2023 7th International Conference on Management Engineering, Software Engineering and Service Sciences (ICMSS) | 978-1-6654-5606-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICMSS56787.2023.10117776

2023 the 7th International Conference on Management Engineering, Software Engineering and Service Sciences

Leveraging Best Industry Practices to Developing
Software for Academic Research

Levi T. Connelly, Melody L. Hammel, Lan Lin
Department of Computer Science
Ball State University
Muncie, IN 47306, USA
{Itconnelly, mlhammel, 1lin4 } @bsu.edu

Abstract—Best industry practices in software development
are vital to the success of a project. When these practices are not
well-applied, the development process can be severely hindered,
and the final product can be of poor quality as a result.
Implementing techniques for managing source code: version
control, issue tracking, a branching strategy, a pull request
strategy, a coding standard, unit testing, CI/CD, and automated
testing, are not just widely-used industry practices for no reason.
Thus, we took to applying these practices to a development
project for research designed to reduce user time and effort in
hydrologic modeling studies, CyberWater. The software package
is built on legacy software and the development team is made up
of a wide variety of people from various backgrounds, not all
computer science. Applying these best industry practices to their
development project has made their lives easier and the final
product better. We report our experience in this paper and hope
it provides some useful suggestions to domain scientists in an
academic setting regarding how to develop high-quality research
software.

Keywords-source code management; version control; issue
tracking; branching strategies; pull requests; coding standards;
clean code; automated testing; unit testing; Cl/CD; specifications;
software quality

I. INTRODUCTION

Many industry conflicts are a byproduct of poor industry
practices. Some of these conflicts, such as programming errors
or mistakes incurred through continuous development on a
repository, can be avoided by having a distinct guide for
software developers to follow such that focus can remain on
development and research. With a template already in place for
the practices the developers should be wusing for the
programming and maintenance process, more time is allotted
for other parts of the development process that take more time
and can help to make the product better. This also significantly
increases efficiency - with less time spent wrestling with the
problems brought about by poor industry practices, more time
can be spent actually developing the product.

Domain scientists outside of the fields of computer science
and software engineering are typically given funding to create
a software project, but typically not enough funding is given to
hire experts in software development, so they end up having to
do it themselves. With little knowledge on industry practices in
software engineering and little experience in developing
software, conflicts can arise, slowing down the development

978-1-6654-5606-7/23/$31.00 ©2023 IEEE

7

process and resulting in a possibly worse product overall.
Domain scientists may know how to write domain software,
but they typically are not systematically educated on software
engineering practices and tools, leading to much more effort
needing to be put into the project than is necessary should best
industry practices in software development be applied.

II. THE SOFTWARE ENGINEERING PROBLEM PRESENTED
WITH CYBERWATER

The CyberWater project [1] was created with the goal of
creating a new cyberinfrastructure with open data, open
modeling framework software; as a result, the project is
expected to reduce the user time and effort required for
hydrologic modeling studies, allowing related discoveries to be
made sooner. The project team includes hydrologists, climate
experts, meteorologists, computer scientists and CI experts,
from multiple universities and CUAHSI, who collaborate
closely to ensure CyberWater will engage the broad
communities for domain scientists' benefits.

One software engineering problem presented with
CyberWater was that there is a lot of moving parts that
comprise CyberWater; therefore, it was expected that without
some grounding in positive industry practices such as
automated testing and version control workflows that errors
could slowly make themselves known in the project. To
mitigate this, Ball State was put in charge of managing how
development should be made on the project and what tools
should be used to design and implement automated tests for
CyberWater.

III. OUR EXPERIENCES IN APPLYING SOME BEST INDUSTRY
PRACTICES

A. Improving Workflow and Source Code

Taking care of source code can be very cumbersome. There
are a lot of methods that industries use to ensure that
functionality is communicated from the developer to the end-
user such that the intermediary steps require the code to be
refined and evaluated before reaching its user. For CyberWater,
this meant creating an environment to give the developers
assurance that the code they were writing was considerably less
likely to fault once it had reached its end-user. By
implementing a steady and explicit workflow, enforcing
version control and issue tracking, prompting code to be held

Authorized licensed use limited to: Ball State University. Downloaded on May 11,2023 at 13:44:51 UTC from IEEE Xplore. Restrictions apply.

for review, holding that code to a professionally proposed
standard, and implementing automated pipelines to test the
code before releasing it, we could prevent a considerable
number of bugs from being introduced into the final releases.

