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Abstract

Quantifying variable importance is essential for answering high-stakes questions
in fields like genetics, public policy, and medicine. Current methods generally
calculate variable importance for a given model trained on a given dataset. However,
for a given dataset, there may be many models that explain the target outcome
equally well; without accounting for all possible explanations, different researchers
may arrive at many conflicting yet equally valid conclusions given the same data.
Additionally, even when accounting for all possible explanations for a given dataset,
these insights may not generalize because not all good explanations are stable
across reasonable data perturbations. We propose a new variable importance
framework that quantifies the importance of a variable across the set of all good
models and is stable across the data distribution. Our framework is extremely
flexible and can be integrated with most existing model classes and global variable
importance metrics. We demonstrate through experiments that our framework
recovers variable importance rankings for complex simulation setups where other
methods fail. Further, we show that our framework accurately estimates the true
importance of a variable for the underlying data distribution. We provide theoretical
guarantees on the consistency and finite sample error rates for our estimator. Finally,
we demonstrate its utility with a real-world case study exploring which genes are
important for predicting HIV load in persons with HIV, highlighting an important
gene that has not previously been studied in connection with HIV.

1 Introduction

Variable importance analysis enables researchers to gain insight into a domain or a model. Scientists
are often interested in understanding causal relationships between variables, but running randomized
experiments is time-consuming and expensive. Given an observational dataset, we can use global
variable importance measures to check if there is a predictive relationship between two variables. It is
particularly important in high stakes real world domains such as genetics [44, 34], finance [37], and
criminal justice [15, 24] where randomized controlled trials are impractical or unethical. Variable
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(a) The number of models in each Rashomon set (b) Model reliance range across each Rashomon set

Figure 1: Statistics of Rashomon sets computed across 500 bootstrap replicates of a given dataset
sampled from the Monk 3 data generation process [42]. The original dataset consisted of 124
observations, and the Rashomon set was calculated using its definition in Equation 1, with parameters
specified in Section D of the supplement. The Rashomon set size is the number of models with loss
below a threshold. Model reliance is a measure of variable importance for a single variable — in
this case, X2 — and Model Class Reliance (MCR) is its range over the Rashomon set. Both the
Rashomon set size and model class reliance are unstable across bootstrap iterations.

importance would ideally be measured as the importance of each variable to the data generating
process. However, the data generating process is never known in practice, so prior work generally
draws insight by analyzing variable importance for a surrogate model, treating that model and its
variable importance as truth.

This approach can be misleading because there may be many good models for a given dataset – a
phenomenon referred to as the Rashomon effect [7, 40] — and variables that are important for one
good model on a given dataset are not necessarily important for others. As such, any insights drawn
from a single model need not reflect the underlying data distribution or even the consensus among
good models. Recently, researchers have sought to overcome the Rashomon effect by computing
Rashomon sets, the set of all good (i.e., low loss) models for a given dataset [15, 12]. However, the
set of all good models is not stable across reasonable perturbations (e.g., bootstrap or jackknife) of a
single dataset, with stability defined as in [50]. This concept of stability is one of the three pillars of
veridical data science [51, 13]. Note that there is wide agreement on the intuition behind stability, but
not its quantification [22, 33]. As such, in line with other stability research, we do not subscribe to a
formal definition and treat stability as a general notion [22, 33, 50, 51]. In order to ensure trustworthy
analyses, variable importance measures must account for both the Rashomon effect and stability.

Figure 1 provides a demonstration of this problem: across 500 bootstrap replicates from the same data
set, the Rashomon set varies wildly – ranging from ten models to over ten thousand — suggesting that
we should account for its instability in any computed statistics. This instability is further highlighted
when considering the Model Class Reliance (MCR) variable importance, which is the range of model
reliance (i.e., variable importance) values across the Rashomon set for the given dataset [15] (we
define MCR and the Rashomon set more rigorously in Sections 2 and 3 respectively). In particular,
for variable X2, one interval — ranging from -0.1 to 0.33 — suggests that there exist good models
that do not depend on this variable at all (0 indicates the variable is not important); on the other hand,
another MCR from a bootstrapped dataset ranges from 0.33 to 0.36, suggesting that this variable is
essential to all good models. Because of this instability, different researchers may draw very different
conclusions about the same data distribution even when using the same method.

In this work, we present a framework unifying concepts from classical nonparametric estimation with
recent developments on Rashomon sets to overcome the limitations of traditional variable importance
measurements. We propose a stable, model- and variable-importance-metric-agnostic estimand
that quantifies variable importance across all good models for the empirical data distribution and a
corresponding bootstrap-style estimation strategy. Our method creates a cumulative density function
(CDF) for variable importance over all variables via the framework shown in Figure 2. Using the
CDF, we can compute a variety of statistics (e.g., expected variable importance, interquartile range,
and credible regions) that can summarize the variable importance distribution.

The rest of this work is structured as follows. After more formally introducing our variable importance
framework, we theoretically guarantee the convergence of our estimation strategy and derive error
bounds. We also demonstrate experimentally that our estimand captures the true variable importance
for the data generating process more accurately than previous work. Additionally, we illustrate the
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Figure 2: An overview of our framework. Step 1: We bootstrap multiple datasets from the original.
Step 2: We show the loss values over the model class for each bootstrapped dataset, differentiated by
color. The dotted line marks the Rashomon threshold; all models whose loss is under the threshold are
in the Rashomon set for that bootstrapped dataset. On top, we highlight the number of bootstrapped
datasets for which the corresponding model is in the Rashomon set. Step 3: We then compute the
distribution of model reliance (variable importance – VI) values for variable j across the Rashomon
set for each bootstrapped dataset. Step 4: We then average the corresponding CDF across bootstrap
replicates into a single CDF (in purple). Step 5: Using the CDF, we compute the marginal distribution
(PDF) of variable importance for variable j across the Rashomon sets of bootstrapped datasets.

generalizability of our variable importance metric by analyzing the reproducibility of our results
given new datasets from the same data generation process. Lastly, we use our method to analyze
which transcripts and chromatin patterns in human T cells are associated with high expression of HIV
RNA. Our results suggest an unexplored link between the LINC00486 gene and HIV load.

Code is available at https://github.com/jdonnelly36/Rashomon_Importance_Distribution.

2 Related Work

The key difference between our work and most others is the way it incorporates model uncertainty,
also called the Rashomon effect [7]. The Rashomon effect is the phenomenon in which many different
models explain a dataset equally well. It has been documented in high stakes domains including
healthcare, finance, and recidivism prediction [14, 30, 15]. The Rashomon effect has been leveraged
to create uncertainty sets for robust optimization [43], to perform responsible statistical inference
[11], and to gauge whether simple yet accurate models exist for a given dataset [40]. One barrier to
studying the Rashomon effect is the fact that Rashomon sets are computationally hard to calculate for
non-trivial model classes. Only within the past year has code been made available to solve for (and
store) the full Rashomon set for any nonlinear function class – that of decision trees [49]. This work
enables us to revisit the study of variable importance with a new lens.

A classical way to determine the importance of a variable is to leave it out and see if the loss changes.
This is called algorithmic reliance [15] or leave one covariate out (LOCO) inference [25, 36]. The
problem with these approaches is that the performance of the model produced by an algorithm will
not change if there exist other variables correlated with the variable of interest.

Model reliance (MR) methods capture the global variable importance (VI) of a given feature for a
specific model [15]. (Note that MR is limited to refer to permutation importance in [15], while we
use the term MR to refer to any metric capturing global variable importance of a given feature and
model. We use VI and MR interchangably when the relevant model is clear from context.) Several
methods for measuring the MR of a model from a specific model class exist, including the variable
importance measure from random forest which uses out-of-bag samples [7] and Lasso regression
coefficients [20]. Lundberg et al. [28] introduce a way of measuring MR in tree ensembles using
SHAP [27]. Williamson et al. [48] develop MR based on the change in performance between the
optimal model and the optimal model using a subset of features.

In addition to the metrics tied to a specific model class, many MR methods can be applied to models
from any model class. Traditional correlation measures [20] can measure the linear relationship
(Pearson correlation) or general monotonic relationship (Spearman correlation) between a feature
and predicted outcomes for a model from any model class. Permutation model reliance, as discussed
by [1, 15, 21], describes how much worse a model performs when the values of a given feature are
permuted such that the feature becomes uninformative. Shapley-based measures of MR, such as those
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of [47, 27], calculate the average marginal contribution of each feature to a model’s predictions. A
complete overview of the variable importance literature is beyond the scope of this work; for a more
thorough review, see, for example, [2, 31]. Rather than calculating the importance of a variable for a
single model, our framework finds the importance of a variable for all models within a Rashomon set,
although our framework is applicable to all of these model reliance metrics.

In contrast, model class reliance (MCR) methods describe how much a class of models (e.g., decision
trees) relies on a variable. Fisher et al. [15] uses the Rashomon set to provide bounds on the possible
range of model reliance for good models of a given class. Smith et al. [41] analytically find the range
of model reliance for the model class of random forests. Zhang and Janson [52] introduce a way to
compute confidence bounds for a specific variable importance metric over arbitrary models, which
Aufiero and Janson [3] extend so that it is applicable to a broad class of surrogate models in pursuit of
computational efficiency. These methods report MCR as a range, which gives no estimate of variable
importance – only a range of what values are possible. In contrast, Dong and Rudin [12] compute
and visualize the variable importance for every member of a given Rashomon set in projected spaces,
calculating a set of points; however, these methods have no guarantees of stability to reasonable data
perturbations. In contrast, our framework overcomes these finite sample biases, supporting stronger
conclusions about the underlying data distribution.

Related to our work from the stability perspective, Duncan et al. [13] developed a software package
to evaluate the stability of permutation variable importance in random forest methods; we perform a
similar exercise to demonstrate that current variable importance metrics computed for the Rashomon
set are not stable. Additionally, Basu et al. [5] introduced iterative random forests by iteratively
reweighting trees and bootstrapping to find stable higher-order interactions from random forests.
Further, theoretical results have demonstrated that bootstrapping stabilizes many machine learning
algorithms and reduces the variance of statistics [18, 8]. We also take advantage of bootstrapping’s
flexibility and properties to ensure stability for our variable importance.

