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The spatial variation of the coefficient of restitution for frictionless impacts along the
length of a circular beam is investigated using a continuous impact model. The equations
of motion are obtained using the finite element method, and direct time integration is used
to simulate the collision on a fast time scale. For collision of a pinned beam with a fixed
cylinder, the spatial variation of the coefficient of restitution, impulse magnitude, duration
of collision, energetics, and the role of damping are investigated. In the absence of signif-

icant external damping, the kinematic and kinetic definitions of the coefficient of restitution
provide identical results. Experiments validate the results from simulation which indicate
that the coefficient of restitution is sensitive to the location of impact.
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1 Introduction

Multibody systems frequently have non-smooth dynamics due to
impacts or collisions between the bodies [1]. Impacts last for a very
short duration in comparison to the overall motion of the system and
may involve multiple sub-impacts. In many systems, it is important
to model the collision accurately for predicting the behavior of the
bodies post-collision; examples are juggling systems [2—4] and
hopping locomotion [5,6].

In modeling systems with impact, it is often the rigid body
dynamics which is of interest. Impacts result in energy being
removed from the rigid body motion of the bodies. Depending on
the geometric and material properties of the colliding bodies, the
configuration of the collision, and the relative velocity of the
bodies before impact, the loss of energy may be associated with
one or more of the following:

o Energy transfer to the flexible modes [7-9],

e Dissipation at the contact point while the colliding bodies are
in contact [10,11], and

e Plastic deformation of the bodies due to high stresses at the
contact point [12-14].

A single dimensionless parameter, the coefficient of restitution, is
used to quantify the energy losses during an impact; this parameter
also relates to the velocities associated with the rigid body motion
before and after collision.

In the literature [9,15], impact is usually treated in two ways,
depending on the problem being considered. They are as follows:
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e Instantaneous impact models, or algebraic models [16,17], in
which an impact is considered to be of infinitesimal duration;
the positions of the colliding bodies do not change, and there is
an instantaneous jump in their velocities. The magnitude of the
jump in velocity is quantified by the coefficient of restitution.
These models are simpler and computationally much cheaper
than the alternative, discussed next.

e Continuous impact models, or incremental models [11], in
which an impact has short but finite duration, and the dynamics
of the system during collision is explicitly considered. These
models make use of contact force laws, the simplest of which
is the purely elastic Hertzian contact law [18]. Viscous and
hysteretic dissipation may additionally be incorporated into
the contact force laws—see Refs. [10,11,19-21], for example.

Previous works have considered impact on flexible bodies
assuming prior knowledge of the coefficient of restitution, and a
non-smooth velocity of the flexible body post-impact [22-30].
The focus here, however, is on computation of the coefficient of res-
titution for such impacts. Stoianovici and Hurmuzlu [31] used kine-
matic data to obtain the coefficient of restitution for collisions of
steel bars, observing that internal vibrations and multiple sub-
impacts occur during collision. The multi-scale simulation approach
proposed by Seifried and collaborators [15,32-37] is capable of
incorporating both elastic and plastic material behavior. The simu-
lation approach was used to compute the coefficient of restitution
for the impacts of spheres on rods and beams for different relative
velocities. The problem of multiple impacts at the same location,
which leads to a gradual evolution in the value of the coefficient
of restitution due to permanent deformation at the contact point,
was also considered. The simulation results were validated with
experiments employing high-bandwidth vibrometers. It was noted
that modal models with an elastostatic Hertzian contact law are
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sufficiently accurate and computationally inexpensive when the
colliding bodies have purely elastic material behavior. Bhattachar-
jee and Chatterjee [9,38,39] considered the impact of a ball on a
beam. The equations of motion were obtained from modal expan-
sion and consistent prediction of the coefficient of restitution
required a sufficiently high number of assumed modes and some
level of modal damping. The coefficient of restitution was deter-
mined for impacts at many different locations on the beam and
for a set of different boundary and initial conditions.

This paper investigates the spatial variation of the coefficient of
restitution for impacts of a point mass at different locations along
the length of a flexible beam. A continuous impact model [15] is
used and energy loss from the rigid body motion of the beam is pri-
marily due to excitement of the vibration modes. Starting from an
Euler—Bernoulli beam model which accounts for both internal and
external damping, the Galerkin finite element method, followed
by modal reduction, is employed to obtain a system of equations
amenable to direct time integration. The contact force is modeled
using a Hertzian contact law [18], which can be easily modified
to include dissipative effects. The finite element method provides
flexibility in applying boundary conditions and geometric con-
straints at locations different from the ends, and does not require
prior knowledge of the mode shapes of the beam. Different beam
geometries and contact configurations can be accommodated by
changing a few model parameters.

