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Abstract

Personalized educational interventions have been shown to facilitate successful
and inclusive statistics, mathematics, and data science (SMDS) in higher education
through timely and targeted reduction of heterogeneous training disparities caused by
years of cumulative, structural challenges in contemporary educational systems. However,
the burden on the institutions and instructors to provide personalized training
resources to large groups of students is also formidable, and often unsustainable. We
present Individualized Pathways and Resources to Adaptive Control Theory-Inspired
Scientific Education (iPRACTISE), a free, publicly available web app that serves as a tool
to facilitate personalized trainings on SMDS and related topics through provision of
personalized training recommendations as informed by computerized assessments and
individuals’ training preferences. We describe the resources available in iPRACTISE, and
some proof-of-concept evaluation results from deploying iPRACTISE to supplement in-
person and online classroom teaching in real-life settings. Strengths, practical difficulties,
and potentials for future applications of iPRACTISE to crowdsource and sustain

personalized SMDS education are discussed.
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Designing and Sustaining Personalized Education through Individualized
Pathways and Resources to Adaptive Control Theory-Inspired Scientific Education

(iPRACTISE)
1. INTRODUCTION

A pervasive problem in education has been that students from disadvantaged
backgrounds and traditionally underrepresented groups have not had access to the
trainings, preparations, and support amenable for success in rigidly structured academic
programs in areas such as Statistics, Mathematics, and Data Science (SMDS)
(Ferrini-Mundy, 2013). Success in first-year college SMDS classes has been shown to be a
strong predictor of persistence and retention of students in Science, Technology,
Engineering and Mathematics (STEM) majors, and subsequent pursuit of related careers
(X. Chen, 2013). Strong SMDS trainings are also a must for strengthening the rigor of
scientific practices in the social and behavioral sciences (Aiken et al., 2008; Gelman, 2013;

Gelman & Loken, 2014; Ioannidis, 2005; Nosek et al., 2012).

Contrary to common student misconceptions, the pre-requisite training needed for
success in SMDS education is often specific, circumventable (Brent & Mueller, 1998;
Peck et al., 2017; Shiffler & Adams, 1995), and can be greatly facilitated by many freely
available online resources, such as those from the Khan Academy (Khan Academy, 2017).
Unfortunately, knowledge of the specific prerequisites they have not mastered and how
to access relevant resources often evades students whose interests and career aspirations
can readily benefit from such trainings. In addition, illustrations and examples used in
foundational SMDS courses rarely resonate with or have a direct connection to applied
science students’ research questions and data. As a result, students in many applied
SMDS disciplines often find it challenging to translate concepts and phenomena relevant

to their lives into mathematical concepts and procedures.

Research on andragogy, or adult learning (Knowles, 1973), has revealed that adult



students learn best when: (1) they understand why something is important to know or do;
(2) they have the freedom to learn their own way; (3) learning is experiential; and (4)
the instructional plans build upon the students’ previous experiences, backgrounds, and
diversity (Bryan et al., 2009; Knowles et al., 2011; Shahidian et al., 2011). The increased
prevalence of interdisciplinary study programs and career opportunities also underscores
the need for a next generation of students from diverse educational backgrounds to be
trained on traditional SMDS topics. Given the heterogeneity in students’ backgrounds
and training goals across disciplines, uniform, “one-size-fits-all” training is insufficient,
inefficient, and does not serve any one student well (Rose, 2016). Personalized training
interventions are effective at pinpointing and reducing students’ training deficiencies,
especially when delivered in a timely, “just-in-time” manner. However, the burden on the
institutions and instructors to provide personalized trainings to large groups of students is
also formidable, and often unsustainable.

2. iPRACTISE: INNOVATIONS AND DESIGN PRINCIPLES

We present an online digital platform, Individualized Pathways and Resources to
Adaptive Control Theory-Inspired Scientific Education (iPRACTISE), that can be accessed
at https://ipractise.net. iPRACTISE was written using Shiny (Chang & et al., 2022), an R
package that facilitates building of interactive web apps. To address the aforementioned
obstacles to quantitative training in SMDS, iPRACTISE is designed to supplement
traditional classroom teaching in a personalized, adaptive, and scaffolded way by providing:
(1) digitally facilitated trainings; (2) a control theory-inspired training framework that
modifies training recommendations based on ongoing fit between students and training
resources; and (3) computerized adaptive assessments that help automate design and
implementation of individualized training pathways as informed by students’ past learning

experiences. The proof-of-concept case examples included in the present article focus on



topics in SMDS. However, the platform can also be used for personalizing educational
resources and pathways in other domain areas.
2.1. Digitally Facilitated Design, Development, and Delivery of Educational Contents.

The burden on instructors to provide multiple “personalized” training pathways can
be heavy. Fortunately, the emergence of technology supporting automated, digital delivery
of educational contents makes such student-tailored learning paradigms viable (Hiltz &
Turoff, 2005; Kafai, 1996). There are several advantages to adopting digitally-facilitated or
related hybrid approaches to education over traditional classroom approaches. The
electronic format: (1) opens participation to students and scholars who otherwise do not
have access to traditional courses; (2) eliminates the “warm-up” period typically needed in
traditional SMDS courses to review pre-requisite topics; (3) allows participants with varying
levels of prior knowledge to gain the background and skills electronically, and then get the
most out of the in-person experience; and (4) provides a healthy environment for both
delivery and receipt of real-time, personalized feedback in a non-evaluative environment.

The didactic contents of the iPRACTISE system are designed in digital form. They
consist both of crowd-sourced digital contents from YouTube and other widely known free
educational platforms such as Khan Academy and Massachusetts Institute of Technology
OpenCourseWare (MIT OCW), as well as resources developed by our investigator team.
Among these in-house resources include the growing collection of over 60 Shiny Apps
produced by Penn State’s BOAST project (BOAST = Book Of Apps for Statistics Teaching)
covers statistics learning objectives from the introductory level to upper division courses for
majors (S. L. Wang et al., 2021). Apps in the collection include expository materials on

prerequisites, contextual examples, simulation-based explorations of concepts, and game-



based assessments. The BOAST apps integrate well with iPRACTISE since they are open
source (https://github.com/EducationShinyAppTeam/BOAST), developed under a consistent
style-guide supporting users with visual disabilities, and programmed, with faculty
supervision, by undergraduate students who choose topics that they and their classmates find
challenging. Thus, students around the world can make use of these modules freely.
2.2. Control Theory-Guided Training Pathways.

