
7242 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 11, NOVEMBER 2023

Design of Impact-Free Gaits for Planar Bipeds and
Their Stabilization Using Impulsive Control

Aakash Khandelwal , Nilay Kant , and Ranjan Mukherjee , Senior Member, IEEE

Abstract—The problem of designing and stabilizing impact-free
gaits is considered for point-foot planar bipeds. A set of geomet-
ric constraints, which eliminate impact forces at the time of leg
interchange, are used to design the gaits. A family of gaits, where
the stride length and walking speed can be chosen independently
for each gait, is guaranteed to exist. A continuous controller is
used to enforce the constraints associated with a desired gait and
intermittent impulsive inputs are applied to stabilize the gait. A
five-link biped example is used to illustrate the procedure for
designing impact-free gaits. The effectiveness of the continuous and
impulsive controllers, working in tandem for stabilization of a gait,
is shown using simulations.

Index Terms—Humanoid and bipedal locomotion, motion
control, underactuated robots.

I. INTRODUCTION

P OINT-FOOT bipeds represent a class of underactuated hybrid
dynamical systems; the hybrid nature can be attributed to the

impulsive dynamics at the time of swing leg touchdown and coor-
dinate resetting associated with the interchange of stance and swing
legs. For bipedal locomotion, an important problem is to design and
stabilize a gait, which is a periodic hybrid orbit. Virtual Holonomic
Constraints (VHCs) [1], [2], [3], [4] have been used to design biped
gaits [5], [6], [7], [8], [9], [10], [11], [12]; a set of geometric con-
straints are imposed on the joint variables to eliminate the need for
tracking time-varying reference trajectories for each joint. The VHCs
are typically enforced using feedback and the biped trajectories are
confined to lie on a constraint manifold during the swing phase. The
VHCs must additionally ensure hybrid invariance of the constraint
manifold; this implies that a nominal gait evolving on the constraint
manifold during the swing phase must return to the constraint manifold
after jump in velocities due to foot-ground interaction and coordinate
resetting.

In the well-known works on bipedal locomotion by Grizzle and col-
laborators, [5], [6], [7], for example, the VHCs are parametrized using
Bézier polynomials. To enforce the VHCs, a nonsmooth controller is
used for finite-time convergence of the trajectories to the constraint
manifold in the swing phase after every step. Under the assumption
of finite-time convergence, the gait is described by a reduced-order
Poincaré map; the conditions for existence and asymptotic stability of
the gait are a set of inequality constraints [13]. Subject to these con-
straints, and additional constraints such as the walking speed, an asymp-
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totically stable biped gait is sought through numerical optimization.
Although this approach has been validated in three [12] and five [5], [6],
[8] DOF bipeds, the existence of an asymptotically stable gait cannot be
guaranteed for the general case as it is based on numerical optimization.
The assumption of finite-time convergence necessitates controller tun-
ing based on stride length and walking speed. If desired gait char-
acteristics such as the walking speed are changed, the optimization
has to be repeated. The numerical optimization is computationally
expensive for high-DOF bipeds, although a less expensive algorithm
was recently proposed [9]. Freidovich et al., [10] replaced the nons-
mooth controller in [12] with a smooth approximation and studied gait
stability using transverse linearization for a three-DOF biped. Note
that the VHC was not enforced in this approach and its applicability
to high-DOF bipeds is unclear. In an alternate approach, VHCs were
enforced using a smooth controller [14] designed via control Lyapunov
functions. The VHC-based gait designs in [9], [10], [14] are, in essence,
variations of the optimization-based approach by Grizzle [7] wherein
the existence of an asymptotically stable gait cannot be guaranteed a
priori.

We adopt a fundamentally different approach to design and stabi-
lization of gaits for general point-foot planar bipeds. Using VHCs,
we design gaits which are impact-free, i.e., no impulsive forces are
applied by the ground on the swing foot at the time of touch down.
The VHCs are enforced using a continuous controller and a desired
gait is stabilized using impulsive control inputs applied intermittently
on a Poincaré section. Contrary to the perception that impulsive
inputs are a theoretical construct and are impractical, continuous-
time approximations of impulsive inputs have been experimentally
demonstrated in the control of underactuated systems using stan-
dard hardware [15], [16], [17], [18]. The results presented here are
validated using simulations but can be suitably implemented in a
standard biped. In relation to prior works, the novelty of our approach
is as follows:! The gait parameters are determined by solving a set of algebraic