In relation to the available literature, the contributions of this
work are summarized as follows:

e The coefficient of restitution is computed using two defini-
tions, kinematic and kinetic, and their values are compared.

e The spatial variation of the coefficient of restitution, the mag-
nitude of the impulse, and the duration of the collision are
obtained.

e The effect of internal and external damping on the coefficient
of restitution is considered.

e A simple experimental setup, which uses an encoder instead of
a complex motion capture system, is used to obtain the coeffi-
cient of restitution of a pinned beam impacting a fixed cylinder
at different locations along its length. The experimental results
are compared with those obtained through simulations.

o The sensitive nature of the spatial variation of the coefficient of
restitution and magnitude of impulse, captured through simu-
lations and corroborated through experiments, will be useful
for addressing the challenging control problem of non-prehen-
sile manipulation of extended objects using impulsive forces.

2 Problem Description

Consider the collision between an Euler-Bernoulli beam of circu-
lar cross section and a short cylinder whose axis is perpendicular to
that of the beam—see Fig. 1. The motion of the beam and the cyl-
inder is confined to the xy plane. The cylinder is assumed to have a
length that is much smaller than ¢, and its dynamics is described by
that of a point mass. However, the material properties and radius of
the cylinder influence the contact force between the colliding
masses. The collision occurs at x. € (0, ) and the relative velocity

Fig. 1 A circular beam and a cylinder at the instant of collision

011011-2 / Vol. 91, JANUARY 2024

between the cylinder and the beam in the y direction is given by

ds ow
0 =;; - 1)

where w is the component of w associated with the rigid body
motion. It is assumed that the relative velocity in the x direction
is zero and therefore frictional effects can be neglected. For contin-
uous impact modeling of the collision, we define 7, as the instant of
first contact between the bodies, and #as the instant when the bodies
separate such that they do not come into contact again. For a colli-
sion to occur, Vi(fo) >0. The collision duration (z— 1) is divided
into a compression phase [f,, #.] marked by decreasing relative
velocity with V,(#.) =0, and a restitution phase (z., t] marked by
the separation of the bodies: Vi (t) <0 for > .. Since the collision
duration is small, the effect of gravity forces can be neglected.

The collision results in a loss of kinetic energy associated with
the rigid body motion of the beam, quantified by the dimensionless
coefficient of restitution &. The energy lost from the rigid body
mode is transferred to the vibration modes of the beam, where it
is dissipated due to internal (material) damping. The objective of
the present study is to determine the value of ¢ for a range of x. €
(0, ©), different values of Vi (#y) and different boundary conditions
of the beam.

3 Mathematical Model

3.1 Governing Equations. The dynamics of an FEuler—
Bernoulli beam, subjected to an external transverse load P = P(t)
at point x,. is given by [40]

>w ow & ow
Mﬁ"'CeE"'@(C}IE'FEIW)—Pls(x_xL) (2)

where 4(.) is the Dirac delta function. The governing equation (2) is
second order in ¢, and fourth order in x. It can be solved subject to
two initial conditions and four boundary conditions. Assuming that
the beam is undeformed before the collision, the initial conditions
can be expressed as

w(x, 1) =0, =V + Qo(x —X) 3)

ow
ot (x.10)

where V) is the velocity of the center-of-mass of the beam in the y
direction and Q is the angular velocity of the beam, defined to be
positive along the z-axis, at t=1t,. For a free end, the boundary con-
ditions correspond to zero bending moment and zero shear force,
which are described by the relations

2 3
% (c,-[%—v: + EIW> =0, % (c,-[% + EIW) =0 “4)

For a pinned end, the boundary conditions correspond to zero
deflection and zero bending moment, and are given by

& ow
w=0, @<c,~la+Elw> =0 5)

The cylinder is modeled as a point mass; it is subject to a force equal
in magnitude and opposite in direction to the load acting on the
beam at x =x,. Its dynamics is described by

—=-P 6)
which can be solved subject to the two initial conditions

s(to) =0, 5(t0) = So N

where S is the initial velocity of the cylinder in the y direction.
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3.2 Contact Force. Assuming purely elastic deformation of
the colliding bodies at the point of impact, a Hertzian contact law
[18] is used to model the contact force

Png*«/r—*QS/z ®)
o(r) = max [0, s(r) — w(x,, 1] (©))
1

1>

E*

(1 =v))/E+ (1 -1))/E,
& .

where @ is the instantaneous local deformation of the bodies at x = x,.
and r* is the effective Gaussian radius of curvature of the surface.
Before and after the impact, the value of P is necessarily zero since
Q is zero. The potential energy of the elastic deformation at the
contact point is given by

E*re"? (10)