In engineering, control theory is used to steer a system to stay as close as possible to
a desired reference state (Astrom & Murray, 2008; Bellman, 1964; Rivera et al., 2007; Q. Wang
et al., 2014). Education can be viewed as a control theory problem (see Figure 1) in which
students seek ongoing input — in the forms of classes, electronic training modules, etc. — to
minimize the discrepancies between their actual and target (reference) performance levels.
Preliminary promise of using control systems in education has been illustrated in a
simulation study conducted within the context of a web-based computer adaptive practice
and monitoring system, called the Math Garden (Klinkenberg et al., 2011), in which person-
and time-specific training dosages obtained from a linear quadratic controller were found to
yield increased training benefits at reduced costs compared to students’ actual observed
training durations, and a fixed-duration training scheme (e.g., training for a constant amount
of 14 minutes per week; Chow et al., 2022). The overarching aim of using controllers to
accelerate accomplishment of training targets also coincides broadly with the goal of using
adaptive assessments to steer the difficulty levels of the test items presented to students in a
direction and magnitude that can reveal the students’ true ability levels with high precision
and efficiency (Park et al., 2019; Weiss, 1984).

The iPRACTISE system was designed to emulate the purposes of a car’s cruise



control system in educational settings by automating, whenever possible, the design and
implementation of personalized educational pathways through provision of: (1) a training
goal specification interface that allows each user to specify their target ability level; (2) a
training dosage optimization algorithm and corresponding training interface that select and
deliver the training material that helps bring the user closer to their target ability levels,
taking into consideration the user’s current ability level; (3) ongoing evaluations of users’
ability levels via computerized adaptive tests; and (4) repeated iterations through these
processes. Training is made cost- and time-efficient by providing students with person-
specific recommendations for contents in need of further exposure. Control theory principles
have also been infused into iPRACTISE’s training material selection algorithm, as we
describe in the next section.

2.3. Individualized Pathways to Learning that Capitalize on Students’ Past Learning
Experiences.

A comprehensive but inefficient training model would require that all students
work linearly through a fixed pathway of designated training materials. In contrast, an
individualized pathways model leverages and expands students’ existing strengths (Flint
& Jaggers, 2021) The iPRACTISE system automates design and implementation of
individualized training pathways in the following ways. Upon initial login, each
iPRACTISE user is asked to take a user preference survey that records and evaluates the
user’s selected course, training preferences on dimensions such as preferred difficulty
level, preferred training modes (e.g., passive vs. interactive tutorial), and preferred
length for a given training session (see Figure 2A). Then, the student is asked to take an
assessment for the selected course, with the ability estimate of the student provided at

the end of the assessment (see Figure 2B for a course on Introduction to R, a statistical

software package) and later used to rank training materials in the order that best fits



each student’s needs.

Computerized adaptive testing (CAT) is a method of delivering computerized
assessments that capitalizes on pre-calibrated item pool, psychometric models, and test
termination criteria to improve both measurement quality and efficiency at all trait levels
(Weiss, 1982). Assessments within iPRACTISE are implemented and administered using
the R package, Computerized Adaptive Testing with Multidimensional Item Response
Theory (mirtCAT; Chalmers, 2016). MirtCAT provides tools to generate a web-based
interface for creating, administering, providing results, and estimating properties as well
as results of educational and psychological tests. The tests may be adaptive or non-
adaptive (i.e., traditional fixed-length), and used for evaluating unidimensional or
multidimensional constructs. Within the mirtCAT, the Metropolis-Hastings Robbins-Monro
(MHRM,; Cai, 2010) algorithm, among a few other possible algorithms, is available for
simultaneous item parameter and person ability estimation.

Drawing on information from the assessment, iPRACTISE provides for each user
a summary of the missed questions, a personalized course tree that displays the topics on
which each student has not mastered, a table of training materials for each training topic
ranked in descending order of fit to the student (see Figure 3) across p = three
dimensions: the easiness level of the material relative to the user’s current ability, the
estimated training time involved (in minutes) relative to the user’s preference, and fit of
the method of delivery relative to the user’s preference. We compute an average fit as the
Euclidean distance between the user’s specified target levels and attributes of each

training material as:

Average fitin = Z£=1(Person Attribute;,;, — Material Attributey,)? (D)

where i indexes person, ¢ indexes time, / indexes training material, and & indexes

attribute. Person Attributeix represents person i’s attribute along the k=1, ..., 3



dimensions, including the person’s projected ability level at the current time ¢,
preferred training time on each training material in minutes, and preferred method of
training delivery. Material Attributent represents the corresponding attribute of
material 4. Relative fit of each training material to the user on each of these three
attributes is also computed and displayed graphically as a radar plot (see Figure 3B).

The iPRACTISE system is designed to recommend training materials that are
close to, but slightly more difficult than the individual’s current ability level. We refer to
this recommended level of difficulty as the person’s projected ability level. This attribute
is computed as:

Projected abilityi = max [0 + weighti (Target abilityic — Oir), (1 + weight))0ii], (2)
where i denotes person i’s current ability level at time # as available from a
computerized assessment (adaptive or fixed-length), weight; represents a scalar
weight, currently set to an arbitrary constant of 0.5, that determines the intensity of
the user’s training progression, and may be altered in the future to be empirically based
as more data become available. Target abilityi represents person i’s target ability as
assessed using the standard normal quantile (z-score) of each student’s sliding scale
response to the survey question, “What is your training goal? To be as good as or better
than what percentage of people pursuing education on the same topic?” In other words,
iPRACTISE determines a person’s projected ability level either based on a small
projected increase as proportionate to the person’s ability level, or as proportionate to
the person’s current deviation in ability level compared to their specified target ability
level, both controlled by weight,.

To provide a pseudo-numeric (i.e., ordinal) scaling to the attribute of training

delivery method, we rank the four types of delivery method, namely, “stuff to read”,



“try as you read”, “video to watch”, and “app to play with”, based on their increasing
engagement of distinct sensorimotor channels for information acquisition, namely, with
visual, visual + audio, and visual + audio + motor inputs, respectively (Petty, 2010).