3 Methods

3.1 Definitions and Estimands

Let D(n) = {(Xi, Yi)}ni=1 denote a dataset of n independent and identically distributed tuples, where
Yi ∈ R denotes some outcome of interest and Xi ∈ Rp denotes a vector of p covariates. Let g∗
represent the data generating process (DGP) producing D(n). Let f ∈ F be a model in a model class
(e.g., a tree in the set of all possible sparse decision trees), and let ϕj

(
f,D(n)

)
denote a function

that measures the importance of variable j for a model f over a dataset D(n). This can be any of the
functions described earlier (e.g., permutation importance, SHAP). Our framework is flexible with
respect to the user’s choice of ϕj and enables practitioners to use the variable importance metric best
suited for their purpose; for instance, conditional model reliance [15] is best-suited to measure only
the unique information carried by the variable (that cannot be constructed using other variables),
whereas other metrics like subtractive model reliance consider the unconditional importance of the
variable. Our framework is easily integrable with either of these. We only assume that the variable
importance function ϕ has a bounded range, which holds for a wide class of metrics like SHAP [27],
permutation model reliance, and conditional model reliance. Finally, let ℓ(f,D(n);λ) represent a loss
function given f,D(n), and loss hyperparameters λ (e.g., regularization). We assume that our loss
function is bounded above and below, which is true for common loss functions like 0-1 classification
loss, as well as for differentiable loss functions with covariates from a bounded domain.

In an ideal setting, we would measure variable importance using g∗ and the whole population, but this
is impossible because g∗ is unknown and data is finite. In practice, scientists instead use the empirical
loss minimizer for a specific dataset f̂∗ ∈ argminf∈F ℓ(f,D(n)); however, several models could
explain the same dataset equally well (i.e., the Rashomon effect). Rather than using a single model
to compute variable importance, we propose using the entire Rashomon set. Given a single dataset
D(n), we define the Rashomon set for a model class F and parameter ε as the set of all models in F
whose empirical losses are within some bound ε > 0 of the empirical loss minimizer:

R(ϵ,F , ℓ,D(n), λ) =

{
f ∈ F : ℓ(f,D(n);λ) ≤ min

f ′∈F
ℓ(f ′,D(n);λ) + ε

}
. (1)
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We denote this Rashomon set by Rε
D(n) or “Rset” (this assumes a fixed F , ℓ and λ). As discussed

earlier, the Rashomon set can be fully computed and stored for non-linear models (e.g., sparse
decision trees [49]). For notational simplicity, we often omit λ from the loss function.

While the Rashomon set describes the set of good models for a single dataset, Rashomon sets vary
across permutations (e.g., subsampling and resampling schemes) of the given data. We introduce a
stable quantity for variable importance that accounts for all good models and all permutations from
the data using the random variable RIV. RIV is defined by its cumulative distribution function (CDF),
the Rashomon Importance Distribution (RID):

RIDj(k; ε,F , ℓ,Pn, λ) = PD(n)
b ∼Pn

(RIVj(ε,F , ℓ,D(n)
b ;λ) ≤ k) (2)

:= ED(n)
b ∼Pn

 |{f ∈ Rε

D(n)
b

: ϕj(f,D(n)
b ) ≤ k}|

|Rε

D(n)
b

|


= ED(n)

b ∼Pn

[
vol of Rset s.t. variable j’s importance is at most k

vol of Rset

]
,

where ϕj denotes the variable importance metric being computed on variable j, k ∈ [ϕmin, ϕmax].
For a continuous model class (e.g., linear regression models), the cardinality in the above definition
becomes the volume under a measure on the function class, usually ℓ2 on parameter space. RID
constructs the cumulative distribution function (CDF) for the distribution of variable importance
across Rashomon sets; as k increases, the value of P(RIVj(ε,F , ℓ,D(n)

b ;λ) ≤ k) becomes closer
to 1. The probability and expectation are taken with respect to datasets of size n sampled from
the empirical distribution Pn, which is the same as considering all possible resamples of size n

from the originally observed dataset D(n). Equation (2) weights the contribution of ϕj(f,D(n)
b ) for

each model f by the proportion of datasets for which this model is a good explanation (i.e., in the
Rashomon set). Intuitively, this provides greater weight to the importance of variables for stable
models.

We now define an analogous metric for the loss function ℓ; we define the Rashomon Loss Distribu-
tion (RLD) evaluated at k as the expected fraction of functions in the Rashomon set with loss below
k. Here, RLV is a random variable following this CDF.

RLD(k; ε,F , ℓ,Pn, λ) = PD(n)
b ∼Pn

(
RLV(ε,F , ℓ,D(n)

b ;λ) ≤ k
)

:= ED(n)
b ∼Pn

 |{f ∈ Rε

D(n)
b

: ℓ(f,D(n)
b ) ≤ k}|

|Rε

D(n)
b

|


= ED(n)

b ∼Pn

 |R
(
k −minf∈F ℓ(f,D(n)

b ),F , ℓ;λ
)
|

|R(ε,F , ℓ;λ)|

 .

This quantity shows how quickly the Rashomon set “fills up” on average as loss changes. If there are
many near-optimal functions, this will grow quickly with k.

In order to connect RID for model class F to the unknown DGP g∗, we make a Lipschitz-continuity-
style assumption on the relationship between RLD and RID relative to a general model class F and
{g∗}. To draw this connection, we define the loss CDF for g∗, called LD∗, over datasets of size n as:

LD∗(k; ℓ, n,Pn, λ) := ED(n)
b ∼Pn

[
1[ℓ(g∗,D(n)

b ) ≤ k]
]
.

One could think of LD∗ as measuring how quickly the DGP’s Rashomon set fills up as loss changes.
Here, LD∗ is the analog of RLD for the data generation process.
Assumption 1. If

ρ (RLD(·; ε,F , ℓ,Pn, λ), LD∗(·; ℓ, n,Pn, λ)) ≤ γ then
ρ (RIDj(·; ε,F , ℓ,Pn, λ),RIDj(·; ε, {g∗}, ℓ,Pn, λ)) ≤ d(γ)

for a function d : [0, ℓmax−ℓmin] → [0, ϕmax−ϕmin] such that limγ→0 d(γ) = 0. Here, ρ represents
any distributional distance metric (e.g., 1-Wasserstein).
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Assumption 1 says that a Rashomon set consisting of good approximations for g∗ in terms of loss will
also consist of good approximations for g∗ in terms of variable importance. More formally, from this
assumption, we know that as ρ(LD∗,RLD) → 0, the variable importance distributions will converge:
ρ (RIDj(·, ε,F , ℓ,Pn, λ),RIDj(·, ε, {g∗}, ℓ,Pn, λ)) → 0. We demonstrate that this assumption is
realistic for a variety of model classes like linear models and generalized additive models in Section
C of the supplement.

3.2 Estimation

We estimate RIDj for each variable j by leveraging bootstrap sampling to draw new datasets from
the empirical data distribution: we sample observations from an observed dataset, construct its
Rashomon set, and compute the j-th variable’s importance for each model in the Rashomon set.
After repeating this process for B bootstrap iterations, we estimate RID by weighting each model
f ’s realized variable importance score (evaluated on each bootstrapped dataset) by the proportion of
the bootstrapped datasets for which f is in the Rashomon set and the size of each Rashomon set in
which f appears. Specifically, let D(n)

b represent the dataset sampled with replacement from D(n) in
iteration b = 1, . . . , B of the bootstrap procedure. For each dataset D(n)

b , we find the Rashomon set
Rε

D(n)
b

. Finally, we compute an empirical estimate R̂IDj of RIDj by computing:

R̂IDj(k; ε,F , ℓ,Pn, λ) =
1

B

B∑
b=1

 |{f ∈ Rε

D(n)
b

: ϕj(f,D(n)
b ) ≤ k}|

|Rε

D(n)
b

|

 .

Under Assumption 1, we can directly connect our estimate R̂ID(k; ε,F , ℓ,Pn, λ) to the DGP’s
variable importance distribution RID(k; ℓmax, {g∗}, ℓ,Pn, λ), which Theorem 1 formalizes.
Theorem 1. Let Assumption 1 hold for distributional distance ρ(A1, A2) between distributions
A1 and A2. For any t > 0, j ∈ {0, . . . , p} as ρ (LD∗(·; ℓ, n, λ),RLD(·; ε,F , ℓ,Pn, λ)) → 0 and
B → ∞,

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)

∣∣∣ ≥ t
)
→ 0.

For a set of models that performs sufficiently well in terms of loss, R̂IDj thus recovers the CDF of
variable importance for the true model across all reasonable perturbations. Further, we can provide
a finite sample bound for the estimation of a marginal distribution between R̂IDj and RIDj for the
model class F , as stated in Theorem 2. Note that this result does not require Assumption 1.
Theorem 2. Let t > 0 and δ ∈ (0, 1) be some pre-specified values. Then, with probability at least
1− δ with respect to bootstrap samples of size n,∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣ ≤ t (3)

with number of bootstrap samples B ≥ 1
2t2 ln

(
2
δ

)
for any k ∈ [ϕmin, ϕmax].

Because we use a bootstrap procedure, we can control the number of bootstrap iterations to ensure
that the difference between RIDj and R̂IDj is within some pre-specified error. (As defined earlier,
RIDj is the expectation over infinite bootstraps, whereas R̂IDj is the empirical average over B

bootstraps.) For example, after 471 bootstrap iterations, we find that R̂IDj(k; ε,F , ℓ,Pn, λ) is within
0.075 of RIDj(k; ε,F , ℓ,Pn, λ) for any given k with 90% confidence. It also follows that as B tends
to infinity, the estimated RIVj will converge to the true value.

Since we stably estimate the entire distribution of variable importance values, we can create (1)
stable point estimates of variable importance (e.g., expected variable importance) that account for the
Rashomon effect, (2) interquantile ranges of variable importance, and (3) confidence regions that
characterize uncertainty around a point estimate of variable importance. We prove exponential rates
of convergence for these statistics estimated using our framework in Section B of the supplement.

