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Abstract

We build a collection of topological Ramsey spaces of trees giving rise to universal
inverse limit structures, extending Zheng’s work for the profinite graph to the setting of
Fraissé classes of finite ordered binary relational structures with the Ramsey property.
This work is based on the Halpern-Lauchli theorem, but different from the Milliken
space of strong subtrees. Based on these topological Ramsey spaces and the work
of Huber-Geschke-Kojman on inverse limits of finite ordered graphs, we prove that
for each such Fraissé class, its universal inverse limit structure has finite big Ramsey
degrees under finite Baire-measurable colorings. For such Fraissé classes satisfying
free amalgamation as well as finite ordered tournaments and finite partial orders with
a linear extension, we characterize the exact big Ramsey degrees.
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1 Introduction

Structural Ramsey theory originated at the beginning of the 1970’s in a series of papers
(see [24]). Given structures A and B, let (ﬁ ) denote the set of all copies of A in B.

We write C —> (B)fm to denote the following property: For every finite coloring

c: (g ) —— [, thereis B’ € (g ) such that ¢ takes no more than m colors on (ﬁl ) Let
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IC be a class of structures. The (small) Ramsey degree of A in /C is the smallest positive
integer m, if it exists, such that for every B € K and every positive integer [ > 2 there
exists C € K such that C — (B)fm. The class /C is said to be a Ramsey class if the
Ramsey degree of every A € K is 1. Ramsey classes are the main topic of interest
of structural Ramsey theory. Many Ramsey classes are known. Examples relevant for
our presentation include the classes of finite ordered graphs, finite ordered k-clique
free graphs with k > 3, finite ordered oriented graphs, finite ordered tournaments, and
finite partial orders with a linear extension.

Given an infinite structure S and a finite substructure A, the big Ramsey degree
of A in S is the smallest positive integer m, if it exists, such that § — (S)fm for
every [ > 2. Research on big Ramsey degrees has gained recent momentum due to the
seminal paper of Kechris et al. in [15], and the results by Zucker in [31] connecting
big Ramsey degrees for countable structures with topological dynamics, answering a
question in [15].

The history of big Ramsey degrees for countably infinite structures has its begin-
nings in an example of Sierpinski, who constructed a 2-coloring of pairs of rationals
such that every subset forming a dense linear order retains both colors. Later, Galvin
proved that for every finite coloring of pairs of rationals, there is a subset forming a
dense linear order on which the coloring takes no more than two colors, thus proving
that the big Ramsey degree for pairs of rationals is exactly two. This line of work has
developed over the decades, notably with Laver proving upper bounds for all finite
sets of rationals, and culminating in Devlin’s calculations of the exact big Ramsey
degrees for finite sets of rationals in [6].

The area of big Ramsey degrees on countably infinite structures has seen consid-
erable growth in the past two decades, beginning notably with Sauer’s proof in [28]
that every finite graph has finite big Ramsey degree in the Rado graph, which is the
Fraissé limit of the class of all the finite graphs, and the immediately following result
of Laflamme et al. in [16] characterizing the exact big Ramsey degrees of the Rado
graph. Other recent work on big Ramsey degrees of countable structures include ultra-
metric spaces (Nguyen Van Thé [25]), the dense local order (Laflamme et al. [17]), the
ultrahomogeneous k-clique free graphs (Dobrinen, [7, 8]), and, very recently, the fol-
lowing: [2, 3, 5, 14, 18, 19, 32]. For more background in this area, we refer the reader
to the excellent Habilitation of Nguyen Van Thé [26] and a more recent expository
paper of the first author [9].

Results on big Ramsey degrees for uncountable structures are even more sparse
than for countable structures. Ramsey theorems for perfect sets mark a beginning of
this line of inquiry, and most of these theorems have at their core either the Milliken
theorem ( [20]), or the Halpern-Lauchli theorem ( [12]) on which Milliken’s theorem
is based. For example, Blass proved in [4] the following partition theorem for perfect
sets of R, which was conjectured by Galvin (see [10]), who proved it for n < 3.

Theorem 1.1 (Blass [4]) For every perfect subset P of R and every finite continuous
coloring of [P", there is a perfect set Q < P such that [Q]" has at most (n — 1)!
colors.

In the proof of this theorem, Blass defined patterns for finite subsets of a perfect tree
T such that for every finite continuous coloring of finite subsets of the nodes in 7', one
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can make all subsets with a fixed pattern monochromatic by going to a perfect subtree.
Todorcevic (see [29], Corollary 6.47) provided a simpler proof of Blass’ theorem using
the Milliken space, as the perfect trees in Blass’ argument can be replaced by strong
subtrees.

Given a set X, a subset Y is called an n-subset of X if Y is a subset of X of size
n. Let [X]" = {Y € X : |Y| = n} be the set of all n-subsets of X. For a graph G,
let V(G) denote its vertex set and E(G) C [V (G)]? denote its edge relation, that is,
E(G) is an irreflexive and symmetric binary relation. An inverse limit of finite ordered
graphs is called universal if every inverse limit of finite ordered graphs order-embeds
continuously into it. Geschke (see [11]) proved the existence of a universal inverse
limit graph. Moreover, Huber-Geschke-Kojman (see [13]) gave the definition of a
universal inverse limit graph with no mention of an inverse system.

Definition 1.2 (Huber-Geschke-Kojman [13]). A universal inverse limit of finite
ordered graphs is a triple G = (V, E, <), such that the following conditions hold.

(1) V isacompact subset of R\Q, £ C [V]z, and < is the restriction of the standard
orderon Rto V.

(2) (Modular profiniteness) For every pair of distinct vertices u, v € V, there is a
partition of V to finitely many closed intervals such that

(a) u, v belong to different intervals from the partition;
(b) for every interval / in the partition, for all x € V\I and for all y,z € I,
(x,y) € Eifandonlyif (x,z) € E.

(3) (Universality) Every nonempty open interval of V contains induced copies of all
finite ordered graphs.

Based on the way Blass proved Theorem 1.1 by partitioning finite subsets into
patterns in [4], Huber, Geschke and Kojman proved in [13] the following partition
theorem for universal inverse limits of finite ordered graphs by partitioning the iso-
morphism class of finite ordered graph H into 7 (H ) many strong isomorphism classes,
called types. This theorem tells us that the universal inverse limit graphs have finite
big Ramsey degrees under finite Baire-measurable colorings.

Theorem 1.3 (Huber-Geschke-Kojman [13]). For every finite ordered graph H there
is T(H) < w such that for every universal inverse limit graph G, and for every finite
Baire-measurable coloring of the set (f[ ) of all copies of H in G, there is a closed

copy G’ of G in G such that the set (g, ) of all copies of H in G' has at most T (H)
colours.

The following notation will be used throughout. The set of natural numbers,
{0,1,2,3,...}, will be denoted by w. Let = be the set of all finite sequences of
natural numbers. Let C denote the initial segment relation. For an element s € o=¢, let
|s| denote the length of 5. We call a downward closed subset T of = a tree, ordered
by C. Every element 7 of a tree T is called a node. Given a tree T, let [T'] be the set of
all infinite branches of T',i.e.,[T] ={x e w® : (Vn <w)x [ n € T}, where x | nis
its initial segment of length n. T’ is called a subtree of T if 7" C T and T’ is a tree. For
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atree T and ¢t € T, s is called an immediate successor of ¢ if s is a minimal element
of T above ¢. The set of immediate successors of 7 in T is denoted by succy(¢). Let
T; be the set of all nodes in T comparable to z,i.e., T ={s € T : t Cs Vs C t}. For
new,weletT(n)={teT:|t| =n}

In order to state the results of Huber-Geschke-Kojman and of Zheng, we need to
introduce the following notation and structures. Let R denote the Rado graph, i.e., the
unique (up to isomorphism) countable universal homogeneous graph. We assume that
the set of vertices of R is just the set w of natural numbers. For n € w, let R, be the
induced subgraph of R on {0, ..., n}.