We did not standardize each of these attributes prior to calculating the Euclidean
distances between the training materials and the users’ attributes. Given these attributes’
original scales, the average fit measure tends to weigh deviations in training time from
the user’s specified more heavily than other attributes. In addition to this overall fit
measure, we also provide users with a percentage of fit measure across each of the
training attributes, as summarized in the radar plot shown in Figure 3B. Given these
choices, the user then has the option to follow the system’s recommendations, or browse
other training materials of choice.

3. PROOF-OF-CONCEPT STUDIES

We present three proof-of-concept studies aimed at illustrating some of the
hurdles, challenges, and solutions encountered by the iPRACTISE team in developing,
utilizing, and evaluating the strengths and weaknesses of the system in supporting SMDS
trainings. Studies that provided data for these case examples were approved by the lead
institution’s Institutional Review Board under study numbers STUDY 00009286 and
STUDY00018662. All participants provided consent for use of their de-identified data for
the purposes of enhancing the design and educational goals of iPRACTISE.

3.1. Study 1: Development and Evaluation of Personalized Assessments in iPRACTISE
Using CATs

In this study, we describe the challenges encountered in developing and delivering a
personalized CAT via iPRACTISE to evaluate students’ mastery of training resources from

the BOAST project (S. Wang, Zhang, Messer, Wiesner, & Pearl, 2021). The specific Shiny

apps we used as training resources provided expository materials on characteristics of



different discrete and continuous probability. We summarize some proof-of-concept results
validating the utility of using CAT as an assessment tool even under limited historical data
for item calibration purposes, and delineate some of the instructor utility and resources
available in iPRACTISE for educators interested in using iPRACTISE to design and deliver
their own adaptive assessments in the future.

Consistent with common procedures of adaptive test developments (Thompson
& Weiss, 2011), we used historical non-adaptive student performance data from n = 53
users of the BOAST shiny apps recruited from a probability theory class. Using these
students’ responses to the items, we estimated the parameters of the items (e.g., item
difficulty levels) using a Rasch model (Rasch, 1960), one of the simplest item response

theory (IRT) models, expressed as

1
1+exp(Bict+ )’

p(Vije = 1|6i) = €©)]

where y;: = 1 indicates that student i’s response to item j is correct at time ¢ (and 0
otherwise), 0 corresponds to student’s 7 ability on a unidimensional construct at time ¢,
and 1), is an intercept, commonly referred to as the easiness level of item j. The items
spanned four major topics (basics, univariate models, multivariable techniques, and limit
theorems) as designed by the course instructor. Even though other more complex (e.g.,
unidimensional models with item-specific discrimination parameters, multidimensional
models) are available in mirtCAT, we chose the Rasch model for its relative simplicity
under the constraints of limited data available for calibration purposes. We estimated
parameters of the Rasch model using the MH-RM algorithm (Cai, 2010; see online
Appendix for details).

Previous simulation studies on CAT designs and corresponding estimation of item
properties often suggested desired sample sizes that are challenging to attain in real-life
instructional settings, especially for more complicated item response models (Flaugher,

2000). For example, Yoes (1995) suggested that 500 to 1,000 examinees are needed per



item for the three-parameter IRT model. More practical perspectives have also been
brought up by others. For instance, Linacre (1994) reported that when the Rasch model
was assumed, with a reasonably targeted sample of 50 persons and 10 or more items,
there is 99% confidence that the estimated item difficulty is within +/—1 logit of its
stable value — an uncertainty level that is arguably satisfactory, or useful enough for
most practical purposes. With 200 persons, there is 99% confidence the estimated

value is within +/-0.5 logit.

We fitted the Rasch model to the BOAST calibration data from 53 users on 120
test items. Each student took a test set consisting of overlapping and a subset of
distinct items selected from the total item pool, where the number of assessment items
varied (min = 4, max = 56, mean = 18.23, median = 14, SD = 14.39). Of these items, 23
of them were not administered to any students, and were thus excluded in the item
parameter estimation process. The course instructor provided supplementary expert
ratings of the easiness levels of these 23 items to build up a CAT module for the
complete item bank. We then designed and implemented an adaptive test with a pool
of 120 items, with item easiness levels comprising a mixture of the instructor’s expert
ratings of 23 items, as well as 97 items with properties estimated using the calibration
sample. We obtained a new test sample of n = 49 students who completed the new

adaptive test.

Scoring of the person-specific ability estimates, 0;, at fixed (based on estimates
from the calibration sample and instructors’ expert ratings) values of 8; was performed
by finding the maximum of the posterior distribution of 8 (MAP). Delivery of the CAT
test also required determination of the item selection criteria and a stopping rule. We
used the default option in mirtCAT, the maximum information criterion, as the item
selection criterion. This dictated that the system sequentially choose the next most

informative item for individual i (i.e., an item that maximizes the Fisher information,
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estimate for that person). Other available item selection criteria (for details see
(Chalmers, 2016) included random selection of items, selection of items based on the
Kullback-Leibler information, and other criteria that are relevant for multidimensional
IRT models (e.g., the D-rule, which selects an item that maximizes the determinant of the
joint Fisher information matrix; and the T-rule, which maximizes the trace of the joint
Fisher information matrix). Finally, we specified a stopping rule such that the adaptive
test would terminate for each user when the minimum standard error (min_ SEM) for the
user’s ability estimate was less than 0.3, or when the change in ability estimate for the
user (delta_thetas) was less than 0.1 in successive items. Using these criteria led to
adaptive tests that consisted of an average of 10.86 (median = 11; range =9-13, SD =
0.78) items for each student. As a contrast, allowing students in the calibration sample to
access the BOAST trainings and subsequent assessments led to use of 17.32 items
(median = 13, range = 4-54, SD = 13.82). We adopted the default options in mirtCAT for

other adaptive test estimation details (see Chalmers, 2016).

A scatterplot comparing the initial item easiness ratings used in the adaptive test
(based on estimates from the calibration sample and instructor’s expert ratings) and the
updated item easiness estimates after combining all available data across samples are
shown in Figure 4A. The plot indicated generally strong correlation between the two sets
of item easiness estimates (» = .73), with more notable discrepancies among items in the

mid-range difficulty levels.

