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Abstract

We consider a task of surveillance-evading path-
planning in a continuous setting. An Evader
strives to escape from a 2D domain while min-
imizing the risk of detection (and immediate
capture). The probability of detection is path-
dependent and determined by the spatially inho-
mogeneous surveillance intensity, which is fixed
but a priori unknown and gradually learned in the
multi-episodic setting. We introduce a Bayesian
reinforcement learning algorithm that relies on
a Gaussian Process regression (to model the
surveillance intensity function based on the in-
formation from prior episodes), numerical meth-
ods for Hamilton-Jacobi PDEs (to plan the
best continuous trajectories based on the current
model), and Confidence Bounds (to balance the
exploration vs exploitation). We use numeri-
cal experiments and regret metrics to highlight
the significant advantages of our approach com-
pared to traditional graph-based algorithms of re-
inforcement learning.

1 INTRODUCTION

Path planning is a standard task in robotics, but it becomes
much harder if we need to account for stochastic pertur-
bations, adversarial interactions, and incomplete informa-
tion about the dynamics or the environment. With repeated
tasks, Reinforcement Learning (RL) provides a popular
framework for optimizing the system performance based
on the information accumulated in prior episodes while en-
suring the asymptotic convergence to the globally optimal
solution as the number of planning episodes grows (Sutton
and Barto, 2018). In continuous setting, most applications
of RL are focused on learning the process dynamics (Recht,
2019) using frequent or continuous observations of the sys-
tem state. Our focus here is on a rather different class of
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problems, where the controlled dynamics are known, but
the process termination is a random event, whose probabil-
ity distribution is not only trajectory-dependent but also a
priori unknown.

More specifically, we study the online path planning strat-
egy for an Evader (E), who attempts to escape a region
while minimizing the probability of being detected en
route. Surveillance intensity imposed by the opponent(s) is
assumed to be spatially inhomogeneous, making the choice
of E’s capture-evading trajectory important. This general
setting is motivated by prior work on environmental crime
modeling (Cartee and Vladimirsky, 2020) and surveillance
avoidance (Gilles and Vladimirsky, 2020; Cartee et al.,
2019). However, unlike in those prior papers, here the
surveillance intensity is initially unknown to E, who needs
to learn it on relevant parts of the domain through multiple
planning episodes1. Whenever E is spotted, this results in
capture and immediately terminates the trajectory. But the
evidence obtained about the surveillance intensity on al-
ready traced parts of that trajectory can be used to improve
the planning in future episodes. Such multi-episodic set-
ting might seem unusual in capture/surveillance avoidance,
but it arises naturally in several applied contexts includ-
ing the environmental crime modeling. E.g., in many parts
of Brazil, illegal forrest loggers are primarily subsistence
farmers in need of firewood for family use (Chen et al.,
2021). When apprehended, their punishment is usually
wood confiscation plus sometimes a small fine. Repeat of-
fenders are common, and they also share information with
each other on paths taken or locations where they were
caught in the past. Another example comes from asym-
metries in modern warfare, where many types of UAVs be-
come increasingly cheap – particularly compared to effec-
tive air defense systems for large geographic areas.

We develop an approach that balances the exploration
against exploitation and uses spatial correlations for effi-
cient learning. Our algorithm relies on numerical meth-

1We note that our setting is also quite different from the classi-
cal Surveillance-Evasion Games (Dobbie, 1966; Lewin and Ols-
der, 1979; Takei et al., 2014), in which the surveillance intensity
changes dynamically through adversarial motion of the Observer
(O), leading to a differential zero-sum game between E and O,
who have immediate and full information of the opponent’s ac-
tions.
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ods for solving PDEs (Sethian, 1996), statistical estimates
with censored data (Shorack and Wellner, 2009), Gaussian
process (GP) regression (Williams and Rasmussen, 2006),
and strategic exploration techniques from RL (Kocsis and
Szepesvári, 2006; Azar et al., 2017). To simplify the ex-
position, our method is described and benchmarked here
under the assumption that the Evader is isotropic (i.e., E
can change the direction of motion instantaneously and the
available speed depends on its current position, but not on
its chosen direction). However, our main ideas are more
broadly applicable, and the approach is also suitable for
more realistic (anisotropic) agent dynamics.

We start by reviewing the basic problem with known ran-
dom termination (capture) intensity in section 2. Section 3
poses the problem with unknown intensity and defines per-
formance metrics for episodic path planning. We follow
this with a review of algorithms for strategic exploration
on graphs developed for finite horizon Markov Decision
Processes and explain why their usefulness is rather lim-
ited in our continuous setting. In section 4 we describe a
new approach based on Bayesian models of surveillance
intensity function and episodic path planning based on the
Confidence Bounds. We show that piecewise-continuous
models lead to simpler algorithms but are usually outper-
formed by models based on GP-regression. The advantages
of our methods are illustrated on several sample problems
in section 5. We conclude by considering possible future
extensions in section 6.

2 PATH PLANNING WITH KNOWN
INTENSITY

Suppose E starts at x in some compact domain Ω ⊂ R2

and moves with isotropic speed f(x). The motion of E is
governed by:

y′(s) = f
(
y(s)

)
a(s), y(0) = x, (1)

where a : R → S1 is a measurable control function speci-
fying the direction of motion at every moment.

Define Ta = min{s ≥ 0 | y(s) ∈ ∂Ω} as the domain-
exit time if E starts from x and uses the control a(·). The
location-dependent surveillance intensity is a smooth, pos-
itive function K(x), which in this section is assumed to be
fully known in advance. If E decides to follow a trajectory
y(·), the probability of remaining undetected until time t is

P(S ≤ t) = 1− exp

(
−
∫ t

0

K(y(s))ds

)
, (2)

where S is the random time when E is spotted and imme-
diately captured, thus terminating the trajectory. E’s goal is
to maximize its probability of reaching ∂Ω or, equivalently,
to minimize the cumulative intensity:

J (x,a(·)) =

∫ Ta

0

K(y(s))ds. (3)

As usual in dynamic programming, the value function u(x)
is defined to encode the result of optimal choices

u(x) = inf
a(·)
J (x,a(·)), (4)

and can be found as a solution of a Hamilton-Jacobi-
Bellman equation (Bardi and Capuzzo-Dolcetta, 2008).
Here we focus on isotropic dynamics/intensity; i.e., f and
K do not depend on a, which further simplifies the PDE to
the following Eikonal equation:

|∇u(x)| f(x) = K(x);

u (x) = 0, ∀x ∈ ∂Ω.
(5)

This isotropic setting creates a one-to-one correspondence
between a control function and a path. From now on, we
interchangeably use the terms “determining a control func-
tion” and “selecting a path”.