Definition 1.4 ([13]) Let Thax € w=% be the nonempty tree such that for each t €

Tmax,
sucer (1) = {t~(0), (1), ...t~ (|t])}.

For t € Timax, we define G to be the ordered graph on the vertex set succy,, (#) with
lexicographical ordering, such that G, is isomorphic to Ry;/.

Note that [ Tinax ] is a subset of w®. Given x, y € [Tnax] Withx # y,letxNy € @=?
be the common initial segment of x and y,i.e. x Ny = x [ min{n : x(n) # y(n)}.
The tree Tax and the ordered graphs G, (t € Tpax) induce an ordered graph Gax
on the vertex set [Tinax ], ordered lexicographically, with the edge relation defined as
follows. For x, y € [Tmax]l, (x,y) € E(Gmax) if and only if (x | ((x Ny|+ 1),y |
(Ix Nyl + 1)) € E(Gxny). Suppose that T is a subtree of Tiyax and ¢ € T. Let G,T
denote the induced subgraph of G, on the vertex set succy (). We define G(T') to be
the induced subgraph of Gk on [T']. A subtree T of T,y is called a G,x-tree if for
every finite ordered graph H and every ¢t € T, there is s € T with r C s such that H
embeds into GST. In particular, Tip,x is @ Gpax-tree.

Let (R, <,r) be a triple satisfying the following: R is a nonempty set, < is a
quasi-ordering on R, and r : R X @ —> AR is a mapping giving us the sequence
(rn(-) = r(-, n)) of approximation mappings, where

AR = {r,(A) : A € Rand n € w}.
Fora ¢ ARand A € R,
[a, Al={BeR:(B<A)A@n)(r,(A) =a)}.

The topology on R is given by the basic open sets [a, A]. This topology is called the
Ellentuck topology on R. Given the Ellentuck topology on R, the notions of nowhere
dense, and hence of meager are defined in the natural way. Thus, we may say that a
subset X' of R has the property of Baire ift X = O AM for some Ellentuck open set
O C R and Ellentuck meager set M C R.

Definition 1.5 ([29]) A subset X of R is Ramsey if for every ¥ # [a, A], there is a
B € [a, A] such that [a, B] € X or [a, BN X = @. X C R is Ramsey null if for
every @) # [a, A], there is a B € [a, A] such that [a, B|N X = @.
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A triple (R, <, r) is a topological Ramsey space if every property of Baire subset
of R is Ramsey and if every meager subset of R is Ramsey null.

In [30], Zheng constructed a collection of topological Ramsey spaces of trees. For
each type t of finite ordered graphs, the space (Goo(T), <, r) consists of Gy,x-trees
of a particular shape. The new spaces G, (7) not only depend on the fact that the class
of finite ordered graphs is the Ramsey class, but also, similarly to the Milliken space,
are based on the Halpern-Lauchli theorem. Moreover, she presented an application of
the topological Ramsey spaces G (7) to inverse limit graph theory. Similarly to how
Todor¢evi¢ proved Blass’ Theorem 1.1, Zheng used the new spaces G (T) to prove
the following Theorem 1.6 (Theorem 3.1 in [13]), which is a key step to show the
above Theorem 1.3 in [13].

Theorem 1.6 (Theorem3.1in[13])Let T be an arbitrary Gmax-tree. Foreverytype T of
a finite induced subgraph of Gmax, and for every continuous coloring c : (G,(T) ) —

2, there is a Gmax-Subtree S of T such that c is constant on (G,(S) )

In this paper, we extend Zheng’s methods to build a collection of topological Ram-
sey spaces of trees in the setting of Fraissé classes of finite ordered structures with
finitely many binary relations satisfying the Ramsey property. Based on these topo-
logical Ramsey spaces and the work of Huber-Geschke-Kojman on inverse limits of
finite ordered graphs, we prove the following theorem. Here, Fyax is a universal limit
structure encoded in a particular way on the set of infinite branches of a certain finitely
branching tree Tiax (see Definitions 2.3 and 2.4).

Theorem 1.7 Let K be a Fraissé class, in a finite signature, of finite ordered binary
relational structures with the Ramsey property. For every H € K, there is a finite
number T (H, Fax) such that for every universal inverse limit structure G, for every
finite Baire-measurable coloring of the set (g) of all copies of H in G, there is a

closed copy G’ of G contained in G such that the set (g’ ) of all copies of H in G’
has no more than T (H , Fpax) colors.

This means that for each such Fraissé class, its universal inverse limit structures have
finite big Ramsey degrees under finite Baire-measurable colorings. For the following
classes, we characterize the big Ramsey degrees in terms of types.

Theorem 1.8 Let KC be a Fraissé class in a finite binary relational signature such that
one of the following hold:

(1) K is an ordered expansion of a free amalgamation class;
(2) K is the class of finite ordered tournaments;
(3) K is the class of finite partial orders with a linear extension.

Let G be a universal inverse limit structure for IC contained in Fyax. Then for each
H € K, each type representing H in G persists in each closed subcopy of G. It
follows that the big Ramsey degree T (H , Fmax) for finite Baire-measurable colorings

of ( F“I‘;" ) is exactly the number of types in Tmax representing a copy of H.
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2 Ordered binary relational Fraissé classes and Fax-trees

Let us first review some basic facts of the Fraissé theory for finite ordered binary
relational structures which are necessary to this paper. More general background on
Fraissé theory can be found in [15].

We shall call L = {<, Ry, ..., Rk—1} an ordered binary relational signature if it
consists of the order relation symbol < and finitely many binary relation symbols Ry,
£ < k for some k < w. A structure for L is of the form A = (A, <A, R(")‘, el R,‘?_l),

where A £ (Jis the universe of A, <Aisalinear ordering of A, and each R? C AxA.
An embedding between structures A, B for L is an injection 7 : A —> B such
that for any two a,a’ € A, a <4 d' <= m(a) <B n(a’) and for each ¢ < k,
(a1, ar) € R? < ((ay), n(ar)) € Rf. If 7 is the identity, we say that A is a
substructure of B. An isomorphism is an onto embedding. We write A < B if A can
be embedded in B and A = B if A is isomorphic to B.

A class [ of finite structures is called hereditary if A < B € K implies A € IC. It
satisfies the joint embedding property if forany A, B € K, thereisC € KwithA <C
and B < C. We say that /C satisfies the amalgamation property if for any embeddings
f:A— B, g:A— CwithA, B, C € K, there is D € K and embeddings
r:B —> Dands:C — D,suchthatro f = sog. A class of finite structures / is
called a Fraissé class if it is hereditary, satisfies joint embedding and amalgamation,
contains only countably many structures, up to isomorphism, and contains structures
of arbitrarily large (finite) cardinality. A Fraissé class satisfies the free amalgamation
property (or has free amalgamation) if D, r, and s in the amalgamation property can
be chosen so that7[B]Ns[C] = ro f[A] = sog[A], and D has no additional relations
on its universe other than those inherited from B and C.