B. Enforcing Version Control and Issue Tracking

Version control and issue tracking were a necessary set of
industry practices that needed to be introduced to the project. It
is not feasible to work on a smaller project in size without a
fundamental understanding of version control, let alone this
project. Version control is a must if multiple developers are
going to work on a single repository at the same time. Having
version control ensures that features and tasks can be split up
into sections and merged into a development branch such that
work neither lost nor stunted.

Issue tracking is also vital, as it introduces a medium
through which bugs and errors can be monitored and settled.
As per best industry practices, it is expected that bugs and
errors do not go ignored, and that there exists a system through
which these issues can be mitigated. The issue tracking system
allows a user to communicate directly with the developers such
that progress on the repository can be made in a timely fashion.
There are many platforms that can be used for issue tracking,
such as Jira [2], which we initially looked into but dropped due
to limited budget. We ended up using Bitbucket [3] for version
control, and its provided issue tracking feature called issues.
Working in tandem with the issue tracking system, just as with
version control, to have an organized way to manage in-
progress fixes for bugs and to merge them back into the
production-ready product, should be a branching strategy.

C. Defining a Branching Strategy

One of the hassles of version control is asserting that the
means by which branches are created, merged, and removed
implies that no work will be lost while developers work on
separate features at the same time. Setting up a branching
strategy allows a team of developers to be certain that their
work is not only consistently tracked and implemented, but
also that the versions they release are always in a production-
ready state.

The key to a good branching strategy is setting up
particular but arbitrary feature branches that then get merged
into a development branch. Through this development branch,
where integration occurs, we can move passing code into a
feature-branch or master-branch such that all code in the
master branch is in a production-ready state. The main idea of
having multiple branches is so that no non-functional or non-
production-ready code makes it into the master branch. Thus, it
can always be assured that the master branch is free from
known issues. If an issue arises or is brought to attention with
code that is already in the master branch, a hotfix branch can
be forked from the master branch. The use cases are typically if
an easily-exploitable bug was found in the code of the master
branch or if the app is unresponsive or breaking. Post-hotfix,
the branch is merged into both the master and development
branch - this ensures that no one working on the development
branch is attempting to work around a bug that has already
been fixed, and that the master branch stays production-ready
and issue-free. Of these branches, the only two that remain

8

permanent are the master and development branches - feature,
hotfix, and release branches can be safely deleted after merging
with no harm to the repository. Figure 1 illustrates our
proposed branching strategy.

—>

i)

—

master
v

hotfix

release

develop

feature

MJ‘QJ‘LM

Fig. 1. Our proposed example branching strategy

D. Defining a Pull Request Strategy

Pull requests are an essential part of software development
in industry, as it creates an environment for the code to be
reviewed in an efficient and professional manner. Pull requests
were designed with merge conflicts in mind such that an
administrator, or group of administrators, of the repository
could mitigate conflicts by reviewing a small subset of a
developer’s code and decide whether or not to merge that
change into the preexisting codebase. They provide a simple,
web-based way for developers to submit their work, and a
similarly simple system for administrators to review and
possibly implement changes made by developers. This also
allows for less backtracking on old code, since code is
implemented and merged into the correct branches in small
intervals, making it easier to review and catch mistakes.

Pull requests are much like voting on a bill that, when
passed, will change the existing logic of the system dependent
on what adaptations you make to it before sending it on its way
upstream. This fundamental part of industry practices ensures
that unkept code does not make its way into release by placing
responsibility on the administrator and accountability on the
developer. This leaves more incentive for the developer to
abide by coding standards when they make small adaptations to
the code.

Pull requests are typically used when a developer has made
changes that will affect the release. Thus, it raises their code
for review so that others working on the project can make sure
it is in good quality. Pull requests should be used once a
developer has finished cleaning and optimizing their code, and
are relatively sure that it is in a state where the project can
"pull" changes from their fork. Commonly, developers make
the mistake of "lazy merging," where their code is not
thoroughly reviewed before making a pull request. Developers
should ensure that they have tested every feature and bug fix in
the branch they are attempting to merge, staying thorough to
avoid breaking the master branch. They can also be used when

Authorized licensed use limited to: Ball State University. Downloaded on May 11,2023 at 13:44:51 UTC from IEEE Xplore. Restrictions apply.

making changes to a project of which a developer is not a part -
for example, patching an open-source project on GitHub [4].
Relative to the branching strategy mentioned in the prior
section, they should be used when merging from development
to release, release to master, and hotfix to master. Pull requests
should not be made from the master branch - this is where we
want the code to be merged.