Because our estimand and our estimation strategy (1) enable us to manage instability, (2) account for
the Rashomon effect, and (3) are completely model-agnostic and flexibly work with most existing
variable importance metrics, RID is a valuable quantification of variable importance.
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4 Experiments With Known Data Generation Processes

Figure 3: (Top) The proportion of features ranked correctly by each method on each data set
represented as a stacked barplot. The figures are ordered by method performance across the four
simulation setups. (Bottom) The proportion of independent DGP ϕ(sub) calculations on 500 new
datasets from the DGP that were contained within the box-and-whiskers range computed using a
single training set (with bootstrapping in all methods except VIC) for each method and variable
in each simulation. Underneath each method’s label, the first row shows the percentage of times
across all 500 independently generated datasets and variables that the DGP’s variable importance was
inside of that method’s box-and-whiskers interval. The second row shows the percentage of pairwise
rankings correct for each method (from the top plot). Higher is better.

4.1 RID Distinguishes Important Variables from Extraneous Variables

There is no generally accepted ground truth measure for variable importance, so we first eval-
uate whether a variety of variable importance methods can correctly distinguish between vari-
ables used to generate the outcome (in a known data generation process) versus those that are
not. We consider the following four data generation processes (DGPs). Chen’s DGP [9]:
Y = 1[−2 sin(X1)+max(X2, 0)+X3+exp(−X4)+ε ≥ 2.048], where X1, . . . , X10, ε ∼ N (0, 1).
Here, only X1, . . . , X4 are relevant. Friedman’s DGP [17]: Y = 1[10 sin(πX1X2) + 20(X3 −
0.5)2+10X4+5X5+ ε ≥ 15], where X1, . . . , X6 ∼ U(0, 1), ε ∼ N (0, 1). Here, only X1, . . . , X5

are relevant. The Monk 1 DGP [42]: Y = max (1[X1 = X2], 1[X5 = 1]) , where the variables
X1, . . . , X6 have domains of 2, 3, or 4 unique integer values. Only X1, X2, X5 are important.
The Monk 3 DGP [42]: Y = max (1[X5 = 3 and X4 = 1], 1[X5 ̸= 4 and X2 ̸= 3]) for the same
covariates in Monk 1. Also, 5% label noise is added. Here, X2, X4, and X5 are relevant.

We compare the ability of RID to identify extraneous variables with that of the following baseline
methods, whose details are provided in Section D of the supplement: subtractive model reliance ϕsub

of a random forest (RF) [6], LASSO [20], boosted decision trees [16], and generalized optimal sparse
decision trees (GOSDT) [26]; conditional model reliance (CMR) [15]; the impurity based model
reliance metric for RF from [7]; the LOCO algorithm reliance [25] for RF and Lasso; the Pearson and
Spearman correlation between each feature and the outcome; the mean of the partial dependency plot
(PDP) [19] for each feature; the SHAP value [28] for RF; and mean of variable importance clouds
(VIC) [12] for the Rashomon set of GOSDTs [49]. If we do not account for instability and simply
learn a model and calculate variable importance, baseline models generally perform poorly, as shown
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in Section E of the supplement. Thus, we chose to account for instability in a way that benefits the
baselines. We evaluate each baseline method for each variable across 500 bootstrap samples and
compute the median VI across bootstraps, with the exception of VIC — for VIC, we take the median
VI value across the Rashomon set for the original dataset, as VIC accounts for Rashomon uncertainty.
Here, we aim to see whether we can identify extraneous (i.e., unimportant variables). For a DGP with
C extraneous variables, we classify the C variables with the C smallest median variable importance
values as extraneous. We repeat this experiment with different values for the Rashomon threshold ε
in Section E of the supplement.

Figure 3 (top) reports the proportion of variables that are correctly classified for each simulation setup
as a stacked barplot. RID identifies all important and unimportant variables for these complex
simulations. Note that four other baseline methods – MR RF, RF Impurity, RF Permute, and VIC
– also differentiated all important from unimportant variables. Motivated by this finding, we next
explore how well methods recover the true value for subtractive model reliance on the DGP, allowing
us to distinguish between the best performing methods on the classification task.

4.2 RID Captures Model Reliance for the True Data Generation Process

RID allows us to quantify uncertainty in variable importance due to both the Rashomon effect
and instability. We perform an ablation study investigating how accounting for both stability and
the Rashomon effect compares to having one without the other. We evaluate what proportion of
subtractive model reliances calculated for the DGP on 500 test sets are contained within uncertainty
intervals generated using only one training dataset. This experiment tells us whether the intervals
created on a single dataset will generalize.

To create the uncertainty interval on the training dataset and for each method, we first find the
subtractive model reliance ϕ(sub) across 500 bootstrap iterations of a given dataset for the four
algorithms shown in Figure 3 (bottom) (baseline results without bootstrapping are in Section E of the
supplementary material). Additionally, we find the VIC for the Rashomon set of GOSDTs on the
original dataset. We summarize these model reliances (500 bootstraps × 28 variables across datasets
× 4 algorithms + 8,247 models in VIC’s + 10,840,535 total models across Rsets × 28 variables
from RID) by computing their box-and-whisker ranges (1.5 × Interquartile range [46]). To compare
with “ground truth,” we sample 500 test datasets from the DGP and calculate ϕ(sub) for the DGP
for that dataset. For example, assume the DGP is Y = X2 + ε. We would then use f(X) = X2 as
our predictive model and evaluate ϕ(sub)(f,D(n)) on f for each of the 500 test sets. We then check
if the box-and-whisker range of each method’s interval constructed on the training set contains the
computed ϕ(sub) for the DGP for each test dataset. Doing this allows us to understand whether our
interval contains the true ϕ(sub) for each test set.

Figure 3 (bottom) illustrates the proportion of times that the test variable importance values fell within
the uncertainty intervals from training. These baselines fail to capture the test ϕ(sub) entirely for at
least one variable (< 0.05% recovery proportion). Only RID both recovers important/unimportant
classifications perfectly and achieves a strong recovery proportion at 95%.

4.3 RID is Stable

Our final experiment investigates the stability of VIC and MCR (which capture only Rashomon
uncertainty but not stability) to RID, which naturally considers data perturbations. We generate
50 independent datasets from each DGP and compute the box-and-whisker ranges (BWR) of each
uncertainty metric for each dataset; for every pair of BWRs for a given method, we then calculate the
Jaccard similarity between BWR’s. For each generated dataset, we then average the Jaccard similarity
across variables. Figure 14 shows these intervals for each non-extraneous variable from Chen’s DGP.
Supplement E.4 presents a similar figure for each DGP, showing that only RID’s intervals overlap
across all generations for all datasets.

Figure 5 displays the similarity scores between the box and whisker ranges of MCR, VIC, and RID
across the 50 datasets for each DGP. Note that Monk 1 has no noise added, so instability should
not be a concern for any method. For datasets including noise, MCR and VIC achieve median
similarity below 0.55; RID’s median similarity is 0.69; it is much more stable.
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Figure 4: We generate 50 independent datasets from Chen’s DGP and calculate MCR, BWRs for VIC,
and BWRs for RID. The above plot shows the interval for each dataset for each non-null variable in
Chen’s DGP. All red-colored intervals do not overlap with at least one of the remaining 49 intervals.

Figure 5: Median Jaccard similarity scores across 50 independently generated MCR, VIC, and RID
box and whisker ranges for each DGP; 1 is perfect similarity. Error bars show 95% confidence
interval around the median.

5 Case Study

Having validated RID on synthetic datasets, we demonstrate its utility in a real world application:
studying which host cell transcripts and chromatin patterns are associated with high expression
of Human Immunodeficiency Virus (HIV) RNA. We analyzed a dataset that combined single cell
RNAseq/ATACseq profiles for 74,031 individual HIV infected cells from two different donors in the
aims of finding new cellular cofactors for HIV expression that could be targeted to reactivate the
latent HIV reservoir in people with HIV (PWH). A longer description of the data is in [29]. Finding
results on this type of data allows us to create new hypotheses for which genes are important for HIV
load prediction and might generalize to large portions of the population.

To identify which genes are stably importance across good models, we evaluated this dataset using
RID over the model class of sparse decision trees using subtractive model reliance. We selected
14,614 samples (all 7,307 high HIV load samples and 7,307 random low HIV load samples) from
the overall dataset in order to balance labels, and filtered the complete profiles down to the top 100
variables by individual AUC. We consider the binary classification problem of predicting high versus
low HIV load. For full experimental details, see Section D of the supplement. Section E.5 of the
supplement contains timing experiments for RID using this dataset.

Figure 6 illustrates the probability that RID is greater than 0 for the 10 highest probability variables (0
is when the variable is not important at all). We find that LINC00486 – a less explored gene – is the
most important variable, with 1− RIDLINC00486 (0) = 78.4%. LINC00486 is a long non-coding
RNA (i.e., it functions as an RNA molecule but does not encode a protein like most genes), and there
is no literature on this gene and HIV, making this association a novel one. However, recent work [45]
has shown that LINC00486 can enhance EBV (Epstein–Barr virus) infection by activating NF-κB.
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Figure 6: Probability of each gene’s model reliance being greater than 0 across Rashomon sets across
bootstrapped datasets for the ten genes with the highest P(RIVj > 0). We ran 738 bootstrap iterations
to ensure that P(R̂IVj > 0) is within 0.05 of P(RIVj > 0) with 95% confidence (from Theorem 2).

It is well established that NF-κB can regulate HIV expression [32, 23, 4], suggesting a possible
mechanism and supporting future study. Notably, RID also highlighted PDE4D, which interacts with
the Tat protein and thereby HIV transcription [39]; HNRNPA2B1, which promotes HIV expression
by altering the structure of the viral promoter [38]; and MALAT1, which has recently been shown to
be an important regulator of HIV expression [35]. These three findings validate prior work and show
that RID can uncover variables that are known to interact with HIV.

Note that previous methods – even those that account for the Rashomon effect – could not
produce this result. MCR and VIC do not account for instability. For example, after computing
MCR for 738 bootstrap iterations, we find that the MCR for the LINC00486 gene has overlap with
0 in 96.2% of bootstrapped datasets, meaning MCR would not allow us to distinguish whether
LINC00486 is important or not 96.2% of the time. Without RID, we would not have strong evidence
that LINC00486 is necessary for good models. By explicitly accounting for instability, we increase
trust in our analyses.

