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Abstract
We build a collection of topological Ramsey spaces of trees giving rise to universal
inverse limit structures, extending Zheng’s work for the profinite graph to the setting of
Fraïssé classes of finite ordered binary relational structures with the Ramsey property.
This work is based on the Halpern-Läuchli theorem, but different from the Milliken
space of strong subtrees. Based on these topological Ramsey spaces and the work
of Huber-Geschke-Kojman on inverse limits of finite ordered graphs, we prove that
for each such Fraïssé class, its universal inverse limit structure has finite big Ramsey
degrees under finite Baire-measurable colorings. For such Fraïssé classes satisfying
free amalgamation as well as finite ordered tournaments and finite partial orders with
a linear extension, we characterize the exact big Ramsey degrees.

Keywords Universal inverse limit structure · Fraïssé class · Big Ramsey degree ·
Tree · Topological Ramsey space
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1 Introduction

Structural Ramsey theory originated at the beginning of the 1970’s in a series of papers
(see [24]). Given structures AAA and BBB, let

(
BBB
AAA

)
denote the set of all copies of AAA in BBB.

We write CCC −→ (BBB)AAAl,m to denote the following property: For every finite coloring

c : (
CCC
AAA

) −→ l, there is BBB ′ ∈ (
CCC
BBB

)
such that c takes no more thanm colors on

(
B′B′B′
AAA

)
. Let

B Kaiyun Wang
wangkaiyun@snnu.edu.cn

Natasha Dobrinen
ndobrine@nd.edu

1 University of Notre Dame, 255 Hurley Bldg, Notre Dame, IN 46556, USA

2 School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710119,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00153-022-00849-z&domain=pdf


472 N. Dobrinen, K. Wang

K be a class of structures. The (small) Ramsey degree of AAA inK is the smallest positive
integer m, if it exists, such that for every BBB ∈ K and every positive integer l ≥ 2 there
exists CCC ∈ K such that CCC −→ (BBB)AAAl,m . The class K is said to be a Ramsey class if the
Ramsey degree of every A ∈ K is 1. Ramsey classes are the main topic of interest
of structural Ramsey theory. Many Ramsey classes are known. Examples relevant for
our presentation include the classes of finite ordered graphs, finite ordered k-clique
free graphs with k ≥ 3, finite ordered oriented graphs, finite ordered tournaments, and
finite partial orders with a linear extension.

Given an infinite structure SSS and a finite substructure AAA, the big Ramsey degree
of AAA in SSS is the smallest positive integer m, if it exists, such that SSS −→ (SSS)AAAl,m for
every l ≥ 2. Research on big Ramsey degrees has gained recent momentum due to the
seminal paper of Kechris et al. in [15], and the results by Zucker in [31] connecting
big Ramsey degrees for countable structures with topological dynamics, answering a
question in [15].

The history of big Ramsey degrees for countably infinite structures has its begin-
nings in an example of Sierpiński, who constructed a 2-coloring of pairs of rationals
such that every subset forming a dense linear order retains both colors. Later, Galvin
proved that for every finite coloring of pairs of rationals, there is a subset forming a
dense linear order on which the coloring takes no more than two colors, thus proving
that the big Ramsey degree for pairs of rationals is exactly two. This line of work has
developed over the decades, notably with Laver proving upper bounds for all finite
sets of rationals, and culminating in Devlin’s calculations of the exact big Ramsey
degrees for finite sets of rationals in [6].

The area of big Ramsey degrees on countably infinite structures has seen consid-
erable growth in the past two decades, beginning notably with Sauer’s proof in [28]
that every finite graph has finite big Ramsey degree in the Rado graph, which is the
Fraïssé limit of the class of all the finite graphs, and the immediately following result
of Laflamme et al. in [16] characterizing the exact big Ramsey degrees of the Rado
graph. Other recent work on big Ramsey degrees of countable structures include ultra-
metric spaces (Nguyen Van Thé [25]), the dense local order (Laflamme et al. [17]), the
ultrahomogeneous k-clique free graphs (Dobrinen, [7, 8]), and, very recently, the fol-
lowing: [2, 3, 5, 14, 18, 19, 32]. For more background in this area, we refer the reader
to the excellent Habilitation of Nguyen Van Thé [26] and a more recent expository
paper of the first author [9].

Results on big Ramsey degrees for uncountable structures are even more sparse
than for countable structures. Ramsey theorems for perfect sets mark a beginning of
this line of inquiry, and most of these theorems have at their core either the Milliken
theorem ( [20]), or the Halpern-Läuchli theorem ( [12]) on which Milliken’s theorem
is based. For example, Blass proved in [4] the following partition theorem for perfect
sets of R, which was conjectured by Galvin (see [10]), who proved it for n ≤ 3.

Theorem 1.1 (Blass [4]) For every perfect subset P of R and every finite continuous
coloring of [P]n, there is a perfect set Q ⊆ P such that [Q]n has at most (n − 1)!
colors.

In the proof of this theorem, Blass defined patterns for finite subsets of a perfect tree
T such that for every finite continuous coloring of finite subsets of the nodes in T , one
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can make all subsets with a fixed pattern monochromatic by going to a perfect subtree.
Todorčević (see [29], Corollary 6.47) provided a simpler proof of Blass’ theorem using
the Milliken space, as the perfect trees in Blass’ argument can be replaced by strong
subtrees.

Given a set X , a subset Y is called an n-subset of X if Y is a subset of X of size
n. Let [X ]n = {Y ⊆ X : |Y | = n} be the set of all n-subsets of X . For a graph G,
let V (G) denote its vertex set and E(G) ⊆ [V (G)]2 denote its edge relation, that is,
E(G) is an irreflexive and symmetric binary relation. An inverse limit of finite ordered
graphs is called universal if every inverse limit of finite ordered graphs order-embeds
continuously into it. Geschke (see [11]) proved the existence of a universal inverse
limit graph. Moreover, Huber-Geschke-Kojman (see [13]) gave the definition of a
universal inverse limit graph with no mention of an inverse system.

Definition 1.2 (Huber-Geschke-Kojman [13]). A universal inverse limit of finite
ordered graphs is a triple G = 〈V , E,<〉, such that the following conditions hold.

(1) V is a compact subset of R\Q, E ⊆ [V ]2, and < is the restriction of the standard
order on R to V .

(2) (Modular profiniteness) For every pair of distinct vertices u, v ∈ V , there is a
partition of V to finitely many closed intervals such that

(a) u, v belong to different intervals from the partition;
(b) for every interval I in the partition, for all x ∈ V \I and for all y, z ∈ I ,

(x, y) ∈ E if and only if (x, z) ∈ E .

(3) (Universality) Every nonempty open interval of V contains induced copies of all
finite ordered graphs.

Based on the way Blass proved Theorem 1.1 by partitioning finite subsets into
patterns in [4], Huber, Geschke and Kojman proved in [13] the following partition
theorem for universal inverse limits of finite ordered graphs by partitioning the iso-
morphismclass of finite ordered graph H into T (H)many strong isomorphismclasses,
called types. This theorem tells us that the universal inverse limit graphs have finite
big Ramsey degrees under finite Baire-measurable colorings.

Theorem 1.3 (Huber-Geschke-Kojman [13]). For every finite ordered graph H there
is T (H) < ω such that for every universal inverse limit graph G, and for every finite
Baire-measurable coloring of the set

(
G
H

)
of all copies of H in G, there is a closed

copy G ′ of G in G such that the set
(
G ′
H

)
of all copies of H in G ′ has at most T (H)

colours.

The following notation will be used throughout. The set of natural numbers,
{0, 1, 2, 3, . . . }, will be denoted by ω. Let ω<ω be the set of all finite sequences of
natural numbers. Let⊆ denote the initial segment relation. For an element s ∈ ω<ω, let
|s| denote the length of s. We call a downward closed subset T of ω<ω a tree, ordered
by ⊆. Every element t of a tree T is called a node. Given a tree T , let [T ] be the set of
all infinite branches of T , i.e., [T ] = {x ∈ ωω : (∀ n < ω) x � n ∈ T }, where x � n is
its initial segment of length n. T ′ is called a subtree of T if T ′ ⊆ T and T ′ is a tree. For
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a tree T and t ∈ T , s is called an immediate successor of t if s is a minimal element
of T above t . The set of immediate successors of t in T is denoted by succT (t). Let
Tt be the set of all nodes in T comparable to t , i.e., Tt = {s ∈ T : t ⊆ s ∨ s ⊆ t}. For
n ∈ ω, we let T (n) = {t ∈ T : |t | = n}.

In order to state the results of Huber-Geschke-Kojman and of Zheng, we need to
introduce the following notation and structures. Let R denote the Rado graph, i.e., the
unique (up to isomorphism) countable universal homogeneous graph. We assume that
the set of vertices of R is just the set ω of natural numbers. For n ∈ ω, let Rn be the
induced subgraph of R on {0, . . . , n}.
Definition 1.4 ([13]) Let Tmax ⊆ ω<ω be the nonempty tree such that for each t ∈
Tmax,

succTmax(t) = {t�〈0〉, t�〈1〉, . . . , t�〈|t |〉}.

For t ∈ Tmax, we define Gt to be the ordered graph on the vertex set succTmax(t) with
lexicographical ordering, such that Gt is isomorphic to R|t |.