Remark 1. The contact law in Eq. (8) does not account for dissipa-
tive effects or permanent deformation at the contact point. For the
range of relative velocities of impact considered in this work, the
losses due to these effects are expected to be negligible compared
to the loss due to energy transfer to the vibration modes of the
beam. L]

3.3 Nondimensionalization. Introducing the

variables
X W s EI
e T Te T ez

in Eq. (2), we get the nondimensional governing equation

v o ov .
ST Ves 654< —+v>-P€5(:§€—§C€)

where y,, y; denote the nondimensional external and internal
damping per unit length of the beam, and P is the nondimensional
contact force; they are given by the relations

change of

Y

a c 02 a cl PAPZZ
Ve= e ViTegEr U E

The initial conditions in Eq. (3) are expressed in nondimensional
form as

ov
or

= [Vo +Q0(6 - §)€]e, /=

7l (12)

V(f, 70) = 0’

(&70)

where £ £ ¥/£. The nondimensional boundary conditions for free
and pinned ends are obtained from Egs. (4) and (5) as

& 6V+ =0 i @+v =0
e \V @ \Ma )T

& av
o2 (”” )=o

The dynamics of the cylinder (6) in nondimensional form becomes

13)

(14)

v=0,

d’c ~ A
me——=-P, .=

mL‘
— 1
dr? ul (15)

where 771, is the nondimensional mass of the cylinder. The above
equation is subject to the initial conditions
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7|, EI
0

y (16)

o(z9) =0,

which follow from Eq. (7).
The contact law in Egs. (8) and (9) in nondimensional form is

- 4.
P=§Eﬁ@3/2 17
o(r) =max [0, 6(z) — v(,, )], 0= 0/C
paBC ur (18)
El ¢ I

From Eq. (10), the nondimensional potential energy is obtained as

7 UZ 7 [2~5/2
U= o E«/;Q

19)
4 Finite Element Analysis of Collision

4.1 Finite Element Model. The finite element discretization
of Eq. (11) is carried out using the Galerkin method [41]. The
domain residual R=R(&, 7) can be expressed as

& v 64 a %

The weighted residual form is

1
JWRdé:O
0

@2n

where W= W(&) is the weight function. Substituting Eq. (20) in
Eq. (21), we obtain

1 2 1
ov ov

ot ov ! (22)
j P <wl—+v>d§ Pﬁj W&(EL — EL)dE=0
0

0]
The term ) in Eq. (22) is integrated by parts twice to obtain

1 2y A2
aw & [ ov : & ([ ov :
lEztse) s
The elemental weak form of Eq. (22) is given by

& 82\1 1) ov 93 32w 63\/
W— dé+ W— d ———d
L 5 % J o j g A& 000 :

. (23)

W6t — ¢ ) dg

rz d*W &y
3

. d§2 852 dé= Pﬂj

For a beam element with two nodes, each node having two
degrees-of-freedom, the nondimensional displacement within the
element can be approximated by

W& 1) =[Hou (& Hn() Hp@) Hp@)]v
(24)
velne 2@ no 2o]

where the shape functions Hy, H11, Hop, Hi5 are the Hermite inter-
polation polynomials, provided in Appendix.
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Substituting Eq. (24) into Eq. (23) and choosing the weight func-
tion W to be the shape functions in Eq. (A1), we obtain the elemen-
tal equation of motion

MV + CV¢ + KOv¢ = (25)

where M¢, C¢, and K are the elemental mass, damping, and stiff-
ness matrices, and f is the elemental forcing vector; their expres-
sions are given in Appendix. The global equation of motion of
the beam, comprised of 7 nodes, is obtained by assembling the ele-
mental equations of motion in Eq. (25)

MV +Cv+Kv=f (26)

where v € R?" is the vector of degrees-of-freedom of the beam; M,
C, K € R*™" are the mass, damping, and stiffness matrices, which
are constant for a fixed number of nodes; and f € R*" is the forcing
vector.

It must be noted that, in writing Eq. (26), any non-zero boundary
terms arising from () and () are included in the forcing vector f
[42]. It follows from Eq. (13) that the boundary terms associated
with a free end, arising from and (), are identically zero.

We impose geometric boundary conditions using the penalty
method. We replace the stiffness matrix K in Eq. (26) with K.,

ern =K+ 7Veon, (27)

—
Veon = Veon Yeon

where y>>tr(K) is the penalty term and v, € R*" identifies the
constrained degrees-of-freedom.