Although pull requests sound rather similar to peer reviews,
they differ in some notable ways. First, peer reviews involve
reviews by multiple users simultaneously. With pull requests,
administrators and developers are given time to review the
code individually, on their own time. Peer reviews, as well, are
a direct form of feedback - suggestions will be given directly to
the code author. With pull requests, the feedback is more
indirect - they can be rejected with reasons given as to why,
which the developer must read, interpret, and fix on their own
time. Peer reviews are appropriate for only large releases,
typically, whereas pull requests are appropriate for any release,
since they don't require simultaneous attention of multiple
project members. Finally, peer reviews must be enforced by the
project team, whereas pull requests are built into most online
repository services, like GitHub and Bitbucket.

E. Defining a Coding Standard

It is appropriate to have all of the developers on board with
the same coding standards. One of Ball State's focuses during
the CyberWater project was asserting a coding standard for the
developers of the project. Given that the language for this
project was primarily Python, the focus aimed towards closely
aligning the habits of the developers with the PEP 8 style guide
[5]; however, it is expected that for any given language, there
exists a community that finds the most appropriate standards
for a given language and implements these standards into a
linter that can be used by each developer on a given project to
keep their styles consistent across the repository.

General clean code practices are also given regarding
coding standards. Abiding by the concept of single-indentation,
or maintaining abstraction and complexity in a given method,
or even simply making your variable names self-explanatory
are essential principles for best industry practices. Robert C.
Martin goes over this in great detail in his Clean Code book [6]
released in 2008. The focus of clean code is to ensure that
maintainable code is delivered during development that will be
legible once time has passed such that a lack of documentation
would not heavily inhibit the workflow of the project were
adaptations needed to be made to that code later. If a bug is
later on discovered in a piece of code, and that code follows no
clean coding standards, the code will be much harder to read in
order to discover where the bug lies, causing extensive time to
be lost simply trying to understand what each line of code
means, what variable names mean and are referring to, what
the side effects of a function are, and various other issues.

Beyond the PEP 8 standards of naming conventions and
how many lines to have between methods, the much more
important clean code standards to follow are ones involving
abstraction and descriptive (but not overly detailed) naming
schemes. If a method is named poorly, a user might have to
spend time looking over the method’s code to see what it

9

actually does and why it is used in a specific other method —
this leads to the possibility of a developer having to backtrack
through miles of code just to figure out what the purpose of
one single method call is. Similarly, this could get even more
complex if the variable names are inadequate. Variable names
should be descriptive of their purpose, rather than difficult-to-
understand acronyms or entirely nameless, like x or a. The
purpose of variables is to give a higher-level name to a value in
programming — if a developer doesn’t give their variables
useful names, then there’s little point in using a variable at all,
when everything could essentially just be anonymous.

For example, take this method (shown in Figure 2)
designed to sum up two instance variables of a particular but
arbitrary class, then yield an original and a result as a generator.

def add_stuff(self):
self.stuffl += self.stuff2
yield stuff2, stuffil

Fig. 2. A method designed to sum up two variables

This method takes no parameters — how is a given user to
know what is actually happening here? What are these
variables being added? What is the purpose of this method?
Some of this could be communicated if both the method itself
and the variables were changed to be more descriptive, as
shown in Figure 3.

def calculate_total_balance(self):
self.current_balan += self.deposit
yield deposit, current_balance

Fig. 3. The new-and-improved method and variable names

Now the purpose of the method is clear, and users reading
the code can infer that these variables of the class should
already have been set in some way before this method was
called.

IV. OUR EXPERIENCES IN TESTING

Having an explicit and reliable workflow is nice, but if
there doesn't exist a system to require the environment to filter
bugs before releasing it, then the workflow is better defined as
an unnecessary set of extra steps for the developer. Continuous
Integration / Continuous Deployment (CI/CD) pipelines ensure
that when code is pushed to a given branch, preferably the
integration branch, it can automatically be migrated to a
higher-level branch where it can then be pushed into
production. By enforcing that automated testing of the
development code be in charge of what code was released for
production, we could assert that production code always passed
our given tests. We were able to assert this using an open-
source tool called Jenkins [7].