Note that [Tmax] is a subset ofωω. Given x, y ∈ [Tmax]with x �= y, let x∩ y ∈ ω<ω

be the common initial segment of x and y, i.e. x ∩ y = x � min{n : x(n) �= y(n)}.
The tree Tmax and the ordered graphs Gt (t ∈ Tmax) induce an ordered graph Gmax
on the vertex set [Tmax], ordered lexicographically, with the edge relation defined as
follows. For x, y ∈ [Tmax], (x, y) ∈ E(Gmax) if and only if (x � (|x ∩ y| + 1), y �
(|x ∩ y| + 1)) ∈ E(Gx∩y). Suppose that T is a subtree of Tmax and t ∈ T . Let GT

t
denote the induced subgraph of Gt on the vertex set succT (t). We define G(T ) to be
the induced subgraph of Gmax on [T ]. A subtree T of Tmax is called a Gmax-tree if for
every finite ordered graph H and every t ∈ T , there is s ∈ T with t ⊆ s such that H
embeds into GT

s . In particular, Tmax is a Gmax-tree.
Let (R,≤, r) be a triple satisfying the following: R is a nonempty set, ≤ is a

quasi-ordering on R, and r : R × ω −→ AR is a mapping giving us the sequence
(rn(·) = r(·, n)) of approximation mappings, where

AR = {rn(A) : A ∈ R and n ∈ ω}.

For a ∈ AR and A ∈ R,

[a, A] = {B ∈ R : (B ≤ A) ∧ (∃n)(rn(A) = a)}.

The topology on R is given by the basic open sets [a, A]. This topology is called the
Ellentuck topology onR. Given the Ellentuck topology onR, the notions of nowhere
dense, and hence of meager are defined in the natural way. Thus, we may say that a
subset X of R has the property of Baire iff X = O�M for some Ellentuck open set
O ⊆ R and Ellentuck meager set M ⊆ R.

Definition 1.5 ([29]) A subset X of R is Ramsey if for every ∅ �= [a, A], there is a
B ∈ [a, A] such that [a, B] ⊆ X or [a, B] ∩ X = ∅. X ⊆ R is Ramsey null if for
every ∅ �= [a, A], there is a B ∈ [a, A] such that [a, B] ∩ X = ∅.
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Big Ramsey degrees in universal inverse limit structures 475

A triple (R,≤, r) is a topological Ramsey space if every property of Baire subset
of R is Ramsey and if every meager subset of R is Ramsey null.

In [30], Zheng constructed a collection of topological Ramsey spaces of trees. For
each type τ of finite ordered graphs, the space (G∞(τ ),≤, r) consists of Gmax-trees
of a particular shape. The new spaces G∞(τ ) not only depend on the fact that the class
of finite ordered graphs is the Ramsey class, but also, similarly to the Milliken space,
are based on the Halpern-Läuchli theorem. Moreover, she presented an application of
the topological Ramsey spaces G∞(τ ) to inverse limit graph theory. Similarly to how
Todorčević proved Blass’ Theorem 1.1, Zheng used the new spaces G∞(τ ) to prove
the following Theorem 1.6 (Theorem 3.1 in [13]), which is a key step to show the
above Theorem 1.3 in [13].

Theorem 1.6 (Theorem3.1 in [13])Let T beanarbitraryGmax-tree.For every type τ of
a finite induced subgraph of Gmax, and for every continuous coloring c : ( G(T )

τ

) −→
2, there is a Gmax-subtree S of T such that c is constant on

( G(S)
τ

)
.

In this paper, we extend Zheng’s methods to build a collection of topological Ram-
sey spaces of trees in the setting of Fraïssé classes of finite ordered structures with
finitely many binary relations satisfying the Ramsey property. Based on these topo-
logical Ramsey spaces and the work of Huber-Geschke-Kojman on inverse limits of
finite ordered graphs, we prove the following theorem. Here, FmaxFmaxFmax is a universal limit
structure encoded in a particular way on the set of infinite branches of a certain finitely
branching tree Tmax (see Definitions 2.3 and 2.4).

Theorem 1.7 Let K be a Fraïssé class, in a finite signature, of finite ordered binary
relational structures with the Ramsey property. For every HHH ∈ K, there is a finite
number T (HHH , FmaxFmaxFmax) such that for every universal inverse limit structure GGG, for every
finite Baire-measurable coloring of the set

(
GGG
HHH

)
of all copies of HHH in GGG, there is a

closed copy G ′G ′G ′ of GGG contained in GGG such that the set
(
G ′G ′G ′
HHH

)
of all copies of HHH in G ′G ′G ′

has no more than T (HHH , FmaxFmaxFmax) colors.

Thismeans that for each suchFraïssé class, its universal inverse limit structures have
finite big Ramsey degrees under finite Baire-measurable colorings. For the following
classes, we characterize the big Ramsey degrees in terms of types.

Theorem 1.8 Let K be a Fraïssé class in a finite binary relational signature such that
one of the following hold:

(1) K is an ordered expansion of a free amalgamation class;
(2) K is the class of finite ordered tournaments;
(3) K is the class of finite partial orders with a linear extension.

Let GGG be a universal inverse limit structure for K contained in FmaxFmaxFmax. Then for each
HHH ∈ K, each type representing HHH in GGG persists in each closed subcopy of GGG. It
follows that the big Ramsey degree T (HHH , FmaxFmaxFmax) for finite Baire-measurable colorings
of

( FmaxFmaxFmax
HHH

)
is exactly the number of types in Tmax representing a copy of HHH.
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2 Ordered binary relational Fraïssé classes and FmaxFmaxFmax-trees

Let us first review some basic facts of the Fraïssé theory for finite ordered binary
relational structures which are necessary to this paper. More general background on
Fraïssé theory can be found in [15].

We shall call L = {<, R0, . . . , Rk−1} an ordered binary relational signature if it
consists of the order relation symbol < and finitely many binary relation symbols R�,
� < k for some k < ω. A structure for L is of the form AAA = 〈A,<AAA, RAAA

0 , . . . , RAAA
k−1〉,

where A �= ∅ is the universe of AAA, <AAA is a linear ordering of A, and each RAAA
� ⊆ A×A.

An embedding between structures AAA, BBB for L is an injection π : A −→ B such
that for any two a, a′ ∈ A, a <AAA a′ ⇐⇒ π(a) <BBB π(a′) and for each � < k,
(a1, a2) ∈ RAAA

� ⇐⇒ (π(a1), π(a2)) ∈ RBBB
� . If π is the identity, we say that AAA is a

substructure of BBB. An isomorphism is an onto embedding. We write AAA ≤ BBB if AAA can
be embedded in BBB and AAA ∼= BBB if AAA is isomorphic to BBB.

A class K of finite structures is called hereditary if AAA ≤ BBB ∈ K implies AAA ∈ K. It
satisfies the joint embedding property if for any AAA, BBB ∈ K, there isCCC ∈ Kwith AAA ≤ CCC
and BBB ≤ CCC . We say thatK satisfies the amalgamation property if for any embeddings
f : AAA −→ BBB, g : AAA −→ CCC with AAA, BBB, CCC ∈ K, there is DDD ∈ K and embeddings
r : BBB −→ DDD and s : CCC −→ DDD, such that r ◦ f = s ◦g. A class of finite structuresK is
called a Fraïssé class if it is hereditary, satisfies joint embedding and amalgamation,
contains only countably many structures, up to isomorphism, and contains structures
of arbitrarily large (finite) cardinality. A Fraïssé class satisfies the free amalgamation
property (or has free amalgamation) if DDD, r , and s in the amalgamation property can
be chosen so that r [B]∩s[C] = r ◦ f [A] = s◦g[A], andDDD has no additional relations
on its universe other than those inherited from BBB and CCC .

Let AAA be a structure for L . For each X ⊆ A, there is a smallest substructure
containing X , called the substructure generated by X . A substructure is called finitely
generated if it is generated by a finite set. A structure is locally finite if all its finitely
generated substructures are finite. The age of AAA, Age(AAA) is the class of all finitely
generated structures in L which can be embedded in AAA. We call AAA ultrahomogeneous
if every isomorphism between finitely generated substructures of AAA can be extended to
an automorphism of AAA. A locally finite, countably infinite, ultrahomogeneous structure
is called a Fraïssé structure.

There is a canonical one-to-one correspondence between Fraïssé classes of finite
structures and Fraïssé structures, discovered by Fraïssé. If AAA is a Fraïssé structure,
then Age(AAA) is a Fraïssé class of finite structures. Conversely, ifK is a Fraïssé class of
relational structures, then there is a unique Fraïssé structure, called the Fraïssé limit
of K, denoted by Flim(K), whose age is exactly K.

Definition 2.1 Let K be a Fraïssé class of finite ordered binary relational structures.
We say that K satisfies the Ramsey property if K is a Ramsey class. That is, for each
AAA, BBB ∈ K such that AAA ≤ BBB and for every positive integer l ≥ 2, there exists CCC ∈ K
such that CCC −→ (BBB)AAAl .

Given an ordered binary relational signature L = {<, R0, . . . , Rk−1}, let L− denote
{R0, . . . , Rk−1}. An L−-structure AAA is called irreducible if for any two elements
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x, y ∈ A, there is some relation R ∈ L− such that either RAAA(x, y) or RAAA(y, x)
holds. Given a set F of finite L−-structures, let Forb(F) denote the class of finite
L−-structures AAA such that no member of F embeds into AAA. It is well-known that a
Fraïssé class in signature L− has free amalgamation if and only if it is of the form
Forb(F) for some set F of finite irreducible L−-structures. It follows from results
of Nešetřil and Rödl in [21, 22] that all Fraïssé classes in signature L for which the
L−-reduct has free amalgamation has the Ramsey property.