4.2 Transformation Into Modal Coordinates. To investigate
the transfer of energy into the first p modes, we transform Eq. (26)
into modal coordinates. We express v as

v=@du, ®=[¢; ¢, &y ] (28)
where u s the vector of the first p modal displacements and ¢; € R*",
j=1,2, ..., p, are the first p mass-normalized eigenvectors of

the model in Eq. (26), obtained by solving the eigenvalue problem

(K- 4M)p; =0, j=1,2,....2n (29)

Using Eq. (28) in Eq. (26), and pre-multiplying both sides by @7, we
obtain

i+%Yu+Au=>b (30)

where we use the property that & "Md® =1, with I defined to be the
identity matrix, and

¥ 2 P'Chd

AL O'K® =diag[ 11 4

] 31)

b2 ®'f

For a free-free beam, it can be shown that the damping matrix ¥ = I
+y;A; Eq. (30) then represents a system of p decoupled equations.
In general, W cannot be expressed as a linear combination of I and
A, and therefore Eq. (30) represents p coupled equations.

4.3 Time Integration. We adapted the Newmark algorithm
[41] to perform direct time integration of the system in Eq. (30)
to investigate the collision problem—see Algorithm 1 in Appendix.
The accuracy and stability of the integration scheme are governed
by parameters é and a, with unconditional stability and maximum
accuracy guaranteed by the constant average acceleration scheme,
where 6=1/2 and a=1/4.

Remark 2. The accuracy of the finite element analysis depends on
the number of nodes n, the number of modes p retained in obtaining
Eq. (30), and the choice of the time-step Az in Algorithm 1. More
accurate results are obtained for larger values of n and p and smaller
values of Az, at the cost of computational efficiency. The value of
p must be chosen to include all vibration modes to which a significant
amount of energy is transferred. Similarly, Az must be sufficiently
small to accurately capture the dynamics on the fast time scale. m
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4.4 Coefficient of Restitution. To compute the coefficient of
restitution &, we identify the nondimensional time instants 7z, and
7. Using Eq. (1) and the discussion in Sec. 2, 7. is identified as
the instant when

dv
. dr

. ~ d
Vrel(Tc‘) =0, Vrel(T) = _6
dr

- A
, V=
(1)

~| =

and 7¢is identified as the instant of separation of the bodies such that
they do not come into contact again, i.e.,

0r)=0 V>t

Following the literature [15], we consider the following two def-
initions of the coefficient of restitution e:

(1) Kinematic coefficient of restitution

N = Vrel(‘;f) (32)

Vrel(TO)
(2) Kinetic coefficient of restitution

Tf -
J Pdr
2

&p =" (33)
j Pdr
0

The coefficient of restitution & will be computed using both defini-
tions in the next section.

5 Simulation Results

5.1 Geometric and Material Properties. Simulation results
are presented for an aluminum beam colliding with a fixed alumi-
num cylinder with geometric and material properties identical to
that in experiments—see Tables 1 and 2. The center-of-mass of
the beam is taken to be at the geometric center of the beam, i.e.,
X =1{/2. To simulate an inertially fixed cylinder, like that in exper-
iments, the value of m,. is chosen to be arbitrarily large compared to
the mass of the beam.

5.2 Boundary Conditions. We simulate collisions of a beam
that is pinned at x=x,, x,=1.905 x 1072 m, i.e., £=0.0375, to be
consistent with our experiments.” Depending on the value of the
offset, the number of elements is chosen such that a node coincides

Table 1 Properties of aluminum beam

Parameter Value (Unit)

4 0.5080 (m)

r 6.35% 107 (m)

I 0.3433 (kg/m)

I=nr'/4 1.277x107° (m*)

E 68.3x10° (Pa)

v 0.34
Table 2 Properties of aluminum cylinder

Parameter Value (Unit)

Te 6.35x 107> (m)

me 1000 (kg)

E. 68.3x 10° (Pa)

Ve 0.34

2In our experiments, described in Sec. 6, the pinned joint is slightly offset from &=0
to facilitate the mounting of the beam on a shaft connected to a bearing.
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with the location of the pinned joint. If the jth node coincides with
the pinned joint, the entries of v, are all zeros except for the
(2j — 1)th entry, which is unity.

5.3 Finite Element Setup. The beam is discretized into 80 ele-
ments, each of length #=0.0125. This results in n =81 nodes along
the length of the beam; M, C, K matrices of dimension 162 x 162;
and the pinned joint to coincide with the fourth node, i.e., j=4. The
stiffness matrix K is modified using Eq. (27); all entries of v, are
zero, except the 7th entry, which is unity; the value of y was chosen
to be tr(K)x10°. In transforming to modal coordinates using
Eq. (28), the value of p is chosen to be 25; this comprises the
rigid body mode and 24 vibration (bending) modes. It was found
that using larger values of p did not affect the results obtained sig-
nificantly. The time-step for numerical integration is chosen to be
0.1 ps, which corresponds to Az=6.1765x 107°. The small value
of the time-step allows the dynamics on the fast time scale to be
captured in detail.