equations, and existence of a family of gaits is guaranteed.! The gait parameters can be computed for a desired stride length
and the speed of walking can be arbitrarily chosen for a given set
of gait parameters.! Since the gait is impact-free, hybrid invariance can be ensured
using algebraic relations related to coordinate resetting alone.! The use of impulsive inputs allows us to treat gait design and gait
stabilization as two independent problems.! The use of impulsive inputs eliminates reliance on foot-ground
impact forces for gait stabilization. The stabilizability of the gait
can be checked analytically and the rate of convergence to the
desired gait can be tuned.! The computational cost of gait design does not scale adversely
with DOF.! The VHCs can be enforced using a smooth controller and finite-
time convergence of the trajectories to the constraint manifold is
not required.! Since the nominal gait is impact-free, our approach to gait design
and stabilization minimizes impulsive forces due to foot-ground
interaction; this has the potential to reduce wear and tear, un-
wanted vibrations, energy loss, and sensor noise.
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Fig. 1. n-link point-foot planar biped.

II. SYSTEM DYNAMICS

A. System Description and Assumptions

Consider then-link planar biped (n is odd) comprised of a single-link
torso and kinematically similar legs with point feet - see Fig. 1. It is
assumed that the biped gait is comprised of a sequence of steps, where
each step is comprised of a single-support phase (one leg is in contact
with the ground) and a double-support phase (both legs are in contact
with the ground). In the single-support phase, the leg in contact with
the ground is referred to as the stance leg and the other leg is referred to
as the swing leg. The stance foot is passive; it does not slide or leave the
ground and acts as a frictionless pivot. The single-support phase ends
when the swing leg comes in contact with the ground. The ensuing
double-support phase is of infinitesimal duration; during this phase,
there is force interaction between the ground and the swing leg but not
between the ground and the stance leg. The double-support phase ends
with relabelling of coordinates for interchange of the stance and swing
legs.

Each leg has (n−1)/2 links; the stance leg links are numbered
sequentially 1 through (n−1)/2 starting from the link in contact with
the ground, the torso is link (n+1)/2, and the swing leg links are
numbered sequentially (n+3)/2 through n starting from the link in
contact with the torso. The length of the j-th link, j = 1, 2, . . . , n, is
ℓj . Since the legs are kinematically identical, the link lengths satisfy

ℓn−j+1 = ℓj ∀j = 1, 2, . . . , (n−1)/2

The center-of-mass of the j-th link is located at a distance dj from joint
j. The mass and mass moment of inertia about the center-of-mass of
the j-th link are denoted by mj and Jj . The orientation of the j-th
link, j = 1, 2, . . . , n, measured counter-clockwise with respect to the
vertical, is denoted by θj . The link j, j = 2, . . . , n, is driven by an
actuator mounted on link (j−1), which applies torque τj .

The dynamics of the biped in the single-support phase, also known
as the swing phase, is discussed in Section II-B. The dynamics of foot-
ground interaction and the relabelling of coordinates for interchange of
the stance and swing legs in the double-support phase is discussed in
Section II-C. For generality and ease of control design, the dynamics

are presented using the generalized coordinates q !
[
qT1 | q2

]T
, where

q1 ∈ Qn−1, q2 ∈ Q1 and Qn ! S1 × S1 × · · ·× S1. We define the
generalized coordinates q as follows

q =
[
(θ2−θ1) (θ3−θ2) · · · (θn−θn−1) | θ1

]T
−Π (1)

where Π ∈ Rn has elements equal to zero for all entries except for the
(n+1)/2 entry, which is equal to π.

B. Swing Phase Dynamics: Continuous and Impulsive Inputs

During the swing phase, the biped represents an n-DOF underac-
tuated system with one passive DOF q2. The kinetic and potential
energies of the system are denoted by T (q, q̇) = 1

2 q̇
TM(q)q̇ and V (q)

respectively, whereM ∈ Rn×n is the symmetric, positive definite mass
matrix:

M(q) =

[
M11(q) M12(q)

MT
12(q) M22(q)

]

where M11 ∈ R(n−1)×(n−1), M22 ∈ R and the equations of motion
can be written in the same form as in [3]:

M11(q)q̈1 +M12(q)q̈2 + h1(q, q̇) = u (2a)

MT
12(q)q̈1 +M22(q)q̈2 + h2(q, q̇) = 0 (2b)

where
[
hT
1 h2

]T
∈ Rn is the vector of Coriolis, centrifugal, and

gravity forces, and u!
[
τ2 τ3 · · · τn

]T
∈ Rn−1 is the control

input vector. The equation can be rewritten as:
q̈1 = A(q, q̇) +B(q)u, q̈2 = C(q, q̇) +D(q)u (3)

where the expressions for A(q, q̇), B(q), C(q, q̇) and D(q) can be
found in [3]. Since the biped has revolute joints, we make the following
assumption [2], [3].

