearly lacking are 

efforts to crowd-source and consolidate training contents in ways that help instructors and 
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students connect R programming skills with individual courses. 

The authors engaged in collaborative crowd–sourcing of key topics of importance, 

and assembled training and selected assessment contents thought to fulfill specific 

training purposes across several graduate-level departmental courses on introductory 

statistics. Examples of these key topics, as shown in the sample course tree in Figure 3, 

include data wrangling, reporting and dissemination, and data visualization. Data 

wrangling, for example, includes subtopics such as getting started, importing, cleaning, 

and merging data. For reporting and dissemination, the team suggested Git, R Markdown, 

and best practices for reproducibility as among the topics that are relevant for 

introductory R courses across disciplines. In terms of data wrangling and visualization, 

the team discussed some of the growing divergence in data display trends, practices, as 

well as corresponding didactic materials using Base R as compared to those utilizing 

newer packages such as ggplot2 (Wickham, 2016) and dplyr (Wickham, François, Henry, 

& Müller, 2022).  

We collected student performance data on a subset of R assessment items from 

students recruited from SMDS-related workshops and courses that utilized R to some 

extent, and Amazon Mechanical Turk (MTurk). Of these participants, those who did not 

show sufficient variability in their assessment responses were excluded from the 

analysis, yielding a total of n = 104 participants whose responses were used for 

estimating characteristics of the test items. Approximately 50% of the retained participants 

(n = 52) were participants recruited from MTurk. MTurk is an online marketplace that can 

be used to collect data online quickly and affordably. We used CloudResearch, a third-

party website that allowed us to specify targeted screening criteria reflecting our interest in 

recruiting participants with English as their primary language, had reliable internet 

connection, were comfortable with computerized assessments, and showed interest in 
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obtaining digital educational trainings. Past studies have shown that respondents on MTurk 

tended to be young, well educated, and frequent technology users (Hitlin, 2016). Thus, 

participants recruited through this channel, comprising predominantly of novice R users 

who were comfortable with digital assessment and didactic environments, offered a helpful 

complement to our remaining sample, which consisted of relatively skilled participants 

with prior exposure to R through their enrolled courses and workshops. 

Items for which the students scored an average of above .95 or below .05 

across all items (i.e., 95% or more of the students answered those items correctly or 

incorrectly, respectively) were excluded from all analyses.  Results from fitting the 

Rasch model suggested that items on topics related to data wrangling, reporting, and 

dissemination tended to have higher difficulty levels. We examined the local 

dependence (LD) pairwise statistic between each pair of items, which is very similar 

to a signed χ2 value (W. H. Chen & Thissen, 1997). Several items with local dependence 

statistics that exceeded the χ2 .99 critical value were evaluated in detail for potential 

violation of the unidimensional assumption of the Rasch model. A closer inspection of 

these items revealed that some of these dependencies might stem from similarly worded 

items (e.g., between one item that asked the user how to install a package in R and another 

one that asked how to load a package in R, which involve distinct commands in R but are 

typically performed sequentially in practice), and among some of the test items based on 

specialized packages such as dplyr or R Markdown. We saw high local dependence 

among several, basic base R-related questions that were geared toward novices to the 

R language, and a subset of overly difficult items that yielded relatively limited 

response variability.  
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We compared the fit of the Rasch model (denoted as Model 1 in Table 1) to 

other alternatives (see Table 1), including a 2-parameter logistic (2PL) model (Model 

2), a unidimensional model in which the slope of 𝜃௜ (a re-parameterized version of the 

discrimination parameter in the item response modeling literature) was allowed to 

vary by item as opposed to fixed at unity as in Equation 3. Inspection of fit measures 

such as the Akaike Information Criterion (AIC; Akaike, 1973), Bayesian Information 

Criterion (BIC; Schwarz, 1978), sample size-adjusted BIC (SABIC; Sclove, 1987; 