5.4 Results Without Damping. When internal and external
dampings are zero, the damping matrix C is zero, and Eq. (30) rep-
resents a system of 25 decoupled equations. Since the cylinder is
stationary, So=0. Three initial angular velocities of the beam are
considered: Qy={—4,—6,—8}; rad/s. Since the beam is pinned,
the initial velocity of the center-of-mass Vj = Qo(x — x,). For all
three initial angular velocities, collisions are simulated for 400
points of impact between £=0.2 and £=1. It should be noted
that a single collision may involve multiple sub-impacts, i.e.,
contact between the beam and the cylinder is made and broken
several times over the collision duration.

For all three values of €, the variation of the coefficient of res-
titution ¢ with the nondimensional location of impact £. are shown
in Fig. 2. For each Q, the plot of ¢ is actually a superimposition of
the plots of ey and ep obtained using Egs. (32) and (33); these plots
are indistinguishable from one another in conformity with results in
the literature [43]. The plots in Fig. 2 indicate that the value of ¢
does not depend significantly on the initial velocity of €, but
strongly depends on the location of impact &; this is in conformity
with the results in Ref. [9]. In particular, ¢ assumes high values for
low values of &, and then varies somewhat erratically with increas-
ing &, reaching a local minima at £.~0.64 and again at £.~ 0.85.

A low value of € implies that a large fraction of the kinetic energy
at 7=1 is transferred to the vibration modes of the beam at 7=1,.

[ Qo = —8 rad/s

0.0 L 1 1
0.2 0.4 0.6 0.8 1.0

e

Fig.2 Variation of the coefficient of restitution ¢ with nondimen-
sional location of impact & for three initial angular velocities:
Qo={—4,—6,—8}rad/s; the plots indicate that ¢ does not
strongly depend on the value of Q,
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Vibration mode 4

0.0 soaot e mah M M’\m

Vibration modes 1-24

0.2 0.4 0.6 0.8 1.0
e

Fig.3 Fraction of kinetic energy at r = 7, transferred to the vibra-
tion modes of the beam at r= z; for Qo = —6 rad/s

For Q= —6 rad/s, the fractions of the kinetic energy transferred to
the first four vibration modes of the beam individually and all
vibration modes of the beam cumulatively are shown in Fig. 3 as
a function of the location of impact &£.. The largest fractions of
the initial kinetic energy transmitted to the vibration modes corre-
spond to the local minima of ¢ at £.~0.64 and &.~0.85.
Summing the kinetic energy of the rigid body mode with the
energy transferred to the vibration modes at =1 gives the initial
kinetic energy of the beam to within +1.2% due to errors associated
with numerical time integration.

For Q= —6 rad/s, the magnitude of the nondimensional impulse
jZ) P dr is shown in Fig. 4 as a function of &,. It can be observed that
closer proximity of the impact location to the pinned support is
associated with larger magnitudes of the impulse. The nondimen-
sional duration of collision (z;— 1) is also shown in Fig. 4 for
Qo =—6 rad/s. Similar to the plot of nondimensional impulse, the
duration of collision shows a decreasing trend with increase in the
value of &, until £.~ 0.85; the duration of collision then increases
sharply and remains higher for values of . exceeding 0.85. For a
given value of &, increase in the magnitude of € results in an
increase in the magnitude of the impulse but no significant
change in the collision duration.

0.35

f:;)f Pdr

TR R

0.00
0.7

0.2 04 0.6 08 1.0
€C

Fig. 4 Variation of nondimensional impulse and duration of col-
lision with nondimensional location of impact &, for Qo = —6 rad/s
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¢i = 0 Ns/m?

/

¢; = 106 Ns/m?

0.0 " .
0.2 0.4 0.6 0.8 1.0

&e

Fig. 5 Effect of internal damping on the spatial variation of the
coefficient of restitution ¢ for Qo= —6 rad/s; the plot for ¢;=0 is
taken from Fig. 2

5.5 Results With Damping. We consider the effect of internal
damping on the coefficient of restitution. For Qy=—6 rad/s, Fig. 5
shows the variation of ¢ with &. for ¢;=10° Ns/m?, which corre-
sponds to y;=9.0432x 107 As in Fig. 2, the plot is comprised
of the plots of both ey and ep, which remain indistinguishable
with the inclusion of internal damping. For reference, the plot of
e with £, in the absence of damping is shown in gray. It can be
seen that with inclusion of internal damping, e varies more
smoothly with £, and assumes lower values for almost all impact
locations. The locations of the local minima of € remain unchanged
at £,~0.64 and at £~ 0.85. The magnitude of the nondimensional
impulse and the nondimensional duration of collision also vary
more smoothly with inclusion of internal damping but there is no
significant change in their values; these plots are not provided here.