Let A be a structure for L. For each X C A, there is a smallest substructure
containing X, called the substructure generated by X. A substructure is called finitely
generated if it is generated by a finite set. A structure is locally finite if all its finitely
generated substructures are finite. The age of A, Age(A) is the class of all finitely
generated structures in L which can be embedded in A. We call A ultrahomogeneous
if every isomorphism between finitely generated substructures of A can be extended to
an automorphism of A. A locally finite, countably infinite, ultrahomogeneous structure
is called a Fraissé structure.

There is a canonical one-to-one correspondence between Fraissé classes of finite
structures and Fraissé structures, discovered by Fraissé. If A is a Fraissé structure,
then Age(A) is a Fraissé class of finite structures. Conversely, if I is a Fraissé class of
relational structures, then there is a unique Fraissé structure, called the Fraissé limit
of IC, denoted by Flim(XC), whose age is exactly /.

Definition 2.1 Let K be a Fraissé class of finite ordered binary relational structures.
We say that K satisfies the Ramsey property if IC is a Ramsey class. That is, for each
A, B € K such that A < B and for every positive integer [ > 2, there exists C € K
such that C — (B)A.

Given an ordered binary relational signature L = {<, Rp, ..., Rx—1},let L™ denote
{Ro, ..., Rk—1}. An L~ -structure A is called irreducible if for any two elements
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X,y € A, there is some relation R € L~ such that either RA(x, y) or RA(y,x)
holds. Given a set F of finite L~ -structures, let Forb(F) denote the class of finite
L~ -structures A such that no member of F embeds into A. It is well-known that a
Fraissé class in signature L~ has free amalgamation if and only if it is of the form
Forb(F) for some set F of finite irreducible L~ -structures. It follows from results
of Nesetfil and Rodl in [21, 22] that all Fraissé classes in signature L for which the
L™ -reduct has free amalgamation has the Ramsey property.

For k > 3, a graph G is called k-clique free if for any k vertices in G, there is at least
one pair with no edge between them; in other words, no k-clique embeds into G as
an induced subgraph. An oriented graph G = (V(G), E(G)) is a relational structure,
where V (G) denotes its vertex set and E(G) € V(G) x V(G) denotes its directed
edge relation, that is, E(G) € V(G) x V(G) is an irreflexive binary relation such
that for all x, y € V(G), (x,y) € E(G) implies (y, x) ¢ E(G). A tournament G is
an oriented graph such that for all x # y, either (x,y) € E(G) or (y,x) € E(G).
A partial order with a linear extension is a structure P = (P, <P RP) where R?
is a partial ordering on P, <P is a linear ordering on P, and whenever x # y and
RP(x, v) holds, then also x <P y holds.

Example 2.2 Let OG, OG, OOG, OT, and OPQO denote the Fraissé classes of all
finite ordered graphs, finite ordered k-clique free graphs (k > 3), finite ordered oriented
graphs, finite ordered tournaments, and finite partial orders with a linear extension,
respectively. Each of these classes has the Ramsey property.

The Ramsey property for OG, OGi, OOG, and O7, are special cases of a theorem
of Nesetiil-Rodl ( [21, 22]); the Ramsey property for that OG and O7 follow from
independent work of Abramson and Harrington in [1]. The Ramsey property for OPO
was announced by NeSetfil and R6dl in [23], and the first proof was published by Paoli,
Trotter, and Walker in [27].

Let K be a Fraissé class of finite ordered binary relational structures with the
Ramsey property. We may assume the universe of Flim(K) is w, so that the universe is
well-ordered. Forn € w, let Flim(K),, be the initial segment of Flim(XC) on {0, . . ., n}.

Definition 2.3 Let IC be a Fraissé class of finite ordered binary relational structures
with the Ramsey property, and let Tiax € =% be the nonempty tree such that for
each t € Thax,

succy,,, (&) = {t7(0), ¢t (1), ..., t"(|t])}.

For t € Tiax, we define F; € K to have universe F; := succr,,, (¢), ordered by the
lexicographical ordering, such that F; is isomorphic to Flim(/C) ;.

Definition 2.4 Let C be a Fraissé class of finite ordered binary relational structures
with the Ramsey property. The tree Tinax and Fy € K (f € Tyax) induce a structure Fpax
on the universe Fpax := [Tmax], ordered lexicographically, with the binary relations
R{m‘”‘, £ < k (where k is the cardinality of the signature L), as follows:

Fx
VX, Y € [Tmax), (6, 9) € RP™ = (x [ (x Nyl + 1D,y [ (xNyl+1) e R,
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Lemma 2.5 Let KC be a Fraissé class of finite ordered binary relational structures with
the Ramsey property. If F € IC and t € Tnax, then there is s € Tmax witht C s such
that F embeds into F.

Proof Since F; is isomorphic to Flim(KC)), it suffices to prove that each F € K
embeds into Flim(KC) on universe w. Now the age of Flim(K) is exactly K. So each
F € K embeds into Flim(K) on universe w. O

Definition 2.6 (1) Suppose that 7 is a subtree of Tyx and ¢ € T'. Let F,T denote the
induced substructure of F; on the universe F,T := succy (1). We define F(T) to
be the induced substructure of Fyax on the universe F(T) := [T].

(2) Let K be a Fraissé class of finite ordered binary relational structures with the
Ramsey property. A subtree T of T,y is called an Fyax-tree if for every F € I
and every t € T, thereis s € T with r C s such that F embeds into FST. In
particular, Trax iS an Fyax-tree.

Definition 2.7 Let C be a Fraissé class of finite ordered binary relational structures
with the Ramsey property. A sequence (7)jeco 1S a fusion sequence with witness
(m ) jew if the following hold:

(1) (m}) jew is a strictly increasing sequence of natural numbers.

(2) Forall j,I € w,if j < [, then T} is an Fyyax-subtree of T; such that 7;(m;) =
Ti(mj).

(3) Forevery F € K ,every j € w,and every t € Tj(m ), there is/ > j such that ¢
has an extension s in 7; such that |s| < m; and F embeds into FST'.

One can check that if (7}) je., is a fusion sequence witnessed by (1) jew, then the
fusion ﬂjew T; = Ujew(Tj N w="") is an Fpax-tree.
3 Types

Definition 3.1 Let T be an Fipax-tree and F a finite induced substructure of F(T). We
define A(F) and FV as follows:

A(F) =max{lxNy|:x,y € F Ax #y},
FY={x | (AF)+1):x€F).
Example 3.2 LetC = OGand H € KasinFig. I, where H = {x, y, z},x = 0000...,

y = 0100..., and z = OI11.... Then A(H) = 2 and HY = {u, v, w}, where
u = 000, v =010 and w = O11.

Definition 3.3 Let F and F’ be finite induced substructure of Fyax. We say F and
F' are strongly isomorphic if there exists an isomorphism ¢ : F —> F’ such that
Y {x0. yo}, {x1, y1} € [F1?,

lxo N yol < [x1 N y1] <= le(x0) Ne(yo)l < lex1) Ne(y)l.
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X y 4
1/} o W
_______________ A

Fig.1 A(H)and HY

Fig.2 H

Clearly, strong isomorphism is an equivalence relation. By a fype we mean a strong
isomorphism equivalence class. In particular, there are only finitely many types inside
an isomorphism class.

Suppose that F and H are structures. Let ( Z ) be the set of all induced substructures
H'’ of F isomorphic to H. If F is an induced substructure of Fyax and 7 is a type, we
let (f ) be the set of all induced substructures of F of type 7.