In terms of precision (SE) of the ability estimates (see Figure 4B), the precision in
ability estimates obtained in this study was commensurate with that reported by Linacre
(1994) at a similar sample size. Higher precision in ability estimates was observed in the
adaptive (mean SE in ability estimates = 0.71; SD = 0.04) than the calibration sample

(mean SE = 0.74; SD = 0.26). These summary statistics suggested that the adaptive



test gave rise to more homogeneous (SD of the SE = 0.04 compared to 0.26) levels of
precision (or conversely, uncertainty) across different values of student ability. To
further highlight the effects of the adaptive test, we compared a subset of students from
the calibration and adaptive samples who were exposed to a similar range of test lengths
(8-10 items). We found that ability estimates based on the adaptive test were consistently
characterized by higher precision (i.e., lower SEs) in student ability estimates (mean SE
in ability estimates = 0.84 and SD = 0.06 in the calibration sample; mean SE =0.75
and SD = 0.03 in the adaptive sample). Thus, unlike standard fixed-length tests that
are designed to target the “typical” students (e.g., students at the median performance
level in a class), adaptive tests deliver specialized items to reduce the uncertainty

around each student’s ability estimate even under similar test lengths.

Admittedly, substantial variability in person ability estimates was still present given
the limited sample size for item calibration, person ability scoring, and number of items,
and test lengths. Nevertheless, the study provided some proof-of-concept results on the
feasibility and utility of adding adaptive tests to existing online SMDS training and
assessment tools even under finite sample and item sizes. Ongoing efforts are underway to
update item easiness estimates as new data become available. For instance, the BOAST
project has, since the conclusion of the adaptive test, accumulated data from n = 1179
diverse users from around the world across a broader array of test items. These data were
not available as “historical data” for item pre-calibration purposes during the adaptive
testing phase for the comparisons to fixed-length test described in this study, but will be
used to update the model and item parameters in iPRACTISE in future iterations. For the
overlapping items, updated item easiness estimates based on this new, expanded data set
were found to correlate moderately strongly (» = .51) with the item easiness estimates in
the previous iteration of item bank in iPRACTISE combining data from the calibration and

adaptive samples.

Nevertheless, the proof-of-concept results from this study still underscored the



utility of using CAT as an assessment tool even under limited historical data for item
calibration purposes, but also the need to make adaptive test design, implementation, and
delivery more accessible to instructors and educators across multiple domains. To
facilitate efforts along this line, iPRACTISE is now equipped with an instructor module
to allow instructors to design and implement their own adaptive tests, and a dashboard to
inspect student progress and learning deficiencies (see screenshots in Figure 5). The
iPRACTISE system does not currently automate test item creation and content balancing.
Rather, it provides course and test design interfaces to allow instructors to specify the
structure of topics and subtopics for a new course based on existing examples in our course
archive, upload new test items that map onto these specified topics and subtopics, and
customize other assessment settings, for instance, as a fixed-length or adaptive test. In the
case of the latter, if a pre-calibrated model (such as the Rasch model used and calibrated in
the present example) does not exist, the instructor is encouraged to work collaboratively
with the developer team to specify the nature of the model and other adaptive test settings
(e.g., for alternatives to the default options) to be adopted for real-time estimation of
students’ ability levels.

3.2. Study 2: Insights from Using iPRACTISE to Support R Learning

This study describes our work in crowd-sourcing training and assessment contents for
a course on Introduction to R, and share insights from a psychometric analysis of the
assessment items used to support R learning. R is a programming language that has gained
tremendous traction and usage across multiple scientific disciplines. Across institutions,
such as those to which the co-authors and other collaborators are affiliated, R is being taught
independently and as separate classes across multiple departments. Elsewhere, introductory
R workshops are routinely offered with simplified data (e.g., no missingness), or on
specialized topics with discipline-specific examples. In high demand but clearly lacking are

efforts to crowd-source and consolidate training contents in ways that help instructors and



students connect R programming skills with individual courses.

The authors engaged in collaborative crowd—sourcing of key topics of importance,
and assembled training and selected assessment contents thought to fulfill specific
training purposes across several graduate-level departmental courses on introductory
statistics. Examples of these key topics, as shown in the sample course tree in Figure 3,
include data wrangling, reporting and dissemination, and data visualization. Data
wrangling, for example, includes subtopics such as getting started, importing, cleaning,
and merging data. For reporting and dissemination, the team suggested Git, R Markdown,
and best practices for reproducibility as among the topics that are relevant for
introductory R courses across disciplines. In terms of data wrangling and visualization,
the team discussed some of the growing divergence in data display trends, practices, as
well as corresponding didactic materials using Base R as compared to those utilizing
newer packages such as ggplot2 (Wickham, 2016) and dplyr (Wickham, Frangois, Henry,
& Miiller, 2022).

We collected student performance data on a subset of R assessment items from
students recruited from SMDS-related workshops and courses that utilized R to some
extent, and Amazon Mechanical Turk (MTurk). Of these participants, those who did not
show sufficient variability in their assessment responses were excluded from the
analysis, yielding a total of n = 104 participants whose responses were used for
estimating characteristics of the test items. Approximately 50% of the retained participants
(n = 52) were participants recruited from MTurk. MTurk is an online marketplace that can
be used to collect data online quickly and affordably. We used CloudResearch, a third-
party website that allowed us to specify targeted screening criteria reflecting our interest in
recruiting participants with English as their primary language, had reliable internet

connection, were comfortable with computerized assessments, and showed interest in



obtaining digital educational trainings. Past studies have shown that respondents on MTurk
tended to be young, well educated, and frequent technology users (Hitlin, 2016). Thus,
participants recruited through this channel, comprising predominantly of novice R users
who were comfortable with digital assessment and didactic environments, offered a helpful
complement to our remaining sample, which consisted of relatively skilled participants

with prior exposure to R through their enrolled courses and workshops.

Items for which the students scored an average of above .95 or below .05
across all items (i.e., 95% or more of the students answered those items correctly or
incorrectly, respectively) were excluded from all analyses. Results from fitting the
Rasch model suggested that items on topics related to data wrangling, reporting, and
dissemination tended to have higher difficulty levels. We examined the local
dependence (LD) pairwise statistic between each pair of items, which is very similar
to a signed y? value (W. H. Chen & Thissen, 1997). Several items with local dependence
statistics that exceeded the x? .99 critical value were evaluated in detail for potential
violation of the unidimensional assumption of the Rasch model. A closer inspection of
these items revealed that some of these dependencies might stem from similarly worded
items (e.g., between one item that asked the user how to install a package in R and another
one that asked how to load a package in R, which involve distinct commands in R but are
typically performed sequentially in practice), and among some of the test items based on
specialized packages such as dplyr or R Markdown. We saw high local dependence
among several, basic base R-related questions that were geared toward novices to the
R language, and a subset of overly difficult items that yielded relatively limited

response variability.