Assumption 1: For the n-link biped, the mass matrix and the poten-
tial energy are even functions of q:

M(q) = M(−q), V (q) = V (−q)

When u is continuous and has the form u = uc(q, q̇), the dynamics
in (2) has the state-space representation

ẋ = f(x), x !
[
qT q̇T

]T
∈ Qn ×Rn (4)

If an impulsive input uI is applied in addition to uc at any instant,
the system will experience a discontinuous change in the generalized
velocities with no change in the generalized coordinates [19]. The
jump in the generalized velocities can be obtained by integrating (2) as
follows: [

M11 M12

MT
12 M22

][
∆q̇1
∆q̇2

]
=

[
I
0

]
, I !

∫ ∆t

0

uIdt (5)

where∆t is the infinitesimal duration for which uI is active, I ∈ Rn−1

is the impulse of uI ,

∆q̇1 ! (q̇+1 − q̇−1 ), ∆q̇2 ! (q̇+2 − q̇−2 )

and (.)− and (.)+ denote the variable (.) immediately before and
after an event where there is a discontinuous jump in its value. The
states immediately after application of the impulsive input can be
expressed as

x+ = x− +∆xI , ∆xI !
[

0

∆q̇

]
(6)

where ∆q̇ is obtained from (5).
Remark 1: In actuators such as motors, continuous-time approx-

imation of an impulsive input uI can be realized using high-gain
feedback [15], [16], [17]. An expression for the high-gain feedback
will be provided in Section IV-C.

Remark 2: Impulsive inputs have been extensively used in control
of underactuated systems, see for instance [3], [15], [16], [17], [18],
[20], [21], [22], [23] for theoretical and experimental results.

C. Foot-Ground Interaction and Coordinate Relabelling

In the double-support phase, there is impulsive interaction between
the swing foot and the ground. The stance foot lifts from the ground
without interaction, and there is an instantaneous interchange between
stance and swing legs.

Following the approach in [12], [24], the impact between the swing
foot and the ground is modeled as an inelastic collision. This model is
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described using (n+2) DOF, which includes the original n DOFs and
the two Cartesian coordinates of the stance foot (sx, sy), sx, sy ∈ R.
The equations of motion of the extended system can be written in the
form

Me(qe)q̈e + he(qe, q̇e) = pe + pext, qe !
[
qT sx sy

]T
(7)

whereMe ∈ R(n+2)×(n+2) is the mass matrix,he ∈ Rn+2 is the vector

of Coriolis, centrifugal, and gravity forces, pe =
[
uT 0 0 0

]T
∈

Rn+2 is the vector of generalized forces, and pext ∈ Rn+2 is the
vector of generalized impulsive forces due to interaction between the
swing foot and the ground. The discontinuous change in the generalized
velocities due to pext can be obtained by integrating (7)

Me(qe)∆q̇e = Iext, Iext !
∫ ∆t

0

pextdt (8)

where ∆t is the infinitesimal duration of the impact, Iext ∈ Rn+2 is
the impulse due to pext, and ∆q̇e ! (q̇+e − q̇−e ). Let Fx and Fy denote
the Cartesian components of the impulsive forces on the swing foot due
to impact. Then

pext = ΓTF, Γ ! ∂γ

∂qe
, γ !

[
γx
γy

]
, F !

[
Fx

Fy

]
(9)

where γ ≡ γ(qe) ∈ R2 denotes the Cartesian coordinates of the swing
foot. By integrating (9) over the duration of impact ∆t, we get

Iext = ΓT Ig, Ig !
∫ ∆t

0

Fdt (10)

Since the foot-ground collision is inelastic,
Γq̇+e = 0 (11)

Using (8), (10) and (11), we get[
Me −ΓT

Γ 0

][
q̇+e
Ig

]
=

[
Meq̇−e
0

]
(12)

The states immediately after foot-ground interaction are

x+ = x− +∆xg, ∆xg !
[

0

∆q̇

]
(13)

where ∆q̇ is obtained using (12).
The subsequent interchange of the stance and swing legs is equiv-

alent to a relabelling of states [25]. The states immediately after leg
interchange are a function of those immediately before interchange,
and is given by the relation:

x+ = R(x−)

R(x) = blockdiag
[
U U

]
x−

[
ΠT | 01×n

]T
(14)

where 0i×j ∈ Ri×j is the matrix of zeros and U ∈ Rn×n has elements
given by Uij = −1 for i+ j = n, Uij = 1 for i = n, and Uij = 0
otherwise.