Critically, RID also found very low importance for the majority of variables, allowing researchers to
dramatically reduce the number of possible directions for future experiments designed to test a gene’s
functional role. Such experiments are time consuming and cost tens of thousands of dollars per donor,
so narrowing possible future directions to a small set of genes is of the utmost importance. Our
analysis provides a manageable set of clear directions for future work studying the functional
roles of these genes in HIV.

6 Conclusion and Limitations

We introduced RID, a method for recovering the importance of variables in a way that accounts for
both instability and the Rashomon effect. We showed that RID distinguishes between important and
extraneous variables, and that RID better captures the true variable importance for the DGP than prior
methods. We showed through a case study in HIV load prediction that RID can provide insight into
complicated real world problems. Our framework overcomes instability and the Rashomon effect,
moving beyond variable importance for a single model and increasing reproducibility.

RID can be directly computed for any model class for which the Rashomon set can be found – at
the time of publishing, decision trees, linear models, and GLMs. A limitation is that currently, there
are relatively few model classes for which the Rashomon set can be computed. Therefore, future
work should aim to compute and store the Rashomon set of a wider variety of model classes. Future
work may investigate incorporating Rashomon sets that may be well-approximated (e.g., GAMs,
[10]), but not computed exactly, into the RID approach. Nonetheless, sparse trees are highly flexible,
and using them with RID improves the trustworthiness and transparency of variable importance
measures, enabling researchers to uncover important, reproducible relationships about complex
processes without being misled by the Rashomon effect.
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Supplemental Material

A Proofs

First, recall the following assumption from the main paper:

Assumption 1. If

ρ (RLD(·; ε,F , ℓ,Pn, λ), LD∗(·; ℓ, n,Pn, λ)) ≤ γ then

ρ (RIDj(·; ε,F , ℓ,Pn, λ),RIDj(·; ε, {g∗}, ℓ,Pn, λ)) ≤ d(γ)

for a function d : [0, ℓmax − ℓmin] → [0, ϕmax − ϕmin] such that limγ→0 d(γ) = 0. Here, ρ represents any
distributional distance metric (e.g., 1-Wasserstein).

Theorem 1. Let Assumption 1 hold for distributional distance ρ(A1, A2) between distributions A1 and A2. For
any t > 0, j ∈ {0, . . . , p} as ρ (LD∗(·; ℓ, n, λ),RLD(·; ε,F , ℓ,Pn, λ)) → 0 and B → ∞,

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)

∣∣∣ ≥ t
)
→ 0.

Proof. Let D(n) be a dataset of n (xi, yi) tuples independently and identically distributed according to the
empirical distribution Pn. Let k ∈ [ϕmin, ϕmax].

Then, we know that

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)

∣∣∣ ≥ t
)

=P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

+ RIDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)
∣∣∣ ≥ t

)
(by adding 0)

≤P
( ∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣
+ |RIDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)| ≥ t

)
(by the triangle inequality)

≤P

(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)
∣∣∣ ≥ t

2

)
+ P

(
|RIDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)| ≥

t

2

)
(by union bound).

Recall that, in the theorem statement, we have assumed ρ (LD∗(·; ℓ, n, λ),RLD(·; ε,F , ℓ,Pn, λ)) → 0.
Therefore, by Assumption 1,

P

(
|RIDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε, {g∗}, ℓ,Pn, λ)| ≥

t

2

)
→ 0.

Additionally, we will show in Corollary 1 that as B → ∞,

P

(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)
∣∣∣ ≥ t

2

)
→ 0.

Therefore, as B → ∞ and ρ (LD∗(·; ℓ, n, λ),RLD(·; ε,F , ℓ,Pn, λ)) → 0, the estimated Rashomon impor-
tance distribution for model class F converges to the true Rashomon importance distribution for the DGP
g∗.

Theorem 2. Let D(n) be a dataset of n (xi, yi) tuples independently and identically distributed according
to the empirical distribution Pn. Let k ∈ [ϕmin, ϕmax]. Then, with probability 1 − δ, with B ≥ 1

2t2
ln
(
2
δ

)
bootstrap replications, ∣∣∣R̂IDj(k)− RIDj(k)

∣∣∣ < t.

*Jon Donnelly and Srikar Katta contributed equally to this work.
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Proof. First, let us restate the definition of RIDj and R̂IDj . Let n ∈ N. Let ε be the Rashomon threshold, and
let the Rashomon set for some dataset D(n) and some fixed model class F be denoted as Rε

D(n) . Without loss
of generality, assume F is a finite model class. Then, for a given k ∈ [ϕmin, ϕmax],

RIDj(k; ε,F , ℓ,Pn, λ) = ED(n)∼Pn

∑f∈Rε

D(n)
1[ϕj(f,D(n)) ≤ k]

|Rε
D(n) |

 .

Note that the expectation is over all datasets of size n sampled with replacement from the originally observed
dataset, represented by Pn; we are taking the expectation over bootstrap samples.

We then sample datasets of size n with replacement from the empirical CDF Pn, find the Rashomon set for the
replicate dataset, and compute the variable importance metric for each model in the discovered Rashomon set.
For the same k ∈ [ϕmin, ϕmax],

R̂IDj(k; ε,F , ℓ,Pn, λ) =
1

B

∑
D(n)

b
∼Pn


∑

f∈Rε

D(n)
b

1[ϕj(f,D(n)
b ) ≤ k]

|Rε

D(n)
b

|

 ,

where B represents the number of size n datasets sampled from Pn.

Notice that

0 ≤

∑
f∈Rε

D(n)
1[ϕj(f,D(n)) ≤ k]

|Rε
D(n) |

≤ 1. (4)

Because R̂IDj(k; ε,F , ℓ,Pn, λ) is an Euclidean average of the quantity in Equation (4) and
RIDj(k; ε,F , ℓ,Pn, λ) is the expectation of the quantity in Equation (4), we can use Hoeffding’s inequal-
ity to show that

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣ > t
)

≤2 exp
(
−2Bt2

)
for some t > 0.

Now, we can manipulate Hoeffding’s inequality to discover a finite sample bound. Instead of setting B and t, we
will now find the B necessary to guarantee that

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣ ≥ t
)
≤ δ (5)

for some δ, t > 0.

Let δ > 0. From Hoeffding’s inequality, we see that if we choose B such that 2 exp
(
−2Bt2

)
≤ δ, then

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣ ≥ t
)
≤ 2 exp

(
−2Bt2

)
≤ δ.

Notice that 2 exp
(
−2Bt2

)
≤ δ if and only if B ≥ 1

2t2
ln
(
2
δ

)
.

Therefore, with probability 1− δ, ∣∣∣R̂IDj(k)− RIDj(k)
∣∣∣ ≤ t

with B ≥ 1
2t2

ln
(
2
δ

)
bootstrap iterations.

Corollary 1. Let t > 0, k ∈ [ϕmin, ϕmax], and assume that D(n) ∼ Pn. As B → ∞,

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣ ≥ t
)
→ 0.

Proof. Recall the results of Theorem 2:

P
(∣∣∣R̂IDj(k; ε,F , ℓ,Pn, λ)− RIDj(k; ε,F , ℓ,Pn, λ)

∣∣∣ ≥ t
)

≤ 2 exp
(
−2Bt2

)
→ 0 as B → ∞.
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B Statistics Derived From RID

Corollary 2. Let ε,B > 0. Then,

P
(∣∣∣E[RIDj ]− E[R̂IDj ]

∣∣∣ ≥ εE
)
≤ 2 exp

(
−2Bε2E

(ϕmax − ϕmin)2

)
. (6)

Therefore, the expectation of R̂IVj converges exponentially quickly to the expectation of RIVj . The notation
E[RIDj ] denotes the expectation of the random variable distributed according to RIDj .

Proof. Let ϕmin, ϕmax represent the bounds of the variable importance metric ϕ. Assume that 0 ≤ ϕmin ≤
ϕmax < ∞. If ϕmin < 0, then we can modify the variable importance metric to be strictly positive; for example,
if ϕ is Pearson correlation – which has a range between -1 and 1 – we can define a new variable importance
metric that is the absolute value of the Pearson correlation or define another metric that is the Pearson correlation
plus 1 so that the range is now bounded below by 0.

Now, recall that for any random variable X whose support is strictly greater than 0, we can calculate its
expectation as EX [X] =

∫∞
0

(1− P(X ≤ x))dx. Because ϕmin ≥ 0, we know that

E[RIDj ]

=

∫ ϕmax

ϕmin

(1− P(RIVj ≤ k)) dk

=

∫ ϕmax

ϕmin

1− ED(n)

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)) ≤ k]∑
f∈F 1[f ∈ Rε

D(n) ]

 dk

=

∫ ϕmax

ϕmin

dk −
∫ ϕmax

ϕmin

ED(n)

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)) ≤ k]∑
f∈F 1[f ∈ Rε

D(n) ]

 dk

=(ϕmax − ϕmin)− ED(n)

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)) ≤ k]∑
f∈F 1[f ∈ Rε

D(n) ]
dk

 by Fubini’s theorem.

Using similar logic we can show that

E[R̂IDj ] =

∫ ϕmax

ϕmin

1− 1

B

B∑
b=1

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

 dk

=

∫ ϕmax

ϕmin

dk −
∫ ϕmax

ϕmin

1

B

B∑
b=1

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk

= (ϕmax − ϕmin)−
1

B

B∑
b=1

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ,m) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk

 .

We can then rewrite
∣∣∣E[RIDj ]− E[R̂IDj ]

∣∣∣ using the calculations above:∣∣∣E[RIDj ]− E[R̂IDj ]
∣∣∣

=

∣∣∣∣∣ (ϕmax − ϕmin)− ED(n)∼Pn

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕ)j(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk


−

(ϕmax − ϕmin)−
1

B

B∑
b=1

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk

∣∣∣∣∣
=

∣∣∣∣∣− ED(n)∼Pn

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk


+

1

B

B∑
b=1

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk

∣∣∣∣∣.
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Because 0 ≤ P(RIVj ≤ k),P(R̂IVj ≤ k) ≤ 1 for all k ∈ R,

∫ ϕmax

ϕmin

0dk ≤
∫ ϕmax

ϕmin

P(RIVj ≤ k)dk,

∫ ϕmax

ϕmin

P(R̂IVj ≤ k)dk ≤
∫ ϕmax

ϕmin

1dk

0 ≤
∫ ϕmax

ϕmin

P(RIVj ≤ k)dk,

∫ ϕmax

ϕmin

P(R̂IVj ≤ k)dk ≤ (ϕmax − ϕmin),

suggesting that
(∫ ϕmax

ϕmin

∑
f∈F 1[f∈Rε

D(n) ]1[ϕj(f,D
(n)
b

)≤k]∑
f∈F 1[f∈Rε

D(n)
]

dk

)
is bounded.