Tofghi & Enders, 2007), and R2, as well as estimates of the item easiness and slopes 

from the 2PL model suggested that this model, though satisfying conventional criteria 

for convergence and showing evidence of improved fit and effect size based on the AIC, 

SABIC, and R2, led to extreme item parameter estimates (item easiness and slope values that 

were < -10 and > 10) for a subset of 17 items that might be too easy or difficult for the sample 

to yield sufficient response variability for meaningful identification of item parameters. We 

proceeded by imposing equality constraints, respectively, on the subsets of overly easy and 

difficult items, leading to Model 3. Model 3 was found to yield better fit compared to the 

Rasch model in terms of AIC, and SABIC, in contrast to only slight reduction in R2 (R2 = .47) 

compared to the full 2PL model (Model 2; R2 = .49). Finally, a bi-factor model was fitted 

as an alternative way to capture lingering covariations among the residuals associated 

with the overly easy or difficult items. This model and other related extensions (e.g., a 

two-factor model) did not show evidence of improved fit compared to the simpler 2PL 

variations assuming unidimensionality. Thus, even though some individual 

differences were observed in the estimated ability levels of student participants 

enrolled in SMDS courses/workshops (mean ability estimate = 0.70, SD = 0.69; mean 
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SE in ability estimate = 0.36) in comparison to those recruited from MTurk (mean 

ability estimate = -0.37, SD = 0.82; mean SE in ability estimate = 0.37), there was no 

strong evidence favoring a multidimensional than a unidimensional model for R 

learning. 

Capitalizing on results from the item response analysis, we have now updated 

the parameters in the item bank of iPRACTISE to utilize estimates from the preferred 

2PL model with equality constraints. Calibration results from this study are by no means 

an end but rather, reflect our ongoing efforts to refine item parameters in our test bank to 

support future SMDS training and testing needs. 

3.3. Study 3: Survey Results Evaluating Features of iPRACTISE 

The third study presents results from a follow-up user survey administered to a 

subset of participants from Study 2 as well as newly recruited participants to evaluate 

their perceived utility of several key features of iPRACTISE. The participants were asked 

to complete within iPRACTISE a brief learning preference survey, followed by general 

training resources (i.e., not personalized based on the user’s current ability and learning 

preferences), and a computerized assessment on Introduction to R, which provided 

calibration data for Study 2. Following the assessment, participants were directed to the 

student post-assessment dashboard in iPRACTISE, on which they were presented with a 

summary of their assessment results, topics they have not mastered, and choices to 

browse through personalized (based on their newly available ability estimates and 

learning preferences) training materials. Following approximately 50 minutes of 

assessment/training time in iPRACTISE, the participants were asked to complete an 

online survey to share their feedback on iPRACTISE. Our questions specifically targeted 
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the participants’ perceived relative importance of different training material attributes in 

guiding the participants’ selection choices, and their perceived usefulness of a list of 

iPRACTISE features.  

The participants indicated a range of 0 to 5+ years of experience of using R 

(Mean = 0.37, SD = 1.06). Following data cleaning and exclusion of participants who 

provided data with limited variability across questions, data from a sample of n = 73 

users (77.7% or n = 52 of whom were recruited from MTurk to reflect more heavily the 

learning preferences of novice users, the primary target audience of iPRACTISE) were 

retained for data analysis. Training material attributes the participants were asked to 

rate (on a scale of 0 to 100) included: fit of the difficulty level of a material relative to 

the participant’s ability (abilityFit), fit of the method of delivery of the material 

(method), fit of the topic (topicFit), training time (trainingTime), and visual appeal of 

the training material (visual appeal). Table 2 shows the summary statistics for these 

participants’ ratings. Across attributes, we found that fit of the material to the 

participant’s ability level and fit of the topic were found to be the most important 

determinants of the participants’ choices of training materials, followed by delivery 

method and training time. Visual appeal was rate relatively low (mean = 51.22 on a 

scale of 0 to 100). 