The inclusion of external damping, of the same magnitude
observed in our experimental hardware, produced no perceptible
change in the value of e. However, for large values of external
damping, the values of ¢p and ey were no longer indistinguishable;
the values of ep matched the values of ¢ in the absence of damping
for all £, but the values of ey were lower, with the difference espe-
cially prominent for smaller values of &..

5.6 Mechanics of a Collision With Sub-Impacts. For a single
collision, we present the temporal variation of nondimensional
quantities that describe the behavior of the system during the
collision. We consider the point of impact to be £.=0.68, the
initial angular velocity of the beam to be Qy=—6rad/s, and no
damping. We choose 7o =0. The instant when Vyel(2) equals zero,
i.e., the end of the compression phase, is 7. = 0.0540. This collision
ends at 7,=0.0981.

The nondimensional displacement of the contact point v(&,., 7) is
shown in Fig. 6(a). Since there are five distinct time intervals during
which v(&., 7)<0 (denoted by @, @, ®, @, and ®), the collision
consists of five sub-impacts. The nondimensional relative velocity
Ve(t) is shown in Fig. 6(b). Since Vi(zo)=0.0624 and
Vrel('rf) =-0.0397, the kinematic coefﬁcient~ of restitution
ey = 0.6362. The nondimensional contact force P(r) is shown in
Fig. 6(c); the five time intervals where P(z) >0 are identical to
those denoted by @, @, ®, @, ® in Fig. 6(a) and indicate times
when the beam and cylinder are in contact. The nondimensional
impulses over the compression and restitution phases were found to be

e 7
I Pdr=0.0449, j Pdr=0.0286

0 3

resulting in a kinetic coefficient of restitution ep = 0.6365. Clearly, ey
and ep are almost identical. The temporal evolution of the kinetic
energy associated with the rigid body motion of the beam, the
energy contained in the vibration modes, and the potential energy of
elastic deformation at the contact point I, all expressed as fractions
of the initial kinetic energy of the beam, are shown in Fig. 6(d). For
all 7€[r, 7/, these quantities sum to unity within an error of
+0.4%, implying conservation of energy.

3The simulation was carried out for a much longer duration than 7,to ensure that the
beam and the cylinder did not come into contact again.
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Fig. 6 Simulation of a collision of the beam with the cylinder at
& =0.68 with Q, = —6 rad/s, in the absence of damping

We now consider a collision at the same location, with the same
initial velocity, but with internal damping ¢; = 10° Ns/m”. The com-
pression phase now ends at 7. = 0.0497 and the collision ends at 7=
0.0927. For this collision, only two sub-impacts occur. The kine-
matic and kinetic coefficients of restitution were found to be
ey = ep = 0.4950; these are lower than the numbers obtained in
the absence of damping. Due to the presence of damping, 39.09%
of the initial energy is lost during the collision.

6 Experimental Validation

6.1 Experimental Setup. Experiments were performed with
the aluminum beam and aluminum cylinder whose geometric and
material properties are provided in Tables 1 and 2. The beam is
rigidly connected to a vertical shaft at x,=1.905 x 1072 m and is
able to rotate freely in the horizontal plane. The vertical shaft is
mounted perpendicular to the horizontal TMC MICRO-g optical
breadboard (see Fig. 7) by means of a ball-bearing, not visible in
the diagram. The axis of the shaft coincides with one of the hole
locations on the optical breadboard; the center point of this hole
is taken to be the origin of the inertial XY frame fixed to the table.
The xy frame is fixed to the beam, as described in Fig. 1.

The aluminum cylinder was screwed at different hole locations
on the optical breadboard, aligning the axis of the cylinder each
time with the vertical axis. The holes on the optical breadboard
are 1.0 in. (0.0254 m) apart in the X and Y directions, thus allowing
the cylinder to be placed at (X, Y)=(0.0254 1, 0.0254 J), where I,
J=1,2, .... From the geometry of the setup, it can be shown that
the location of impact x,. is given by

X, =0.01905 + /X2 + Y2 — (r + ..’

By choosing different / and J combinations, experiments were con-
ducted with a set of 125 unique values of x,. for which &, was in the
range between 0.2 and 1.0. For each value of £, multiple collisions
of the beam were recorded with varying angular velocities.