Then, by Hoeffding’s inequality, we know that

P
(∣∣∣E[RIVj ]− E[R̂IVj ]

∣∣∣ > εE
)

=P

(∣∣∣∣∣ED(n)∼Pn

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk


− 1

B

B∑
b=1

∫ ϕmax

ϕmin

∑
f∈F

1[f ∈ Rε
D(n) ]1[ϕj(f,D

(n)
b ) ≤ k]∑

f∈F 1[f ∈ Rε
D(n) ]

dk

∣∣∣∣∣ > εE

)

≤2 exp

(
−2Bε2E

(ϕmax − ϕmin)2

)
.

Corollary 3. Assume R̂IDj(k) and RIDj(k) are strictly increasing in k ∈ [ϕmin, ϕmax]. Then, the interquantile
range (IQR) of R̂IDj will converge in probability to the IQR of RIDj .

Proof. Let k0.25 be the k such that RIDj(k0.25) = 0.25. And let k0.75 be the k such that RIDj(k0.75) = 0.75.

Similarly, let k̂0.25 be the k such that R̂IDj(k̂0.25) = 0.25. And let k̂0.75 be the k such that R̂IDj(k̂0.75) = 0.75.

The IQR of R̂IDj converges to the IQR of RIDj if k̂0.25 → k0.25 and k̂0.75 → k0.75.

Because R̂IDj(k) and RIDj(k) are increasing in k, we know that if P
(

R̂IVj ≤ k0.25
)
= 0.25, then k̂0.25 =

k0.25. An analogous statement holds for k̂0.75.

So, we will bound how far R̂IDj(k0.25) is from 0.25 = RIDj(k0.25) and how far R̂IDj(k0.75) is from 0.75 =
RIDj(k0.75).

Let t > 0. Then,

P
(∣∣∣R̂IDj(k0.25)− RIDj(k0.25)

∣∣∣+ ∣∣∣R̂IDj(k0.75)− RIDj(k0.75)
∣∣∣ > t

)
≤P

({∣∣∣R̂IDj(k0.25)− RIDj(k0.25)
∣∣∣ > t

2

}
∪
{∣∣∣R̂IDj(k0.75)− RIDj(k0.75)

∣∣∣ > t

2

})
≤P

({∣∣∣R̂IDj(k0.25)− RIDj(k0.25)
∣∣∣ > t

2

})
+ P

({∣∣∣R̂IDj(k0.75)− RIDj(k0.75)
∣∣∣ > t

2

})
by Union bound.

Then, by Theorem 2,

P

(∣∣∣R̂IDj(k0.25)− RIDj(k0.25)
∣∣∣ > t

2

)
≤ 2 exp

(
−2B

t2

4

)
.

14



So,

P
(∣∣∣R̂IDj(k0.25)− RIDj(k0.25)

∣∣∣+ ∣∣∣R̂IDj(k0.75)− RIDj(k0.75)
∣∣∣ > t

)
≤P

({∣∣∣R̂IDj(k0.25)− RIDj(k0.25)
∣∣∣} >

t

2

)
+ P

({∣∣∣R̂IDj(k0.75)− RIDj(k0.75)
∣∣∣} >

t

2

)
≤2 exp

(
−2B

t2

4

)
+ 2 exp

(
−2B

t2

4

)
=4 exp

(
−2B

t2

4

)
.

So, as B → ∞,P
(∣∣∣R̂IDj(k0.25)− RIDj(k0.25)

∣∣∣+ ∣∣∣R̂IDj(k0.75)− RIDj(k0.75)
∣∣∣ > t

)
ultimately converging

to 0.

Therefore, the IQR of R̂IDj converges to the IQR of RID.
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C Example Model Classes for Which RIDConverges

First, recall the following assumption from the main paper:

Assumption 1. If

ρ (RLD(·; ε,F , ℓ,Pn, λ), LD∗(·; ℓ, n,Pn, λ)) ≤ γ then

ρ (RIDj(·; ε,F , ℓ,Pn, λ),RIDj(·; ε, {g∗}, ℓ,Pn, λ)) ≤ d(γ)

for a function d : [0, ℓmax − ℓmin] → [0, ϕmax − ϕmin] such that limγ→0 d(γ) = 0. Here, ρ represents any
distributional distance metric (e.g., 1-Wasserstein).

In this section, we highlight two simple examples of model classes and model reliance metrics for which
Assumption 1 holds. First we show that Assumption 1 holds for the class of linear regression models with the
model reliance metric being the coefficient assigned to each variable in Proposition 1; Proposition 2 presents
a similar result for generalized additive models. We begin by presenting two lemmas which will help prove
Proposition 1:

Lemma 1. Let ℓ be unregularized mean square error, used as the objective for estimating optimal models in
some class of continuous models F . Assume that the DGP’s noise ϵ is centered at 0: E[ϵ] = 0. Define the
function m : [0, ℓmax] → [0, 1] as:

m(ε) := lim
n→∞

∫ ℓmax

ℓmin

|LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε,F , ℓ,Pn, λ)| dk.

The function m is a strictly increasing function of ε; m simply measures the integrated absolute error between
the CDF of g∗’s loss distribution and the CDF of the Rashomon set’s loss distribution. Then, if g∗ ∈ F , then
m(0) = 0.

Proof. Let ℓ be unregularized mean square error, used as the objective for estimating optimal models in some
class of continuous models F . Let g∗ denote the unknown DGP. Throughout this proof, we consider the setting
with n → ∞, although we often omit this notation for simplicity.

First, we restate the definition of RLD and LD∗ for reference:

RLD(k; ε,F , ℓ,Pn, λ) := ED(n)∼Pn

[
ν({f ∈ Rε

D(n) : ℓ(f,D(n)) ≤ k})
ν(Rε

D(n))

]
and

LD∗(k; ℓ, n,Pn, λ) := ED(n)∼Pn

[
1[ℓ(g∗,D(n)) ≤ k]

]
.

Because g∗ is the DGP, we know that its expected loss should be lower than the expected loss for any other
model in the model class: ED(n)∼Pn

[ℓ(g∗,D(n))] ≤ ED(n)∼Pn
[ℓ(f,D(n))] for any f ∈ F such that f ̸= g∗,

as we have assumed that any noise has expectation 0. For simplicity, we denote ED(n)∼Pn
[ℓ(g∗,D(n))] by ℓ∗.

We first show that m is monotonically increasing in ε by showing that, for any ε > ε′ ≥ 0:

lim
n→∞

∫ ℓmax

ℓmin

|LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε,F , ℓ,Pn, λ)| dk

> lim
n→∞

∫ ℓmax

ℓmin

∣∣LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε′,F , ℓ,Pn, λ)
∣∣ dk

by demonstrating that the inequality holds for each individual value of k. First, note that:

LD∗(k; ℓ, n,Pn, λ) = ED(n)∼Pn

[
1[ℓ(g∗,D(n)) ≤ k]

]
.

As n → ∞, this quantity approaches

ED(n)∼Pn

[
1[ℓ(g∗,D(n)) ≤ k]

]
= 1[ℓ(g∗,D(n)) ≤ k].

We will consider three cases: first, we consider ℓ∗ > k1 ≥ 0, followed by ε′ + ℓ∗ > k2 ≥ ℓ∗, and finally
k3 ≥ ε′ + ℓ∗. Figure 7 provides a visual overview of these three cases and the broad idea within each case.

Case 1: ℓ∗ > k1 ≥ 0
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Figure 7: A visual overview of the proof of Lemma 1. In Case 1, we consider loss values that are
achieved by no models in the model class, so each loss distribution has 0 mass below k in this case.
Case 2 covers each value of k such that k is larger than ℓ∗, so LD∗(k) = 1. The RLD for the ε′

Rashomon set is closer to 1 than the ε Rashomon set because a larger proportion of this set falls
below k. Under Case 3, all models in the ε′ Rashomon set fall below k.

For any k1 such that ℓ∗ > k1 ≥ 0, it holds that

1[ℓ(g∗,D(n)) ≤ k1] = 0,

since ℓ∗ > k1 by definition. Further, because ℓ(g∗,D(n)) ≤ ℓ(f,D(n)) for mean squared error in the infinite
data setting,

RLD(k1; ε
′,F , ℓ,Pn, λ) = RLD(k1; ε,F , ℓ,Pn, λ) = 0

Case 2: ε′ + ℓ∗ ≥ k2 ≥ ℓ∗

For any k2 such that ε′ + ℓ∗ ≥ k2 ≥ ℓ∗,

1[ℓ(g∗,D(n)) ≤ k2] = 1,

since ℓ(g∗,D(n)) ≤ k2 by the definition of k2. Let ν denote a volume function over the target model class.
Recalling that ε > ε′, we know that:

ν(Rε) > ν(Rε′) ⇐⇒ 1

ν(Rε)
<

1

ν(Rε′)

⇐⇒ ν({f ∈ Rε : ℓ(f,D(n)) ≤ k2})
ν(Rε)

<
ν({f ∈ Rε : ℓ(f,D(n)) ≤ k2})

ν(Rε′)

⇐⇒ ν({f ∈ Rε : ℓ(f,D(n)) ≤ k2})
ν(Rε)

<
ν({f ∈ Rε′ : ℓ(f,D(n)) ≤ k2})

ν(Rε′)
,

17



since the set of models in the ε Rashomon set with loss less than k2 is the same set as set of models in the ε′

Rashomon set with loss less than k2 for k2 ≤ ε′ + ℓ∗. We can further manipulate this quantity to show:

ν({f ∈ Rε : ℓ(f,D(n)) ≤ k2})
ν(Rε)

<
ν({f ∈ Rε′ : ℓ(f,D(n)) ≤ k2})

ν(Rε′)

⇐⇒ 1− ν({f ∈ Rε : ℓ(f,D(n)) ≤ k2})
ν(Rε)

> 1− ν({f ∈ Rε′ : ℓ(f,D(n)) ≤ k2})
ν(Rε′)

⇐⇒
∣∣∣∣1− ν({f ∈ Rε : ℓ(f,D(n)) ≤ k2})

ν(Rε)

∣∣∣∣ >
∣∣∣∣∣1− ν({f ∈ Rε′ : ℓ(f,D(n)) ≤ k2})

ν(Rε′)

∣∣∣∣∣
⇐⇒ |1− RLD(k2; ε,F , ℓ)| >

∣∣1− RLD(k2; ε
′,F , ℓ)

∣∣
⇐⇒ |LD∗(k2)− RLD(k2; ε,F , ℓ)|

>
∣∣LD∗(k2)− RLD(k2; ε

′,F , ℓ)
∣∣ ,

because LD∗(k2) = 1.