D. Hybrid Dynamic Model

The hybrid dynamics of the gait is described as follows:

D :

⎧
⎪⎨

⎪⎩

ẋ = f(x), x ̸∈ S, uI = 0 1⃝
x+ = x− +∆xI , x− ̸∈ S, uI ̸= 0 2⃝
x+ = x− +∆xg, x− ∈ S1 3⃝
x+ = R(x−), x− ∈ S2 4⃝

(15)

where
S1 ! {x ∈ Qn ×Rn : γy = 0, γ̇y < 0} (16a)

S2 ! {x ∈ Qn ×Rn : γy = 0, γ̇ = 0} (16b)

and S ! S1 ∪ S2 is the set of states during the double-support phase.
The different components of the hybrid dynamics D over a step are
illustrated with the help of Fig. 2 for a single impulsive actuation during
the swing phase.

Fig. 2. Hybrid dynamics of biped over a step with a single impulsive actuation
during the swing phase. The different components are: 1⃝: continuous-time
dynamics, 2⃝: jump in states due to impulsive actuation, 3⃝: jump in states due
to foot-ground interaction, and 4⃝: change of states due to coordinate relabelling.

III. IMPACT-FREE GAITS

For ease of gait design, we use the physical coordinates
θ1, θ2, . . . , θn. Once the design is completed, the gait is described by
VHCs in the generalized coordinates q.

A. Boundary Conditions for Impact-Free Gaits

We use superscripts (.)i and (.)f to denote the value of (.) at the
beginning and end of the swing phase, respectively. A gait will be
impact-free if no impulsive forces are applied by the ground on the
swing foot at the time of touch down. This requires the following
conditions to be satisfied:

γ̇f = −
n∑

j=1

j ̸=(n+1)/2

ℓj

[
cos θfj
sin θfj

]
θ̇fj = 0 (17)

where link (n+1)/2 is the torso and hence excluded. To design the
gait, we will impose additional boundary conditions [26] that ensure
identical potential and kinetic energies at the beginning and end of the
swing phase:

θfj = − θij , j = 1, 2, . . . , n (18)

θ̇fj = θ̇ij , j = 1, 2, . . . , n (19)
The boundary conditions in (18) are the simplest relations that satisfy
the potential energy condition. The conditions in (17), (18) and (19) will
be satisfied through the design of actuated joint trajectories, presented
next.

B. Gait Design

We begin the gait design by choosing θf1 = −θi1. We then design the
actuated joint trajectories as follows:

θj = ajθ1 + kjπ + fo
j (θ1), j = 2, 3, . . . , n (20)

where aj ∈ R and kj ∈ {0, 1} are constants, and fo
j (θ1) is an odd

function. The above design ensures that (18) is satisfied for all actuated
joint angles.1

Taking the time derivative of (20), we obtain

θ̇j =

[
aj +

dfo
j

dθ1

]
θ̇1, j = 2, 3, . . . , n (21)

In the above equation, [aj + (dfo
j /dθ1)] is an even function of θ1;

therefore (19) will be satisfied if θ̇1 is an even function of θ1. We will
show in Section III-D that this requirement can be satisfied for the
trajectories in (20).

C. Boundary Conditions on Joint Trajectories

For a single-step periodic gait, the configurations at the beginning
and end of the swing phase are symmetric about the vertical passing

1Since θj is a revolute joint angle, the boundary conditions physically remain
unchanged if we subtract 2π when kj = 1, effectively changing the term +π
to −π.
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through the stance foot, i.e.,

θfn−j+1 = θij − π ∀j = 1, 2, . . . , (n−1)/2 (22a)

θfj = θij j = (n+1)/2 (22b)
Using (18), we get

θin−j+1 = − θij + π ∀j = 1, 2, . . . , (n−1)/2 (23a)

θij = − θij j = (n+1)/2 (23b)
From (23b), it follows

θij = 0 j = (n+1)/2 (24)
The joint velocities must satisfy

θ̇fn−j+1 = θ̇ij ∀j = 1, 2, . . . , (n−1)/2 (25)
Using (19), we get

θ̇in−j+1 = θ̇ij ∀j = 1, 2, . . . , (n−1)/2 (26)
By substituting (18) and (19) in (17), we obtain

n∑

j=1
j ̸=(n+1)/2

ℓj

[
cos θij

− sin θij

]
θ̇ij = 0 (27)

Since the legs are kinematically identical, substitution of (23) and (26)
into (27) yields

(n−1)/2∑

j=1

ℓj sin θ
i
j θ̇

i
j = 0 (28)

and the first equation in (27) is trivially satisfied.
Remark 3: It follows from (21) that the conditions in (26) and (28)

are independent of the value of θ̇i1. Thus, the n+ 1 conditions in (23a),
(24), (26) and (28) depend only on the choice of θi1.