In general, (5) often does not have a classical solution, but
always has a unique Lipschitz continuous viscosity solution
(Bardi and Capuzzo-Dolcetta, 2008). Wherever ∇u exists,
the optimal a is opposite to the gradient direction (a∗ =
−∇u/|∇u|). The set on which u is not differentiable has
measure zero and is comprised of all starting positions from
which the optimal trajectory to ∂Ω is not unique.

Efficient numerical methods for solving (5) have been ex-
tensively studied in the last 25 years. Many of these al-
gorithms take advantage of the causality found in upwind
finite-difference discretizations: a gridpoint only depends
on its smaller adjacent neighbors, making it possible to
solve the system of discretized equations non-iteratively.
We choose Fast Marching Method(FMM) (Sethian, 1996),
which is a Dijkstra-like algorithm that has O(N logN)
computational complexity when solving (5) on a grid with
N gridpoints. Once the value function is approximated, an
optimal trajectory can be obtained starting from any x ∈ Ω
by gradient decent in u until reaching ∂Ω.

3 MULTI-EPISODIC PLANNING WITH
UNKNOWN K(x)

With a known K(x), E should persist in choosing a fixed
optimal path deterministically, even though the outcomes
(whether and where E is captured) may be different ev-
ery time. But what if K(x) is a priori unknown and only
learned gradually by trying different paths? If E faces a
repeated task of surveillance-avoidance en route to ∂Ω, a
natural interpretation is to find a path-selection policy that
optimizes some long-term performance metric. This is a re-
inforcement learning (RL) problem, with information grad-
ually collected in a sequence of episodes. Clearly, if E se-
lects enough random trajectories that sufficiently cover the
whole region, eventually K(x) can be approximately re-
covered. However, this approach is inefficient since E’s
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goal is to learn K(x) only on those parts of Ω that are rel-
evant to reduce the frequency of captures, asymptotically
approaching the probability along the truly optimal trajec-
tory, which would be chosen if K(x) were known.

To assess the long-term performance of a policy, a fre-
quently considered criterion is regret, which is expected ex-
cess of cost due to not selecting the optimal control for all
episodes. Letting ∆i be the indicator of whether E is cap-
tured during the ith episode, we define the experimentally
observed excess rate of captures

Sj =
1

j

j∑
i=1

(∆i −W∗) , (6)

where W∗ = 1 − exp(−u(x0)) is the minimum capture
probability. If an optimal a∗(·) were used in each episode,
the regret Sj would converge to 0 as j →∞.

3.1 Prior work: RL algorithms on graphs

Before delving into the continuous problem, we first
present a discrete version on a finite directed graph G and
examine the possibility of applying well-known RL algo-
rithms. Suppose E starts from a node v0, moves between
adjacent nodes, and tries to avoid capture en route to a set
of target nodes Ξ. We assume that a transition along any
edge e incurs some capture probability2 Ψe ∈ (0, 1). If P
denotes the set of all paths from v0 to Ξ, we would prefer
to use p ∈ P which maximizes the probability of not being
captured up to Ξ; i.e., maxp∈P

∏
e∈p(1 − Ψe) or, equiv-

alently, minp∈P
∑
e∈p− log(1 − Ψe). When all Ψe’s are

known, this becomes a standard shortest path problem, with
Ce = − log(1 − Ψe) interpreted as edge weights, and the
classical Dijkstra’s method can solve it efficiently. Alterna-
tively, this can be viewed as a simple Markov Decision Pro-
cess (MDP) by adding an absorbing “captured state” node
vc. In this MDP interpretation, an action corresponds to
a choice of the next attempted edge e, a capture event is
modeled as a transition to vc, and a unit reward is earned
only upon reaching Ξ.

Of course, we are interested in the case where Ψes are
not known in advance, and it would seem natural to ad-
dress this by any of the RL algorithms developed to max-
imize the expected return in MDPs with unknown transi-
tion functions. This includes the Q-learning (Watkins and
Dayan, 1992), temporal difference methods (Sutton, 1988),
Thompson sampling (Thompson, 1933), and the techniques
based on upper confidence bounds (UCB) (Auer, 2002).
The latter served as a basis for a popular model-free Up-
per Confidence bounds on Trees (UCT) algorithm (Koc-
sis and Szepesvári, 2006), in which the evidence gathered

2If the graph is embedded in a continuous domain Ω, this Ψe

can be computed from (2), provided t is the time needed to tra-
verse that edge e, which is parametrized by a path y(s).

in previous episodes is used to estimate the rewards of all
(state, action) pairs, but the exploration of less visited pairs
is encouraged by adding a bonus term proportional to each
estimate’s standard deviation. The same idea is also used
in more recent model-based methods (Dann and Brunskill,
2015; Azar et al., 2017), in which prior evidence is used
to model the transition probabilities and the value function
is computed in each episode based on the current model
but with similar bonus terms added to encourage the explo-
ration.

While the above algorithms were originally designed for
MDPs with a fixed finite horizon, they can also be adapted
to our “exit time” case. For simplicity, suppose that Ω is
discretized using a uniform Cartesian grid of nodes V, with
each interior node v connected by edges to its 8 closest
neighbors – corresponding to 8 actions (directions of mo-
tion) available at that node. We will use E(v) to denote
all edges available at v and E for the set of all edges in
the graph. Using the MDP interpretation, the process ter-
minates upon reaching Ξ ⊂ V (which discretizes ∂Ω) or
vc (in case of capture). To implement UCT, we maintain
the statistics Nv (and Ne) on how many times each state
(and each edge – or state-action pair) is visited over multi-
ple episodes, with Qe encoding the fraction of those visits
on which E traversed e but was captured before reaching Ξ.
The selection of nodes is summarized in Algorithm 1, with
the parameter λ > 0 regulating the rate of exploration.