Case 3: k3 > ε′ + ℓ∗

For any k3 > ε′ + ℓ∗, we have

RLD(k3; ε
′,F , ℓ) =

ν({f ∈ Rε′ : ℓ(f,D(n)) ≤ k3})
ν(Rε′)

=
ν(Rε′)

ν(Rε′)
because k3 > ε′ + ℓ∗

= 1.

This immediately gives that ∣∣LD∗(k3)− RLD(k3; ε
′,F , ℓ)

∣∣ = |1− 1|
= 0,

the minimum possible value for this quantity. We can then use the fact that the absolute value is greater than or
equal to zero to show that

|LD∗(k3)− RLD(k3; ε,F , ℓ)|
≥ 0 =

∣∣LD∗(k3)− RLD(k3; ε
′,F , ℓ)

∣∣
In summary, under cases 1 and 3,

|LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε,F , ℓ,Pn, λ)|
≥
∣∣LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε′,F , ℓ,Pn, λ)

∣∣ ;
under case 2,

|LD∗(k2; ℓ, n,Pn, λ)− RLD(k2; ε,F , ℓ,Pn, λ)|
>
∣∣LD∗(k2; ℓ, n,Pn, λ)− RLD(k2; ε

′,F , ℓ,Pn, λ)
∣∣ .

Since there is some range of values k ∈ [ℓ∗, ε′ + ℓ∗) for which the inequality above is strict, it follows that∫ ℓmax

ℓmin

|LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε,F , ℓ,Pn, λ)| dk

>

∫ ℓmax

ℓmin

∣∣LD∗(k; ℓ, n,Pn, λ)− RLD(k; ε′,F , ℓ,Pn, λ)
∣∣ dk,

showing that ε > ε′ is a sufficient condition for m(ε) > m(ε′). Observe that, for a loss function with no
regularization and a fixed model class, RLD is a function of only ε. As such, varying ε is the only way to vary RLD,
making ε > ε′ a necessary condition for the above. Therefore, we have shown that ε > ε′ ⇐⇒ m(ε) > m(ε′),
i.e. m is strictly increasing.

Further, if g∗ ∈ F , the Rashomon set with ε = 0 will contain only g∗ as n approaches infinity, immediately
yielding that

m(0) =

∫ ℓmax

ℓmin

|LD∗(k; ℓ, n,Pn, λ)− RLD(k; 0,F , ℓ)| dk = 0.
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Lemma 1 provides a mechanism through which RLV will approach LD∗ in the infinite data setting. The following
lemma states that each level set of the quadratic loss surface is a hyper-ellipsoid, providing another useful tool
for the propositions given in this section.
Lemma 2. The level set of the quadratic loss at ε is a hyper-ellipsoid defined by:

(θ − θ∗)TXTX(θ − θ∗) = ε− c,

which is centered at θ∗ and of constant shape in terms of ε.

Proof. Recall that the quadratic loss for some parameter vector θ is given by:
ℓ(θ) = ∥y −Xθ∥2

and that the optimal vector θ∗ is given by:

θ∗ = (XTX)−1XT y

⇐⇒ XTXθ∗ = XT y

With these facts, we show that the level set for the quadratic loss at some fixed value ε takes on the standard
form for a hyper-ellipsoid. This is shown as:

ℓ(θ) = ∥y −Xθ∥2

= ∥y −Xθ∥2 −yT (y −Xθ∗) + yT (y −Xθ∗)︸ ︷︷ ︸
add 0

= yT y − 2yTXθ + θTXTXθ︸ ︷︷ ︸
expand quadratic

−yT y − yTXθ∗︸ ︷︷ ︸
distribute yT

+yT (y −Xθ∗)

= yT y − 2yTXθ + θTXTXθ − yT y − (XT y)T θ∗︸ ︷︷ ︸
pull out transpose

+yT (y −Xθ∗)

= yT y − 2yTXθ + θTXTXθ − yT y − θ∗TXTXθ∗︸ ︷︷ ︸
because XT y=XTXθ∗

+yT (y −Xθ∗)

= yT y − 2(XT y)T θ︸ ︷︷ ︸
pull out transpose

+θTXTXθ − yT y − θ∗TXTXθ∗ + yT (y −Xθ∗)

= yT y − 2θ∗XTXθ︸ ︷︷ ︸
because XT y=XTXθ∗

+θTXTXθ − yT y − θ∗TXTXθ∗ + yT (y −Xθ∗)

= θTXTXθ − 2θ∗XTXθ − θ∗TXTXθ∗ + yT (y −Xθ∗) because yT y terms cancel out

= (θ − θ∗)TXTX(θ − θ∗) + yT (y −Xθ∗) by factorization.

Noting that the term yT (y − Xθ∗) is constant in terms of θ, so we can simplify this expression to ℓ(θ) =
(θ − θ∗)TXTX(θ − θ∗) + c where c = yT (y −Xθ∗). If we are interested in the level set at ℓ(θ) = c+ ε —
that is, with loss ε greater than the optimal loss — this is exactly:

(θ − θ∗)TXTX(θ − θ∗) + c = c+ ε

⇐⇒ (θ − θ∗)TXTX(θ − θ∗) = ε.

That is, the set of parameters θ yielding loss value c + ε is a hyper-ellipsoid centered at θ∗ according to the
positive semi-definite matrix XTX .

Proposition 1. If the DGP is a linear regression model, Assumption 1 is guaranteed to hold for the function
class of linear models (i.e., g∗ ∈ F ) as n → ∞.

Proof. We now turn our attention to RID. Let our variable importance metric ϕj := θj , the coefficient of a
linear model, and let p denote the number of variables in the dataset such that θ ∈ Rp. As in Lemma 1, we
restrict ourselves to the setting in which n → ∞, although we often omit this notation. Define the function
rj : [0, ℓmax] → [0, 1] to be:

rj(ε) :=

∫ ϕmax

ϕmin

|RIDj(k; {g∗}, 0)− RIDj(k;F , ε)| dk

We show that rj is a monotonic function of ε, for any j ∈ {1, 2, . . . , p}. In other words, as ε gets smaller, the
value of rj(ε) gets smaller. We do so by showing that the following holds for this VI metric:∫ ϕmax

ϕmin

|RIDj(k; {g∗}, 0)− RIDj(k;F , ε)| dk

≥
∫ ϕmax

ϕmin

∣∣RIDj(k; {g∗}, 0)− RIDj(k;F , ε′)
∣∣ dk
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Figure 8: A visualization of the ε and ε′ Rashomon sets for linear regression with two input features.
We highlight the extrema of each Rashomon set along axis 1 (a1 and b1 for the ε Rashomon set, a′1
and b′1 for the ε′ Rashomon set).

if and only if ε > ε′ by showing that, for any k,

|RIDj(k; {g∗}, 0)− RIDj(k;F , ε)|
≥
∣∣RIDj(k; {g∗}, 0)− RIDj(k;F , ε′)

∣∣ .
For simplicity of notation, we denote the linear regression model parameterized by some coefficient vector
θ ∈ Rp simply as θ. Let θ∗ ∈ Rp denote the coefficient vector for the optimal model. Additionally, we define
the following quantities to represent the most extreme values for θj (i.e., the coefficient along the j-th axis) for
each Rashomon set. Let aj and bj be the two values defined as:

aj := min
v∈Rp

(θ∗ + v)j s.t. ℓ(θ∗ + v,D(n)) = ℓ∗ + ε

bj := max
v∈Rp

(θ∗ + v)j s.t. ℓ(θ∗ + v,D(n)) = ℓ∗ + ε.

Similarly, let a′
j and b′j be the two values defined as:

a′
j := min

v∈Rp
(θ∗ + v)j s.t. ℓ(θ∗ + v,D(n)) = ℓ∗ + ε′

b′j := max
v∈Rp

(θ∗ + v)j s.t. ℓ(θ∗ + v,D(n)) = ℓ∗ + ε′.

Intuitively, these values represent the most extreme values of θ along dimension j that are still included in their
respective Rashomon sets. Figure 8 provides a visual explanation of each of these quantities. Finally, recall that:

RIDj(k; {g∗}, 0) =

{
1 if θ∗j ≤ k

0 otherwise,

since θ∗ is a deterministic quantity given infinite data.

Without loss of generality, we will consider two cases:

1. The case where θ∗j ≤ k,

2. The case where k < θ∗j .

Figures 9 and 10 give an intuitive overview of the mechanics of this proof. As depicted in Figure 9, we will
show that the proportion of the volume of the ε′-Rashomon set with ϕj below k is closer to 1 than that of the
ε-Rashomon set under case 1. We will than show that the opposite holds under case 2, as depicted in Fugre 10.
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Figure 9: A simple illustration of the key idea in case 1 of the proof of Proposition 1. For two
concentric ellipsoids of the same shape, the proportion of each ellipsoid’s volume falling below
some point greater than the center along axis j is greater for the smaller ellipsoid than for the larger
ellipsoid.

Case 1: θ∗j ≤ k

Define two functions h : [aj , bj ] → [0, 1] and h′ : [a′
j , b

′
j ] → [0, 1] as:

h(c) =
c− aj

bj − aj

h′(c) =
c− a′

j

b′j − a′
j

.