(34)

6.2 Data Acquisition and Processing. The time history of the
angular position of the beam for each collision was collected using a
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Fig. 7 Experimental setup for collision between an aluminum
beam and an aluminum cylinder. The encoder is connected to
a dSpace data acquisition system, not shown in the figure.

simulation with damping
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Fig. 8 Experimental and simulation results for &, €[0.2, 1.0] are
compared using four plots. The experimental results are shown
using circles and errors bars corresponding to the standard
deviation. Simulation results, both in the presence and
absence of damping, are presented.

Dynapar E23 miniature encoder. The encoder shaft was coupled to
the free end of the shaft to which the beam is attached. The encoder
has a resolution of 2000 pulses/revolution and the angular position
signal was acquired at 2000 Hz using a dSpace DS1104 board in the
MATLAB/SIMULINK environment.

From the angular position data, we obtained the angular veloci-
ties of the beam before and after the collision as follows. First,
the instant of impact was identified based on the knowledge
of the angular position of the beam when it comes in contact with
the cylinder. Following this, 0.3 s of angular position data on
either side of the instant of impact was extracted and separated. It
was observed that the pre-collision data were smooth whereas the

Journal of Applied Mechanics

post-collision data were oscillatory. However, the high-frequency
oscillations decayed very rapidly. To eliminate the noise very
close to the instant of impact, 0.003 s of data immediately before
and after the impact was removed. The angular velocities, €2(#)
and Q(zy), associated with the rigid body motion of the beam were
obtained by finding the slopes of the straight lines fitted to the resid-
ual angular position data before and after the impact. The linear fit
was performed on unfiltered data, as it was observed that using a
lowpass Butterworth filter to remove the oscillatory components
of the post-collision data did not affect the slope of the fitted
lines. The kinematic coefficient of restitution for a collision is
given by

o)

35
Q) 33)

EN =

6.3 Results. The experimental results for the 125 impact loca-
tions with £, €[0.2, 1.0] are shown in Fig. 8 using circles and error
bars indicating their standard deviation. For each impact location,
five collisions were recorded on average. The average initial
angular velocity was =~ —3rad/s. Simulation results for Q,=
—3 rad/s,* with and without damping, are also presented in Fig. 8.
For the case with damping, c;=10°Ns/m® and c,=137x
1072 Ns/m>. The value of ¢; matches that chosen in Sec. 5.5; the
value of ¢, corresponds to the experimental hardware.” Figure 8
shows a fairly good match between simulation and experimental
results. In particular:

e The decreasing trend in the value of ¢ for £. €[0.2, 0.64], pre-
dicted in simulations, is captured in experiments.

e For £.€[0.64, 0.8], the experimental results agreed especially
well with the simulation results with damping.

o In the vicinity of the minima at £. = 0.85, there was some mis-
match between experiment and simulation.

e The increasing trend in the value of ¢ for £.€[0.9, 1.0], pre-
dicted by simulations, is captured in experiment.

The experimental results showed excellent repeatability, with
minor variability for £.>0.8, where the simulation results also
show more fluctuation.

7 Conclusions

This paper considers the problem of frictionless collisions between
a flexible circular beam and a cylinder modeled as a point mass. The
focus is on the computation of the coefficient of restitution for the
collisions, which quantifies the energy lost from the rigid body
motion of the beam and cylinder. For this collision configuration,
this loss is primarily due to energy transfer to vibration modes of
the beam. The discretized equations of motion are obtained using
the finite element method and geometric constraints are enforced
using the penalty method. Following modal reduction, the equations
are solved in forward time using an adaptation of the Newmark algo-
rithm for chosen impact locations. The simulations are capable of cap-
turing the response of the system on a fast time scale and show
phenomena such as multiple sub-impacts during a single collision.
The coefficient of restitution is computed using the kinematic and
kinetic definitions; they yield almost identical results in the absence
of significant external damping. A large number of simulations
were carried out for collisions between a pinned beam and a fixed cyl-
inder; the coefficient of restitution was found to be sensitive to the
location of the point of impact. In the absence of damping, the
energy lost from the rigid body motion is completely transferred to
the vibration modes of the beam; the nature of the spatial variation

“Note that the results in Sec. 5.4 indicate that the choice of Q, does not affect the
simulation results significantly.

Note that the results in Sec. 5.5 indicate that small values of ¢, had no perceptible
effect on the value of .

JANUARY 2024, Vol. 91 / 011011-7



of the coefficient of restitution can therefore be attributed to the mode
shapes of the beam. The initial relative velocity of impact has negli-
gible effect on the coefficient of restitution and the duration of the col-
lision. It must be noted that different beam geometries and collision
configurations can be accommodated by changing only a few
model parameters, and geometric constraints can be enforced at arbi-
trary locations on the beam.