For k ≥ 3, a graphG is called k-clique free if for any k vertices inG, there is at least
one pair with no edge between them; in other words, no k-clique embeds into G as
an induced subgraph. An oriented graph G = 〈V (G), E(G)〉 is a relational structure,
where V (G) denotes its vertex set and E(G) ⊆ V (G) × V (G) denotes its directed
edge relation, that is, E(G) ⊆ V (G) × V (G) is an irreflexive binary relation such
that for all x, y ∈ V (G), (x, y) ∈ E(G) implies (y, x) /∈ E(G). A tournament G is
an oriented graph such that for all x �= y, either (x, y) ∈ E(G) or (y, x) ∈ E(G).
A partial order with a linear extension is a structure PPP = 〈P,<PPP , RPPP 〉 where RPPP

is a partial ordering on P , <PPP is a linear ordering on P , and whenever x �= y and
RPPP (x, y) holds, then also x <PPP y holds.

Example 2.2 Let OG, OGk , OOG, OT , and OPO denote the Fraïssé classes of all
finite ordered graphs, finite ordered k-clique free graphs (k ≥ 3), finite ordered oriented
graphs, finite ordered tournaments, and finite partial orders with a linear extension,
respectively. Each of these classes has the Ramsey property.

The Ramsey property forOG,OGk ,OOG, andOT , are special cases of a theorem
of Nešetřil-Rödl ( [21, 22]); the Ramsey property for that OG and OT follow from
independent work of Abramson andHarrington in [1]. The Ramsey property forOPO
was announced byNešetřil and Rödl in [23], and the first proof was published by Paoli,
Trotter, and Walker in [27].

Let K be a Fraïssé class of finite ordered binary relational structures with the
Ramsey property. We may assume the universe of Flim(K) is ω, so that the universe is
well-ordered. For n ∈ ω, let Flim(K)n be the initial segment of Flim(K) on {0, . . . , n}.
Definition 2.3 Let K be a Fraïssé class of finite ordered binary relational structures
with the Ramsey property, and let Tmax ⊆ ω<ω be the nonempty tree such that for
each t ∈ Tmax,

succTmax(t) = {t�〈0〉, t�〈1〉, . . . , t�〈|t |〉}.

For t ∈ Tmax, we define FtFtFt ∈ K to have universe Ft := succTmax(t), ordered by the
lexicographical ordering, such that FtFtFt is isomorphic to Flim(K)|t |.

Definition 2.4 Let K be a Fraïssé class of finite ordered binary relational structures
with theRamsey property. The tree Tmax andFtFtFt ∈ K (t ∈ Tmax) induce a structureFmaxFmaxFmax
on the universe Fmax := [Tmax], ordered lexicographically, with the binary relations
RFmaxFmaxFmax

� , � < k (where k is the cardinality of the signature L), as follows:

∀ x, y ∈ [Tmax], (x, y) ∈ RFmaxFmaxFmax
� ⇐⇒ (x � (|x ∩ y| + 1), y � (|x ∩ y| + 1)) ∈ R

Fx∩yFx∩yFx∩y
� .
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Lemma 2.5 LetK be a Fraïssé class of finite ordered binary relational structures with
the Ramsey property. If FFF ∈ K and t ∈ Tmax, then there is s ∈ Tmax with t ⊆ s such
that FFF embeds into FsFsFs.

Proof Since FtFtFt is isomorphic to Flim(K)|t |, it suffices to prove that each FFF ∈ K
embeds into Flim(K) on universe ω. Now the age of Flim(K) is exactly K. So each
FFF ∈ K embeds into Flim(K) on universe ω. ��
Definition 2.6 (1) Suppose that T is a subtree of Tmax and t ∈ T . Let FT

tF
T
tF
T
t denote the

induced substructure of FtFtFt on the universe FT
t := succT (t). We define F(T )F(T )F(T ) to

be the induced substructure of FmaxFmaxFmax on the universe F(T ) := [T ].
(2) Let K be a Fraïssé class of finite ordered binary relational structures with the

Ramsey property. A subtree T of Tmax is called an FmaxFmaxFmax-tree if for every FFF ∈ K
and every t ∈ T , there is s ∈ T with t ⊆ s such that FFF embeds into FT

sF
T
sF
T
s . In

particular, Tmax is an FmaxFmaxFmax-tree.

Definition 2.7 Let K be a Fraïssé class of finite ordered binary relational structures
with the Ramsey property. A sequence (Tj ) j∈ω is a fusion sequence with witness
(m j ) j∈ω if the following hold:

(1) (m j ) j∈ω is a strictly increasing sequence of natural numbers.
(2) For all j, l ∈ ω, if j < l, then Tl is an FmaxFmaxFmax-subtree of Tj such that Tj (m j ) =

Tl(m j ).
(3) For every FFF ∈ K , every j ∈ ω, and every t ∈ Tj (m j ), there is l > j such that t

has an extension s in Tl such that |s| < ml and FFF embeds into FTl
sF
Tl
sF
Tl
s .

One can check that if (Tj ) j∈ω is a fusion sequence witnessed by (m j ) j∈ω, then the
fusion

⋂
j∈ω Tj = ⋃

j∈ω(Tj ∩ ω≤m j ) is an FmaxFmaxFmax-tree.

3 Types

Definition 3.1 Let T be an FmaxFmaxFmax-tree and FFF a finite induced substructure of F(T )F(T )F(T ). We
define �(FFF) and FFF∨ as follows:

�(FFF) = max{|x ∩ y| : x, y ∈ F ∧ x �= y},
FFF∨ = {x � (�(FFF) + 1) : x ∈ F}.

Example 3.2 LetK = OG andHHH ∈ K as in Fig. 1,where H = {x, y, z}, x = 0000 . . . ,
y = 0100 . . . , and z = 0111 . . . . Then �(HHH) = 2 and HHH∨ = {u, v, w}, where
u = 000, v = 010 and w = 011.

Definition 3.3 Let FFF and F ′F ′F ′ be finite induced substructure of FmaxFmaxFmax. We say FFF and
F ′F ′F ′ are strongly isomorphic if there exists an isomorphism ϕ : FFF −→ F ′F ′F ′ such that
∀ {x0, y0}, {x1, y1} ∈ [F]2,

|x0 ∩ y0| ≤ |x1 ∩ y1| ⇐⇒ |ϕ(x0) ∩ ϕ(y0)| ≤ |ϕ(x1) ∩ ϕ(y1)|.
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Big Ramsey degrees in universal inverse limit structures 479

Fig. 1 �(HHH) and HHH∨

Fig. 2 HHH

Clearly, strong isomorphism is an equivalence relation. By a typewe mean a strong
isomorphism equivalence class. In particular, there are only finitely many types inside
an isomorphism class.

Suppose that FFF andHHH are structures. Let
(
FFF
HHH

)
be the set of all induced substructures

H ′H ′H ′ of FFF isomorphic to HHH . If FFF is an induced substructure of FmaxFmaxFmax and τ is a type, we
let

(
FFF
τ

)
be the set of all induced substructures of FFF of type τ .

Example 3.4 Let K = OG and HHH ∈ K be as in Fig. 2, where H = {v0, v1, v2}. Then
there are 3 types for HHH as in Fig. 3.

Let HHH ∈ K be as in Fig. 4. Then there are 2 types for HHH as in Fig. 5.
Let HHH ∈ K be as in Fig. 6. Then there is only 1 type for HHH as in Fig. 7.

Example 3.5 Let K = OT and FFF ∈ K be as in Fig. 8. Then there are 3 types for FFF as
in Fig. 9.
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Fig. 3 3 types for HHH

Fig. 4 HHH

Fig. 5 2 types for HHH
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Fig. 6 HHH

Fig. 7 1 type for HHH

Fig. 8 FFF
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Fig. 9 3 types for FFF

Fig. 10 FFF

Fig. 11 2 types for FFF

123



Big Ramsey degrees in universal inverse limit structures 483

Fig. 12 FFF

Fig. 13 1 type for FFF

If FFF ∈ K is as in Fig. 10, then there are 2 types for FFF as in Fig. 11.
Let FFF ∈ K be as in Fig. 12.
Then there is only 1 type for FFF as in Fig. 13.

Example 3.6 Suppose that K = OPO and HHH ∈ K as in Fig. 14.

Here

denotes that R(vi , v j ), where R is a partial order. Then there are 3 types for HHH as
in Fig. 15.
Let HHH ∈ K be as in Fig. 16. Then there are 2 types for HHH as in Fig. 17.
Let HHH ∈ K be as in Fig. 18. Then there is only 1 type for HHH as in Fig. 19.
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Fig. 14 HHH

Fig. 15 3 types for HHH

Fig. 16 HHH

4 Topological Ramsey spaces for coding inverse limit structures for
finitely many binary relations

This section is essentially work of Zheng from Sect. 3 in [30]. Her work is straight-
forwardly extended from the context of finite ordered graphs to the broader context
of Fraïssé classes of finite ordered binary relational structures satisfying the Ram-
sey property. We include it in this paper for the reader’s convenience, making a few
modifications.