Example 3.4 Let K = OG and H € K be as in Fig. 2, where H = {vg, vy, v2}. Then
there are 3 types for H as in Fig. 3.

Let H € K be as in Fig. 4. Then there are 2 types for H as in Fig. 5.
Let H € K be as in Fig. 6. Then there is only 1 type for H as in Fig. 7.

Example 3.5 Let L = OT and F € K be as in Fig. 8. Then there are 3 types for F as
in Fig. 9.
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Fig.3 3 types for H
vo \ "2
1
Fig.4 H
Vo V1 V) Vo " Vs

Fig.5 2 types for H
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T

Vo Vv,
151

Fig.6 H

Fig.7 1 type for H

Vo V1 Vi
.
. . L]
. v -
Vo i Vs
V1

Fig.8 F
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Fig.9 3 types for F

Vo V] Vs

Fig.10 F

Vo i T, Vo n_ooo—

Fig. 11 2 types for F

@ Springer



Big Ramsey degrees in universal inverse limit structures 483

—

Vo > >y,
V1

Fig.12 F

Fig.13 1 type for F —

If F € Kis as in Fig. 10, then there are 2 types for F as in Fig. 11.
Let F € K be as in Fig. 12.
Then there is only 1 type for F as in Fig. 13.
Example 3.6 Suppose that = OPO and H € K as in Fig. 14.
Here

Vi e

denotes that R(v;, v;), where R is a partial order. Then there are 3 types for H as
in Fig. 15.
Let H € K be as in Fig. 16. Then there are 2 types for H as in Fig. 17.
Let H € K be as in Fig. 18. Then there is only 1 type for H as in Fig. 19.

@ Springer



484 N. Dobrinen, K. Wang

— T
/ \
Vo > Vs
V1
Fig.14 H
Yo ,///\'1\\ Vs Yo vy \‘ Vs Vo /’Tl > Vs
/ \ / / \ \ /
\ / N/ / \ N/
/ Lvd / \ X7
T/ A\ / N
\|/ \./ \/
\\ \ ’ ,

Fig. 15 3 types for H

"

Fig.16 H

4 Topological Ramsey spaces for coding inverse limit structures for
finitely many binary relations

This section is essentially work of Zheng from Sect. 3 in [30]. Her work is straight-
forwardly extended from the context of finite ordered graphs to the broader context
of Fraissé classes of finite ordered binary relational structures satisfying the Ram-
sey property. We include it in this paper for the reader’s convenience, making a few
modifications.

Let IC be a Fraissé class of finite ordered binary relational structures satisfying the
Ramsey property, with signature L = {<, Ry, ..., Rx—1}, where each R, (¢ < k) is
a binary relation. We fix a type 7 and build a topological Ramsey space Foo (7). We
may denote this space by Fo, when the type is clear from the context. Let m 4 1 be the
number of elements for a finite ordered structure in 7. Let {F; : i < w} enumerate the
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Vo V1 v,

- e

5
3

Vo V1 »

l

\ / N\
N — >/ //
\ / . /
N\ / /
D / \ /
\ / \ /
\ 7 AN /
\. // \ o/
vl 4

Fig.17 2 types for H

Fig.18 H

set of all finite structures in /C, up to isomorphism, labelled so that forevery i < j < w,
[Fil < |Fjl.

Let Sbe atree. Anode t € S is a splitting node if |succg(t)| > 1. We say S is skew
if S has at most one splitting node at each level, i.e.,

Vneow, |{te SNa" : |succs(?)| > 1} < 1.

Notice that if S is a skew tree and i > 0 is given, then each node ¢ € S for which
F,S = F; is a splitting node, since the structure F; has universe of size at least two.
Thus, any two nodes in the set {r € S : F,S = F;} have different lengths, so the nodes
in this set can be enumerated in order of increasing length. This will be useful in part
(iii) of (2) in the next definition.

Definition 4.1 Let t be a type and m + 1 be the number of elements for a finite ordered
structure in 7. We define the space (Fu, <, ) as follows.

Let S be a member of F if S is a skew subtree of T,,x and when we enumerate
the set of splitting nodes {s € S : |succs(s)| > 1} as {s;}; <, in the order of length,
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Fig.19 1 type for H “9/// ™ ‘\\\i‘}

(1) There is a finite structure F € 7 such that
FY = Snolm11+

(2) Foralli > 0,

() Vs e SN 1l ¥y e succs(s),
FS=F, =>3teSwuctAFS=F);
(ii) For every pairs, t € S N lsm-11,
FS=F AFS = Fip1 = 5| < il;
(i) If {r € §: F,s = F;} is enumerated in order of increasing length as {z;};,

then there is [ < o such that {¢; | [}; is strictly increasing in lexicographical
ordering.

When we say that {s;}; <, is the set of splitting nodes in S, we tacitly assume that
the length |s;| is strictly increasing in i.

@ Springer



Big Ramsey degrees in universal inverse limit structures 487

For S, U € Foo, wewrite S < U ifandonlyif S € U.Forl < wand § € F with
the set of splitting nodes {s;}; <., we define the finite approximation r;(S) as follows:
let

ro(S) = ¥ and i1 (S) = S Nw=MFL

We specify a few more definitions that are often used in topological Ramsey spaces.
Let F-oo denote the set of all finite approximations, i.e.

Feoo ={r1(8) : S € Foo Al € w}.

Fora,b € F_oo,leta <gn bifa C b.Let |a] = nifthereis § € Foo withr,(S) = a.
Fora,b € F_o, we write a C b if there are ] < p < w and § € F4 such that
a=r/(S) and b =71,(S).

Fora € F_oo and S € Fu, depthg(a) = min{n : a <g r,(S)}, where by
convention, min ¥} = oco. We equip the space Fo, with the Ellentuck topology, with
basic open sets of the form

[a,S]={X € Foo : (X =8 A @D (i (X) = a)},
fora € Foooand S € Foo. Forl < w, let

Fr={n(X): X € Fool,
[Z, S1=1[r;(S), S], and
rila, S1 = {r(X) : X € [a, S1}.

The height of an element a € F_ is height(a) = max;e, |s|. In general, |a| <
height(a).

Now we show that (Fo, <, r) is a topological Ramsey space by proving that F,
is closed as a subspace of (F-o0)®, and satisfies the axioms (A1)-(A4) as defined
in pages 93-94 of [29]. It is straightforward to check (A1)-(A3). Moreover, F is a
closed subset of (F_-x)® when we identify S € Fo with (r,(S))n<w € (F<co)® and
equip F-~ with the discrete topology and (F_,)® with the product topology.

Definition 4.2 Let T € w=® be a (downwards closed) finitely branching tree with no
terminal nodes, and let N an infinite subset of w. A set U is called a strong subtree
of Un ey T No" if there is an infinite set M € N such that the following conditions
hold.

(1) UC UneM TNo™ and U N @™ # @ for all m € M. In this case, we say that M
witnesses that U is a strong subtree.

(2) If m; < my are two successive elements of M and if u € U N ©™!, then every
immediate successor of u in | J, .y T N " has exactly one extension in U N ™2,

Theorem 4.3 (Halpern-Lauchli [12]). For each i < d, let T; C @=® be a finitely
branching tree with no terminal nodes, let N € [w]®, where d is any positive integer,
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andlet ¢ : \J,cy [1i2g Ti N @" —> p be a finite coloring, where p is any positive
integer. Then there is an infinite subset M C N and infinite strong subtrees U; C
Upen Ti N witnessed by M such that ¢ is monochromatic on | J,,cpr [ 1; .4 Ui N™.