Experiments were conducted using a simple setup and data acqui-
sition scheme that focuses on the capture of the rigid body motion of
the beam to validate the simulation results. A fairly good match
between simulation and experimental results provides confidence
in the observed spatial variation of the coefficient of restitution.
The current model does not account for dissipation and permanent
deformation at the contact point; the investigation of these effects lie
in the scope of our future work. Future work will also focus on
obtaining reliable predictions of the coefficient of restitution in
the presence of parameter uncertainty. The results obtained in this
paper will be useful for realizing the control problem of nonprehen-
sile robotic manipulation of extended objects using impulsive
forces. In particular, the results will be used to realize stick-juggling
using a robot manipulator, the control design for which has
appeared in the literature [3,4].
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Nomenclature

r = radius of beam cross section (m)

= displacement of cylinder along the y-axis (m)

= time (s)

= nondimensional displacement of a point on the beam along
the y-axis

displacement of a point on the beam along the y-axis (m)
x coordinate of the center-of-mass of the beam (m)
external damping per unit length of beam (Ns/m?)

internal (material) damping per unit length of beam (Ns/m?)
mass of cylinder (kg)

radius of cylinder (m)

x coordinate of the point of application of P (m)

Young’s modulus of beam (Pa)

area moment of inertia of beam cross section (m*)
magnitude of contact force (N)

Young’s modulus of cylinder (Pa)

coordinate system fixed to beam; the x-axis coincides with
the undeformed axis of the beam and the origin lies at one
end of the beam—see Fig. 1

length of beam (m)

coefficient of restitution

= mass per unit length of beam (kg/m)

Poisson’s ratio of beam

Poisson’s ratio of cylinder

nondimensional coordinate along the x-axis
nondimensional displacement of cylinder along the y-axis
nondimensional time
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Appendix: Finite Element Modeling

The Hermite interpolation polynomials are

2 3
H01(§)=1_3(:—51> +2<§—51>
n n
2
H11(5)=’7<—§_§l><—§_§1—1>
n n
2
H02(§)=<§—51) <3_5—§1>
n n
2
H12(5)=77<§_§]) <7§_51 - 1)
n n

ﬂé§2_§1

(A1)

The elemental mass, stiffness, damping matrices, and the forcing
vector are

[ 13y 117 9 1377
35 210 70 420
1y 7 137 s
Me=| 210105 420 140 (A2a)
n 13y 135 11y
70 420 35 210
B w U
L 420 140 210 105
-12 6 12 6 7
P PP
6 4 _6
e_| ™ n o
K=" 6 12 6 (A20)
wooont P n*
6 2 6 4
L n* n noon
C'=y M +yK* (A2¢)

[ P& -6 -3¢ + 2:»3[}1(51 —&)-H & = E8)]T
P —£) (& - &) [Hgfl —E)-H (& - &)
T2 be-ere -ag+ 25?)3[H(§1 - &) -H(& - &)
P - &) (& - &) [Hng:l —&)-H (& - &)
L n

(A2d)
where H(-) is the Heaviside unit step function; H(0) £ 0.

Algorithm 1 Direct time integration of the collision dynamics

Initial calculations
Initialize = = 0 and u(0), u(0), and @(0)
Select nondimensional time-step Az
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Choose 6=1/2, a=1/4
Calculate integration constants:

_ 1 _ 8
W= Gar M= AT
1 1 1
a=—, a=—-—-1,
N 7 2a
) At (6
a4=7—1, a5=—1(7—2),
a 2 \a
ag = Ar(1 = 9), a; = 6At

Form effective stiffness matrix:
A=A+al+a¥

for r=7+ Az do

d P()AT?
o(t+ At)=0(1) + ad At — ﬁ
dr |, 2,
ds| _ do| P@Ar
dr | s, T dr . e

Estimate transverse displacement v(&., 7) using Eq. (24)
Estimate nondimensional deformation at contact point g(z + A7) by
modifying Eq. (18) as follows:

(7 + A7) = max[0, o(r + A7) — v(&,, 7)]
Compute nondimensional contact force P(z + A7) using 9(r + A7) in
Eq. (17)
Form nondimensional forcing vector b(z + A7) using P(z + A7) in
Eq. 31)
Form effective forcing vector at 7 + Az as follows:

B(z + A7) = b(z + A7) + I[apu(r) + a2 i(7) + azii(r)]
+ W[aju(r) + agi(7) + asii(z)]

Solve for displacements at 7 + A7:
u(z + Ar) = A7'b(z + A7)
Calculate accelerations and velocities at 7 + Az:

u(z + A7) = ap[u(r + A7) — u(r)] — axu(r) — azi(z)
u(z + A7) = u(r) + aeii(r) + a;u(z + Ar)

end for
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