Let K be a Fraïssé class of finite ordered binary relational structures satisfying the
Ramsey property, with signature L = {<, R0, . . . , Rk−1}, where each R� (� < k) is
a binary relation. We fix a type τ and build a topological Ramsey space F∞(τ ). We
may denote this space byF∞ when the type is clear from the context. Letm+1 be the
number of elements for a finite ordered structure in τ . Let {FiFiFi : i < ω} enumerate the
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Fig. 17 2 types for HHH

Fig. 18 HHH

set of all finite structures inK, up to isomorphism, labelled so that for every i < j < ω,
|Fi | ≤ |Fj |.

Let S be a tree. A node t ∈ S is a splitting node if |succS(t)| > 1. We say S is skew
if S has at most one splitting node at each level, i.e.,

∀ n ∈ ω, |{t ∈ S ∩ ωn : |succS(t)| > 1}| ≤ 1.

Notice that if S is a skew tree and i > 0 is given, then each node t ∈ S for which
FS
tF
S
tF
S
t

∼= FiFiFi is a splitting node, since the structure FiFiFi has universe of size at least two.
Thus, any two nodes in the set {t ∈ S : FS

tF
S
tF
S
t

∼= FiFiFi } have different lengths, so the nodes
in this set can be enumerated in order of increasing length. This will be useful in part
(iii) of (2) in the next definition.

Definition 4.1 Let τ be a type andm+1 be the number of elements for a finite ordered
structure in τ . We define the space (F∞,≤, r) as follows.

Let S be a member of F∞ if S is a skew subtree of Tmax and when we enumerate
the set of splitting nodes {s ∈ S : |succS(s)| > 1} as {si }i<ω in the order of length,
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Fig. 19 1 type for HHH

(1) There is a finite structure FFF ∈ τ such that

FFF∨ = S ∩ ω|sm−1|+1;

(2) For all i > 0,

(i) ∀ s ∈ S ∩ ω>|sm−1|,∀ u ∈ succS(s),

FS
sF
S
sF
S
s

∼= FiFiFi ⇒ ∃! t ∈ S (u ⊆ t ∧ FS
tF
S
tF
S
t

∼= Fi+1Fi+1Fi+1);

(ii) For every pair s, t ∈ S ∩ ω>|sm−1|,

FS
sF
S
sF
S
s

∼= FiFiFi ∧ FS
tF
S
tF
S
t

∼= Fi+1Fi+1Fi+1 ⇒ |s| < |t |;

(iii) If {t ∈ S : FS
tF
S
tF
S
t

∼= FiFiFi } is enumerated in order of increasing length as {t j } j ,
then there is l < ω such that {t j � l} j is strictly increasing in lexicographical
ordering.

When we say that {si }i<ω is the set of splitting nodes in S, we tacitly assume that
the length |si | is strictly increasing in i .
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For S,U ∈ F∞, we write S ≤ U if and only if S ⊆ U . For l < ω and S ∈ F∞ with
the set of splitting nodes {si }i<ω, we define the finite approximation rl(S) as follows:
let

r0(S) = ∅ and rl+1(S) = S ∩ ω≤|sl |+1.

We specify a few more definitions that are often used in topological Ramsey spaces.
Let F<∞ denote the set of all finite approximations, i.e.

F<∞ = {rl(S) : S ∈ F∞ ∧ l ∈ ω}.

For a, b ∈ F<∞, let a ≤fin b if a ⊆ b. Let |a| = n if there is S ∈ F∞ with rn(S) = a.
For a, b ∈ F<∞, we write a � b if there are l < p < ω and S ∈ F∞ such that
a = rl(S) and b = rp(S).

For a ∈ F<∞ and S ∈ F∞, depthS(a) = min{n : a ≤fin rn(S)}, where by
convention, min ∅ = ∞. We equip the space F∞ with the Ellentuck topology, with
basic open sets of the form

[a, S] = {X ∈ F∞ : (X ≤ S) ∧ (∃l)(rl(X) = a)},

for a ∈ F<∞ and S ∈ F∞. For l < ω, let

Fl = {rl(X) : X ∈ F∞},
[l, S] = [rl(S), S], and

rl [a, S] = {rl(X) : X ∈ [a, S]}.

The height of an element a ∈ F<∞ is height(a) = maxs∈a |s|. In general, |a| ≤
height(a).

Now we show that (F∞,≤, r) is a topological Ramsey space by proving that F∞
is closed as a subspace of (F<∞)ω, and satisfies the axioms (A1)–(A4) as defined
in pages 93–94 of [29]. It is straightforward to check (A1)–(A3). Moreover, F∞ is a
closed subset of (F<∞)ω when we identify S ∈ F∞ with (rn(S))n<ω ∈ (F<∞)ω and
equip F<∞ with the discrete topology and (F<∞)ω with the product topology.

Definition 4.2 Let T ⊆ ω<ω be a (downwards closed) finitely branching tree with no
terminal nodes, and let N an infinite subset of ω. A set U is called a strong subtree
of

⋃
n∈N T ∩ ωn if there is an infinite set M ⊆ N such that the following conditions

hold.

(1) U ⊆ ⋃
n∈M T ∩ ωm and U ∩ ωm �= ∅ for all m ∈ M . In this case, we say that M

witnesses that U is a strong subtree.
(2) If m1 < m2 are two successive elements of M and if u ∈ U ∩ ωm1 , then every

immediate successor of u in
⋃

n∈N T ∩ωn has exactly one extension inU ∩ωm2 .

Theorem 4.3 (Halpern-Läuchli [12]). For each i < d, let Ti ⊆ ω<ω be a finitely
branching tree with no terminal nodes, let N ∈ [ω]ω, where d is any positive integer,
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and let c : ⋃
n∈N

∏
i<d Ti ∩ ωn −→ p be a finite coloring, where p is any positive

integer. Then there is an infinite subset M ⊆ N and infinite strong subtrees Ui ⊆⋃
n∈N Ti ∩ωn witnessed by M such that c is monochromatic on

⋃
m∈M

∏
i<d Ui ∩ωm.

We observe that every S ∈ F∞ is an FmaxFmaxFmax-tree and every FmaxFmaxFmax-tree contains some
S ∈ F∞ as a subtree. This is because for all n < ω, we can find infinitely manym ∈ ω

such that FnFnFn embeds into FmFmFm (in fact, this holds for all but finitely many m ∈ ω.) We
define (AnAnAn)n<ω to be a sequence of finite structures in K such that for each n < ω,
the finite structures F0F0F0, . . . , FnFnFn embed into AnAnAn .

Now we will prove (A4) in Lemma 4.4 For K = OG, Zheng proved in [30] that
(F∞,≤, r) is a topological Ramsey space. So the axiom (A4) holds for finite ordered
graphs. It should be pointed out that the proof of Lemma 4.4 follows from Zheng’s
proof for finite ordered graphs. However, for the convenience of the reader, we also
present the proof here.

Lemma 4.4 The axiom (A4) holds for (F∞,≤, r), i.e. for a ∈ F<∞ and S ∈ F∞,
if depthS(a) < ∞ and O ⊆ F|a|+1, then there is U ∈ [depthS(a), S] such that
r|a|+1[a,U ] ⊆ O or r|a|+1[a,U ] ∩ O = ∅.
Proof Let m0 = height(a). Then a has |a| many splitting nodes, and each element in
F|a|+1 has |a| + 1 many splitting nodes. In particular, we can find u ∈ a ∩ ωm0 and
j < ω such that for every b ∈ F|a|+1 with a � b, there is a unique splitting node
t ∈ bu , and Fb

tF
b
tF
b
t

∼= FjFjFj . Let a ∩ ωm0 be enumerated as u = v0, v1, . . . , vd .

Step 1 Let us construct a subtree X ⊆ S along with a strictly increasing sequence
(ml)l<ω startingwithm0 = height(a) such that the following conditions hold for every
l < ω and every s ∈ X ∩ ωml :

(a) Xs has a unique splitting node t of length in [ml ,ml+1).
(b) For the t from condition (a), FX

tF
X
tF
X
t

∼= A j+lA j+lA j+l . Let t ∈ Su . The set of tuples of nephews
of t is defined to be

{(t1, . . . , td) : ti ∈ Xvi ∩ ω|t |+1 for 1 ≤ i ≤ d}.

Suppose (ti )1≤i≤d is a tuple of nephews of t . Each finite structure FFF ∈ ( FX
tF
X
tF
X
t

FjFjFj

)

together with (ti )1≤i≤d determines an element bFFF,(ti ) ∈ F|a|+1, where the set of
⊆-maximal nodes in bFFF,(ti ) is F ∪ {ti : 1 ≤ i ≤ d}. With this notion of bFFF,(ti )
defined, we can state another requirement for X .

(c) For every t ∈ X and every tuple (ti )1≤i≤d of nephews of t , the set
{
bFFF,(ti ) : FFF ∈

( FX
tF
X
tF
X
t

FjFjFj

)}
is either included or disjoint from O.