We observe that every S € Fo is an Fpax-tree and every Fpax-tree contains some
S € Fo as asubtree. This is because for all n < w, we can find infinitely many m € w
such that F;, embeds into F, (in fact, this holds for all but finitely many m € w.) We
define (A,)n<e to be a sequence of finite structures in C such that for each n < w,
the finite structures Fy, ..., F, embed into A,,.

Now we will prove (A4) in Lemma 4.4 For L = OG, Zheng proved in [30] that
(Foo, <, 1) is a topological Ramsey space. So the axiom (A4) holds for finite ordered
graphs. It should be pointed out that the proof of Lemma 4.4 follows from Zheng’s
proof for finite ordered graphs. However, for the convenience of the reader, we also
present the proof here.

Lemma 4.4 The axiom (A4) holds for (Feo, <, ), i.e. for a € F.oo and S € Foo,
if depths(a) < oo and O C Fiq+1, then there is U € [depths(a), S] such that
Fal+1la, Ul € O or rig+1la, UIN O = 0.

Proof Let mo = height(a). Then a has |a| many splitting nodes, and each element in
Flal+1 has |a| + 1 many splitting nodes. In particular, we can find u € a N ™ and
J < o such that for every b € F|, 41 with a E b, there is a unique splitting node
t € by, and Ftb = Fj. Leta N @™ be enumerated as u = vy, v1, ..., V4.

Step 1 Let us construct a subtree X C S along with a strictly increasing sequence
(m}); < starting with my = height(a) such that the following conditions hold for every
I <wandeverys € X Nw™:

(a) Xy has a unique splitting node ¢ of length in [m;, mj41).
(b) For the ¢ from condition (a), F,X = Aj. Lett € S,. The set of tuples of nephews
of ¢ is defined to be

(11, ... ta)  1; € Xy, N for 1 <i < d).
X
Suppose (f;)1<i<q 18 a tuple of nephews of . Each finite structure F € (;"I )

together with (#;)1<;<4 determines an element br (;,) € Fjq+1, Where the set of
C-maximal nodes in bg ) is F U {; : 1 < i < d}. With this notion of br )
defined, we can state another requirement for X.

(c) Forevery t € X and every tuple (#;)1<i<q4 of nephews of ¢, the set {bp,(,l.) :F e
X
(f—’l )} is either included or disjoint from O.

We recursively construct sets X (im;) € ™. Then X will be the downward closure
of ;. X(m;) and X N ™ = X (my). Start with X (mg) = {v; : i < d}. Assume we
have constructed X (m;). The number of extensions in X (m;41) foreach s € X (my) is
prescribed. In particular, foreach t O u in X (m;41), the set of (tuples of) nephews of ¢
will be finite and of the same size, independent of ¢. Let this size be k < w. Since I is
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a Fraissé class of finite ordered binary relational structures with the Ramsey property,
. . F; . .
there is a finite ordered structure H € K such that H — (A j+l)2;f Since S is an
Fnax-tree, for each s € X (m;) extending v; (1 <i < d), s has an extension 7(s) € S
FS
such that there is F(s) € ( Atj(j-)l ). On the other hand, for each s € X (m;) extending u,
s has an extension 7 (s) € S such that H embeds into F;S('S). For each tuple (#;)1<i<q of
FS
nephews of 7(s), there is a natural coloring ¢ : ( 1',3_” )
br ;) is in O. Thus, there are at most k many 2-colorings. These colorings can be

— 2 depending on whether

; ; n ; F, tf:) ; F tf:)
encoded in a single 2"-coloring of ( F, ). Then there is H(s) € ( A ) such that the

set (I;ES) ) is monochromatic. Let

my+1 = max{|t(s)| : s € X(m;)} + 1.

Suppose that X (m;41) S S N ™+! has the property that every node in ({_,.,, F(s))
U(Usex(ml)\D H (s)) has a unique extension in X (m;41), where D = {s € X(my) : s
extends v;, 1 <i < d}. Thus X satisfies (a), (b) and (c). This finishes the construction
of X and (m;); <.

Step 2 We use the Halpern-Lauchli theorem to shrink X to an Fpax-tree 7 such
that the set {b € Fjq 41 : b € T} is either included in or disjoint from O. We define a
coloring

c:UHXviﬂw’"’ — 2

l<wi<d

as follows: Let c(vg, v1,...,vq) = 1. Suppose 0 < | < w and (f;)i<q € Xy; N ™.
Since S is a skew tree, so is X. Let

sl(ty) = max{|t| : t C tg and succx (¢) > 1} + 1.

Then (#; [ s{(t0))1<i<a is a tuple of nephews for ¢y | si(f9) — 1. Let

FX
1, {bF,(ti Isl(19)) F e ( for;l‘;to)—l )} co,
C(t()atla"'?td) = FX[[( -1
1o [sl(tg)—
0. {br,(z,- pstaoy  F e (0" )} no=0.

By (c), this colouring is well-defined. By Theorem 4.3, there are a strictly increasing
sequence (1) j<w S (m);<e and strong subtrees

Y, U X, N ™

I<w

witnessed by () j <, such that ¢ is monochromatic on U
be the downward closure of | J;_, Y;.

Hifd YiNwi.LetT

j<w
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Claim4.5 Ifl <w,i <d,s € Y Nw™ andt corresponds to s as in (a) and (b), then
t € T and FI = FX.

Proof Since s € ¥; N @™, there is some p < w such that n, = m;. As Y; is a strong
subtree of | J; _,, Xy, N @™, every immediate successor of s in |, _,, Xy, N @™ has
exactly one extension in ¥; N @"r+!. It follows from the construction of X that every
node in succy (t) has exactly one extension in X N o™/*+!. Moreover, the immediate
successors of s in |, _,, Xy; Nw™" are precisely the extensions in X Nw™+! of nodes
in succy (¢). Then ¢ is in the downward closure of Y;, and thus t € T. So F,T = F,X.

(]

Then it is straightforward to check that 7 is an Fyax-tree such that the set {b €
Flal+1 : b € T}iseither included in or disjoint from O. By the observation before this
lemma, we can further shrink 7 to U € F satisfying the conclusion of the lemma.

O

Theorem 4.6 For each Fraissé class of finite ordered binary relational structures with
the Ramsey property and each type t, the space (Foo(T), <, r) is a topological Ramsey
space.

5 Finite big Ramsey degrees for ordered binary relational universal
inverse limit structures

Let IC be a Fraissé class of finite ordered binary relational structures satisfying the
Ramsey property, with signature L = {<, Ry, ..., Rx—1} where each R;,i < k,is a
binary relation. In this section, we prove that for each such /C, the universal inverse
limit structure has finite big Ramsey degrees under finite Baire-measurable colorings.
The proofs in this section are straightforward via the topological Ramsey spaces from
Theorem 4.6 (which is based on work of Zheng in [30]) and the work of Huber-
Geschke-Kojman on inverse limits of finite ordered graphs in [13].

Definition 5.1 Let K be a Fraissé class of finite ordered binary relational structures
with the Ramsey property. A universal inverse limit of finite ordered structures in /C
is atriple G = (G, <G, Rg e R,?_ 12> such that the following conditions hold.