The iPRACTISE features that the participants were asked to rate on a scale of 0 to 

100 (see Table 3) included the availability of computerized assessment 

(TimelyAssessment), the course tree that summarized key topic of interest (CourseTree), 

personalized version of the course tree (PersonanlizedCourseTree), table summary of the 

missed responses with correct answers (SummaryMissedQs), radar plot depicting fit 

of the materials (GraphicalFit), rank ordering of the training materials in terms of fit 
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to each participant (RankOrder), and training resources provided to the participants 

(TrainingResource). In general, the average ratings of usefulness were higher than 59 out 

of a scale of 0 to 100 across all of the features considered. The most useful features were 

the collection of training resources and table of missed responses. The personalized 

course tree (M = 70.56, SD = SD = 26.16) was rated to be more helpful than the general 

course tree (M = 59.51, SD = 28.16). Results from the rank-ordering algorithm and the 

assessment itself were also rated relatively high, even though the visual display of fit (the 

radar plot), while still generally rated as useful, was perceived to add relatively little 

incremental value. 

In general, some individual differences were found in the attributes and features 

reported to be most useful or important to the individuals. We found that across 

participants, ratings of usefulness and importance across all training attributes tended to 

correlate negatively with the participants’ years of experience of R, suggesting 

(unsurprisingly) that the contents and resources in the Introduction to R course were 

likely better tailored to novices and users relatively new to R. In addition, there were 

notable positive associations between abilityFit and topicFit (r = .34), signifying that 

individuals who valued fit of topic in selecting training materials also tended to value 

materials geared toward their ability levels. In contrast, participants who rated the visual 

appeal of training materials as important in guiding their own selection decisions also 

rated the delivery method of training materials to be more important (r = .48) and 

described the radar plot provided by iPRACTISE as more useful (r = .36). Overall, we 

found that some of students’ biggest struggles in obtaining training on a topic such as R are 

lack of insights, resources, and didactic tools that help them identify and improve their 

training deficiencies.  

3.4. Summary of Study Results 

We presented three proof-of concept studies to illustrate the current utility functions 

and resources in iPRACTSE, and ongoing efforts for future extensions. Study 1 provided 
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some proof-of-concept results to support the utility of using CAT as an assessment tool 

even under limited historical data for item calibration purposes, thus highlighting the 

rationale for our ongoing efforts to expand iPRACTISE’s instructor support functionalities 

to make adaptive test design, implementation, and delivery more accessible to educators 

across multiple domains. Study 2 shared results from a psychometric analysis of 

assessment items from a crowd-sourced course on Introduction to R, and showed that a 2 

PL model with equality constraints on the slope parameters for overly easy and difficult 

items, respectively, to be the preferred model for data from participants with a diverse 

range of mastery levels. Study 3 presented survey results that helped identify the most 

useful features of iPRACTISE to be its training resources, table of missed responses, and 

personalized course tree, which, when used in combination, provide users with targeted, 

personalized recommendations for training pathways and resources.  

4. DISCUSSION 

In this paper, we described the features, resources, and some evaluation results 

associated with iPRACTISE, a free publicly available web app that serves as a tool to 

facilitate personalized trainings on SMDS and related topics through provision of 

personalized training recommendations as informed by computerized assessments and 

individuals’ training preferences.  

Generally, the rich and widespread availability of training topics on SMDS already 

in the public domain provides great resources for designing and implementing 

iPRACTISE modules. The sorting algorithms in iPRACTISE provide several possible 

options to align users with training materials. Future extensions should consider further 

refinements of these algorithms. Aside from SMDS training, examples of other 

educational applications that may benefit from use of control theory principles include 
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educational apps targeting other learning domains such as reading, and mobile health 

devices providing user-initiated, just-in-time recommendations on intervention strategies 

and dosages. 