We recursively construct sets X(ml) ⊆ ωml . Then X will be the downward closure
of

⋃
l<ω X(ml) and X ∩ ωml = X(ml). Start with X(m0) = {vi : i ≤ d}. Assume we

have constructed X(ml). The number of extensions in X(ml+1) for each s ∈ X(ml) is
prescribed. In particular, for each t ⊇ u in X(ml+1), the set of (tuples of) nephews of t
will be finite and of the same size, independent of t . Let this size be k < ω. SinceK is
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a Fraïssé class of finite ordered binary relational structures with the Ramsey property,

there is a finite ordered structure HHH ∈ K such that HHH −→ (A j+lA j+lA j+l)
FjFjFj

2k
Since S is an

FmaxFmaxFmax-tree, for each s ∈ X(ml) extending vi (1 ≤ i ≤ d), s has an extension t(s) ∈ S

such that there is F(s)F(s)F(s) ∈ ( FS
t(s)FS
t(s)FS
t(s)

A j+lA j+lA j+l

)
. On the other hand, for each s ∈ X(ml) extending u,

s has an extension t(s) ∈ S such that HHH embeds into FS
t(s)FS
t(s)FS
t(s). For each tuple (ti )1≤i≤d of

nephews of t(s), there is a natural coloring c : ( FS
t(s)FS
t(s)FS
t(s)
FjFjFj

) −→ 2 depending on whether
bFFF,(ti ) is in O. Thus, there are at most k many 2-colorings. These colorings can be

encoded in a single 2n-coloring of
( FS

t(s)FS
t(s)FS
t(s)
FjFjFj

)
. Then there is H(s)H(s)H(s) ∈ ( FS

t(s)FS
t(s)FS
t(s)

A j+lA j+lA j+l

)
such that the

set
( H(s)H(s)H(s)

FjFjFj

)
is monochromatic. Let

ml+1 = max{|t(s)| : s ∈ X(ml)} + 1.

Suppose that X(ml+1) ⊆ S ∩ ωml+1 has the property that every node in (
⋃

s∈D F(s))
∪(

⋃
s∈X(ml )\D H(s)) has a unique extension in X(ml+1), where D = {s ∈ X(ml) : s

extends vi , 1 ≤ i ≤ d}. Thus X satisfies (a), (b) and (c). This finishes the construction
of X and (ml)l<ω.

Step 2 We use the Halpern-Läuchli theorem to shrink X to an FmaxFmaxFmax-tree T such
that the set {b ∈ F|a|+1 : b ⊆ T } is either included in or disjoint from O. We define a
coloring

c :
⋃

l<ω

∏

i≤d

Xvi ∩ ωml −→ 2

as follows: Let c(v0, v1, . . . , vd) = 1. Suppose 0 < l < ω and (ti )i≤d ∈ Xvi ∩ ωml .
Since S is a skew tree, so is X . Let

sl(t0) = max{|t | : t � t0 and succX (t) > 1} + 1.

Then (ti � sl(t0))1≤i≤d is a tuple of nephews for t0 � sl(t0) − 1. Let

c(t0, t1, . . . , td) =

⎧
⎪⎨

⎪⎩

1,
{
bFFF,(ti�sl(t0)) : FFF ∈ ( FX

t0�sl(t0)−1FX
t0�sl(t0)−1FX
t0�sl(t0)−1

FjFjFj

)} ⊆ O,

0,
{
bFFF,(ti�sl(t0)) : FFF ∈ ( FX

t0�sl(t0)−1FX
t0�sl(t0)−1FX
t0�sl(t0)−1

FjFjFj

)} ∩ O = ∅.

By (c), this colouring is well-defined. By Theorem 4.3, there are a strictly increasing
sequence (n j ) j<ω ⊆ (ml)l<ω and strong subtrees

Yi ⊆
⋃

l<ω

Xvi ∩ ωml

witnessed by (n j ) j<ω such that c is monochromatic on
⋃

j<ω

∏
i≤d Yi ∩ ωn j . Let T

be the downward closure of
⋃

i≤d Yi .
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Claim 4.5 If l < ω, i ≤ d, s ∈ Yi ∩ ωml and t corresponds to s as in (a) and (b), then
t ∈ T and FT

tF
T
tF
T
t = FX

tF
X
tF
X
t .

Proof Since s ∈ Yi ∩ ωml , there is some p < ω such that n p = ml . As Yi is a strong
subtree of

⋃
l ′<ω Xvi ∩ ωml′ , every immediate successor of s in

⋃
l ′<ω Xvi ∩ ωml′ has

exactly one extension in Yi ∩ ωn p+1 . It follows from the construction of X that every
node in succX (t) has exactly one extension in X ∩ ωml+1 . Moreover, the immediate
successors of s in

⋃
l ′<ω Xvi ∩ωml′ are precisely the extensions in X ∩ωml+1 of nodes

in succX (t). Then t is in the downward closure of Yi , and thus t ∈ T . So FT
tF
T
tF
T
t = FX

tF
X
tF
X
t .
��

Then it is straightforward to check that T is an FmaxFmaxFmax-tree such that the set {b ∈
F|a|+1 : b ⊆ T } is either included in or disjoint fromO. By the observation before this
lemma, we can further shrink T to U ∈ F∞ satisfying the conclusion of the lemma.

��

Theorem 4.6 For each Fraïssé class of finite ordered binary relational structures with
the Ramsey property and each type τ , the space (F∞(τ ),≤, r) is a topological Ramsey
space.

5 Finite big Ramsey degrees for ordered binary relational universal
inverse limit structures

Let K be a Fraïssé class of finite ordered binary relational structures satisfying the
Ramsey property, with signature L = {<, R0, . . . , Rk−1} where each Ri , i < k, is a
binary relation. In this section, we prove that for each such K, the universal inverse
limit structure has finite big Ramsey degrees under finite Baire-measurable colorings.
The proofs in this section are straightforward via the topological Ramsey spaces from
Theorem 4.6 (which is based on work of Zheng in [30]) and the work of Huber-
Geschke-Kojman on inverse limits of finite ordered graphs in [13].

Definition 5.1 Let K be a Fraïssé class of finite ordered binary relational structures
with the Ramsey property. A universal inverse limit of finite ordered structures in K
is a triple GGG = 〈G,<GGG , RGGG

0 , . . . , RGGG
k−1〉, such that the following conditions hold.

1. G is a compact subset of R\Q without isolated points, <GGG is the restriction of the
standard order on R to G, and RGGG

i ⊆ [G]2 for each i < k.
2. For every pair of distinct elements u, v ∈ G, there is a partition of G to finitely

many closed intervals such that

(a) u, v belong to different intervals from the partition;
(b) For every interval I in the partition, for all x ∈ G\I and for all y, z ∈ I ,

(x, y) ∈ RGGG
i if and only if (x, z) ∈ RGGG

i , for each i < k.

3. Every nonempty open interval of G contains induced copies of all finite ordered
structures in K.
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For every FmaxFmaxFmax-tree T , it can be seen from Definition 2.6 that F(T )F(T )F(T ) is a univer-
sal inverse limit structure. So it follows from the universality that we can consider
colourings of finite induced substructures of F(T )F(T )F(T ).

Definition 5.2 Let τ be a type and HHH ∈ τ . The F∞-envelope of HHH is

CHHH = {U ∈ F∞ : (∃ l)(rl(U ) = ↓HHH∨)},

where ↓H∨ = {a ∈ ω<ω : (∃ x ∈ H)(a ⊆ x � (�(HHH) + 1))}.
Lemma 5.3 Let τ be a type and T ∈ F∞. Define a map c1 : [∅, T ] −→ {

HHH∨ : HHH ∈
( F(T )F(T )F(T )

τ

)}
as follows:

∀ U ∈ [∅, T ], if U ∈ CHHH , c1(U ) = HHH∨.

Then c1 is well-defined and continuous, where we equip the range with the discrete
topology.

Proof Letm+1 be the number of elements for eachHHH ∈ τ . Then ↓HHH∨ hasm splitting
nodes. Thus

∀ U ∈ F∞,∀ l, (rl(U ) = ↓HHH∨ ⇒ l = m).

Let U , V ∈ [∅, T ]. Then there are HHH ,KKK ∈ τ such that U ∈ CHHH and V ∈ CKKK . If
U = V , then ↓HHH∨ = rm(U ) = rm(V ) = ↓KKK∨, and thus HHH∨ = KKK∨. So c1 is
well-defined.

Suppose that HHH ∈ τ and U ∈ (c1)−1(HHH∨). We have that U ∈ CHHH . Then the set
[m,U ] is an open set containingU and [m,U ] ⊆ (c1)−1(HHH∨). Thus c1 is continuous.

��
We equip ωω with the first-difference metric topology, which has basic open sets

of the form [s] = {x ∈ ωω : s ⊆ x} for s ∈ ω<ω. For n ∈ ω, let [FmaxFmaxFmax]n denote the
set of all induced substructures of FmaxFmaxFmax of size n.

Definition 5.4 For n ≥ 1, we define a topology on [FmaxFmaxFmax]n as follows: A set U ⊆
[FmaxFmaxFmax]n is open if for all HHH ∈ U , there are open neighborhoods U1, . . . ,Un of the
elements of H such that all H ′H ′H ′ ∈ [FmaxFmaxFmax]n that have exactly one vertex in each Ui are
also in U . This topology is separable and induced by a complete metric. A coloring of
n-tuples from [FmaxFmaxFmax]n is continuous if it is continuous with respect to this topology.
Lemma 5.5 Let τ be a type and T ∈ F∞. For every continuous coloring c :( F(T )F(T )F(T )

τ

) −→ 2, there exists an FmaxFmaxFmax-subtree S of T such that c depends only on

HHH∨, i.e., for HHH ,KKK ∈ ( F(S)F(S)F(S)
τ

)
, if HHH∨ = KKK∨, then c(HHH) = c(KKK ).