In the Appendix, we present a constructive proof that impact-free
gaits can always be designed for n ≥ 5.

D. VHCs for Impact-Free Gait

To proceed with the control design for gait stabilization, the joint
trajectories in (20), subject to the conditions in (23a), (24), (26) and
(28), are expressed as VHCs in terms of the generalized coordinates q,
using (1) as follows:

ρ(q) = q1 − Φ(q2) = 0, Φ : S1 → Qn−1 (29)
The corresponding constraint manifold C is given by:

C =

{
(q, q̇) : q1 = Φ(q2), q̇1 =

[
∂Φ

∂q2

]
q̇2

}
(30)

Remark 4: For the choice of generalized coordinates in (1), the
approach in the Appendix ensures that the VHCs in (29) are odd, i.e.,
Φ(q2) = −Φ(−q2) [3, Assumption 2].

Remark 5: The VHCs in (29) are regular and C is stabilizable if
MT

12(∂Φ/∂q2) +M22 ̸= 0 [3, Remark 1].
The continuous control uc in [3]:

uc = [B − (∂Φ/∂q2)D]−1 [−A+ (∂2Φ/∂q22)q̇
2
2

+(∂Φ/∂q2)C − kpρ− kdρ̇] (31)
where kp and kd are positive definite matrices, drives ρ(t) to zero
exponentially, enforcing the VHC in (29) and rendering C controlled
invariant.

By substituting (29) in (2b), we get the swing phase zero dynam-
ics [3], [27]:

q̈2 = α1(q2) + α2(q2)q̇
2
2 (32)

The zero dynamics in (32) has an integral of motion E(q2, q̇2) [1], [2],
and its qualitative properties can be described by a potential energy
function P(q2), which has minimum and maximum values Pmin and
Pmax [2]. For energy level sets E(q2, q̇2) = c, a feasible biped gait
corresponds to one for which c > Pmax, which ensures that q̇2 is an
even function of q2 and does not change sign during the swing phase;

Fig. 3. Hybrid dynamics of biped over a step for an impact-free gait; it
is a simpler version of the dynamics shown in Fig. 2 with components: 1⃝:
continuous-time dynamics, 4⃝: change of states due to coordinate relabelling.

Fig. 4. Evolution of system trajectory during an impact-free gait.

thus the biped is able to complete a step. This will be accomplished
through proper choice of initial conditions.

A system trajectory in C satisfies γ̇f = 0 ∀x ∈ C. Thus, C ∩ S1 = ∅
and consequently C ∩ S = C ∩ S2. A trajectory evolving in C in the
single-support phase will intersectS2 in the double-support phase. This
results in a discontinuous jump in states described by (14). Although
the trajectory may leave C during the jump, it can be shown that the
new states lie in C, i.e., C is invariant under relabelling of the states:

R(C ∩ S2) ⊂ C (33)

The components of the hybrid dynamics over a step for an impact-free
gait are shown in Fig. 3; the evolution of the system trajectory is shown
in Fig. 4.

IV. STABILIZATION OF AN IMPACT-FREE GAIT

A. Orbit Describing an Impact-Free Gait

An impact-free gait, described by the VHCs in (29), is the hybrid
orbit:

O∗ = C∗ ∪R∗ (34)

where

C∗ = {x ∈ C : E(q2, q̇2) = c∗} c∗ > Pmax (35a)

R∗ =
{
x−, x+ : x− ∈ C∗ ∩ S2, x

+ = R(x−) ∈ C∗} (35b)

The orbit O∗ is stabilized using the ICPM approach [3], whose efficacy
has been demonstrated for both continuous and hybrid orbits [3], [23].

B. Poincaré Map

To stabilize O∗ from any point in its neighborhood, we describe the
hybrid dynamics in (15) using a discrete-time map. To this end, we
define the Poincaré section:

Σ = {x ∈ Qn ×Rn : q2 = q∗2, q̇2 < 0} (36)

The states on Σ are:

z =
[
qT1 q̇T

]T
, z ∈ Qn−1 ×Rn (37)

We assume that impulsive actuation is applied when the system tra-
jectory intersects Σ2. If z(k) denotes the states immediately prior to
application of I, the hybrid dynamics of the impulse-controlled system
can be expressed as

z(k + 1) = P [z(k), I(k)] (38)

2It must be verified that O∗ and its perturbations are transversal to Σ [7].
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Fig. 5. Schematic of the ICPM approach to orbital stabilization of an impact-
free gait. The desired orbit is shown in red. The different components of the
hybrid dynamics, namely, 1⃝, 2⃝, 3⃝ and 4⃝ are described by (15).