We compared the fit of the Rasch model (denoted as Model 1 in Table 1) to
other alternatives (see Table 1), including a 2-parameter logistic (2PL) model (Model
2), a unidimensional model in which the slope of 0; (a re-parameterized version of the
discrimination parameter in the item response modeling literature) was allowed to
vary by item as opposed to fixed at unity as in Equation 3. Inspection of fit measures
such as the Akaike Information Criterion (AIC; Akaike, 1973), Bayesian Information
Criterion (BIC; Schwarz, 1978), sample size-adjusted BIC (SABIC; Sclove, 1987;
Tofghi & Enders, 2007), and R?, as well as estimates of the item easiness and slopes
from the 2PL model suggested that this model, though satisfying conventional criteria
for convergence and showing evidence of improved fit and effect size based on the AIC,
SABIC, and R?, led to extreme item parameter estimates (item easiness and slope values that
were < -10 and > 10) for a subset of 17 items that might be too easy or difficult for the sample
to yield sufficient response variability for meaningful identification of item parameters. We
proceeded by imposing equality constraints, respectively, on the subsets of overly easy and
difficult items, leading to Model 3. Model 3 was found to yield better fit compared to the
Rasch model in terms of AIC, and SABIC, in contrast to only slight reduction in R? (R? = .47)
compared to the full 2PL model (Model 2; R? = .49). Finally, a bi-factor model was fitted
as an alternative way to capture lingering covariations among the residuals associated
with the overly easy or difficult items. This model and other related extensions (e.g., a
two-factor model) did not show evidence of improved fit compared to the simpler 2PL
variations assuming unidimensionality. Thus, even though some individual
differences were observed in the estimated ability levels of student participants

enrolled in SMDS courses/workshops (mean ability estimate = 0.70, SD = 0.69; mean



SE in ability estimate = 0.36) in comparison to those recruited from MTurk (mean
ability estimate = -0.37, SD = 0.82; mean SE in ability estimate = 0.37), there was no
strong evidence favoring a multidimensional than a unidimensional model for R

learning.

Capitalizing on results from the item response analysis, we have now updated
the parameters in the item bank of iPRACTISE to utilize estimates from the preferred
2PL model with equality constraints. Calibration results from this study are by no means
an end but rather, reflect our ongoing efforts to refine item parameters in our test bank to
support future SMDS training and testing needs.

3.3. Study 3: Survey Results Evaluating Features of iPRACTISE

The third study presents results from a follow-up user survey administered to a
subset of participants from Study 2 as well as newly recruited participants to evaluate
their perceived utility of several key features of iPRACTISE. The participants were asked
to complete within iPRACTISE a brief learning preference survey, followed by general
training resources (i.e., not personalized based on the user’s current ability and learning
preferences), and a computerized assessment on Introduction to R, which provided
calibration data for Study 2. Following the assessment, participants were directed to the
student post-assessment dashboard in iPRACTISE, on which they were presented with a
summary of their assessment results, topics they have not mastered, and choices to
browse through personalized (based on their newly available ability estimates and
learning preferences) training materials. Following approximately 50 minutes of
assessment/training time in iPRACTISE, the participants were asked to complete an

online survey to share their feedback on iPRACTISE. Our questions specifically targeted
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the participants’ perceived relative importance of different training material attributes in
guiding the participants’ selection choices, and their perceived usefulness of a list of
iPRACTISE features.

The participants indicated a range of 0 to 5+ years of experience of using R
(Mean = 0.37, SD = 1.06). Following data cleaning and exclusion of participants who
provided data with limited variability across questions, data from a sample of n =73
users (77.7% or n = 52 of whom were recruited from MTurk to reflect more heavily the
learning preferences of novice users, the primary target audience of iPRACTISE) were
retained for data analysis. Training material attributes the participants were asked to
rate (on a scale of 0 to 100) included: fit of the difficulty level of a material relative to
the participant’s ability (abilityFit), fit of the method of delivery of the material
(method), fit of the topic (topicFit), training time (trainingTime), and visual appeal of
the training material (visual appeal). Table 2 shows the summary statistics for these
participants’ ratings. Across attributes, we found that fit of the material to the
participant’s ability level and fit of the topic were found to be the most important
determinants of the participants’ choices of training materials, followed by delivery
method and training time. Visual appeal was rate relatively low (mean = 51.22 on a
scale of 0 to 100).

The iPRACTISE features that the participants were asked to rate on a scale of 0 to
100 (see Table 3) included the availability of computerized assessment
(TimelyAssessment), the course tree that summarized key topic of interest (CourseTree),
personalized version of the course tree (PersonanlizedCourseTree), table summary of the
missed responses with correct answers (SummaryMissedQs), radar plot depicting fit

of the materials (GraphicalFit), rank ordering of the training materials in terms of fit
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to each participant (RankOrder), and training resources provided to the participants
(TrainingResource). In general, the average ratings of usefulness were higher than 59 out
of a scale of 0 to 100 across all of the features considered. The most useful features were
the collection of training resources and table of missed responses. The personalized
course tree (M = 70.56, SD = SD = 26.16) was rated to be more helpful than the general
course tree (M = 59.51, SD = 28.16). Results from the rank-ordering algorithm and the
assessment itself were also rated relatively high, even though the visual display of fit (the
radar plot), while still generally rated as useful, was perceived to add relatively little

incremental value.

In general, some individual differences were found in the attributes and features
reported to be most useful or important to the individuals. We found that across
participants, ratings of usefulness and importance across all training attributes tended to
correlate negatively with the participants’ years of experience of R, suggesting
(unsurprisingly) that the contents and resources in the Introduction to R course were
likely better tailored to novices and users relatively new to R. In addition, there were
notable positive associations between abilityFit and topicFit (» = .34), signifying that
individuals who valued fit of topic in selecting training materials also tended to value
materials geared toward their ability levels. In contrast, participants who rated the visual
appeal of training materials as important in guiding their own selection decisions also
rated the delivery method of training materials to be more important (» = .48) and
described the radar plot provided by iPRACTISE as more useful (» = .36). Overall, we
found that some of students’ biggest struggles in obtaining training on a topic such as R are
lack of insights, resources, and didactic tools that help them identify and improve their
training deficiencies.