A. Using Jenkins for CI/CD

Jenkins was one of the most useful tools for the
CyberWater project. Although alternatives were available for
automated testing, like GitLab [8] CI/CD tools and Atlassian

Authorized licensed use limited to: Ball State University. Downloaded on May 11,2023 at 13:44:51 UTC from IEEE Xplore. Restrictions apply.

Bamboo [9], the extensive work that has been done on Jenkins
and the fact that it is open source made it a viable candidate for
what we needed to use it for. Many of the extensions made
available through Jenkins simplified the process through which
automated testing could be performed on the CyberWater
project.

Some of the extensions available for Jenkins that simplified
our experience were tools like the Environment Variable
Injection extension which wrapped logic for modifying the
Path variable on Windows machine so we could make our
Path variables relative to the machine the project was being
run on. This was vital given that our project required we access
the Python distro and packages contained within the project
that we downloaded for VisTrails [10] (an open-source
scientific workflow and provenance management system used
by CyberWater) and CyberWater.

Setting up Jenkins is simple. By downloading the jar or
war files necessary to get the server started, you can execute
those files with Java and start a server locally on the machine it
is being executed from. Next, go through the account set-up
and configure the repository you want to target using Jobs.
This was how our team was able to set up Jenkins with our
Bitbucket repository after configuring the credentials for an
administrative account monitoring the repository.

Jenkins jobs can also be run automatically, by setting up
Build Triggers to determine when tests are run. The notable
option we utilized was ‘Build when a change is pushed to
BitBucket,” shown in Figure 4. Figure 5 shows how we set up
build steps in a Jenkins job.

Build Triggers

Trigger builds remotely (e.g., from scripts) ?
Build after other projects are built 2

Build periodically ?

Build when a change is pushed to BitBucket
GitHub hook trigger for GITScm polling ?
PollSCM ?

Fig. 4. Build Triggers in Jenkins

Dashboard bitbucket repo

General Source Code Management Build Triggers Build Environment Build

Post-build Actions

Execute shell 0
Command

python2.7 -m unittest discover -v

See the list of available environment variables

Advanced.

Execute shell (2]
Command

ptest -t /home/rokolinkon/python_calc_test.PythonCalcTest

See the list of available environment variables

Fig. 5. Setting up build steps in a Jenkins job

Advanced,

Apply

10

B. Automated Unit Testing Using Python Unittest or Ptest

One of the final necessary steps for implementing proper
automated tests into the project was finding a suitable unit test
library. Ptest [11] proved to be one of the best options, despite
the fact that the project was locked in Python 2.7, because
much of its development was done early on before the
deprecation of Python 2. In addition, the Python library
simplified the means by which test could be written by
utilizing decorators to denote tags, groupings, setup-teardown
practice, and whether to run the tests concurrently or in parallel.

Ptest was also an exceptional wrapper for basic unit tests
because it allowed for a clean visual output of passing or
failing tests by graphing these rates and outputting them to a
stylized HTML file (see Figure 6). By linking the location of
the outputs and using Jenkins automated scripts to give them a
unique location each time a test was run, we could retrieve a
unique graphical output for all passing tests through Jenkins
via Ptest.

eee I) @ Bazelgeuse | Mon. B loadsftest-output/htmi-reportfindexhtml @ @ +

Generated by ptest 1.9.5 at 2021-12-29 12:39:45.878410

TeSt ReSUIts papermache.attlocal.net / Python 2.7.18 / Darwin-21.2.0-x86_64-1386-64bit
) pefaultSuite) €

start Time
End Time
Duration

2021-12-29 12:39:41.781379
2021-12-29 12:39:45.797270
4.0158915

- Defaultsuite

- test_report_test

- Test M Passed

A Failed

I ‘mum Skipped

[zest_oivide by_zero
‘test_inequality_false

[test_inequatity_true

Fig. 6. Ptest HTML test report

Unittest [12], however, proved to be ultimately more useful
in the end, as it integrated well with CI/CD and test automation,
especially within Jenkins. Ptest relies primarily on the
developer reading the output and is more focused toward an
individual developer testing their code manually. Unittest has
one key functionality that makes it viable for automated testing
on Jenkins: AssertionError. Since assertions in Unittest
are essentially just functions that compare the output of the first
argument to the other, throwing an exception if the comparison
is false, a failing test in Unittest can be detected by Jenkins as a
failed build. Failed tests in Ptest, on the other hand, are marked
only in the terminal output of the tests and in the GUI test
report - since no exceptions are thrown, Jenkins sees nothing
out of the ordinary and will assume, failing tests aside, the
build to be successful. Therefore, since Unittest utilizes
exceptions to communicate test results, allowing them to be
recognized through automated test running systems, we
decided to continue using Unittest moving forward. Ptest could
technically still be used, if a system was designed so that an
exception is raised when a test fails, but if no one is ever using
the graphical test report, the extra hassle isn't necessarily worth
1it.