Algorithm 1 UCT: model-free planning on a graph
Set Qe = 0, Ne = 0, Nv = 0 for all v and e
while t = 1 : T do

capture = search(v0);
end while

Function search :
Input: current node v 6∈ Ξ
Output: capture flag c
Nv = Nv + 1;
ê = arg mine∈E(v)Qe − λ

√
log(Nv)/max (Ne, 1);

Nê = Nê + 1;
v̂ = attempt transition(v, ê);
if v̂ == vc then
c = 1;

else if v̂ ∈ Ξ then
c = 0;

else
c = search(v̂);

end if
Qê = [(Nê − 1)Qê + c] /Nê;

The model-based version on a graph (which we will denote
Alg-D, for “discrete”) is implemented on the same grid,
but relies on learning Ψe for the relevant edges. We main-
tain statistics Ne (and φe) on how many times a visit (and
capture) happen for each edge e. An estimate of Ψe is com-
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puted as Ψ̃e = φe
/
Ne and the confidence-bound-modified

version is

Ψ̂e = max

{
Ψ, Ψ̃e −

√
log(T |E|/γ)

max (Ne, 1)

}
, (7)

where |E| is the total number of edges, and Ψ ≥ 0 is a
known lower bound on all Ψe, while γ ∈ (0, 1) is a pa-
rameter controlling the decay of expected regret3. In each
episode, we solve a shortest path problem based on edge
weights Ĉe = − log(1 − Ψ̂e). Then we simulate running
through the derived optimal path and update edge statis-
tics Ne and φe, which are used to change Ĉe in the next
episode. The resulting method is summarized in Algorithm
2.

Algorithm 2 Alg-D: model-based planning on a graph
Set φe = 0, Ne = 0 for all e.
while t = 1 : T do

Update Ψ̂e according to (7);
Solve the deterministic shortest path problem with
edge costs Ĉe = − log(1− Ψ̂e);
Simulate running through the Ψ̂-optimal path from v0

using the actual Ψ;
Update φe and Ne accordingly;

end while

Unfortunately, as we show in Section 5, the performance of
such methods is rather poor in our continuous setting. First,
to ensure Sj → 0, the number of actions/edges per node
would have to grow as we refine the graph – otherwise, we
will not be able to obtain all possible directions of motion
in the limit. The methods above are hard to use in MDPs
with large action sets and are not directly usable in MDPs
with infinite action spaces. Second, in UCT any capture
yields an equal penalty for all edges successfully traversed
in that episode (even if the true Ψe is quite low along some
of them). This is why model-based methods, such as Alg-
D, are preferable for this class of problems even on graphs.
Third, and most importantly, both UCT and Alg-D do not
account for correlations in (unknown) transition functions
of different (state, action) pairs. In the continuous case,
the smoothness of surveillance rateK(x) makes the spatial
correlations crucial. Ignoring this feature results in much
slower learning.

In the next section, we overcome these limitations by in-
troducing new methods for continuous model learning and
path planning based on a confidence-bounds-modified ver-
sion of the model.

3In Supplementary Materials, we prove that under Alg-D the
expected regret of a graph-restricted problem tends to 0 as the
number of episodes tends to∞.

4 MODEL-BASED METHODS ON Ω

4.1 Piecewise-constant models of K and planning
based on confidence bounds

As a first attempt to solve the continuous problem, we de-
compose Ω into a collection G of non-overlapping subdo-
mains/cells and assume that K(x) is a constant on each of
them. We define three auxiliary objects to gather data in-
side each cell over many episodes:

• Gc : the total number of captures in a cell;

• Gt : the total time spent in a cell;

• Gn : the total number of visits/entries into a cell.

We will use K̃ ∈ R
|G|
0,+ to represent a piecewise constant

estimate of K(x) and σ̃2 ∈ R
|G|
0,+ to denote the element-

wise estimated variance of K̃.

Focusing on a single cell, suppose that the surveillance in-
tensity is indeed some (unknown) constant: K(x) = Kcell.
Enumerating all episodes in which our planned trajectory
involved traveling through that cell and capture did not oc-
cur before we reached it, suppose in the k-th such episode
our plan is to exit that cell after time tk. The capture
time Sk would be an exponentially distributed random vari-
able with rate Kcell, but of course we only get to observe
its right censored (Shorack and Wellner, 2009) version
Rk = min(Sk, tk). For convenience, we also define a cap-
ture indicator δk, which is equal to 1 if we are caught be-
fore exiting that cell and 0 otherwise (implying Rk = tk).
Assuming there were n such visits to this cell up to the cur-
rent episode, this right-censored data (δk, Rk)nk=1 can be
used to derive the maximum likelihood estimate (MLE)

K̃cell =
n∑
k=1

δk

/ n∑
k=1

Rk. (8)

The asymptotic expression for K̃cell’s variance is

K2
cell

/ n∑
k=1

[1− exp(−Kcelltk)]. (9)

Using the fact that E[δk] = 1 − exp(−Kcelltk), we can
estimate this asymptotic variance as

σ̃2
cell =

n∑
k=1

δk

/(
n∑
k=1

Rk

)2

. (10)

Using Gc and Gt notation, K̃ and σ̃ can be written as K̃ =
Gc/Gt, σ̃2 = Gc/G2

t on each cell.