3.4. Summary of Study Results

We presented three proof-of concept studies to illustrate the current utility functions

and resources in iPRACTSE, and ongoing efforts for future extensions. Study 1 provided
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some proof-of-concept results to support the utility of using CAT as an assessment tool
even under limited historical data for item calibration purposes, thus highlighting the
rationale for our ongoing efforts to expand iPRACTISE’s instructor support functionalities
to make adaptive test design, implementation, and delivery more accessible to educators
across multiple domains. Study 2 shared results from a psychometric analysis of
assessment items from a crowd-sourced course on Introduction to R, and showed that a 2
PL model with equality constraints on the slope parameters for overly easy and difficult
items, respectively, to be the preferred model for data from participants with a diverse
range of mastery levels. Study 3 presented survey results that helped identify the most
useful features of iPRACTISE to be its training resources, table of missed responses, and
personalized course tree, which, when used in combination, provide users with targeted,
personalized recommendations for training pathways and resources.

4. DISCUSSION

In this paper, we described the features, resources, and some evaluation results
associated with iPRACTISE, a free publicly available web app that serves as a tool to
facilitate personalized trainings on SMDS and related topics through provision of
personalized training recommendations as informed by computerized assessments and
individuals’ training preferences.

Generally, the rich and widespread availability of training topics on SMDS already
in the public domain provides great resources for designing and implementing
iPRACTISE modules. The sorting algorithms in iPRACTISE provide several possible
options to align users with training materials. Future extensions should consider further

refinements of these algorithms. Aside from SMDS training, examples of other

educational applications that may benefit from use of control theory principles include
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educational apps targeting other learning domains such as reading, and mobile health
devices providing user-initiated, just-in-time recommendations on intervention strategies
and dosages.

Our training recommendations could be further personalized. For example, a
student with prior training in probability theory and matrix algebra but no prior
exposure to R would ideally receive waivers or rapidly progress through the former
topics, and spending time, instead, to learn R and practice mapping technical concepts to
empirical applications using R. Conversely, a student with the desire to pursue a master’s
degree in SMDS may already have some prior training in R and be well versed in ways to
connect scientific thinking to empirical applications, but show limited understanding of
concepts such as random variables and calculus, which prevents them from “hitting the
ground running” in a traditional introduction to probability class. This student can benefit

from targeted exposure to selected foundational topics to fill these learning gaps.

Another aspect of iPRACTISE in need of further developments is that the app,
while inspired by control theory principles, did not capitalize on control theory
algorithms (Bellman, 1964; Chow et al., 2022; Goodwin et al., 2005; Kwon & Han, 2005;
Q. Wang et al., 2014) to provide recommendations on optimal training dosages and
intervals. One such way, as evaluated in Chow et al. (2022), is to use empirical data to
provide evidence-based estimates of recommended practice durations that are
proportionate to each student’s ongoing negative deviations in ability level compared to
that student’s target performance level. Other possibilities include expansion of
iPRACTISE usage in broader settings and over time to collect longitudinal student data
needed to better characterize learning progression, and engagement in collaborative
efforts to crowd-source data, resources, and insights to enhance future developments of

evidence-centered online educational tools (Choi & Mislevy, 2022).

The feasibility and utility of the heuristic approach investigated in study 1 to jump-
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start CATs for a probability theory course depend heavily on the quality of the
instructor’s ratings of item easiness levels. Even though instructors may be the best
experts on subject matter for their particular student audience, what is difficult in one
educational context may be easy in another context. Thus, the desired peer percentiles
expressed by users in their initial survey of preferences, as implemented in the current
version of iPRACTISE, can show disconnect compared both to the instructors’ ratings of
item characteristics, and/or to the calibrated item properties obtained from the sample of
users accumulated to date. Allowing instructors or program administrators to specify the
target training goals for students may help reduce students’ training disparities relative to
objective outcomes, and should be considered in future versions of iPRACTISE. In a
similar vein, our current setting of allowing students to specify their own training
preferences (e.g., preferred training time and method) may not provide the most effective
and timely recommendations to circumvent students’ training disparities. Further
integration of instructor input, ongoing assessments of students’ training disparities, and
evidence-based training recommendations is critical for ensuring optimal training results.
In the future, we hope to utilize well-established Integrative Data Analysis (IDA)
frameworks for conducting simultaneous analysis of item response data pooled across
multiple classrooms and schools with similar training goals, and pursue multilevel
modeling extensions whenever possible to directly model inter-individual differences
(e.g., age, gender, ethnicity, field of study) within and across classrooms/schools (Curran
& Hussong, 2009; McArdle, Grimm, Hamagami, Bowles, & Meredith, 2009).

Our design and development of iPRACTISE were motivated by the current
scarcity of educational tools to support higher education and lifelong learning in a
personalized, adaptive, and scaffolded way. Most students in this digital age are
fortunate to have ready access to a repertoire of digital learning resources. Still, despite
the convenience offered by digital and online educational tools, these technological

advances may not be readily available or accessible to those who can readily benefit
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from them. We wholeheartedly acknowledge that iPRACTISE is an emerging product
and much remains to be done. Our version of a more “mature” version of iPRACTISE
requires further improvements in the precision of the item and user ability level estimates
pre-calibrated with data from more participants (e.g., » > 1000), inclusion of more
diverse training resources to enable true personalization of training pathways and
contents, improved algorithms for pinpointing optimal training materials for students and
instructors, and greater integration of students’ and instructors functionalities to allow
ongoing customizations of iPRACTISE training settings based on changes in student
performance. We hope that this first version of iPRACTISE can serve as an initial proof-
of-concept platform that helps promote collaborations with partnering institutions,
which, in turn, provide national data to evaluate and improve the efficacy and scalability
of iPRACTISE as a platform for screening training deficiencies; delivering personalized
just-in-time training interventions; crowdsourcing SMDS training and test materials; and
building and fostering a sustainable faculty community to support each other in using

iPRACTISE to meet the learning goals of diverse student populations.