Though considering all of this, none of the backend unit
testing would have been feasible had there not been a

Authorized licensed use limited to: Ball State University. Downloaded on May 11,2023 at 13:44:51 UTC from IEEE Xplore. Restrictions apply.

separation between backend and Ul in VisTrails. Luckily, since
the project is built in Python, object-method replacement was
an option by using the dictionary structure of instantiated
Python objects and swapping them out with method-structured
functions. Using this method, the project could successfully
sever the connection from the user interface and focus on the
backend code alone for testing. We refer the readers to [13] for
details of how we used this novel technique for backend black-
box unit testing.

Similarly, when applied to the CyberWater project, the
testing is still external. In the prior state of the project, code
was written and no or few test cases were developed — the
principle of Test-Driven Development was entirely ignored.
Ideally, test cases should be developed in tandem with the code
if not before it. With Test-Driven Development, projects of a
similar nature or similar scale are less likely to allow bugs into
the final version, and are likely to have a smoother
development process, with the project team able to focus more
closely on the domain-specific aspects of the project, rather
than wrestling with bugs due to the lack of a good testing
workflow.

C. Defining a CI/CD Pipeline

Continuous Integration / Continuous Development is an
involved process with many steps and is an industry standard
when working on a software development project. In our
experiences with the CyberWater project, we made many
suggestions to aid in the development process, making the final
product higher quality and the development process easier.
Notably, we focused rather closely on testing. We developed a
system of testing modules based on their input ports and output
ports, since this is an integral functionality of VisTrails that the
developers work with for their CyberWater extension. We
applied this, most recently, to a workflow designed to pull data
from the USGS website. We wrote tests based on specific
inputs and the expected outputs they were to generate, whether
that was a direct output or a changed state as a result of a
function call. However, our progress with testing was quickly
slowed by the lack of detailed specifications.

D. The Importance of Good Specifications

Specifications are an integral part of designing and writing
code to be tested by someone else, especially in a black-box
scenario. If a developer in test cannot write tests for whatever
reason, whether it be limitations because they don't know the
expected type of an output, they don't know what the intended
output is, or they aren't aware of all the valid inputs, then they
often have to resort to reading the code and guessing what the
intended behavior is. This can become even worse if the
developers are not utilizing clean code standards. The testers
will often have to ask multiple questions, using up a lot of the
developers' time. The problem could be solved before it is even
brought about with the existence of good specifications. We
asserted that specifications should be different from end-user
documentation. Documentation should be high-level,
describing the overall functionality of a module in a domain-
specific way. Specifications, on the other hand, should be
useful for the tester - often, testers don't know or don't care
about the high-level functionality of a module, but rather what

11

outputs it should produce based on specific inputs. They need
an expected outcome based on regular inputs, so they don't
need to read the code just to get started. Having a test fail just
because the tester wasn't aware of what format the output
would be in wastes time for the developer having to explain it,
and the tester having to try to understand it. If detailed
specifications were given in the first place, the process would
have moved forward much more efficiently.

In our experience of applying automated unit testing to
CyberWater, we found ourselves with lots of end-user
documentation, but with very little helpful specifications in the
way of what would be useful to us. There was a significant
amount of time and effort involved in testing the modules we
were given when the development team was unsure of what we
needed for unit testing. To illustrate this concept, consider a
hypothetical Python class that a tester should test. Let’s call
this class SuperDog. It has methods add, multiply, and
chew _homework, shown in Figure 7, and we want these all
to be tested to ensure they work properly. Bad specifications
for the testers would be high-level and contain very little
information about how this code is actually structured and what
one would actually need to know should they call these
methods directly.

class SuperDog():

A dog that knows how to do math! Kinda.
add = lambda x,y: x+y
multiply = lambda x,y: x¥ky
def chew_homework(self, homework):

The dog chews up your homework

into a bunch of pieces.

match (homework) is int:

case True:

raise MathSucksException
case False:

if 1 (homework) is type(self):
return "That's another dog!"
else:
for word in homework. 4 g B
yield word

Fig. 7. The code for the SuperDog class to be tested

SuperDog Specifications
The SuperDog class is designed to be your best friend, but superly.