1. G is a compact subset of R\Q without isolated points, <€ is the restriction of the
standard order on R to G, and Rl.G C [G]2 foreachi < k.

2. For every pair of distinct elements u, v € G, there is a partition of G to finitely
many closed intervals such that

(a) u, v belong to different intervals from the partition;
(b) For every interval / in the partition, for all x € G\/ and for all y,z € I,
(x,y) € RS if and only if (x, z) € RS, foreach i < k.

3. Every nonempty open interval of G contains induced copies of all finite ordered
structures in /.
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For every Fmax-tree 7', it can be seen from Definition 2.6 that F(T) is a univer-
sal inverse limit structure. So it follows from the universality that we can consider
colourings of finite induced substructures of F(T).

Definition 5.2 Let 7 be a type and H € 1. The Fo-envelope of H is
Cu=1{U € Foo : @D(n(U) = |H")},

where |HY ={a c 0=®: (@x € H)(a C x | (AH) + 1))}

Lemma5.3 Let v be atype and T € F. Defineamap cy : [0, T] — {Hv cH e
(F$T) )} as follows:

YU e[@,T], ifUeCq, c1(U)y=H".

Then c is well-defined and continuous, where we equip the range with the discrete
topology.

Proof Letm + 1 be the number of elements for each H € 7. Then | H" has m splitting
nodes. Thus

VU € Foo,VI, (n(U)=HY =1 =m).

Let U,V € [0, T]. Then there are H,K € t suchthat U € Cg and V € Cg. If
U = V,then |HY = r,,(U) = ru(V) = KV, and thus HY = KV. So ¢ is

well-defined.
Suppose that H € 7 and U € (c1)"'(H"). We have that U € Cg. Then the set
[m, U] is an open set containing U and [m, U] C (cl)’l(HV). Thus ¢y is continuous.
O

We equip o® with the first-difference metric topology, which has basic open sets
of the form [s] = {x € w¥ : s C x} fors € w=®. Forn € w, let [Fpax]" denote the
set of all induced substructures of Fyax of size n.

Definition 5.4 For n > 1, we define a topology on [Fpax]" as follows: A set U C
[Fmax]" is open if for all H € U, there are open neighborhoods Uy, ..., U, of the
elements of H such that all H’ € [Fpax]" that have exactly one vertex in each U; are
also in Y. This topology is separable and induced by a complete metric. A coloring of
n-tuples from [Fpax]” is continuous if it is continuous with respect to this topology.

Lemma5.5 Let t be a type and T € Fuo. For every continuous coloring c¢ :
(FiT)) —> 2, there exists an Fpax-subtree S of T such that ¢ depends only on

HY,ie,forH,K ¢ (ng) ) if HY = K", then c(H) = c¢(K).
Proof For H € ("), by definition of A(H), the map x —> x | (A(H) + 1))

is a bijection from the universe H of H onto H". Let t1, ..., f; denote the elements
of HY. For all X = (x1,...,x;) € [T,] X -+ X [T;], the induced substructure
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H of F(T) on the set {xi, ..., x;} is isomorphic to H. By the continuity of c, for
all such x there are open neighborhoods x; € U f‘, ...,X € Uf such that for all
Vi, ..., € Uf X oo X Uf for the induced substructure H’ of F(T) on the vertices
Yis ..., y1, we have c(H) = c(H').

We may assume that the Uf are basic open sets, i.e., sets of the form [7] for
some r € T. Since the space [T;] x - - - x [T;] is compact, there is a finite set
A C[T,] x -+ x [T;] such that

1
[T1x - xIn1=J[ U

xeAi=1

Hence there is m € w such that for all induced substructures H' of F(T) with H' |
(A(H)+1) = HY, the color ¢(H’) only depends on H’ | m, where m is the maximal
length of the r’s with [T, ] = Uf forsome x € Fandi € {1,...,[}.

Since for each m € w, there are only finitely many sets of the form H | m,
where H € (F§T) ), there is a function f : @ — o such that for every finite
induced substructure H of F(T) with A(H) + 1 = n, the color ¢(H) only depends on
H | f(n). Now let S be an Fax-subtree of T such that whenever s € S is a splitting

node of S of length n, then S has no splitting node ¢t whose length is in the interval
(n, f(n)]. Now for all H € (F$S) ) the color c(H) only depends on HY. O

Theorem 5.6 Let T be an Fyax-tree. For every type T of a finite induced substructure
of Fmax, and every continuous coloring c : (F§T) ) —> 2, there is an Fyax-subtree S
of T such that c is monochromatic on (ng) )

Proof We can shrink 7 and assume 7' € Foo. By Lemma 5.5, ¢ depends only on H".

We may think of ¢ as a map as follows:
. Vo, F(T)
c:|HY:He(FD)| —2

Definec : [#, T] —> 2by ¢ = coc;. By Lemma 5.3, ¢ is also a continuous map. By
Theorem 4.6, there is some S < T such that ¢ is monochromatic on [, S]. Suppose

that H € (ng) ) Then the universe H of H is contained in [S], so HY C S. Hence

there is a U € [@, S] such that U € Cyg, and thus, ¢c(H) = ¢(U). Therefore c is

monochromatic on (ng) ) O

The next lemma is a straightforward extension of Lemma 3.8 in [13].

Lemma5.7 Let T be an Fyax-tree. For every type T of a finite induced substructure
of Fmax, and every Baire-measurable coloring c : (F§T) )

subtree S of T such that c is continuous on (ng) )

—> 2, there is an Fpax-

Proof Since ¢ : (FiT))

—> 2 is Baire-measurable, ¢—1(0) and ¢~!(1) have the

property of Baire. Then there exist open sets U, V in (F$T) ) and meager sets M, N
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in (FﬁT)) such that
¢ '0)=UAM and ¢c™' (1) = VAN,

where A denotes the symmetric difference. Let (NV,),c, be a sequence of closed
nowhere dense subsets of (F£T) ) such that M UN C N,,. We would like to

ng) ) is disjoint from | J, ., N, In this

new
construct an Fyax-subtree S of T such that (
case, we have

new

-1 -1

O N (FO) = U N (FO) and ™ (1) N (FO) = V 1 (FO).
It follows that ¢ is continuous on (Fﬁs) ) In order to find an Fpyax-subtree S that
is disjoint from ( J,,.,, V», we construct a fusion sequence (7j) jew Of Fmax-subtrees
of T with witness a strictly increasing sequence (m ;) e, Of natural numbers. Put
S =(jew Ij- Then S is an Fax-subtree of .