Proof For HHH ∈ ( F(T )F(T )F(T )
τ

)
, by definition of �(HHH), the map x �−→ x � (�(HHH) + 1))

is a bijection from the universe H of HHH onto HHH∨. Let t1, . . . , tl denote the elements
of HHH∨. For all x̄ = (x1, . . . , xl) ∈ [Tt1] × · · · × [Ttl ], the induced substructure
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HHH of F(T )F(T )F(T ) on the set {x1, . . . , xl} is isomorphic to HHH . By the continuity of c, for
all such x there are open neighborhoods x1 ∈ U x̄

1 , . . . , xl ∈ U x̄
l such that for all

(y1, . . . , yl) ∈ U x̄
1 ×· · ·×U x̄

l for the induced substructure H ′H ′H ′ of F(T )F(T )F(T ) on the vertices
y1, . . . , yl , we have c(HHH) = c(H ′H ′H ′).

We may assume that the U x̄
i are basic open sets, i.e., sets of the form [Tr ] for

some r ∈ T . Since the space [Tt1] × · · · × [Ttl ] is compact, there is a finite set
A ⊆ [Tt1] × · · · × [Ttl ] such that

[Tt1] × · · · × [Ttl ] =
⋃

x̄∈A

l∏

i=1

U x̄
i .

Hence there is m ∈ ω such that for all induced substructures H ′H ′H ′ of F(T )F(T )F(T ) with H ′H ′H ′ �
(�(HHH)+1) = HHH∨, the color c(H ′H ′H ′) only depends on H ′H ′H ′ � m, wherem is the maximal
length of the r ’s with [Tr ] = U x̄

i for some x̄ ∈ F and i ∈ {1, . . . , l}.
Since for each m ∈ ω, there are only finitely many sets of the form HHH � m,

where H ∈ ( F(T )F(T )F(T )
τ

)
, there is a function f : ω −→ ω such that for every finite

induced substructure HHH of F(T )F(T )F(T )with�(HHH)+1 = n, the color c(HHH) only depends on
HHH � f (n). Now let S be an FmaxFmaxFmax-subtree of T such that whenever s ∈ S is a splitting
node of S of length n, then S has no splitting node t whose length is in the interval
(n, f (n)]. Now for all H ∈ ( F(S)F(S)F(S)

τ

)
, the color c(HHH) only depends on HHH∨. ��

Theorem 5.6 Let T be an FmaxFmaxFmax-tree. For every type τ of a finite induced substructure
of FmaxFmaxFmax, and every continuous coloring c : ( F(T )F(T )F(T )

τ

) −→ 2, there is an FmaxFmaxFmax-subtree S

of T such that c is monochromatic on
( F(S)F(S)F(S)

τ

)
.

Proof We can shrink T and assume T ∈ F∞. By Lemma 5.5, c depends only on HHH∨.
We may think of c as a map as follows:

c :
{
HHH∨ : HHH ∈ (

F(T )F(T )F(T )

τ

)} −→ 2.

Define c̄ : [∅, T ] −→ 2 by c̄ = c ◦ c1. By Lemma 5.3, c̄ is also a continuous map. By
Theorem 4.6, there is some S ≤ T such that c̄ is monochromatic on [∅, S]. Suppose
that HHH ∈ ( F(S)F(S)F(S)

τ

)
. Then the universe H of HHH is contained in [S], so HHH∨ ⊆ S. Hence

there is a U ∈ [∅, S] such that U ∈ CHHH , and thus, c(HHH) = c̄(U ). Therefore c is
monochromatic on

( F(S)F(S)F(S)
τ

)
. ��

The next lemma is a straightforward extension of Lemma 3.8 in [13].

Lemma 5.7 Let T be an FmaxFmaxFmax-tree. For every type τ of a finite induced substructure
of FmaxFmaxFmax, and every Baire-measurable coloring c : ( F(T )F(T )F(T )

τ

) −→ 2, there is an FmaxFmaxFmax-

subtree S of T such that c is continuous on
( F(S)F(S)F(S)

τ

)
.

Proof Since c : ( F(T )F(T )F(T )
τ

) −→ 2 is Baire-measurable, c−1(0) and c−1(1) have the

property of Baire. Then there exist open sets U , V in
( F(T )F(T )F(T )

τ

)
and meager sets M , N
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in
( F(T )F(T )F(T )

τ

)
such that

c−1(0) = U�M and c−1(1) = V�N ,

where � denotes the symmetric difference. Let (Nn)n∈ω be a sequence of closed
nowhere dense subsets of

( F(T )F(T )F(T )
τ

)
such that M ∪ N ⊆ ⋃

n∈ω Nn . We would like to

construct an FmaxFmaxFmax-subtree S of T such that
( F(S)F(S)F(S)

τ

)
is disjoint from

⋃
n∈ω Nn . In this

case, we have

c−1(0) ∩ (
F(S)F(S)F(S)

τ

) = U ∩ (
F(S)F(S)F(S)

τ

)
and c−1(1) ∩ (

F(S)F(S)F(S)

τ

) = V ∩ (
F(S)F(S)F(S)

τ

)
.

It follows that c is continuous on
( F(S)F(S)F(S)

τ

)
. In order to find an FmaxFmaxFmax-subtree S that

is disjoint from
⋃

n∈ω Nn , we construct a fusion sequence (Tj ) j∈ω of FmaxFmaxFmax-subtrees
of T with witness a strictly increasing sequence (m j ) j∈ω of natural numbers. Put
S = ⋂

j∈ω Tj . Then S is an FmaxFmaxFmax-subtree of T .
Suppose Tj and m j have already been chosen. We assume that for all t ∈ Tj (m j )

and all s ∈ T with t ⊆ s, we have s ∈ Tj . For a certain t ∈ Tj (m j ), we have to
find a splitting node s with t ⊆ s such that for a certain finite ordered structure HHH , HHH

embeds into F
Tj+1
sF
Tj+1
sF
Tj+1
s . Since Tj is an FmaxFmaxFmax-tree, there is m > m j and an extension s of t

with |s| < m such that HHH embeds into F
Tj
sF
Tj
sF
Tj
s .

Suppose that HHH is a finite substructure of F(Tj )F(Tj )F(Tj ) of type τ such that �(HHH) < m.
We list elements of H as t0, t1, . . . , tp. The set HHH � m determines an open subset

O of
( F(T )F(T )F(T )

τ

)
. Since

⋃
n≤ j Nn is closed and nowhere dense in

( F(T )F(T )F(T )
τ

)
, O con-

tains a nonempty open subset that is disjoint from
⋃

n≤ j Nn . It follows that for
i ∈ {0, 1, . . . , p}, ti � m has an extension si ∈ Tj such that the open subset of
( F(T )F(T )F(T )

τ

)
determined by s0, s1, . . . , sp is disjoint from

⋃
n≤ j Nn . We may assume that

s0, s1, . . . , sp have the same length m j+1 > m.
Let X ⊆ Tj (m j+1) be a set that contains exactly one extension of every element

of Tj (m j ) and in particular the elements s0, s1, . . . , sp. Let

Tj+1 = {t ∈ Tj : ∃s ∈ X(s ⊆ t ∨ t ⊆ s)}.

Then Tj+1 is an FmaxFmaxFmax-tree. Whenever H ′H ′H ′ is a finite substructure of F(Tj+1)F(Tj+1)F(Tj+1) of type
τ with H ′H ′H ′ � m = HHH � m, then H ′H ′H ′ � m j+1 = {s0, s1, . . . , sp}. In particular, H ′H ′H ′ /∈⋃

n≤ j Nn . This finishes the recursive definition of the sequences (Tj ) j∈ω and (m j ) j∈ω.
Finally, let S = ⋂

j∈ω Tj . One can check that S is an FmaxFmaxFmax-tree. Let n ∈ ω and letHHH
be a finite substructure of F(S)F(S)F(S) of type τ . Then there is j ∈ ω such that �(HHH) < m j .
We can choose j ≥ n. Note that S(m j ) = T (m j ). Since S ⊆ Tj+1, by the construction

of Tj+1, HHH /∈ ⋃
n≤ j Nn . In particular, H /∈ Nn . This shows that

( F(S)F(S)F(S)
τ

)
is disjoint

from
⋃

n∈ω Nn . It follows that c is continuous on
( F(S)F(S)F(S)

τ

)
. ��

Theorem 5.8 Let T be an FmaxFmaxFmax-tree. For every type τ of a finite induced substructure of
FmaxFmaxFmax and every Baire-measurable coloring c : ( F(T )F(T )F(T )

τ

) −→ 2, there is an FmaxFmaxFmax-subtree

S of T such that c is constant on
( F(S)F(S)F(S)

τ

)
.
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Proof By Lemma 5.7, there is an FmaxFmaxFmax-subtree U of T such that c is continuous on( F(U )F(U )F(U )
τ

)
. By Theorem 5.6, there is an FmaxFmaxFmax-subtree S of U such that c is constant on

( F(S)F(S)F(S)
τ

)
. ��

Theorem 5.9 Let K be a Fraïssé class, in a finite signature, of finite ordered binary
relational structures with the Ramsey property. For every HHH ∈ K, there is a finite
number T (HHH , FmaxFmaxFmax) such that the following holds: For every universal inverse limit
structure GGG and for each finite Baire-measurable coloring of the set

(
GGG
HHH

)
of all copies

of HHH in GGG, there is a closed copy G ′G ′G ′ of GGG contained in GGG such that the set
(
G ′G ′G ′
HHH

)
of all

copies of HHH in G ′G ′G ′ has no more than T (HHH , FmaxFmaxFmax) colors. In particular, T (HHH , FmaxFmaxFmax) is
at most the number of types associated to HHH.