Inspired by the confidence bound techniques on graphs, we
can also build up a “lower-confidence” intensity. Since this



Dongping Qi, David Bindel, Alexander Vladimirsky

modification can produce negative values and our obser-
vation intensity must be non-negative, we do not approx-
imate K directly but instead model Z(x) = logK(x).
We use the statistic Z̃cell = log(K̃cell) as an estimator
for Z values at a cell center, with K̃cell defined as in
(9). If K̃cell is asymptotically distributed as N(µK , σ

2
K)

with σK approaching 0, then by local linearization of the
logarithm (known as the delta method (Van der Vaart,
2000)), we have that Z̃cell is asymptotically distributed as
N(log µK , σ

2
K/µ

2
K). Using Gc and Gt notation, we esti-

mate the mean and variance for Z̃cell by

Z̃ = log (Gc/Gt) , σ̃2
Z = 1/Gc. (11)

This allows us to define corresponding piecewise-constant
functions Z̃(x) and σ̃Z(x). Our lower-confidence-adjusted
intensity is constructed as

K̂(x) = exp
(
Z̃(x)−

√
log(T |G|/γ)σ̃Z(x)

)
. (12)

Designed similarly to (7), the constant factor multiplying
σ̃Z(x) balances the exploration vs exploitation and de-
pends on the total number of episodes T , the number of
cells |G|, and γ ∈ (0, 1) controls the rate of exploration.
The resulting formula yields low values of K̂ in rarely vis-
ited cells, thus encouraging the exploration if those cells
are relevant for paths from x0 to ∂Ω. (E.g., a cell with a
low K̂ might be completely irrelevant if passing through
it requires traversing other high-K̂ cells or if there exists a
much shorter/safer path from x0 to ∂Ω.) Since the above
defined K̂ is also piecewise-constant, the K̂-optimal tra-
jectory will be polygonal, but finding its exact shape still
requires solving an Eikonal equation. We use a Fast March-
ing Method (Sethian, 1996) to do this on a finer grid Gpd.

Algorithm 3 summarizes the resulting method. To avoid Z̃
in (11) becoming infinity, we initialize Gt as a small posi-
tive constant ε and Gc as εKinit so that initially Gc/Gt equals
to some constant Kinit

4.

4.2 GP regression models of K and planning based
on confidence bounds

Algorithm 3 ignores the correlations between K values in
different cells and updates each cell independently. In this
section, we capture spatial correlation in the intensity by
using a Gaussian process (GP) (Williams and Rasmussen,
2006). A Gaussian process is a collection of Gaussian ran-
dom variables indexed by x, with mean m(x) and covari-
ance Σ(x,x′). Some common choices of Σ(x,x′) are, e.g.
the squared exponential kernel

Σ(x,x′) = α exp
(
−|x− x′|2/β2

)
(13)

4In our numerical tests, we chose Kinit to be the Ω-averaged
value of K. We have also experimented with other values of Kinit,
but this did not seem to have significant effect on Algorithm’s
performance.

Algorithm 3 Alg-PC: planning with a piecewise-constant
model
Input: γ, ε.

Set Gc = εKinit, Gt = ε;
Set Z̃ = log(Gc/Gt), σ̃Z = 1/Gc;
while t = 1 : T do
K̂(x) = exp

(
Z̃(x)−

√
log(T |G|/γ)σ̃Z(x)

)
;

Numerically solve |∇û(x)| = K̂(x);
Find an optimal path from x0 using û(x);
Simulate that path using the real K(x);
Update Gc,Gt,Gn using simulation results;
Compute Z̃, σ̃Z according to (11);

end while

or the Matérn kernel

Σ(x,x′) = α
21−ν

Γ(ν)

(√
2νd/β

)ν
Bν

(√
2νd/β

)
(14)

where d = |x− x′| , Γ is the gamma function, and Bν
is the modified Bessel function of the second kind. Here,
(α, β) are hyperparameters that can be learned from data
while the parameter ν in the Matérn kernel controls the dif-
ferentiability of GP and can reflect our assumptions about
the level of regularity of K(x).

Criteria∗. We only use cells whose estimates of K are
accurate enough as inputs of GP regression. Here we intro-
duce a list of rules to select these cells from G:

• Gc ≥ 1, preventing 1/Gc from becoming infinity.

• Gn ≥ nmin, guaranteeing enough entries into a cell.
Our implementation uses nmin = 20.

• Gt ≥ tmin, avoiding extremely short traverses. Our
implementation sets tmin to the time sufficient to tra-
verse a cell’s diameter.

We denote the cells satisfying Criteria∗ as Gob ⊂ G and
their centers as Xob. Let Z̃ob, σ̃ob be Z̃, σ̃Z values at
Xob reshaped as vectors. Use Σ̃ as an abbreviation of
[Σob + diag(σ̃ob)]. The GP posterior mean M(x) for Z
based on noisy observations at Xob is

M(x) = m(x) + Σ(x, Xob)Σ̃−1
[
Z̃ob −m(Xob)

]
. (15)

Another advantage of GP model is that we simultaneously
obtain the posterior covariance

ρ2(x) = Σ(x,x)− Σ(x, Xob)Σ̃−1Σ(Xob,x). (16)

The resulting method is summarized in Algorithm 4. We
note that partial knowledgeK(x) can be encoded in a prior
mean m(x), though in our experiments m(x) was simply
set to a positive constant on the entire Ω.
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Algorithm 4 Alg-GP: planning with a GP model
Input: m(x), (α, β), γ

Set Gc,Gt,Gn to be all zeros;
Choose a kernel Σ(x,x′);
M(x) = m(x), ρ(x) = 0;
while t = 1 : T do
K̂(x) = exp(M(x)−

√
log(T |G|/γ)ρ(x));

Numerically solve |∇û(x)| = K̂(x);
Find an optimal path from x0 using û(x);
Simulate that path using the real K(x);
Update Gc,Gt,Gn using simulation results;
Compute Z̃, σ̃Z according to (11);
Determine Gob according to Criteria∗;
if Gob is non-empty then

Update M(x) and ρ(x) using (15) and (16);
end if
if t > 1000 and t ≡ 1 mod(1000) then

Tune hyperparameters (α, β) according to (17).
end if

end while

4.3 Hyperparameter tuning

The values of (α, β) are essential to the performance of GP
regression. GP provides a probabilistic framework for au-
tomatically selecting appropriate hyperparameters through
maximizing log marginal likelihood (Dong et al., 2017):

max
α,β>0

−1

2
zᵀ

ob,cΣ̃
−1zob,c −

1

2
log |Σ̃| − n

2
log 2π, (17)

where zob,c = Z̃ob −m(Xob) is the vector of centered ob-
servations. In Algorithm 4, we conduct this hyperparame-
ter tuning once every thousand episodes.