The map P captures the dynamics between subsequent intersections of
the system trajectory with Σ. It is comprised of the components 2⃝, 1⃝,
3⃝, 4⃝, and 1⃝, described in (15) and depicted in Fig. 2.

C. Orbital Stabilization

If x ∈ O∗, the system trajectory is restricted to O∗ under continuous
control uc. The intersection of O∗ with Σ is therefore a fixed point
z(k) = z∗, I(k) = 0 of P

z∗ = P (z∗, 0) (39)

If x ̸∈ O∗, uc does not guarantee convergence of the trajectory to O∗,
and the impulsive inputs I(k) are used to asymptotically stabilize the
fixed point z∗, and consequently the orbit O∗ [3], [28]. To this end, we
linearize the map P about z(k) = z∗ and I(k) = 0 as follows:

e(k + 1) = Ae(k) + BI(k), e(k) ! z(k)− z∗ (40)

A ! [∇zP (z, I)]z=z∗, I=0

B ! [∇IP (z, I)]z=z∗, I=0 (41)

The matrices A ∈ R(2n−1)×(2n−1) and B ∈ R(2n−1)×(n−1) can be
computed numerically. If (A,B) is controllable, the orbit O∗ can be
stabilized by the discrete feedback:

I(k) = Ke(k) (42)

where K is chosen such that the eigenvalues of (A+ BK) lie inside the
unit circle.

The stabilization of O∗ using the ICPM approach [3], [23] is ex-
plained with the help of Fig. 5. The desired orbit O∗ (shown in red),
intersects Σ at the fixed point z∗; it corresponds to an impact-free gait
where the states undergo a single discontinuous jump due to coordinate
relabelling - see Fig. 4. For a trajectory not onO∗ (shown in black), there
is a discontinuous jump in states 2⃝ on Σ due to application of I(k).
A second discontinuous jump 3⃝ occurs at the time of foot-ground
interaction; this is immediately followed by the discontinuous jump
4⃝ due to coordinate relabelling. The input I(k) in (42) guarantees

asymptotic convergence of a system trajectory to O∗. As the system
trajectory converges toO∗, the discontinuous jumps 2⃝ and 3⃝ converge
to zero.

Remark 6: The following high-gain feedback, applied in addition to
uc, can be used to realize a continuous-time approximation of impulsive
inputs [3]:

uhg = B−1

[
1

µ
Λ(q̇des1 (k)− q̇1)− Ā

]
(43)

where q̇des1 (k) = q̇1(k) +BKe(k), Ā = (1/M22)B(q)× [M12h2

− (h1 − uc)M22], Λ = diag[λ1 λ2 · · · λn−1], λi > 0, i = 1, 2, . . . ,
n− 1, and µ > 0 is a small number. The high-gain feedback remains
active as long as ∥q̇des1 (k)− q̇1∥ ≥ ϵ where ϵ is a small, positive
number.

TABLE I
KINEMATIC AND DYNAMIC PARAMETERS OF FIVE-LINK BIPED

TABLE II
IMPACT-FREE GAIT PARAMETERS

V. CASE STUDY: FIVE-DOF BIPED

A. Gait Selection

We consider a five-link biped with kinematic and dynamic parame-
ters in Table I. The expressions for the matrices in (2) are not provided
here but can be deduced from [26]. We design a gait following the
approach in the Appendix. Thus, (20) can be rewritten as:

θj = ajθ1 + kjπ + Gj sin(Hjθ1), j = 2, 3, 4, 5 (44)

For θi1 = π/20, a set of feasible gait parameters are listed in Table II.
These parameters result in a gait with a stride length of 0.5371 m.

Remark 7: The stride length can be changed by simply changing
the value of θi1 and recomputing the gait parameters using the algebraic
relations in the Appendix.

Using (44) and the parameters in Table II, the VHCs in (29) can be
expressed as:

ρ(q) = q1 − Φ(q2) = 0, Φ : S1 → Q4

Φ(q2) =

⎡

⎢⎢⎢⎣

−0.3500q2 + 0.1023 sin(20q2)

−0.6500q2 − 0.2773 sin(20q2)

−0.6500q2 + 0.2123 sin(20q2)

−1.1761q2 − 0.0373 sin(20q2)− 0.1706 sin(25.5q2)

⎤

⎥⎥⎥⎦

which satisfy the condition in Remark 4, and the condition in Remark
5 for q2 ∈ (−1.395, 1.395), which includes the range of operation of
the passive joint q2 ∈ (−π/20,π/20). The gains of the continuous
controller in (31) were chosen as kp = 450 I4 and kd = 40 I4, where
In ∈ Rn×n is the identity matrix.