Proof We list all types for HHH as τ0, τ1, . . . , τm−1. Since GGG is a universal inverse limit
structure, FmaxFmaxFmax embeds continuously into it. Let c be a finiteBaire-measurable coloring
of the set

(
GGG
HHH

)
. Nowwork with the tree Tmax coding FmaxFmaxFmax. Iterating Theorem 5.8, there

are FmaxFmaxFmax-trees Tmax ≥ Tτ0 ≥ · · · ≥ Tτm−1 so that for each i < m, c is constant on
( F(Tτi )F(Tτi )F(Tτi )

τi

)
. We takeG ′G ′G ′ = F(Tτm−1F(Tτm−1F(Tτm−1). ThenG

′G ′G ′ is a closed copy ofGGG contained inGGG, and

the set
(
G ′G ′G ′
HHH

)
of all copies of HHH in G ′G ′G ′ has no more than m colors. ��

6 Exact big Ramsey degrees for some ordered binary relational
inverse limit structures

In this section, we find the exact big Ramsey degrees in the inverse limit structures
FmaxFmaxFmax of the following Fraïssé classes in an ordered binary relational signature: Free
amalgamation classes, the class of finite ordered tournaments OT , and the class of
finite partial orders with a linear extension OPO. We shall do so by first showing in
Lemmas 6.1, 6.4, and 6.7 that for any finite substructure HHH of FmaxFmaxFmax, there is a larger
finite structure HHH containing HHH as an induced substructure such that any copy of HHH
in the inverse limit structure FmaxFmaxFmax must have exactly one meet in the tree Tmax. Then
in Theorem 6.10, we shall prove by induction on number of splitting nodes that each
type persists in any subcopy of FmaxFmaxFmax. This proves that the exact big Ramsey degree
for a given finite substructure HHH of FmaxFmaxFmax is exactly the number of types τ representing
HHH in the tree Tmax.

Given a structure GGG ≤ FmaxFmaxFmax, let TGGG = {x � n : x ∈ GGG, n ∈ ω}. Then TGGG is a
subtree of Tmax. Given a tree T , its stem, denoted stem(T ), is the minimal splitting
node in T .

Lemma 6.1 Let K be any Fraïssé class with free amalgamation in an ordered binary
relational signature. Then for each HHH ∈ K, there is a structure HHH ∈ K containing
a copy of HHH, where HHH has the following property: Given a universal inverse limit
structure GGG for K contained in FmaxFmaxFmax, every copy III of HHH in GGG has induced a subtree
TIII of TGGG such that the type of TIII has exactly one splitting node. It follows that the
immediate successors of stem(TIII ) in TIII have a copy of III .
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Proof LetK be as in the hypotheses, letGGG be the universal inverse limit forK contained
in FmaxFmaxFmax, and fix HHH a finite substructure of GGG. Then HHH is in K. Let m be the size of
the universe of HHH . We construct a finite ordered structure HHH ∈ K of size 2m + 1,
containing a copy of HHH as a substructure on the odd indexed vertices, as follows. Let
R denote the binary relation symbol R0 in the signature of K.

(1) Let H = {v0, v1, v2, . . . , v2m}.
(2) HHH � {v1, v3, . . . , v2m−1} is isomorphic to HHH .
(3) For i ∈ {0, 2, . . . , 2m − 2}, RHHH (vi , vi+2) holds. If RHHH is a symmetric relation,

then also RHHH (vi+2, vi ) holds; otherwise, ¬RHHH (vi+2, vi ) holds.
(4) No other relations are added to HHH .

Then HHH contains a copy of HHH . Now we check that HHH satisfies the property in this
lemma. Let III be a copy of HHH in GGG with I = {u0, u1, u2, . . . , u2m}.
Claim 6.2 Let JJJ be the induced substructure of III on universe J = {u0, u2, . . . , u2m}.
Then the associated subtree TJJJ of TGGG has exactly one splitting node.

Proof Without loss of generality, it suffices to prove that u0 ∩ u2 = u2 ∩ u4. Assume
to the contrary that u0 ∩ u2 �= u2 ∩ u4. Then either u0 ∩ u2 ⊂ u2 ∩ u4 or else
u2 ∩u4 ⊂ u0 ∩u2, where ⊂ denotes proper subset. If u0 ∩u2 ⊂ u2 ∩u4 (see Fig. 20),
then u0 ∩ u2 = u0 ∩ u4; let s denote this node and let l − 1 denote its length. Then
u2 � l = u4 � l is a successor of s, and the relation R(u0 � l, u4 � l) holds in
Tmax since R(u0 � l, u2 � l) holds in Tmax. Hence, RIII (u0, u4) holds. Similarly, if
u2 ∩ u4 ⊂ u0 ∩ u2, then u0 ∩ u4 = u2 ∩ u4, and it follows that RIII (u0, u4) holds
(see Fig. 20). But this contradicts the fact that RIII (u0, u4) does not hold, by (3) in the
defnition of HHH above. Therefore, it must be the case that u0 ∩ u2 = u2 ∩ u4. Thus,
every copy of JJJ has induced subtree TJJJ in TGGG with exactly one splitting node. ��

Claim 6.3 The subtree TIII of TGGG induced by III has exactly one splitting node.

Proof By Claim 6.2, without loss of generality, it suffices to prove that u0∩u1 = u1∩
u2. Assume that u0∩u1 �= u1∩u2. Then either u0∩u1 ⊂ u1∩u2 or u1∩u2 ⊂ u0∩u1.
Since u0 < u1 < u2 in the linear order < on the universe of FmaxFmaxFmax, it follows that the
set {u0, u1, u2} has type equal to one of the two types in Fig. 21 (the solid lines). Since
RIII (u0, u2) holds, at least one of RIII (u0, u1) or RIII (u1, u2) holds (the dashed lines
in Fig. reff21). But this contradicts the fact that ¬RIII (u0, u1) and ¬RIII (u1, u2) hold,
by (4) in the definition of HHH . Thus, the induced subtree TIII has exactly one splitting
node. ��

By Claim 6.3, the induced subtree TIII of TGGG has exactly one splitting node, namely
its stem. It follows from the definition of the relations on FmaxFmaxFmax that the immediate
successors of stem(TIII ) in TIII is isomorphic to HHH . ��

Next, we prove a similar lemma for the class of finite ordered tournaments,OT . The
proof is similar to the previous lemma, the main difference being that the construction
of HHH must take into account the fact that any two vertices of a tournament must have
some directed edge relation between them.
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Fig. 20 2 types for JJJ � {u0, u2, u4} with u0 ∩ u2 �= u2 ∩ u4

Fig. 21 2 types for III � {u0, u1, u2} with u0 ∩ u1 �= u1 ∩ u2

Lemma 6.4 LetK beOT . Then for each HHH ∈ K, there is a structure HHH ∈ K containing
a copy of HHH and HHH has the following property:Given a universal inverse limit structure
GGG for K contained in FmaxFmaxFmax, every copy III of HHH in GGG has induced a subtree TIII of TGGG
such that the type of TIII has exactly one splitting node. It follows that the immediate
successors of stem(TIII ) in TIII have a copy of III .
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Fig. 22 2 types for JJJ � {u0, u2, u4} with u0 ∩ u2 �= u2 ∩ u4

Proof Fix any HHH ∈ K, and let m be the size of the universe of HHH . Recall that the
relation R here is a directed edge. We construct a finite ordered structure HHH ∈ K
containing a copy of HHH as an induced substructure as follows:

(1) Let H = {v0, v1, v2, . . . , v2m}.
(2) HHH � {v1, v3, . . . , v2m−1} is isomorphic to HHH .
(3) For i, j ∈ {0, 2, . . . , 2m} with i < j , if j = i + 2 then RHHH (vi , v j ) holds.

(4) For i, j ∈ {0, 2, . . . , 2m} with i < j , if j �= i + 2 then RHHH (v j , vi ) holds.

(5) For all i ∈ {0, 2, . . . , 2m} and j ∈ {1, 3, . . . , 2m − 1}, if i < j then RHHH (v j , vi )

holds.
(6) For all i ∈ {0, 2, . . . , 2m} and j ∈ {1, 3, . . . , 2m − 1}, if j < i then RHHH (vi , v j )

holds.

By (2), HHH contains a copy of HHH . Now we check that HHH satisfies the property in this
lemma. Let III be any copy of HHH in GGG, say with universe I = {u0, u1, u2, ..., u2m}.
Claim 6.5 Let JJJ be the induced substructure of III on universe J = {u0, u2, ..., u2m}.
Then the associated subtree TJJJ of TGGG has exactly one splitting node.

Proof Without loss of generality, it suffices to prove that u0∩u2 = u2∩u4.Assume that
u0∩u2 �= u2∩u4. Then u0∩u2 ⊂ u2∩u4 or u2∩u4 ⊂ u0∩u2. Since RJJJ (u0, u2) and
RJJJ (u2, u4) hold, it follows that RJJJ (u0, u4) holds (see the dashed arrows in Fig. 22).
This contradicts the fact that RJJJ (u4, u0) holds, by (4) in the definition of HHH (solid
arrows from u4 to u0 in Fig. 22). Thus, u0 ∩ u2 = u2 ∩ u4. It follows that TJJJ has
exactly one splitting node, namely its stem. ��
Claim 6.6 The subtree TIII of TGGG induced by III has exactly one splitting node.
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Fig. 23 2 types for III � {u0, u1, u2} with u0 ∩ u1 �= u1 ∩ u2

Proof By Claim 6.5, without loss of generality, it suffices to prove that u0∩u1 = u1∩
u2. Assume that u0∩u1 �= u1∩u2. Then either u0∩u1 ⊂ u1∩u2 or u1∩u2 ⊂ u0∩u1.
Since u0 < u1 < u2 in the linear order < on the universe of FmaxFmaxFmax, it follows that the
set {u0, u1, u2} has type equal to one of the two types in Fig. 23 (the solid arrows).
Since RIII (u0, u2), either RIII (u1, u2) or RIII (u0, u1) holds (see the dashed arrows in Fig.
23). This contradicts the facts that RIII (u1, u0) and RIII (u2, u1) hold, by (5) and (6) of
the definition of HHH . Thus, the induced subtree TIII has exactly one splitting node. ��

By Claim 6.6, HHH satisfies the property in this lemma. ��
Finally, we prove a similar lemma for the class of finite partial orders with a linear

extension, OPO.