5 NUMERICAL EXPERIMENTS

We now compare the performance of Algorithms UCT,
Alg-D, Alg-PC, and Alg-GP on several examples5 on the
domain Ω = [0, 1]2. For simplicity, we assume f(x) = 1
and focus on different versions of K(x), constructed as
sums of several Gaussian peaks with different amplitudes
and widths. (Each peak might correspond to the location of
a separate observation/surveillance center.) For each exam-
ple, we conduct T = 15000 episodes, always starting from

5In the interest of computational reproducibility, the source
code of our implementation and additional experiments can
be found at https://eikonal-equation.github.io/
Bayesian-Surveillance-Evasion/. GP updates, cap-
ture event simulations and the main loop of Alg-GP all Al-
gorithms are implemented in MATLAB while Fast Marching
Method and the optimal path tracer are in C++. We ran the ex-
periments using Dell OptiPlex 7050 desktop with 3.6 GHz Intel
i7-7700 processor, and 16 GB RAM. With a 20× 20 observation
grid, each of these examples took under 20 minutes with Alg-GP
and under 5 minutes with Alg-PC.

the same initial position x0 indicated by a cyan dot.

In all examples, we have benchmarked UCT on a graph G
built on a 20× 20 grid of nodes. The same graph was also
used to test the performance of Alg-D. In Alg-PC and Alg-
GP, all examples use a 20×20 observation grid G while the
Eikonal equations are solved on a 101×101 grid Gpd. In all
cases, we have used λ =

√
2 and γ = 0.1.

Figures 1-3 provide detailed information on three represen-
tative examples, focusing on Alg-GPe (a version of Alg-
GP using the squared exponential kernel). In each case,
the four subfigures (enumerated left to right, top to bottom)
present: (i) The true surveillance intensity K(x). (ii) The
level sets of u(x); i.e., the minimum integral of K along a
trajectory starting at x. (iii) The final exp(M(x)); i.e., the
Alg-GP-predicted K(x) without confidence bound modi-
fication. The magenta dots are locations of captures (only
from experiments of Alg-GP). The black curve is the opti-
mal path based on exp(M(x)) after the last episode. (How-
ever, note that in each episode the trajectory is planned ac-
cording to a version of K̂(x) available at that time.) (iv)
The final GP posterior variance ρ(x). Figure 4 shows the
regret metric (i.e., the excess rate of captures S) for all of
the benchmarked algorithms.

Figure 1: Bimodal surveillance intensity K(x). Most of
the selected paths are around three locally optimal paths
with the longer one being globally optimal.

The following observation hold true for all examples:
• Capture locations (magenta dots) in subfigure (iii) give
rough indications of which parts of Ω Alg-GP prefers to
explore. It mostly selects paths around locally optimal
ones, and during the later episodes it focuses more on the
vicinity of the globally optimal one, showing a proper bal-
ance between exploration and exploitation. Indeed, the two
paths in subfigure (iv) indicate that Alg-GP’s final predic-
tion (black) approximately matches the true optimal path

https://eikonal-equation.github.io/Bayesian-Surveillance-Evasion/
https://eikonal-equation.github.io/Bayesian-Surveillance-Evasion/
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Figure 2: Surveillance intensity inspired by Figure 7 from
(Cartee and Vladimirsky, 2020). The shortest exiting path
induces a higher capture probability, while the actual op-
timal path takes a longer detour towards a lower intensity
region. Selected paths mostly cluster around two locally
optimal paths, with one of them being globally optimal.

(red).
• In Figure 4, Alg-GP’s averaged excess capture rate
continuously decreases and appears to confirm the conver-
gence. The third example contains multiple locally op-
timal (and roughly comparable) paths and requires more
episodes to learn the globally optimal one, which explains
the slow decrease of S in later episodes.
• In contrast, Alg-D and Alg-PC exhibit a consistently
slower improvement of S and even stagnation – indicat-
ing that model-learning takes substantially longer for these
methods.
• UCT algorithm generates much larger regrets than all
others. We have also tested it with more episodes (105 ∼
106), but the results still show obvious stagnation. The
main reason is that UCT learns the state-action functions
directly. It regards a whole path as a single datum and over-
looks the information of not being captured along the ear-
lier parts of the path, which could be used to improve the
estimates for K.
• Both Alg-D and UCT restrict the Evader to move only
along one of the eight directions. In principle, this will
result in a gap between the truly optimal W∗ and the risk
along the best path on this graph even after infinitely many
episodes. However, as we show in Supplementary Mate-
rials, in these examples that gap is much smaller than the
observed regret S.

Remarks on grid effects: Our use of a discrete observa-
tion grid G essentially lumps together all captures within
one cell and limits the algorithm’s ability to learn the true
K. To account for this more accurately, we could mod-

Figure 3: An intensity with eight peaks and multiple lo-
cally optimal paths. The peak around the southeast corner
is displaced slightly, creating a gap in K(x) and the opti-
mal path reflects this. Alg-GP attempts to discover each lo-
cally optimal path but concentrates more around three paths
with one of them being globally optimal.

ify our definition of the regret metric, measuring the regret
relative to the best path learnable on the specific G. We in-
clude such detailed tests in Supplementary Materials. But
in summary we note that they demonstrate yet another ad-
vantage of GP regression:

1) For Alg-GP, if we assume infinitely many captures in
each cell, the ideal (asymptotically learnable) W̃∗ = 1 −
exp(J∗) is only very weakly dependent on G. E.g., the W̃∗
is already within 0.25% from the truly optimal W∗ = 1 −
exp(−u(x0)) for all examples considered above even with
a coarse 10× 10 observation grid.

2) For Alg-PC, the ideal learnable W̃∗ can improve sig-
nificantly when we refine G. Asymptotically, the averaged
regret is certainly better for finer observation grids. But
they also present a challenge since many more episodes are
needed to obtain a reasonable approximation of K̃ in all
potentially relevant cells before the finer grid’s asymptotic
advantage becomes relevant. E.g., re-running the example
from Figure 2 with T = 60, 000, Alg-PC yields a lower av-
eraged regret on a 10×10 observation grid than on a 40×40
grid for the first 50,000 episodes, while the averaged regret
on a 20× 20 grid is much smaller throughout.