Suppose T; and m ; have already been chosen. We assume that for all t € T (m )
and all s € T witht C s, we have s € T;. For a certain t € T;(m;), we have to
find a splitting node s with ¢ C s such that for a certain finite ordered structure H, H

. T; . . . .
embeds into Fj i1 Since T} is an Fpax-tree, there is m > m; and an extension s of ¢

with |s| < m such that H embeds into FsTj .
Suppose that H is a finite substructure of F(T;) of type t such that A(H) < m.
We list elements of H as fo, 1, ...,?,. The set H | m determines an open subset

O of (FﬁT)). Since |J,<; Ny is closed and nowhere dense in (F§T)), O con-
tains a nonempty open subset that is disjoint from [, <j Ny It follows that for
i €{0,1,...,p}, t; | m has an extension s; € T; such that the open subset of
(F?) ) determined by so, s1, ..., 5 is disjoint from Un<j N,. We may assume that
50, 51, - - - » S have the same length m j+1 > m. -

Let X C Tj(mj41) be a set that contains exactly one extension of every element

of Tj(mj) and in particular the elements so, 51, ..., sp. Let
Tiq1={teT;:IseX(sCtVvis)}h

Then 7)1 is an Fax-tree. Whenever H' is a finite substructure of F(Tj41) of type
twith H [ m = H | m, then H' | mj1 = {so,51,...,sp}. In particular, H" ¢
U, <j N, . This finishes the recursive definition of the sequences (7) jew and () jew.
Fihally, letS =) jew T;. One can check that S is an Fyax-tree. Letn € w and let H
be a finite substructure of F(S) of type 7. Then there is j € w such that A(H) < m;.
We can choose j > n.Note that S(m ;) = T (m ). Since S € T4, by the construction
of Tj41. H ¢ U,<; Nu- In particular, H ¢ N,,. This shows that (") is disjoint
from | J,,.,, Ny It follows that ¢ is continuous on (7).
Theorem 5.8 Let T be an Fyax-tree. For every type T of a finite induced substructure of
F(T) )
T

m}

new

Frax and every Baire-measurable coloring c : ( —> 2, there is an Fypax -subtree

S of T such that c is constant on (ng) )
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Proof By Lemma 5.7, there is an Fpax-subtree U of T such that ¢ is continuous on
FU
(F5s)) )
().

. By Theorem 5.6, there is an Fpyax-subtree S of U such that ¢ is constant on

O

Theorem 5.9 Let IC be a Fraissé class, in a finite signature, of finite ordered binary
relational structures with the Ramsey property. For every H € K, there is a finite
number T (H, Fyax) such that the following holds: For every universal inverse limit
structure G and for each finite Baire-measurable coloring of the set (g ) of all copies

of H in G, there is a closed copy G’ of G contained in G such that the set (ZI ) of all
copies of H in G’ has no more than T (H , Fiax) colors. In particular, T (H , Fyax) is
at most the number of types associated to H.

Proof We list all types for H as 19, 71, . . ., Ty—1. Since G is a universal inverse limit
structure, Fiyax embeds continuously into it. Let ¢ be a finite Baire-measurable coloring
of the set ( g ) Now work with the tree Tiax coding Fax . [terating Theorem 5.8, there

are Fax-trees Tiax > Ty, > -+ > Ty, so that for each i < m, ¢ is constant on
F(Ty, . . .

( ; ) ) We take G’ = F(Ty,,_,). Then G’ is a closed copy of G contained in G, and

the set ( g ) of all copies of H in G’ has no more than m colors. O

6 Exact big Ramsey degrees for some ordered binary relational
inverse limit structures

In this section, we find the exact big Ramsey degrees in the inverse limit structures
Fax of the following Fraissé classes in an ordered binary relational signature: Free
amalgamation classes, the class of finite ordered tournaments O7, and the class of
finite partial orders with a linear extension OPO. We shall do so by first showing in
Lemmas 6.1, 6.4, and 6.7 that for any finite substructure H of Fpax, there is a larger
finite structure H containing H as an induced substructure such that any copy of H
in the inverse limit structure Fpax must have exactly one meet in the tree Tinax. Then
in Theorem 6.10, we shall prove by induction on number of splitting nodes that each
type persists in any subcopy of Fpax. This proves that the exact big Ramsey degree
for a given finite substructure H of Fyax is exactly the number of types t representing
H in the tree Tax.

Given a structure G < Fpax, let Tg = {x [ n : x € G,n € w}. Then Tg is a
subtree of Tax. Given a tree T, its stem, denoted stem(7), is the minimal splitting
node in 7.

Lemma 6.1 Let K be any Fraissé class with free amalgamation in an ordered binary
relational signature. Then for each H € K, there is a structure H € K containing
a copy of H, where H has the following property: Given a universal inverse limit
structure G for IC contained in Fpax, every copy I of H in G has induced a subtree
T3 of Tg such that the type of Ty has exactly one splitting node. It follows that the

immediate successors of stem(Ty) in Ty have a copy of T1.
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Proof Let IC be as in the hypotheses, let G be the universal inverse limit for K contained
in Fyax, and fix H a finite substructure of G. Then H is in K. Let m be the size of
the universe of H. We construct a finite ordered structure H € K of size 2m + 1,
containing a copy of H as a substructure on the odd indexed vertices, as follows. Let
R denote the binary relation symbol R in the signature of .

(1) Let H = {vo, v1,v2, ..., v2m}-

(2) H | {v1,v3, ..., v3,—1} is isomorphic to H.

(3) Fori € {0,2,...,2m — 2}, RE (v;, vi1») holds. If R is a symmetric relation,
then also RH(U[J,_Z, v;) holds; oﬁerwise, —|Rﬁ(v,~+2, v;) holds.

(4) No other relations are added to H.

Then H contains a copy of H. Now we check that H satisfies the property in this
lemma. Let I be a copy of H in G with I = {uq, uy, us, ..., uzy}.

Claim 6.2 Let J be the induced substructure 0f7 on universe J = {ug, up, ..., Uy}
Then the associated subtree Ty of Tg has exactly one splitting node.

Proof Without loss of generality, it suffices to prove that ug N up = uy N uy. Assume
to the contrary that ug N uy # uy N ug. Then either ug N uy C uz N ug or else
uy Nug C ugNuy, where C denotes proper subset. If ug Nuy C upy Nuy (see Fig. 20),
then ug N uy = ug N ug; let s denote this node and let [ — 1 denote its length. Then
ur | Il = ug | [ is a successor of s, and the relation R(ug | [, us | [) holds in
Tmax since R(ug [ I,up | 1) holds in Tyax. Hence, R (ug, us) holds. Similarly, if
ur Nua C ug Nuaz, then ug N us = ur N ua, and it follows that R! (ug, us) holds
(see Fig. 20). But this contradicts the fact that R (ug, us) does not hold, by (3) in the
defnition of H above. Therefore, it must be the case that uo Nup = up N ug. Thus,
every copy of J has induced subtree 7 in Tg with exactly one splitting node. O

Claim 6.3 The subtree T5 of Tg induced by T has exactly one splitting node.

Proof By Claim 6.2, without loss of generality, it suffices to prove that ugNu; = u; N
up. Assume that ugNuy # uyNuy. Theneither ugNuy C uy Nuo oruy Nuy C ugNuy.
Since uy < uy < uy in the linear order < on the universe of Fpayx, it follows that the
set {ug, u1, ur} has type equal to one of the two types in Fig. 21 (the solid lines). Since
RT(ug, uy) holds, at least one of RY (ug, u;) or R (uy, us) holds (the dashed lines
in Fig. reff21). But this contradicts the fact that =R (ug, uy) and =R (uy, u») hold,
by (4) in the definition of H. Thus, the induced subtree T3 has exactly one splitting
node. O

By Claim 6.3, the induced subtree 5 of T has exactly one splitting node, namely
its stem. It follows from the definition of the relations on Fpyax that the immediate
successors of stem(75) in 7§ is isomorphic to H. O

Next, we prove a similar lemma for the class of finite ordered tournaments, O7 . The
proof is similar to the previous lemma, the main difference being that the construction
of H must take into account the fact that any two vertices of a tournament must have
some directed edge relation between them.
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Fig.20 2 types for J [ {uq, uo, ug} with ug Nupy # up Nug

Fig.21 2 types for T | {ug, uy, ur} with ug Nuy % ug Nun

Lemma 6.4 Let K be OT. Thenforeach H € K, thereisastructure H € K containing
acopyof H and H has the following property: Given a universal inverse limit structure
G for K contained in Fyax, every copy I of H in G has induced a subtree 17 of T
such that the type of Ty has exactly one splitting node. It follows that the immediate

successors of stem(Ty) in T3 have a copy of 1.
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"_0‘/"/ Ll: A*'\: Iy o, _— U, —
\ b4 / ) v
N\ / N / /
\ R St /
\ N L ./
\ % < /
\ / /

Fig.22 2 types for J [ {ug, uz, uq} with ug Nuy # up Nug

Proof Fix any H € K, and let m be the size of the universe of H. Recall that the

relation R here is a directed edge. We construct a finite ordered structure H € X
containing a copy of H as an induced substructure as follows:

(1) Etﬁz {vg, v1, V2, ..., Vo]

(2) H | {v1,v3,...,v3,—1} is isomorphic to H.