ACKNOWLEDGEMENTS

Programming and other test construction activities have been facilitated by Ryan
Voyack, Dongyun You, Anno Zhang, Yang Gao, Thomas Schaeffer, and Molly Gill; and
recommendations on training resources by Drs. Timothy R. Brick, Kelly Rullison,
Matthew Beckman, Rick Gilmore, Puiwa Lei, Kathryn Drager, Guangqing Chi, David
Hunter, Michael Russell, Andrea McCloskey, Michael Rutter, Niel Hatfield, Priyangi
Bulathsinhala, and other faculty and students of QuantDev. Correspondence should be
sent to Sy-Miin Chow, Department of Human Development and Family Studies, The
Pennsylvania State University, PA, 16802. Email: qucl6@psu.edu. Instructors and
educators interested in using the iPRACTISE may contact the iPRACTISE team at ipractise

@psu.edu to request an instructor account.

Funding: The iPRACTISE app is available for use freely at https://ipractise.net
through funding provided by the National Science Foundation grant IGE-1806874, a
pilot grant from the Center for Individual Opportunity, and a University Strategic grant
from the Penn State University. We hope to continue making a version of iPRACTISE

available for use freely after the end of the funding period.

26



27

Online Appendix: MH-RM Algorithm

We estimated parameters of the Rasch model using the MH-RM algorithm (Cai,
2010). Briefly, let ¥ represents the collection of all item parameters (in our case, P =
{¥),j = 1,...,]} consists of the J item easiness parameter. With only a single occasion of
assessment data from each individual, we omit the subscript # below to ease presentation.
Let I(y;; = r) be a binary indicator such that it takes the value of 1 if y;; = r and 0
otherwise. The corresponding observed conditional data log-likelihood function for

person i is given by:|
LL(Y:10,%) = ¥, Yi_o1(i) log(P(vij = 710, 9))) 4)

where, for dichotomous items, P;(y;; = 0[6;,%;) = [1 — P;(y;j = 1|0;,;)]. Parameter
estimation using the log-likelihood function requires integration over the distribution of the

latent ability, 0;:

LLQYI%) = Xitq [, LL(Y:16, %) g(8)d® (5)
In mirt, the computational backbone of mirtCAT, the default approach for estimating
parameters from unidimensional models such as the Rasch model is to use the expectation-
maximization algorithm with Gauss-Hermite quadrature (Bock et al., 1988). Due to
convergence issues, we utilized, instead, the MH-RM (Cai, 2010) approach
The MH-RM handled the integration by performing Monte Carlo (MC) or
stochastic sampling of possible values of @ by means of a Metropolis-Hasting sampler,
assuming a particular parametric prior distribution (e.g., univariate or multivariate
normal) for g(8). At each iteration, assuming that the values of ; are fixed at the newly
sampled values, these estimates are used to compute functions and summary statistics of
(5) in place of analytic integrations, yielding quantities such as the Monte Carlo-

approximated gradient vector and hessian matrix for LL(y|y). These gradient and
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hessian elements are used in a Newton-Raphson procedure to update estimates of 3,
which are used in a subsequent iteration of the Metropolis-Hasting sampler to obtain
updated estimates of 8;. This iterative process of updating the person and item parameters
is repeated over multiple iterations until convergence, as facilitated by incorporation of
the Robbins-Monro (Robbins & Monro, 1951) algorithm, which iteratively shapes changes
(or “gains™) in ¥ toward zero to ensure their convergence in values at least to some local
minima. Standard error estimates or reciprocally, item information, namely, the inverse of
the variance of an item parameter, is also obtained from this MC-approximated hessian

matrix of LL(y|) at the point of convergence.
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Data Availability Statement
Data analysis scripts and de-identified data for which students have given consent to share their
data to enhance the designs, developments, and delivery of statistics, mathematics, and data
science education are openly available in the Open Science Framework at osf.io/vr43t. Other
historical data collected in previous classes and used for calibration of assessment items within
iPRACTISE are not shared when student consent was not obtained previously and the data could

contain identifying information.
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Table 1. Comparisons of Fit across Several Alternative Item Response Theory Models of Individuals’

Response Patterns in the Introduction to R Course.

Fit measures | Rasch 2 PL model, 2PL model Bifactor
unidimensional | unidimensional | unidimensional | model with
model (Model 1) | model (Model 2) | model with one specific

equality factor (Model
constraints 4)
(Model 3)

AIC 2070.44 2067.57 2056.58 2062.16

BIC 2234.39 2390.18 2299.86 2350.40

SABIC 2038.53 2004.78 2009.23 2006.07

R’ 32 49 47 46, .06

Note: AIC = Akaike Information Criterion (Akaike, 1973); BIC = Bayesian Information Criterion
(Schwarz, 1978); SABIC = sample size-adjusted BIC (Sclove, 1987; Tofghi & Enders, 2007); 2PL model

= 2-parameter logistic model
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Table 2. Summary statistics for the rated importance (on a scale of 0 to 100) of attributes

hypothesized to help participants select training materials.

Attributes Mean SD

AbilityFit 81.97 19.96
TopicFit 80.05 21.10
Method 71.67 19.54
TrainingTime 65.49 21.56
VisualAppeal 51.22 28.09

Note: AbilityFit = Fit of the material’s difficulty level relative to the user’s ability level;
TopicFit = Fit of the topic given their interests; Method = Fit of the method of delivery;
TrainingTime = Fit of the training time; and Visual appeal = Visual appeal of the training

material.
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Table 3. Summary statistics for the rated usefulness (on a scale of 0 to 100) of selected

iPRACTISE features.

Features Mean SD

TrainingResource 76.12 23.68
SummaryMissedQs 74.46 25.57
PersonalizedCourseTree 70.56 26.16
RankOrder 69.91 25.89
TimelyAssessment 65.72 25.37
GraphicalFit 59.79 27.88
CourseTree 59.51 28.16

Note: TrainingResource = Availability of training resources; SummaryMissedQs = Table of
missed responses; PersonalizedCourseTree = Personalized course tree based on assessment
results; RankOrder = rank ordering of the fit of the training materials for the user;
TimelyAssessment = Availability of timely assessments; GraphicalFit = Radar plot of the
fit of a training material relative to the participant across domains; CourseTree = Course

tree displaying topics, subtopics, and available resources.
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Figure 1. Conceptualization of iPRACTISE as a control theory-inspired cruise control

system that can be used by students, instructors, and program administrators to recommend

optimal training pathways to minimize discrepancies between each student’s current and

target ability levels.
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You missed 6 out of 15 questions.

Your final ability estimates is:
Theta score: 1.050, meaning that you are performing at approximately the 85.3 percentile.
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4 12 16

e
Trial #
Optional: Please proceed to the Post-Assessment Dashboard to review your resuts.