3) The effects of the computational grid Gpd appear to be
negligible in all of our simulations. The errors due to dis-
cretizing the Eikonal PDE are dominated by the errors due
to uncertainty in K and the G effects described above.

Computational complexity: The cost of each episode
consists of two components: (a) updating surveillance in-
tensity model and (b) HJB-based path-planning using the
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Figure 4: Regret metric (excess capture rate S) for exam-
ples illustrated in Figures 1, 2 and 3.

current model. The cost of (a) for Alg-PC scales asO(|G|);
i.e., linearly in the number of subdomains/cells. For Alg-
GP, the complexity of this stage depends on the size of Gob
(the collection of cells satisfying Criteria∗). During each
episode, the cost of Alg-GP’s update is dominated by solv-
ing the linear system in updating posterior covariance (16),
which is O(|Gob|3) and |Gob| is usually quite small com-
pared to |G|. Alg-GP also includes an additional cost of
periodically re-tuning the hyperparameters.

The use of the Fast Marching Method makes the actual path
planning in each episode quite fast even for much finer Gpd.
The cost of (b) is dominated by solving the PDE on a grid,
which in our setting is O(N logN) on a discretization grid
Gpd with N gridpoints. The latter cost can be prohibitive
in high-dimensional generalizations since N grows expo-
nentially with the dimension of Ω. The usual approach to
overcome this “curse of dimensionality” is to use Approx-
imate DP (e.g., based on mesh-free HJB discretizations),
but this is not necessary in our 2D setting.

Learning less regular K: We have also used Examples 1-
3 to test Alg-GP with the Matérn kernel, taking ν = 5/2.
The results are quite similar to those of Alg-GPe and thus
omitted. But the situation is noticeably different when the
actual K(x) is non-smooth or even discontinuous. Figure
5 shows two such examples, modifying the smooth inten-
sity from Figure 3. Suppose the center of a peak is xc,
our first example replaces each single Gaussian peak by
Ksingle(x) = max{0, Kp−|x−xc|} where Kp > 0 is the
maximum. Such a surveillance intensity (used in Example
4) is still continuous but not smooth. In Example 5, we re-
place each Gaussian peak by a piecewise constant function:
Ksingle(x) = Kc when |x−xc| ≤ r for some radius r > 0
while Ksingle(x) = 0 otherwise. In both cases, a small pos-
itive constant was later added to ensure that the resulting
K(x) > 0 for all x ∈ Ω.

We have conducted these experiments with both the
squared exponential kernel (Alg-GPe) and Matérn kernel

(Alg-GPm) with ν = 1/2. In the continuous but non-
smooth Example 4, Alg-GPe still remains the best though
Alg-GPm is almost as good. In the discontinuous Exam-
ple 5, Alg-PC actually initially outperforms both GP-based
algorithms though Alg-GPm eventually catches up.

Figure 5: Two examples of non-smooth surveillance in-
tensity. Example 4 (LEFT): a non-smooth-yet-continuous
K(x). Example 5 (RIGHT): a discontinuous K(x). The
Matérn kernel with ν = 1/2, which assumes less smooth-
ness of the interpolated function, performs better than the
squared exponential kernel.

6 CONCLUSIONS

We developed and numerically tested three algorithms
(Alg-D, Alg-PC, and Alg-GP) for continuous path-
planning problems with unknown random termina-
tion/capture intensity. These algorithms follow a Bayesian
approach to model the surveillance intensity K and
then apply confidence bound techniques to tackle the
exploration-exploitation dilemma. The GP-regression used
in Alg-GP leverages the spatial correlations in K and usu-
ally results in more efficient learning from captures – par-
ticularly when the GP covariance kernel is chosen to reflect
the smoothness of the actual K. While our experimen-
tal results are very promising, we do not currently have
a proof of convergence and rigorous upper bound on the
cumulative regret. We hope that the graph-theoretic UCB
proofs (Azar et al., 2017) can be extended to cover edge-
correlations and ultimately to our continuous setting.

Several extensions would broaden the applicability of our
approach. If we consider E’s post-detection planning, the
terminal cost will become spatially inhomogeneous (An-
drews and Vladimirsky, 2014). Multiobjective control
methods (Kumar and Vladimirsky, 2010) and various ro-
bust path planning techniques (Qi et al., 2021) will become
relevant if the risk of detection is balanced against other
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optimization criteria (e.g., the profit from smuggling re-
sources from a protected area (Arnold et al., 2019; Car-
tee and Vladimirsky, 2020; Chen et al., 2021)). We have
focused on the isotropic dynamics primarily to simplify
the exposition. Non-isotropic controlled dynamics lead to
more general HJB PDEs, which can be similarly solved
on a grid to approximate the value function efficiently
(Sethian and Vladimirsky, 2001; Tsai et al., 2003; Alton
and Mitchell, 2012; Mirebeau, 2014). The gradient of that
value function can be then used to synthesize the optimal
control. If K is viewed as changing in time, this will in-
troduce an additional challenge of change point detection
(Aminikhanghahi and Cook, 2017) in our RL algorithms. It
will be also interesting to consider an antagonistic version,
where K is chosen by surveillance authorities to maximize
the probability of capture in response to E’s path choices.
A Nash equilibrium for this problem was already studied
under the assumption that K is selected (perhaps proba-
bilistically) from a finite list of options K1, ...,Kr, all of
which are known to E (Gilles and Vladimirsky, 2020; Car-
tee et al., 2019). We hope that it can be also extended to
our setting where Ki’s are learned online.
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Supplementary Materials

A PROOF OF UPPER BOUND FOR Alg-D

In this section we modify the upper bound proof of UCB-VI Algorithm (Agarwal et al., 2019) to develop similar upper
bounds on expected regret for our Alg-D described in section 3.1. We use superscript t to indicate the corresponding
episode that a quantity belongs to. Recall that Ψe denotes the true probability of capture when attempting to traverse an
edge e ∈ E while Ψ̃t

e = φte/N
t
e denotes our current best estimate for Ψe based on the attempted traversals of e and captures

on e up to the episode t.