These functions map each value c in the original space of θj to its relative position along each axis of the
ε-Rashomon set and the ε′-Rashomon set respectively, with h(bj) = h′(b′j) = 1 and h(aj) = h′(a′

j) = 0.

Define δ ∈ [0, bj − θ∗j ] to be the value such that k = θ∗j + δ. Since in this case θ∗j ≤ k, it follows that δ ≥ 0. As
such, we can then quantify the proportion of the ε-Rashomon set along the j-th axis such that θ∗j ≤ θj ≤ k as:

h(θ∗j + δ)− h(θ∗j ) =
(θ∗j + δ)− aj

bj − aj
−

(θ∗j − aj)

(bj − aj)

=
θ∗j + δ − aj − θ∗j + aj

bj − aj

=
δ

bj − aj

Similarly, we can quantify the proportion of the ε′-Rashomon set along the j-th axis with θj between k and θ∗j
as:

h′(δ + θ∗j )− h′(θ∗j ) =
θ∗j + δ − a′

j − θ∗j + a′
j

b′j − a′
j

=
δ

b′j − a′
j

.

Recalling that, by definition, aj < a′
j < b′j < bj , as well as the fact that δ ≥ 0 we can see that:

bj − aj > b′j − a′
j ⇐⇒ 1

bj − aj
<

1

b′j − a′
j

⇐⇒ δ

bj − aj
≤ δ

b′j − a′
j

⇐⇒ h(θ∗j + δ)− h(θ∗j ) ≤ h′(θ∗j + δ)− h′(θ∗j )

⇐⇒ h(k)− h(θ∗j ) ≤ h′(k)− h′(θ∗j ).
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Figure 10: A simple illustration of the key idea in case 2 of the proof of Proposition 1. For two
concentric ellipsoids of the same shape, the proportion of each ellipsoid’s volume falling below some
point less than the center along axis j is smaller for the smaller ellipsoid than for the larger ellipsoid.

That is, the proportion of the ε-Rashomon set along the j-th axis with θj between k and θ∗j is less than or equal
to the proportion of the ε′-Rashomon set along the j-th axis with θj between k and θ∗j . By Lemma 2, recall that
the ε-Rashomon set and the ε′-Rashomon set are concentric (centered at θ∗) and similar (with shape defined by
XTX). Let ν denote the volume function for some subsection of a hyper-ellipsoid. We then have

h(k)−h(θ∗j ) ≤ h′(k)− h′(θ∗j )

⇐⇒
ν({θ ∈ Rε : θ∗j ≤ θj ≤ k})

ν({Rε}) ≤
ν({θ′ ∈ Rε′ : θ∗j ≤ θ′j ≤ k})

ν({Rε′})

⇐⇒ 1

2
+

ν({θ ∈ Rε : θ∗j ≤ θj ≤ k})
ν({Rε}) ≤ 1

2
+

ν({θ′ ∈ Rε′ : θ∗j ≤ θ′j ≤ k})
ν({Rε′})

⇐⇒
ν({θ ∈ Rε : θj ≤ θ∗j })

ν({Rε}) +
ν({θ ∈ Rε : θ∗j ≤ θj ≤ k})

ν({Rε})

≤
ν({θ′ ∈ Rε′ : θ′j ≤ θ∗j })

ν({Rε′})
+

ν({θ′ ∈ Rε′ : θ∗j ≤ θ′j ≤ k})
ν({Rε′})

⇐⇒ ν({θ ∈ Rε : θj ≤ k})
ν({Rε}) ≤

ν({θ′ ∈ Rε′ : θ′j ≤ k})
ν({Rε′})

.

Recalling that, by definition, RIDj(k;F , ε′) =
ν({θ′∈Rε′ :θ′j≤k})

ν(Rε′ )
, it follows that:

RIDj(k;F , ε) ≤ RIDj(k;F , ε′)

⇐⇒ 1− RIDj(k;F , ε) ≥ 1− RIDj(k;F , ε′)

⇐⇒ |1− RIDj(k;F , ε)| ≥ |1− RIDj(k;F , ε′)|.

Recalling that RIDj(k; {g∗}, 0) = 1, since k ≥ θ∗j , the above gives:

|1−RIDj(k;F , ε)| ≥ |1− RIDj(k;F , ε′)|
⇐⇒ |RIDj(k; {g∗}, ε)− RIDj(k;F , ε)|

≥ |RIDj(k; {g∗}, ε)− RIDj(k;F , ε′)|

for all θ∗j ≤ k.
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Case 2: k < θ∗j

Let h and h′ be defined as in Case 1. Define δ ∈ [aj − θ∗j , 0] to be the quantity such that k = θ∗j + δ. In this
case, k < θ∗j , so it follows that δ < 0. Repeating the derivation from Case 1, we then have:

bj − aj > b′j − a′
j ⇐⇒ 1

bj − aj
<

1

b′j − a′
j

⇐⇒ δ

bj − aj
>

δ

b′j − a′
j

⇐⇒ h(θ∗j + δ)− h(θ∗j ) > h′(θ∗j + δ)− h′(θ∗j )

⇐⇒ h(k)− h(θ∗j ) > h′(k)− h′(θ∗j ).

That is, the proportion of the ε-Rashomon set along the j-th axis with θj between k and θ∗j is greater than the
proportion of the ε′−Rashomon set along the j-th axis with θj between k and θ∗j . By similar reasoning as in
Case 1, it follows that:

RIDj(k;F , ε) > RIDj(k;F , ε′)

⇐⇒ |RIDj(k;F , ε)− 0| > |RIDj(k;F , ε′)− 0|
Recalling that RIDj(k; {g∗}, ε) = 0, since k < θ∗j , the above gives:

|PD(n)∼Pn
(RIVj(F , ε) ≤ k)− 0| > |RIDj(k;F , ε′)− 0|
⇐⇒ |RIDj(k;F , ε)− RIDj(k; {g∗}, 0)|

> |RIDj(k;F , ε′)− RIDj(k; {g∗}, 0)|
for all aj ≤ k < θ∗j . As such, for any k, we have that:

|RIDj(k; {g∗}, 0)− RIDj(k;F , ε)|
≥
∣∣RIDj(k; {g∗}, 0)− RIDj(k;F , ε′)

∣∣ ,
showing that ε > ε′ is a sufficient condition for the above. Since RID is a function of only ε, varying ε is the only
way to vary RID, making ε > ε′ a necessary condition for the above, yielding that rj(ε) > rj(ε

′) ⇐⇒ ε > ε′

and rj is monotonically increasing.

Let m be defined as in Lemma 1, and let γ be some value such that m(ε) ≤ γ. Define the function d := rj ◦m−1

(note that m−1, the inverse of m, is guaranteed to exist and be strictly increasing because m is strictly increasing).
The function d is monotonically increasing as the composition of two monotonically increasing functions, and:

m(ε) ≤ γ

⇐⇒ ε ≤ m−1(γ)

⇐⇒ rj(ε) ≤ d(γ)

as required.

Further, Lemma 1 states that m(0) = 0 if g∗ ∈ F . Note also that the Rashomon set with ε = 0 contains only
g∗, and as such rj(0) = d(m−1(0)) = 0, meaning d(0) = 0. Therefore limγ→0 d(γ) = 0.

Proposition 2. Assume the DGP is a generalized additive model (GAM). Then, Assumption 1 is guaranteed to
hold for the function class of GAM’s where our variable importance metric is the coefficient on each bin.

Proof. Recall from Proposition 1 that Assumption 1 holds for the class of linear regression models with the
model reliance metric ϕj = θj . A generalized additive model (GAM) [? ] over p variables is generally
represented as:

g(E[Y ]) = ω + f1(x1) + . . .+ fp(xp),

where g is some link function, ω is a bias term, and f1, . . . , fp denote the shape functions associated with each
of the variables. In practice, each shape function fj generally takes the form of a linear function over binned
variables [? ]:

fj(xi) =

βj−1∑
j′=0

θj′1[bj′ ≤ xij ≤ bj′+1],

where βj denotes the number of possible bins associated with variable Xj , bj′ denotes the j′-th cuttoff point
associated with Xj , and θj′ denotes the weight associated with the j′-th bin on variable Xj . With the above
shape function, a GAM is a linear regression over a binned dataset; as such, for the variable importance metric
ϕj′ = θj′ on the complete, binned dataset, Assumption 1 holds by the same reasoning as Proposition 1.
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D Detailed Experimental Setup

In this work, we considered the following four simulation frameworks:

• Chen’s [9]: Y = 1[−2 sin(X1) + max(X2, 0) + X3 + exp(−X4) + ε ≥ 2.048], where
X1, . . . , X10, ε ∼ N (0, 1). Here, only X1, . . . , X4 are relevant.

• Friedman’s [17]: Y = 1[10 sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 + ε ≥ 15], where
X1, . . . , X6 ∼ U(0, 1), ε ∼ N (0, 1). Here, only X1, . . . , X5 are relevant.

• Monk 1 [42]: Y = max (1[X1 = X2], 1[X5 = 1]) , where the variables X1, . . . , X6 have domains
of 2, 3, or 4 unique integer values. Only X1, X2, X5 are important.

• Monk 3 [42]: Y = max (1[X5 = 3 and X4 = 1], 1[X5 ̸= 4 and X2 ̸= 3]) for the same covariates
in Monk 1. Here, X2, X4, and X5 are relevant, and 5% label noise is added.

DGP Num Samples Num Features Num Extraneous Features
Chen’s 1,000 10 6

Friedman’s 200 6 1
HIV 14,742 100 Unknown

Monk 1 124 6 3
Monk 3 124 6 3

Table 1: Overview of the size of each dataset considered (or generated from a DGP) in this paper.

For our experiments in Sections 4.1 and 4.2 of the main paper, we trained and evaluated all models using the
standard training set provided by [42] for Monk 1 and Monk 3. We generated 200 samples following the above
process for Friedman’s DGP, and 1000 samples following the above process for Chen’s DGP.