Lemma 6.7 Let K be OPO. Then for each HHH ∈ K, there is a structure HHH ∈ K
containing a copy of HHH and HHH has the following property: Given a universal inverse
limit structure GGG for K contained in FmaxFmaxFmax, every copy III of HHH in GGG has induced a
subtree TIII of TGGG such that the type of TIII has exactly one splitting node. It follows that
the immediate successors of stem(TIII ) in TIII have a copy of III .

Proof Fix any HHH ∈ K, and let m be the size of the universe of HHH . If HHH has universe
of size one, then there is nothing to prove, so assume that the universe of HHH has size
m ≥ 2. The relation R here is a partial order, where R(v,w) denotes that v is R-less
than or equal to w. We construct a finite ordered structure HHH ∈ K containing a copy
of HHH as an induced substructure as follows:

(1) Let H = {v0, v1, v2, . . . , v2m+2}.
(2) HHH � {v2, v4, . . . , v2m} is isomorphic to HHH .
(3) R(v0, v3) and R(v2m−1, v2m+2) hold.
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Fig. 24 HHH ∈ OPO with 3 vertices

Fig. 25 HHH ∈ OPO with 9 vertices

(4) For each i ∈ {1, 3, . . . , 2m − 3}, RHHH (vi , vi+4) holds.
(5) The R-relations above are closed under transitivity of R, and no other R relations

are added.

By (2),HHH contains a copy ofHHH . Note that there are no R-relations between any vertices
in {v2, v4, . . . , v2m} and any vertices {v0, v1, v3, v5, . . . , v2m+1, v2m}. For example, if
HHH ∈ OPO with 3 vertices as in Fig. 24, then HHH has 9 vertices as in Fig. 25. The copy
of HHH in HHH is on vertices {v2, v4, v6}.

Now we check that HHH satisfies the property in this lemma. Let III be any copy of HHH
in GGG, say with universe I = {u0, u1, u2, . . . , u2m+2}.
Claim 6.8 Let JJJ be the induced substructure of III on universe J = {u0, u1, u3, . . . ,
u2m−1, u2m+1, u2m+2}. Then the associated subtree TJJJ of TGGG has exactly one splitting
node.

Proof It suffices to prove that any three successive vertices in J have the same meet.
Without loss of generality, it suffices to prove that u0 ∩ u1 = u1 ∩ u3, as the same
argument shows that for any 0 ≤ i ≤ m − 2, u2i+1 ∩ u2i+3 = u2i+3 ∩ u2i+5, and that
u2m−1 ∩ u2m+1 = u2m+1 ∩ u2m+2.

Assume that u0∩u1 �= u1∩u3. Then u0∩u1 ⊂ u1∩u3 or u1∩u3 ⊂ u0∩u1. Note
that RJJJ (u0, u3) holds and ¬RJJJ (u0, u1) and ¬RJJJ (u1, u3) hold. If u0 ∩ u1 ⊂ u1 ∩ u3
then RJJJ (u0, u1), a contradiction. If u1 ∩ u3 ⊂ u0 ∩ u1, then RJJJ (u1, u3), also a
contradiction (see Fig. 26). Thus, u0 ∩ u1 = u1 ∩ u3. It follows that TJJJ has exactly
one splitting node, namely its stem. ��

Claim 6.9 The subtree TIII of TGGG induced by III has exactly one splitting node.

Proof We will first prove that for all 0 ≤ i ≤ m − 2, u2i+1 ∩ u2i+2 = u2i+2 ∩ u2i+5,
and that u2m−1 ∩ u2m = u2m ∩ u2m+2. Since the argument is the same for each of
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Fig. 26 2 types for JJJ � {u0, u1, u3} with u0 ∩ u1 �= u1 ∩ u3

these cases, it suffices to prove that u1 ∩ u2 = u2 ∩ u5. In fact, the same argument as
that in Claim 6.8 applies here, for the structure III restricted to the vertices {u1, u2, u5}
is isomorphic to the one in the proof of Claim 6.8: RIII (u1, u5), ¬RIII (u1, u2), and
¬RIII (u2, u5). Since the linear order < extends RIII , ¬RIII (u2, u1), ¬RIII (u5, u1), and
¬RIII (u5, u2) all hold. Therefore, u1 ∩ u2 = u2 ∩ u5 (see Fig. 27).

Given any three vertices u2i+1, u2i+2, u2i+3, where 0 ≤ i ≤ m − 1, let w = u2i+5
if i < m − 1 and w = u2m+2 if i = m − 1. By the above argument,

u2i+1 ∩ u2i+2 = u2i+2 ∩ w = u2i+1 ∩ w.

By Claim 6.8,

u2i+1 ∩ u2i+3 = u2i+3 ∩ w = u2i+1 ∩ w.

Therefore,

u2i+1 ∩ u2i+2 = u2i+1 ∩ w = u2i+2 ∩ u2i+3.

Hence, also u2i+1 ∩ u2i+2 = u2i+1 ∩ u2i+3. Thus, any three successive vertices in III
have a common meet, meaning that III has exactly one splitting node. ��

By Claim 6.9, HHH satisfies the property in this lemma. ��
The next theorem shows that the upper bounds proved in Theorem 5.9 are exact for

ordered binary relational free amalgamation classes, for ordered tournaments, and for
partial orders with a linear extension.
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Fig. 27 2 types for III � {u1, u2, u5} with u1 ∩ u2 �= u2 ∩ u5

Theorem 6.10 Let K be any Fraïssé class in an ordered binary relational signature
such that either K has free amalgamation or K is one of OT or OPO. Let GGG be a
universal inverse limit structure forK contained in FmaxFmaxFmax. Then for each HHH ∈ K, each
type representing HHH in GGG persists in each closed subcopy of GGG. It follows that the big
Ramsey degree T (HHH , FmaxFmaxFmax) for finite Baire-measurable colorings of

( FmaxFmaxFmax
HHH

)
is exactly

the number of types in Tmax representing a copy of HHH.

Proof Let GGG ⊆ FmaxFmaxFmax be a universal inverse limit structure for K. We will prove by
induction on the number of splitting nodes that every type τ for each finite structure
in K persists in GGG.

Suppose τ is a type for a structure inK which has no splitting nodes. Then τ codes
a single element, so there is a copy of τ in TGGG .

Now assume that n ≥ 1 and for each type τ with less than n many splitting nodes,
the type τ appears in TGGG . For the induction step, let τ be a type for a structure in K
with exactly n splitting nodes. Let s denote the splitting node of longest length in τ ,
and let σ = τ � |s|. By the induction hypothesis, there is a copy of σ in TGGG . Then
there is a subtree U of TGGG such that U has type σ . Let ϕ : σ −→ U be the strong
isomorphism from σ to U , and let u = ϕ(s).

Suppose that FFF is the finite structure inK at the immediate successors of s in τ . Let
FFF ∈ K be the structure containing a copy of FFF satisfying the properties in Lemma 6.1,
6.4, or 6.7, respectively. SinceGGG is a universal inverse limit structure for K, there is a
copy HHH of FFF in the open interval Nu . Taking t = stem(THHH ), then succTHHH (t) contains a

copy of FFF , and thus succTHHH (t) contains a copy HHH of FFF . Let X denote the set of nodes
in succTHHH (t) forming the universe of HHH . Let Y be a set of nodes {yz : z ∈ U \ {u}} of
length |t | + 1 such that for each z ∈ U \ {u}, yz ⊇ z. Then U ∪ {t} ∪ X ∪ Y is a copy
of τ . Hence, τ persists in GGG.
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Now given a structure HHH ∈ K, let τ0, . . . , τm−1 list the collection of all types for
copies of HHH in FmaxFmaxFmax. Let c : ( FmaxFmaxFmax

HHH

) −→ m be defined by c(JJJ ) = i if and only if TJJJ
has type τi . Note that c is in fact continuous, hence Baire-measurable. By the above
argument, there is a substructure GGG of FmaxFmaxFmax which is again a universal inverse limit
structure with the property that for each i < m, there is a copy of HHH in GGG with type
τi . Therefore, all colors i < m persist in GGG. Therefore, T (HHH , FmaxFmaxFmax) ≥ m.

By Theorem 5.9, we know that T (HHH , FmaxFmaxFmax) ≤ m for finite Baire-measurable col-
orings. Therefore, T (HHH , FmaxFmaxFmax) is exactly the number of types associated to HHH . ��
Remark 6.11 Theorem 6.10 characterizes the exact big Ramsey degrees under the
finite Baire-measurable colorings for some ordered structures with one (non-order)
binary relation. It seems likely that similar methods can be developed to characterize
the exact big Ramsey degrees for all structures considered in this paper in terms of the
number of types.
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