We assume that there exist constants Ψ and Ψ such that 0 < Ψ ≤ Ψe ≤ Ψ < 1 and − log(1− x) is L-Lipschitz on [Ψ,Ψ].
Since Ce = − log(1−Ψe) and C̃te = − log(1− Ψ̃t

e), we know that

P
(
|C̃te − Ce| ≥ Lε

)
≤ P

(
|Ψ̃t
e −Ψe| ≥ ε

)
.

For the estimate Ψ̃t
e, Hoeffding’s inequality leads to

P
(
|Ψ̃t
e −Ψe| ≥ ε

)
≤ 2 exp(−2N t

eε
2),

where N t
e is how many times edge e is visited up until the t-th episode. Choosing ε =

√
log(T |E|/γ)

Nt
e

, we obtain

P

(∣∣∣Ψ̃t
e −Ψe

∣∣∣ ≥√ log(T |E|/γ)

N t
e

)
≤ 2γ2

T 2|E|2
.

Applying Boole’s inequality over all edges and all episodes, we obtain a union bound

P

 ⋃
e∈E,t≤T

∣∣∣C̃te − Ce∣∣∣ ≥ L
√

log(T |E|/γ)

N t
e

 ≤ ∑
e∈E,t≤T

P

(∣∣∣C̃te − Ce∣∣∣ ≥ L
√

log(T |E|/γ)

N t
e

)

≤
∑

e∈E,t≤T

P

(∣∣∣Ψ̃t
e −Ψe

∣∣∣ ≥√ log(T |E|/γ)

N t
e

)
≤ 2γ2

T |E|
.

This equation measures the model error since it bounds the difference between the estimated cost with the true cost. With

probability at least (1 − 2γ2/T |E|), |C̃te − Ce| ≤ L
√

log(T |E|/γ)
Nt

e
for any edge and any episode. Along the t-th episode’s

path pt, triangle inequality yields∣∣∣∣∣∣
∑
e∈pt

C̃te −
∑
e∈pt

Ce

∣∣∣∣∣∣ ≤
∑
e∈pt

∣∣∣C̃te − Ce∣∣∣ ≤ L√log(T |E|/γ)
∑
e∈pt

1√
N t
e

.

We denote the last term as ∆pt . As
∣∣∣Ψ̂t

e − Ψ̃t
e

∣∣∣ ≤√ log(T |E|/γ)
Nt

e
, using the Lipschitz condition of − log(1− x) we obtain

∣∣∣Ĉte − C̃e∣∣∣ ≤ L
√

log(T |E|/γ)

N t
e

.
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Therefore, by triangle inequality we have∣∣∣∣∣∣
∑
e∈pt

Ĉte −
∑
e∈pt

Ce

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
e∈pt

Ĉte −
∑
e∈pt

C̃te

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
e∈pt

C̃te −
∑
e∈pt

Ce

∣∣∣∣∣∣ ≤ 2∆pt .

We denote vpt the true total cost of pt (i.e., the sum of true edge costs Ce along pt) and v̂pt the total cost based on the
modified cost Ĉe. Using vpt =

∑
e∈pt Ce and v̂pt =

∑
e∈pt Ĉ

t
e, we finally obtain

P
(
∀t, |v̂pt − vpt | ≤ 2∆pt

)
≥ 1− 2γ2

T |E|
.

Notice that either Ĉte = − log(1 − Ψ) ≤ Ce or Ψ̂t
e = Ψ̃t

e −
√

log(T |E|/γ)
Nt

e
≤ Ψe (hence Ĉte ≤ Ce) with the probability of

at least q = (1− 2γ2

T |E| ). Both cases lead to

vpt − 2∆pt ≤ v̂pt ≤ v̂p∗ =
∑
e∈p∗

Ĉte ≤
∑
e∈p∗

Ce = vp∗ ,

where the second inequality follows from the Ĉte-optimality of pt while the first & third inequalities hold with probability
of at least q.

Assuming that each path the algorithm considers has no more than M ≤ |E| edges, the expected cumulative regret can be
bounded as

E

[
T∑
t=1

(vpt − vp∗)

]
≤ P

(
∀t, vpt − vp∗ ≤ 2∆pt

) T∑
t=1

(vpt − vp∗) + P
(
∃t, vpt − vp∗ > 2∆pt

) T∑
t=1

Mq

≤ 2L
√

log(T |E|/γ)

T∑
t=1

∑
e∈pt

1√
N t
e

+
2γ2MC

|E|
,

where C = − log(1−Ψ).

Lemma 1. The first term in previous inequality satisfies

T∑
t=1

∑
e∈pt

1√
N t
e

≤
√
MT |E|.

Proof. A different way to do the summation leads to

T∑
t=1

∑
e∈pt

1√
N t
e

=
∑
e∈E

NT
e∑

i=1

1√
i
≤
∑
e∈E

√
NT
e ≤

√
|E|
√∑
e∈E

NT
e ≤

√
MT |E|.

The first inequality is due to the Jensen’s inequality while the second follows from the Cauchy-Schwartz inequality. The
last one uses the fact that there are no more than MT visits to all the edges.

Theorem 1. Using Lemma 1, we can bound the averaged expected regret of our Alg-D on graph as

1

T
E

[
T∑
t=1

(vpt − vp∗)

]
≤ 2L

T

√
2MT |E| log(T |E|/γ) +

2γ2MC

T |E|
. (18)

In particular, as T →∞, the averaged expected regret converges to zero.