Figure 2. Summary of survey questions designed to help users specify their training
goals and preferences; (B) a sample assessment question and progression of a

hypothetical student’s estimated ability level during the assessment.



(A)

Review questions you missed

| checked missed questions

o. Question

Your response

Actual answer

‘Suppose that you run the code below:
1a=1+3

Which one would be the result of running the code?

s printed on the console panel

bject "a" is saved with having the
Inumeric value "4*

‘Suppose that you run the code below:
2 a="1+3"

Which one would be the result of running the code?

"a=1+3"is printed on the console panel

lobject “a” is saved with having the
Istrings "1+ 3"

Which of the followings is NOT the reason that you should
install Rstudio in addition to R?
4Which of the following statements is FALSE?

[Rstudio is an open source integrated development environment (IDE) for R, which provides
lusers much nicer experience when they use R
None of the above

IR itself cannot be run without
installing Rstudio
Both (a) and (b) are true

What does the following argument: “TEXT* produce in an
5 RMD?

Bold Text

Italicized Text

5What does the following argument: “TEXT" produce in a
2

Italicized Text

IBold Text

Personalized Topics to Work on

[S—e

)

Aaring s )

Outa visaizaton ()

Select Material From Topic

Show 10+ entries
Difficulty *  ShortDescription

0 Install R and other basics

Introductory Base R operations

Free datacamp introductory R module:

PSU R bootcamp day 1 intro

App to introduce Base R by Sayali Phadke

PSU R bootcamp functional programming in R

P—
oy
Gearig
e
o
F—
Reosicie

sxen (D)

come()

wr—

(B)

Showing 110 6 of 6 entries

EstimatedTime = Method hasMaterials
4 Passive viewing 1

3028 Passive viewing 1

240 Hands-on Practice 1

120 Hands-on Practice 1

60 Appto Play vith 1

30 Read and try on your own 1

Previous | 1 | Next

Basics
Best praciice

Scattorplo bascs.
Scatiorpiot aesthetics.
Errorbar basics

Errorbar aesthetcs

Boxplots & barpiots basics.
Boxplots & barplots assthetics

Variable mapping
Dynamics & aesthetics

igraph
agraph
semplot

Material Match to Ability

Look at how the topic and material align to your survey results

Average fit

Figure 3. Personalized post-assessment dashboard for a hypothetical student on Introduction to

R, with: (A) a summary of the questions missed by the student and the correct responses; and (B)

training materials ranked in descending order of fit to the student, with fit information across

attributes (in terms of difficulty level, method of delivery, and estimated training time).
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44

@ ] o
N
B
o
o
§ ° aal
o
o ooo o @
. H oo
- B o, oF
- a
o oD
o e % .
a - oty 02 °
T
. 8% ¢
DD Fa o
- R ° S
; o
o * ° o
o B
] -
) ED
N
B B
("Il_
N
T T T T T
-2 1 0 1 2

ltem easiness in initial adaptive test

(B) SE ability by test group
Equal test length |:| No |:| Yes

20-

Adaptive

Mean under
eq test length = 0.75

SD under
eq test length = 0.03

Calibration

Mean under
eq test length = 0.84

SD under
eq test length = 0.06

04

12

04
SEs of ability estimates

Figure 4. (A) Scatterplot of the updated item easiness estimates compared to item easiness used

initially in the BOAST adaptive test, which consisted of a combination of estimates from the

calibration sample and instructor’s expert ratings; and (B) histogram plots showing the

distributions of standard errors (SEs) in ability estimates in the adaptive as compared to the
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calibration groups. Students who were exposed to a similar range of number of items (between 8
and 10 items) across the two test groups were highlighted with a darker shade, and their

respective averages in SE estimates are depicted in text.
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A. Instructor Dashboard for Viewing Students’ Learning Progress
Hey! Sy-Miin
Welcome to iPRACTISE! (Individualized Pathways and Resources to Adaptive Control Theory-Inspired Scientific Education)

iPRACTISE instructor stej

Asan instructor, you will go through these steps to create a course structure:

Add or edit training

Create a new course ‘materials for your course Use student view

or browse from our Specify attributes of to review your

archive of existing courses these materials to course structure.
meet your students needs.

Create test to assess
your students

Selected Course Summary Statistics

ASSESSMENTS TAKEN MEAN FIRST ATTEMPT SCORE. BEST SCORE RANGE

1 95% 95% to 95%

in prior 30 days in prior30 days inprior30days

esv || el
Name frst_attempt last_attempt N_attempts First_Score First_Pct Best_Score Best_Pct

iPRACTISE Assessment Generator

[ Course  Question

Step 2: Calculuson  Calewlus  Evaluate \(
Calewlust2l  Calewlus  Find \(imtint_R e*bee2/yldndy), where \(R=\{Gey): xA2\le yile \sqraieJy

fipif2)_0 3isin*Z\theta \cos*3\theta L ditheta))

T Sart s it kbl s P courm o Calculus006  Calcwlus  Evaluate o 1204103l

by topic. Colculusozn  Caleulus  Evaluate \(int§nt_D x+2y1: iy} where \ (D) i the region bounded by the porobolas y=2x"21) and
)

Where: i you Nice to startt Calculus0d4  Calculus  Differentiate \(ffx)=(\cos x)*x\).

© tyvant 1o browse a sample assessment

Calculuso09  Calculus  Calculate the iterated integral: \\int_L*3Vint_145 \frachin ylboylts dy ).

I know the general process, let me upload t

Calewlus0l0  Colewlus  Evaluate \(\int_0Mint_lisqrth raclLify*3+1idydx) by reversing the order of int

How would you like to load? Calewlus00)  Calewlus  Compute \f\sum_{n=1}Vinfey (-1)n-Li\fracl1}{n}), if it eomverges.
© Bycourse Calculusl0)  Calculus  Below s a graph of the function \[y = xe*{x]\) in red and the line \fy = \fracxH25}\) in black.

By topic ¥
Select the test set you wish to generate:

Caleulus -
Choose items difficulty level

All -

10 s
the sample
/
'

Figure 5. Screenshots of selected instructor functionalities in iPRACTISE, including: (A) a

dashboard for viewing students’ progress; and (B) an assessment portal for browsing through and
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selecting existing assessment items from the test archive, as well as adding new items.
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