The desired orbit O∗, defined by (34) and (35), can be specified by
the independent choices of θi1 and θ̇i1; for θi1 = π/20, we choose θ̇i1 =
−1.0891 rad/s. This results in an average walking speed of 1.1554 m/s.

Remark 8: For a family of gaits, specified by θi1 and its accompa-
nying gait parameters, the walking speed can be changed by simply
changing the value of θ̇i1, as long as θ̇i1 is greater than some minimum
value - see Section III-D.

B. Stabilization of O∗

We choose the following Poincaré section:

Σ = {x ∈ Q5 ×R5 : q2 = π/40, q̇2 < 0} (45)

on which the states are denoted by z, z ∈ Q4 ×R5, defined in (37). It
was verified numerically that O∗ is transversal to Σ. The intersection of
O∗ with Σ in (45) is the fixed point z∗ of the map P , and satisfies (39).
The matrices A ∈ R9×9 and B ∈ R9×4 in (41) are computed numeri-
cally [3]; they are not provided here for brevity. The eigenvalues ofA do
not all lie within the unit circle, but the pair (A,B) is controllable. The
gain matrix K in (42), which asymptotically stabilizes O∗, is obtained
using LQR; the weighting matrices were

Q = blockdiag
[
I4 1.5I5

]
, R = 2.5I4
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Fig. 6. Orbital stabilization of an impact-free gait using the ICPM approach:
(a)-(d) show the components of ρ(q), (e)-(h) show the joint torques τj , j =
2, 3, 4, 5, with impulsive torques shown in red, (i) shows the phase portrait of
the passive coordinate q2, and (j) shows the norm of the error in states on the
Poincaré section.

Remark 9: The results in this section illustrate that gait design and
control design for gait stabilization are decoupled.

C. Simulation Results

The initial configuration is taken as x(0)=[qT(0) q̇T(0)]T

q(0) =
[
−0.027 −0.172 2.011 −0.055 0.192

]T

q̇(0) =
[
2.469 −5.121 5.436 −3.169 −1.159

]T

which does not lie on O∗. Simulation results of the ICPM approach to
gait stabilization are shown in Fig. 6 for 10 steps, which corresponds to
a duration of approx. 4.76 s. The impulsive control in (42) is realized
in the simulations using high-gain feedback uhg in (43) with Λ = I4,
µ = 0.0005, and ϵ = 0.0001; the components of ρ(q) are plotted in
Fig. 6(a)–(d); these plots demonstrate convergence of system trajecto-
ries to the constraint manifold C. The joint torques τj , j = 2, 3, 4, 5, are
shown in Fig. 6(e)–(h), with uhg shown in red. Since uhg causes system
trajectories to leave C, the magnitude of uc is large immediately after
uhg terminates. It can be seen that impulsive torques are not applied
for k > 6 as the system trajectories are sufficiently close to O∗. The
instants of leg interchange are shown using dotted lines; the torques
on either side of a dotted line therefore do not correspond to the same
physical motor. The phase portrait of the passive coordinate q2 is shown
in Fig. 6(i). The desired orbit O∗ is shown in red; it is observed that
system trajectories asymptotically converge to O∗. Finally, ∥e(k)∥2,
k = 1, 2, . . . , 10, is plotted in Fig. 6(j), which demonstrates asymptotic
convergence of the states z(k) on Σ to z∗. For no slip of the stance foot,
the minimum coefficient of friction required was found to be ≈ 0.57.

Remark 10: Our approach does not explicitly constrain the joint
torques or the required coefficient of friction, but stride length and

walking speed can be chosen to satisfy these constraints. In this regard,
FROST [29] provides a framework for the design and control of bipedal
locomotion subject to explicit constraints.

The controller based on the ICPM approach effectively mitigates
the foot-ground impact forces with each step. Both the impact force
from the ground and impulsive control input converge to zero as the
trajectory approaches O∗.

Remark 11: The biped gait was simulated over a terrain with discrete
changes in the height of the ground. An increase (decrease) in the
height of the ground can be accommodated by a commensurate increase
(decrease) in the parameters Hj during the swing phase. Robustness
of the gait and control designs to uneven terrain requires additional
investigation.

Two animations are uploaded as supplementary material. The first
animation shows stabilization of the impact-free gait that is simulated
- see Fig. 6. The second animation compares this gait with another gait
that has a longer stride length but equal walking speed.