In Section 5 of the main paper, we evaluated RIDon a dataset studying which host cell transcripts and chromatin
patterns are associated with high expression of Human Immunodeficiency Virus (HIV) RNA. We used the model
class of sparse decision trees and subtractive model reliance. The dataset combined single cell RNAseq/ATACseq
profiles for 74,031 individual HIV infected cells from two different donors in the aims of finding new cellular
cofactors for HIV expression that could be targeted to reactivate the latent HIV reservoir in people with HIV
(PWH). A longer description of the data is in [29].

We consider the binary classification problem of predicting high versus low HIV load, where high HIV load
means an HIV load in the top 10% of observed values. We selected 14,614 samples (all 7,307 high HIV load
samples and 7,307 random low HIV load samples) from the overall dataset in order to balance labels, and filtered
the complete profiles down to the top 100 variables by individual AUC in order to accelerate the runtime of RID.

Table 1 summarizes the size of each dataset we considered. In all cases, we used random seed 0 for dataset
generation, model training, and evaluation unless otherwise specified.

We compared the rankings produced by RID with the following baseline methods:

• Subtractive model reliance ϕsub of a random forest (RF) [6] using scikit-learn’s implementation [? ] of
RF

• Subtractive model reliance ϕsub of an L1 regularized logistic regression model (Lasso) using scikit-
learn’s implementation [? ] of Lasso

• Subtractive model reliance ϕsub of boosted decision trees [16] using scikit-learn’s implementation [? ]
of AdaBoost

• Subtractive model reliance ϕsub of a generalized optimal sparse decision tree (GOSDT) [26] using the
implementation from [49]

• Subtractive conditional model reliance (CMR) [15] – a metric designed to capture only the unique
information of a variable – of RF using scikit-learn’s implementation [? ] of RF

• Subtractive conditional model reliance (CMR) [15] of Lasso using scikit-learn’s implementation [? ]
of Lasso

• The impurity based model reliance metric for RF from [7] using scikit-learn’s implementation [? ] of
RF

• The LOCO algorithm reliance [25] value for RF and for Lasso using scikit-learn’s implementation [? ]
of both models

• The Pearson correlation between each feature and the outcome

• The Spearman correlation between each feature and the outcome
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Dataset Rashomon Threshold ε Regularization Weight λ Depth Bound
Chen’s 0.01 0.01 5

Friedman’s 0.025 0.02 6
HIV 0.075 0.005 3

Monk 1 0.1 0.03 5
Monk 3 0.05 0.025 7

Table 2: The parameters used for RID, VIC, and GOSDT by data generation process.

• The mean of the partial dependency plot (PDP) [19] for each feature using scikit-learn’s implementation
[? ]

• The SHAP value [28] for RF using scikit-learn’s implementation [? ] of RF

• The mean of variable importance clouds (VIC) [12] for the Rashomon set of sparse decision trees,
computed using TreeFarms [49].

We used the default parameters in scikit-learn’s implementation [? ] of each baseline model. The parameters
used for RID, VIC, and GOSDT for each dataset are summarized in Table 2. In all cases, we constructed each of
RID, VIC, and GOSDT using the code from [49].

D.1 Computational Resources

All experiments for this work were performed on an academic institution’s cluster computer. We used up to 40
machines in parallel, selected from the specifications below:

• 2 Dell R610’s with 2 E5540 Xeon Processors (16 cores)

• 10 Dell R730’s with 2 Intel Xeon E5-2640 Processors (40 cores)

• 10 Dell R610’s with 2 E5640 Xeon Processors (16 cores)

• 10 Dell R620’s with 2 Xeon(R) CPU E5-2695 v2’s (48 cores)

• 8 Dell R610’s with 2 E5540 Xeon Processors (16 cores)

We did not use GPU acceleration for this work.
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E Additional Experiments

E.1 Recovering MR without Bootstrapping Baseline Methods

Figure 11: Boxplot over variables of the mean absolute error over test sets between the MR value
produced by each method without bootstrapping (except RID) and the model reliance of the DGP for
500 test sets.

In this section, we evaluate the ability of each baseline method to recover the value of subtractive model reliance
for the data generation process without bootstrapping. For this comparison, we use one training set to find the
model reliance of each variable for each of the following algorithms: GOSDT, AdaBoost, Lasso, and Random
Forest. Because RIDand VIC produce distributions/samples, we instead estimate the median model reliance
across RIDand VIC’s model reliance distributions.

We then sample 500 test sets independently for each DGP. We then calculate the model reliance for each test set
using the DGP as if it were a predictive model (that is, if the DGP were Y = X + ε for some Gaussian noise ε,
our predictive model would simply be f(X) = X). Finally, we calculate the mean absolute error between the
test model reliance values for the DGP and the train model reliance values for each algorithm.

Figure 11 shows the results of this experiment. As Figure 11 illustrates, RID produces more accurate point
estimates than baseline methods even though this is not the goal of RID– the goal of RID is to produce the entire
distribution of model reliance across good models over bootstrap datasets, not a single point estimate.

E.2 Width of Box and Whisker Ranges

When evaluating whether the box and whisker range (BWR) for each method captures the MR value for the DGP
across test sets, a natural question is whether RIDoutperforms other methods simply because it produces wider
BWR’s. Figure 12 demonstrates the width of the BWR produced by each evaluated method across variables and
datasets. As shown in Figure 12, RID consistently produces BWR widths on par with baseline methods.

E.3 The Performance of RID is Stable Across Reasonable Values for ε

The parameter ε controls what the maximum possible loss a model in the Rashomon set could be. We investigate
whether this choice of ε significantly alters the performance of RID. In order to investigate this question, we
repeat the coverage experiment from Section 4.2 of the main paper for three different values of ε for each
dataset on VIC and RID(the two methods effected by ε). In particular, we construct the BWR over 100 bootstrap
iterations for RIDand over models for VIC for three different values of ε on each training dataset. These values
are chosen as 0.75ε∗, ε∗, and 1.25ε∗, where ε∗ denotes the value of ε used in the experiments presented in the
main paper. We then generate 500 test datasets for each DGP and evaluate the subtractive model reliance for the
DGP on each variable; we then measure what proportion of these test model reliance values are contained in
each BWR. We refer to this proportion as the “recovery percentage”.

Figure 13 illustrates that RID is almost entirely invariant to reasonable choices of ε: the recovery proportion
for RID ranges from 90.38% to 90.64% on Chen’s DGP, 100% to 100% on Monk 1, 99.43% to 99.93% on

26



Figure 12: Width of the box and whisker range produced by each baseline method by dataset and
variable. Gray subplots represent DGPs for which such a variable does not exist. Friedman’s, Monk
1, and Monk 3 only have six variables.
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Monk 3 DGP, and from 87.23% to 88.8% on Friedman’s DGP. We find that VIC is somewhat more sensitive to
choices of ε: the recovery proportion for VIC ranges from 83.44% to 89.62% on Chen’s DGP, 100% to 100%
on Monk 1, 75.30% to 79.17% on Monk 3 DGP, and from 60.53% to 75.57% on Friedman’s DGP.

Figure 13: Box and whiskers plot over variables of the proportion test MR values for the DGP captured
by the BWR range for RID and VIC at different loss thresholds ε. We find that the performance of
RID is invariant to reasonable changes in ε.

E.4 Full Stability Results

In this section, we demonstrate each interval produced by MCR, the BWR of VIC, and the BWR of RID over 50
datasets generated from each DGP. We construct RID using 50 bootstraps from each of the 50 generated datasets.

Figures 14, 15, 16, and 17 illustrate the 50 resulting intervals produced by each method for each non-extraneous
variable on each DGP. If a method produces generalizable results, we would expect it to produce overlapping
intervals across datasets drawn from the same DGP. As shown in Figures 14, 16, and 17, both MCR and the
BWR for VIC produced completely non-overlapping intervals between datasets for at least one variable on each
of Chen’s DGP, Monk 3, and Friedman’s DGP, which means their results are not generalizable. In contrast,
the BWR range for RID never has zero overlap between the ranges produced for different datasets. This
highlights that RID is more likely to generalize than existing Rashomon-based methods.
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Figure 14: We generate 50 independent datasets from Chen’s DGP and calculate MCR, BWRs
for VIC, and BWRs for RID. The above plot shows the interval for each dataset for each non-null
variable in Chen’s DGP. All red-colored intervals do not overlap with at least one of the remaining 49
intervals.

Figure 15: We generate 50 independent datasets from the Monk 1 DGP and calculate MCR, BWRs
for VIC, and BWRs for RID. The above plot shows the interval for each dataset for each non-null
variable in Monk 1 DGP. All red-colored intervals (there are none in this plot) do not overlap with at
least one of the remaining 49 intervals.

E.5 Timing Experiments

Finally, we perform an experiment studying how well the runtime of RID scales with respect to the number of
samples and the number of features in the input dataset using the HIV dataset [29]. The complete dataset used
for the main paper consists of 14,742 samples measuring 100 features each. We compute RID using 30 bootstrap
iterations for each combination of the following sample and feature subset sizes: 14,742 samples, 7,371 samples,
and 3,686 samples; 100 features, 50 features, and 25 features.

Note that, in our implementation of RID, any number of bootstrap datasets may be handled in parallel; as such,
we report the mean runtime per bootstrap iteration in Table 3, as this quantity is independent of how many
machines are in use. As shown in Table 3, RID scales fairly well in the number of samples included, and
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Figure 16: We generate 50 independent datasets from the Monk 3 DGP and calculate MCR, BWRs
for VIC, and BWRs for RID. The above plot shows the interval for each dataset for each non-null
variable in the Monk 3 DGP. All red-colored intervals do not overlap with at least one of the remaining
49 intervals.

Figure 17: We generate 50 independent datasets from Friedmanś DGP and calculate MCR, BWRs for
VIC, and BWRs for RID. The above plot shows the interval for each dataset for each non-null variable
in Friedman’s DGP. All red-colored intervals do not overlap with at least one of the remaining 49
intervals.

somewhat less well in the number of features. This is because the number of possible decision trees grows
rapidly with the number of input features, making finding the Rashomon set a more difficult problem and leading
to larger Rashomon sets. Nonetheless, even for a large number of samples and features, RID can be computed in
a tractable amount of time: with 100 features and 14,742 samples, we found an average time per bootstrap of
about 52 minutes.
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