‘What it can do:

Add: sum the inputs

Multiply: times the inputs

Chew your homework: chews up your assignment into pieces, leaving you with a list of the
words in the essay

Fig. 8. Less than optimal specifications for SuperDog

As shown in Figure 8, we are given a high-level description,
but we know very little about how to test it. The verbiage is
inconsistent: are we adding or summing the inputs? Are we
multiplying or timesing? Is it homework, an assignment, or an
essay? We are left with many more questions: how do we test
this? What types are the inputs? What are the return types? Do
these methods have any side effects? What does it mean to
“chew up homework”? What is the homework? Is the input
only of one possible type? These are all questions a tester
would likely have to ask the developers about, taking up more

Authorized licensed use limited to: Ball State University. Downloaded on May 11,2023 at 13:44:51 UTC from IEEE Xplore. Restrictions apply.

time and effort for everyone involved, assuming they don’t
give up and read the code. We don’t even know if these are all
necessarily methods — they are just listed as “what it can do.”

An example of good tester specifications is shown in
Figure 9. Everything, inputs and outputs, has its type listed so
the testers are not stuck guessing when writing their tests. The
verbiage is consistent: we know that the add and multiply
methods take in two arguments and perform mathematical
operations on them and return the result. We have a description
as to what the “homework” argument is — it can be of various
types, and we know the intended output for each type it should
be. We also now know this method has a side effect: if a file
rubric.txt is not in the working directory, it will fail. The
testers now have specific exception types to test for and know
helpful things about the function and output of the functions,
notably chew homework: the output will likely be
iterable, and the iterable should have specific things in
it. Thus, the code is much easier to test, even without ever
having seen the code itself. It is unnecessary for the testers to
know how something is done, as long as they know whether
it’s being done right. Given those specifications, a tester could
write some tests like the ones shown in Figure 10.

SuperDog Specifications
The SuperDog is an implementation of a dog that is super: it can do math.

Methods:
add(x, y):
-Typex: int
-Typey: int
- Adds the inputs and returns the sum
- Return type: int
multiply(x, ¥):
-Typex: int
-Typey: int
- Multiplies the inputs and returns the product
- Return type: int
chew_homework(homework):
- Takes in an argument of your homework
- It the homework is of type int, it should raise a MathSucksException
-If str, it should “chew up” the homework: returns an object of
type generator, containing every individual word in
the string when iterated through
- If SuperDog, it should return a value of type str, containing the string
“That's another dog!”
- Anything else should throw a Python ValueError
- Looks for a file called “rubric.txt” in the working directory - necessary for it to run
- This is used to demonstrate that dogs do not read rubrics

Fig. 9. Better specifications for SuperDog

test_add(self):

self. (sel
test_multiply(self):
self (se

f. .add(1, 2), 3)

f. .multiply(2, 6), 1@)
test_chew_homework_str(self):
self (["This", "
(self. .chew
test_chew_homework_int(self):
with self.

is", "test", "homework"],
homework("This is test homework")))

(MathSucks
5 ymework(9)
test_chew_homeweork_dog(self):
dog2 ()
self ("That's another dog!", self .chew_hc
del dog2
test_chew_homework_other(self):
with self. (\

salf .chew homev

xception):
self .chew_hc
ymework(dog2))

def

ueError):

Fig. 10. SuperDog tests

From these tests, we learn about some errors in the
SuperDog code: the add and multiply methods are missing
the self parameter, the multiply method is actually using

12

exponentiation, and the chew homework method has no
error handling for an input of an unexpected type. With these
specifications, if a given tester is proficient enough in Python
to know what a generator is, then they will easily be able to
test the code we have written.

This specification philosophy was then applied to two of
the modules we were given to test for the CyberWater project:
TimeRange and SpaceRange. These are related modules to be
used in larger workflows, so their specifications are written in
tandem. Figure 11 shows the new specifications we wrote for
TimeRange and SpaceRange, for the developers’ use as good
examples for documenting future modules, while working with
them closely on testing these modules.