Our training recommendations could be further personalized. For example, a 

student with prior training in probability theory and matrix algebra but no prior 

exposure to R would ideally receive waivers or rapidly progress through the former 

topics, and spending time, instead, to learn R and practice mapping technical concepts to 

empirical applications using R. Conversely, a student with the desire to pursue a master’s 

degree in SMDS may already have some prior training in R and be well versed in ways to 

connect scientific thinking to empirical applications, but show limited understanding of 

concepts such as random variables and calculus, which prevents them from “hitting the 

ground running” in a traditional introduction to probability class. This student can benefit 

from targeted exposure to selected foundational topics to fill these learning gaps. 

Another aspect of iPRACTISE in need of further developments is that the app, 

while inspired by control theory principles, did not capitalize on control theory 

algorithms (Bellman, 1964; Chow et al., 2022; Goodwin et al., 2005; Kwon & Han, 2005; 

Q. Wang et al., 2014) to provide recommendations on optimal training dosages and 

intervals. One such way, as evaluated in Chow et al. (2022), is to use empirical data to 

provide evidence-based estimates of recommended practice durations that are 

proportionate to each student’s ongoing negative deviations in ability level compared to 

that student’s target performance level. Other possibilities include expansion of 

iPRACTISE usage in broader settings and over time to collect longitudinal student data 

needed to better characterize learning progression, and engagement in collaborative 

efforts to crowd-source data, resources, and insights to enhance future developments of 

evidence-centered online educational tools (Choi & Mislevy, 2022).  

The feasibility and utility of the heuristic approach investigated in study 1 to jump-
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start CATs for a probability theory course depend heavily on the quality of the 

instructor’s ratings of item easiness levels. Even though instructors may be the best 

experts on subject matter for their particular student audience, what is difficult in one 

educational context may be easy in another context. Thus, the desired peer percentiles 

expressed by users in their initial survey of preferences, as implemented in the current 

version of iPRACTISE, can show disconnect compared both to the instructors’ ratings of 

item characteristics, and/or to the calibrated item properties obtained from the sample of 

users accumulated to date. Allowing instructors or program administrators to specify the 

target training goals for students may help reduce students’ training disparities relative to 

objective outcomes, and should be considered in future versions of iPRACTISE. In a 

similar vein, our current setting of allowing students to specify their own training 

preferences (e.g., preferred training time and method) may not provide the most effective 

and timely recommendations to circumvent students’ training disparities. Further 

integration of instructor input, ongoing assessments of students’ training disparities, and 

evidence-based training recommendations is critical for ensuring optimal training results. 

In the future, we hope to utilize well-established Integrative Data Analysis (IDA) 

frameworks for conducting simultaneous analysis of item response data pooled across 

multiple classrooms and schools with similar training goals, and pursue multilevel 

modeling extensions whenever possible to directly model inter-individual differences 

(e.g., age, gender, ethnicity, field of study) within and across classrooms/schools (Curran 

& Hussong, 2009;  McArdle, Grimm, Hamagami, Bowles, & Meredith, 2009). 

Our design and development of iPRACTISE were motivated by the current 

scarcity of educational tools to support higher education and lifelong learning in a 

personalized, adaptive, and scaffolded way. Most students in this digital age are 

fortunate to have ready access to a repertoire of digital learning resources. Still, despite 

the convenience offered by digital and online educational tools, these technological 

advances may not be readily available or accessible to those who can readily benefit 
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from them. We wholeheartedly acknowledge that iPRACTISE is an emerging product 

and much remains to be done. Our version of a more “mature” version of iPRACTISE 

requires further improvements in the precision of the item and user ability level estimates 

pre-calibrated with data from more participants (e.g., n > 1000), inclusion of more 

diverse training resources to enable true personalization of training pathways and 

contents, improved algorithms for pinpointing optimal training materials for students and 

instructors, and greater integration of students’ and instructors functionalities to allow 

ongoing customizations of iPRACTISE training settings based on changes in student 

performance. We hope that this first version of iPRACTISE can serve as an initial proof-

of-concept platform that helps promote collaborations with partnering institutions, 

which, in turn, provide national data to evaluate and improve the efficacy and scalability 

of iPRACTISE as a platform for screening training deficiencies; delivering personalized 

just-in-time training interventions; crowdsourcing SMDS training and test materials; and 

building and fostering a sustainable faculty community to support each other in using 

iPRACTISE to meet the learning goals of diverse student populations.  
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Online Appendix: MH-RM Algorithm 