We note that the above bounds apply to a graph-constrained problem only. The graph-optimal capture probability
(1− exp[−vp∗ ]) might in principle be significantly larger than the W∗ = 1 − exp[−u(x0)] describing the minimized
capture probability in the continuous domain Ω.
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B HYPERPARAMETER TUNING

We conduct hyperparameter tuning (17) every thousand episodes by applying the constrained optimizer fmincon with
gradients in MATLAB . Assume the log marginal likelihood in (17) is log

(
Z̃ob

∣∣∣Xob, α, β
)

, the α-gradient can be computed
as

∂

∂α
log
(
Z̃ob

∣∣∣Xob, α, β
)

=
1

2
zᵀ

ob,cΣ̃
−1 ∂Σ̃

∂α
Σ̃−1zob,c −

1

2
tr

(
Σ̃−1 ∂Σ̃

∂α

)
. (19)

zᵀ
ob,c and Σ̃ are the same notations as defined in section 4.2. The expression of ∂Σ̃

∂α depends on which kernel we choose.
The β-gradient can be computed similarly.

C AVERAGED EXCESS RISK R

In this section, we define another path-related regret metric in addition to the excess rate of captures defined in (6). If
yi(·) is the ith-episode path and Ji is the corresponding cumulative intensity, the capture probability along yi(·) is Wi =
1− exp(−Ji). The minimum capture probability is W∗ = 1− exp(−u(x0)). The averaged excess risk is defined as

Rj =
1

j

j∑
i=1

(Wi −W∗), j = 1, 2, · · · , T. (20)

Unlike excess rate of captures which uses probabilistic outcomes, R compares directly the expected capture rate of episodic
paths with the truly optimal W∗. Unfortunately, UCT algorithm is not guaranteed to find a path reaching the boundary
during each episode. As a result, Wi cannot be computed and regret R is not applicable to UCT. The following are R
results of Alg-D, Alg-PC and Alg-GP for all examples in this paper.

Figure 6: Regret metric (averaged excess risk R) for examples illustrated in Figures 1, 2 and 3.

Figure 7: Regret metric (averaged excess risk R) for examples illustrated in Figures 5.

D LEARNABLE LIMITS RESTRICTED BY DISCRETIZATIONS

D.1 UCT and Alg-D

For graph algorithms UCT and Alg-D, the Evader selects paths only on the grid and is restricted to move only along
eight fixed directions. As a result, even if we let the grid size approach zero, in the limit there is a gap between W∗
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and the minimum capture rate that can be achieved on the grid. From the figure below we can observe, as the grid size
decreases, the blue dots approach some level which is closer to the optimal (red line, original continuous case, computed on
a h = 1/800 grid) but there remains a gap (≈ 0.014 when h = 1/640). Our numerical experiments use h = 1/20, in which
case the best learnable limit is larger than the optimal capture probability by about 0.033. However, as we observe from
Figure 2, after 15000 episodes the regret of Alg-D remains much larger than 0.033; i.e. the error due to this grid-restricted
motion is not the reason why Alg-D shows such huge regrets. Using a smaller grid size can reduce this gap, but it also
increases the number of parameters to be estimated. An overly fine grid takes more episodes to obtain accurate enough
prediction of the capture rate, making it harder to observe its advantages.

Figure 8: Left: the minimum capture probability over different discretized grids for the example in Figure 2. Right: We
run UCT and Alg-D on 40 × 40 grids and compare regret S with the results of 20 × 20 grids for 60000 episodes. We can
observe from the figure that using a 20 × 20 grids generates much smaller regrets than 40 × 40.

D.2 Alg-PC and Alg-GP

We conduct an observation grid refinement study for Alg-PC using Example 2. The following figure shows the log of
(non-averaged, instantaneous) differences between Wi and W∗ in each episode, for different G resolutions. We observe
that the lower (Wi −W∗) values for 20× 20 and 40× 40 grids are much lower than for a 10× 10 grid. This indicates that
with a finer grid Alg-PC is able to explore paths which are closer to optimal.

Figure 9: Instantaneous differences between Wi and W∗ in each episode. The grids are 10× 10, 20× 20 and 40× 40.

Our use of the discrete observational grid G essentially lumps together all captures within one cell. This limits the algo-
rithm’s ability to learn the true K. To account for this more accurately, we can modify our definition of regret metric and
measure the regret relative to the best path learnable on the specific G. Below we provide additional tests illustrating this
idea for Alg-PC and data showing that this subtlety is largely irrelevant for Alg-GP.

We define K̃∗(x) to be the cell-averaged version of K. This piecewise-constant function also represents the best ap-
proximation of K that we could hope to attain with infinitely many captures in every cell. Computing the viscosity
solution to |∇ũ∗| = K̃∗, we obtain the G-optimal feedback control ã∗ = −∇ũ∗/|∇ũ∗| and can compute its actual
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quality w(x) by integrating the true K over the paths resulting from ã∗. The corresponding capture probability is then
W̃∗ = 1− exp(−w(x0)) and we can define the G-adjusted regret by using W̃∗ instead.

Figure 10: Left: the new regret defined as above for different sizes of G, applying Alg-PC to Example 2. It illustrates that
finer G requires more episodes to approach the asymptotic learnable limit. But even though the 20×20 G results in a higher
grid-adjusted regret than the 10 × 10 grid, this is not the case for the regret-against-the-truly-optimal-W∗, as illustrated
in the second (center) figure. The third (right) figure illustrates the experimentally observed capture rate (note that this is
not the regret metric S), together with W̃∗ (dashed lines) for different sizes of G. We observe that W̃∗ becomes closer to
the true optimal W∗ (the red horizontal line) as G becomes finer. But it takes about 50, 000 episodes until the asymptotic
advantage of the 40×40 grid yields a lower capture rate than on the 10×10. In this example, the 20×20 grid yields much
smaller regrets than the other two grids after 10, 000 episodes.

Gaussian process regression performs surprisingly well in recovering the optimal path, even on a coarse grid. For all
examples considered in the paper, W̃∗ is already within 0.25% from the truly optimal W∗ even with a coarse 10 × 10
observation grid. The following is an illustration of this phenomenon using the second and third examples from the paper.

Figure 11: Left: true K(x) and the truly optimal path. Center: GP-predicted intensity with an infinite number of
observations on a 10× 10 grid G and the corresponding “optimal” path. Right: interpolation errors. Top row: example 2;
bottom row: example 3. In both cases, the GP-predicted optimal path is quite close to the true optimal path even though
the GP-estimated K̃∗ is quite different from the true K(x).
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