TimeRange + SpaceRange
Designed to format a range of dates + times and x + y coordinates to be used by
USGSAgent, defining the temporal and spacial ranges for the data to be pulled back.

Input ports
timeini + timeend:
- Type: String (VisTrails)

Exception

TimeRange compute method:

- Converts VisTrails String input objects into a format readable by USGSAgent
the RangeModel class, with two 'all'ibutes: i
the inputs

X_min + X_max + y_min + y_max:

- Type: Float (VisTrails)

- Integers do not work and will throw an exception

- If either *_max is lesser than its corresponding *_min, an Exception (base) is
thrown
subrange:

- Type: TimeRange

- A TimeRange that has already computed —pulls out the data from it and holds
it as a RangeModel within a RangeModel, which can be accessed with the .subrange
attribute

SpaceRange compute method:

- Converts VisTrails Float inputs into a SpaceRangeModel, similar to TimeRange,
extending the RangeModel class and using attributes corresponding to the names of
the input ports

Fig. 11. TimeRange and SpaceRange's new specifications

For these specifications, there are clear descriptions as to
the inputs and outputs and what methods we need to call to
adequately test these modules. We know what inputs are valid,
and what results invalid inputs should produce. We are also
given some use cases, which allows us to determine which tests
could be necessary depending on how specific attributes of the
modules will be used. We also do not have any information
that does not matter to us — we do not need to know how the
values are converted into the correct format or what they are
typically used for in a larger, higher-level sense.

In essence, when writing specifications for a tester, it
requires thinking much differently from writing documentation
for an end-user. Things written for the end-user should be high-
level and focus on (possibly domain specific) functions, but
things written for testers should be low-level and focus on what
can be accessed by a tester who cannot see the code but must
use the code to test in the backend. If a project is going to be
tested by individuals or teams external to the project
development team, it is essential that they know what they
need to be looking for and how to write the tests without too

Authorized licensed use limited to: Ball State University. Downloaded on May 11,2023 at 13:44:51 UTC from IEEE Xplore. Restrictions apply.

much friction in creating said tests, allowing the project to run
smoothly for everyone involved.

V.

Industry practices in software development did not become
industry practices for no reason. Utilizing these practices well
in a project is vital to the ultimate success and efficiency of the
project, and we expect that applying these practices to the
CyberWater project will improve its development process
significantly, making it both more efficient and causing the
code produced to be of higher quality. Establishing processes
and workflows for managing source code with version control,
issue tracking, pull requests, branching strategies, clean code,
and CI/CD are essential to working on a project with multiple
people, and help to improve the final product while making the
development process easier and less issue-prone, giving
developers a blueprint to follow and improving quality of work
for everyone involved, both for the developers and the final
product. Our experiences reported here can be tailored to
typical research projects in an academic setting, in which
domain scientists need to write code while assuring their
developed software is of high quality.

CONCLUSION

13

ACKNOWLEDGMENT

This work was generously funded by the National Science
Foundation (NSF) under Grant 1835602. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of NSF.

REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]

CyberWater, https://www.cuahsi.org/cyberwater.

Jira Software, https://www.atlassian.com/software/jira.

Bitbucket, https://bitbucket.org/product/.

GitHub, https://github.com.

PEP 8 — Style Guide for Python Code, https://peps.python.org/pep-0008/.

R. C. Martin, Clean Code: A Handbook of Agile Software
Craftsmanship, 1st ed., Pearson, 2008.

(7
(8]
]

Jenkins, https://www.jenkins.io.
The One DevOps Platform | GitLab, https://about.gitlab.com.

Bamboo Continuous Integration and Deployment Build Server,
https://www.atlassian.com/software/bamboo.

[10]
(1]
[12]

VisTrails, https://www.vistrails.org//index.php/Main_Page.

Ptest, https://pypi.org/project/ptest/.

Unittest — Unit Testing Framework,
https://docs.python.org/3/library/unittest.html.

L. T. Connelly, M. L. Hammel, B. T. Eger, and L. Lin, “Automated Unit
Testing of Hydrologic Modeling Software with CI/CD and Jenkins,”
Proceedings of the 34th International Conference on Software
Engineering and Knowledge Engineering (SEKE 22), 2022, pp. 225-230.

[13]

Authorized licensed use limited to: Ball State University. Downloaded on May 11,2023 at 13:44:51 UTC from IEEE Xplore. Restrictions apply.