We estimated parameters of the Rasch model using the MH-RM algorithm (Cai, 

2010). Briefly, let 𝝍 represents the collection of all item parameters (in our case, 𝝍 = 

ሼ𝜓௝, 𝑗 ൌ 1, … , 𝐽ሽ consists of the J item easiness parameter. With only a single occasion of 

assessment data from each individual, we omit the subscript t below to ease presentation. 

Let 𝐼൫𝑦௜௝ ൌ 𝑟൯ be a binary indicator such that it takes the value of 1 if  𝑦௜௝ ൌ 𝑟 and 0 

otherwise. The corresponding observed conditional data log-likelihood function for 

person i is given by:| 

𝐿𝐿ሺ𝒚௜|𝜽,𝝍ሻ ൌ ∑ ∑ 𝐼൫𝑦௜௝൯ 𝑙𝑜𝑔ሺ𝑃௝ሺ𝑦௜௝ ൌ 𝑟|θ௜ ,𝜓௝ሻሻଵ
௥ୀ଴

௃
௝ୀଵ   (4) 

where, for dichotomous items, 𝑃௝ሺ𝑦௜௝ ൌ 0|θ௜௧,𝜓௝ሻ ൌ ሾ1 െ 𝑃௝ሺ𝑦௜௝ ൌ 1|θ௜௧,𝜓௝ሻሿ. Parameter 

estimation using the log-likelihood function requires integration over the distribution of the 

latent ability, θ௜:  

𝐿𝐿ሺ𝒚|𝝍ሻ ൌ ∑ ׬ 𝐿𝐿ሺ𝒚௜|𝜽,𝝍ሻ𝑔ሺ𝜽ሻ𝑑𝜽
ஶ
ିஶ

௡
௜ୀଵ        (5) 

In mirt, the computational backbone of mirtCAT, the default approach for estimating 

parameters from unidimensional models such as the Rasch model is to use the expectation-

maximization algorithm with Gauss-Hermite quadrature (Bock et al., 1988). Due to 

convergence issues, we utilized, instead, the MH-RM (Cai, 2010) approach  

The MH-RM handled the integration by performing Monte Carlo (MC) or 

stochastic sampling of possible values of 𝜽 by means of a Metropolis-Hasting sampler, 

assuming a particular parametric prior distribution (e.g., univariate or multivariate 

normal) for 𝑔ሺ𝜽ሻ. At each iteration, assuming that the values of 𝜃௜ are fixed at the newly 

sampled values, these estimates are used to compute functions and summary statistics of 

(5) in place of analytic integrations, yielding quantities such as the Monte Carlo-

approximated gradient vector and hessian matrix for 𝐿𝐿ሺ𝒚|𝝍ሻ. These gradient and 
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hessian elements are used in a Newton-Raphson procedure to update estimates of 𝝍෡ , 

which are used in a subsequent iteration of the Metropolis-Hasting sampler to obtain 

updated estimates of 𝜃෠௜. This iterative process of updating the person and item parameters 

is repeated over multiple iterations until convergence, as facilitated by incorporation of 

the Robbins-Monro (Robbins & Monro, 1951) algorithm, which iteratively shapes changes 

(or “gains”) in 𝝍෡  toward zero to ensure their convergence in values at least to some local 

minima. Standard error estimates or reciprocally, item information, namely, the inverse of 

the variance of an item parameter, is also obtained from this MC-approximated hessian 

matrix of 𝐿𝐿ሺ𝒚|𝝍ሻ at the point of convergence. 
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Table 1.  Comparisons of Fit across Several Alternative Item Response Theory Models of Individuals’ 

Response Patterns in the Introduction to R Course. 