VI. CONCLUSION

A method for designing and stabilizing impact-free gaits is presented
for point-foot planar bipeds. The method allows gait design and gait
stabilization to be treated as separate problems that can be addressed
independently. The approach to gait design is computationally inex-
pensive, guarantees the existence of a solution, and allows the stride
length and walking speed to be chosen independently while ensuring
that impact forces are not generated at the time of swing foot touchdown.
Virtual holonomic constraints are enforced by a continuous controller;
this confines the system trajectories to a constraint manifold that con-
tains a family of impact-free gaits. To stabilize a desired gait on the
constraint manifold, the impulse controlled Poincaré map approach is
used wherein impulsive inputs are applied intermittently. As the system
trajectory converges to the desired impact-free gait, the magnitude of
the impulsive inputs converge to zero. The procedure for gait design and
stabilization is illustrated with the help of a five-link biped example.
Future work will focus on gait design for inclined surfaces, robustness
of the gait and control designs, experimental verification, as well as
extension to non-planar biped robots.

APPENDIX

EXISTENCE OF GAITS FOR n-DOF BIPEDS

We present a constructive proof that gaits defined by the
trajectories in (20) can always be found for bipeds with n ≥ 5.
We assume the following form for fo

j (θ1):

fo
j (θ1) = Gj sin(Hjθ1) (46)

where Gj ,Hj ∈ R, j = 2, 3, . . . , n, are constants. This results
in 4(n− 1) parameters which, for a feasible choice of θi1 ∈
(0,π/2), must satisfy the n+ 1 conditions in (23a), (24), (26)
and (28). It is assumed that θ̇i1 ̸= 0, which is a necessary condi-
tion for the biped to take a step.

Parameters for j = n:
Using j = 1 in (23a) and (26), and substituting the expressions

for θn and θ̇n from (20) and (21), we get:

(an + 1)θi1 + Gn sin(Hnθ
i
1) + (kn − 1)π = 0 (47)

(an − 1) + GnHn cos(Hnθ
i
1) = 0 (48)

We choose kn = 1 and Hn arbitrarily; the other two parameters
an and Gn can then be obtained from solving:[

θi1 sin(Hnθi1)

1 Hn cos(Hnθi1)

][
an
Gn

]
=

[
−θi1
1

]
(49)

which has a unique solution as long as the matrix on the LHS of
(49) is nonsingular, i.e., as long as tan(Hnθi1) ̸= Hnθi1.
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Parameters for j = 2, 3, . . . , (n− 1), j ̸= (n+ 1)/2:
For each j = 2, 3, . . . , (n− 1)/2 in (23a) and (26), we sub-

stitute the joint trajectories from (20) and (21) to get:

(aj + an−j+1)θ
i
1 + (kj + kn−j+1 − 1)π

+ Gj sin(Hjθ
i
1) + Gn−j+1 sin(Hn−j+1θ

i
1) = 0 (50)

(aj − an−j+1) + GjHj cos(Hjθ
i
1)

− Gn−j+1Hn−j+1 cos(Hn−j+1θ
i
1) = 0 (51)

We choose kj = 0, kn−j+1 = 1, and Hj = Hn−j+1 = π/θi1 for
j = 2, 3, . . . , (n−1)/2; then (50) and (51) reduce to:

(aj + an−j+1)θ
i
1 = 0 ⇒ an−j+1 = − aj (52)

(aj − an−j+1)− (Gj − Gn−j+1)π/θ
i
1 = 0 (53)

Using (52) in (53) gives

Gn−j+1 = Gj − 2ajθ
i
1/π (54)

With the parameter choices so far, (28) may be rewritten as:

ℓ1 sin θ
i
1 +

(n−1)/2∑

j=2

ℓj sin(ajθ
i
1) (aj − Gjπ/θ

i
1) = 0 (55)

which permits a nontrivial solution only when n ≥ 5. We arbi-
trarily choose the parameter aj ̸= 0 and choose any combination
of Gj’s to satisfy the above equation.

With aj ,Gj now chosen, substitution of their values into (52)
and (54) gives the values of an−j+1 and Gn−j+1.

Parameters for torso j = (n+ 1)/2:
We have from (24), (20) and (46):

ajθ
i
1 + kjπ + Gj sin(Hjθ

i
1) = 0 (56)

We choose kj = 0 and Hj = π/θi1. The above equation then
requires that aj = 0; then Gj can be chosen arbitrarily.

The above approach guarantees that a gait can be found
when n ≥ 5, and provides significant flexibility in choice of gait
parameters. Since the parameters are only subject to algebraic
constraints, their computation does not adversely scale with the
value of n.
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