 

Fit measures Rasch 

unidimensional 

model (Model 1) 

2 PL model, 

unidimensional 

model (Model 2) 

2PL model 

unidimensional 

model with 

equality 

constraints 

(Model 3) 

Bifactor 

model with 

one specific 

factor (Model 

4) 

AIC 2070.44 2067.57 2056.58 2062.16 

BIC 2234.39 2390.18 2299.86 2350.40 

SABIC 2038.53 2004.78 2009.23 2006.07 

R2 .32 .49 .47 .46, .06 

Note: AIC = Akaike Information Criterion (Akaike, 1973); BIC = Bayesian Information Criterion 

(Schwarz, 1978); SABIC = sample size-adjusted BIC (Sclove, 1987; Tofghi & Enders, 2007); 2PL model 

= 2-parameter logistic model 
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Table 2. Summary statistics for the rated importance (on a scale of 0 to 100) of attributes 

hypothesized to help participants select training materials. 

 

Attributes Mean SD 

AbilityFit 81.97 19.96 

TopicFit 80.05 21.10 

Method 71.67 19.54 

TrainingTime 65.49 21.56 

VisualAppeal 51.22 28.09 

Note: AbilityFit = Fit of the material’s difficulty level relative to the user’s ability level; 

TopicFit = Fit of the topic given their interests; Method = Fit of the method of delivery; 

TrainingTime = Fit of the training time; and Visual appeal = Visual appeal of the training 

material. 
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Table 3. Summary statistics for the rated usefulness (on a scale of 0 to 100) of selected 

iPRACTISE features. 

Features Mean SD 

TrainingResource 76.12 23.68 

SummaryMissedQs 74.46 25.57 

PersonalizedCourseTree 70.56 26.16 

RankOrder 69.91 25.89 

TimelyAssessment 65.72 25.37 

GraphicalFit 59.79 27.88 

CourseTree 59.51 28.16 

Note: TrainingResource = Availability of training resources; SummaryMissedQs = Table of 

missed responses; PersonalizedCourseTree = Personalized course tree based on assessment 

results; RankOrder = rank ordering of the fit of the training materials for the user;  

TimelyAssessment = Availability of timely assessments; GraphicalFit = Radar plot of the 

fit of a training material relative to the participant across domains; CourseTree = Course 

tree displaying topics, subtopics, and available resources.
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Figure 1. Conceptualization of iPRACTISE as a control theory-inspired cruise control 

system that can be used by students, instructors, and program administrators to recommend 

optimal training pathways to minimize discrepancies between each student’s current and 

target ability levels. 
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Figure 2. Summary of survey questions designed to help users specify their training 

goals and preferences; (B) a sample assessment question and progression of a 

hypothetical student’s estimated ability level during the assessment. 
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Figure 3. Personalized post-assessment dashboard for a hypothetical student on Introduction to 

R, with: (A) a summary of the questions missed by the student and the correct responses; and (B) 

training materials ranked in descending order of fit to the student, with fit information across 

attributes (in terms of difficulty level, method of delivery, and estimated training time).  
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Figure 4. (A) Scatterplot of the updated item easiness estimates compared to item easiness used 

initially in the BOAST adaptive test, which consisted of a combination of estimates from the 

calibration sample and instructor’s expert ratings; and (B) histogram plots showing the 

distributions of standard errors (SEs) in ability estimates in the adaptive as compared to the 
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calibration groups. Students who were exposed to a similar range of number of items (between 8 

and 10 items) across the two test groups were highlighted with a darker shade, and their 

respective averages in SE estimates are depicted in text. 
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A. Instructor Dashboard for Viewing Students’ Learning Progress 

 
 
 

B. Assessment generation 

 
 

Figure 5. Screenshots of selected instructor functionalities in iPRACTISE, including: (A) a 

dashboard for viewing students’ progress; and (B) an assessment portal for browsing through and 
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selecting existing assessment items from the test archive, as well as adding new items. 