() Fori, j€{0,2,...,2m} withi < j,if j =i + 2 then Rﬁ(vi, v;) holds.

(4) Fori, je{0,2,...,2m} withi < j,if j #i + 2 then Rﬁ(vj,v,-)holds.

(5) Foralli € {0,2,...,2m}and j € {1,3,...,2m — 1},ifi < j then Rﬁ(vj,v,-)
holds. _

(6) Foralli € {0,2,...,2m}and j € {1,3,...,2m — 1},if j < thenRH(vi,vj)
holds.

By 2), H contains a copy of H. Now we check that H satisfies the property in this
lemma. Let I be any copy of H in G, say with universe I = {ug, uy, ua, ..., U}

Claim 6.5 Let J be the induced substructure off on universe J = {ug, uy, ..., oy }.
Then the associated subtree Ty of Tg has exactly one splitting node.

Proof Without loss of generality, it suffices to prove that ugNuy = upyNuy. Assume that
upNuo 7#= urNua. Then ugNuy C usrNug or ugNuag C ugNuso. Since Rl(uo, u») and
Rl(ug, u4) hold, it follows that RY (ug, u4) holds (see the dashed arrows in Fig. 22).
This contradicts the fact that R” (u4, ug) holds, by (4) in the definition of H (solid
arrows from uy to ug in Fig. 22). Thus, ug N us = us N uy. It follows that T has
exactly one splitting node, namely its stem. O

Claim 6.6 The subtree Ty of Tg induced by T has exactly one splitting node.
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Fig.23 2 types for I | {ug, uy, us} with ug Nuy # ug Nuy

Proof By Claim 6.5, without loss of generality, it suffices to prove that ugNu; = u; N
up. Assume that ugNuy # uyNuy. Theneither ugNuy C uy Nuo oruy Nuy C ugNuy.
Since ug < uy < uy in the linear order < on the universe of Fpayx, it follows that the
set {ug, u1, uo} has type equal to one of the two types in Fig. 23 (the solid arrows).
Since R (ug, us), either RY (uy, us) or RT (ug, uy) holds (see the dashed arrows in Fig.
23). This contradicts the facts that RY (i1, uo) and R! (u2, uy) hold, by (5) and (6) of
the definition of H. Thus, the induced subtree T3 has exactly one splitting node. O

By Claim 6.6, H satisfies the property in this lemma. O
Finally, we prove a similar lemma for the class of finite partial orders with a linear
extension, OPO.

Lemma 6.7 Let K be OPO. Then for each H € K, there is a structure H € K
containing a copy of H and H has the following property: Given a universal inverse
limit structure G for K contained in Fyax, every copy T of H in G has induced a
subtree Ty of T such that the type of Ty has exactly one splitting node. It follows that

the immediate successors of stem(T5) in Ty have a copy of 1.

Proof Fix any H € K, and let m be the size of the universe of H. If H has universe
of size one, then there is nothing to prove, so assume that the universe of H has size
m > 2. The relation R here is a partial order, where R (v, w) denotes that v is R-less
than or equal to w. We construct a finite ordered structure H € K containing a copy
of H as an induced substructure as follows:

(1) Eetﬁ = {UO, U1, 02, ..., U2m+2}-
(2) H | {v2, v4, ..., vy} is isomorphic to H.
(3) R(vo, v3) and R(v2—1, V2;m+2) hold.
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Fig.24 H € OPO with 3 vertices

Fig.25 H € OPO with 9 vertices

(4) Foreachi e {1,3,...,2m — 3}, RH (v;, vi14) holds.
(5) The R-relations above are closed under transitivity of R, and no other R relations
are added.

By (2), H contains a copy of H. Note that there are no R-relations between any vertices
in {va, v4, ..., V25, } and any vertices {vg, v, V3, V5, ..., Vapm+1, V2 }. FOr example, if
H € OPO with 3 vertices as in Fig. 24, then H has 9 vertices as in Fig. 25. The copy
of H in H is on vertices {va, v4, ve}.

Now we check that H satisfies the property in this lemma. Let T be any copy of H
in G, say with universe T = {ug, uy, ua, ..., Um+2}-

Claim 6.8 Let J be the induced substructure 0f7 on universe J = {ug, uy, us, ...,
Udm—1, Udm—+1, U2m+2}. Then the associated subtree Ty of Tg has exactly one splitting
node.

Proof 1t suffices to prove that any three successive vertices in J have the same meet.
Without loss of generality, it suffices to prove that ug N u; = u1 N u3, as the same
argument shows that forany 0 <i <m — 2, up; 1 Nuziy3 = u2i+3 Nuyits, and that
Udm—1 N U2Zm+1 = Um+1 N U242

Assume that ugNuy # uyNuz. ThenugNuy C uyNuzoru; Nuz C ugNuy. Note
that RJ(uo, u3) holds and —-RJ(uo, u1) and —-RJ(ul, u3) hold. If ug Nuy C uy Nus
then RJ(uo, u1), a contradiction. If u; N u3z C ug N uy, then RJ(ul, u3), also a
contradiction (see Fig. 26). Thus, ug Nu; = u; N u3. It follows that 7; has exactly
one splitting node, namely its stem. O

Claim 6.9 The subtree Ty of Tg induced by T has exactly one splitting node.

Proof We will first prove that for all 0 <i <m — 2, upj4+1 Nugjyo = uzi+2 Nuits,
and that uo;,—1 N Uy = Uy N uy42. Since the argument is the same for each of

@ Springer



500 N. Dobrinen, K. Wang

,//',\*\ = /,,»/’_f\—x\,
uy — 175 \\‘\.QJ u'o/// 7 I | 1)
N /
\ N\ / N\ / /
\ X oA N\ . 7 /
\ 7 \ /
W A

Fig.26 2 typesfor J [ {uq,uq,u3} withugNuy # ug Nuz

these cases, it suffices to prove that u; Nuy = ux Nus. In fact, the same argument as
that in Claim 6.8 applies here, for the structure I restricted to the vertices {u1, uz, us}
is isomorphic to the one in the proof of Claim 6.8: RT(ul, us), —|R7(u1, uy), and
—-RZ(uz, us). Since the linear order < extends R7, —-R7(u2, uy), —-Ri(u5, up), and
—R! (us, up) all hold. Therefore, u1 Nu> = uy Nus (see Fig. 27).

Given any three vertices uy;41, U242, U2i+3, where 0 <i <m — 1, let w = ugjys
ifi <m —1and w = uy,4; if i = m — 1. By the above argument,

U241 Nuiyo = u2i42 NW = Uzi+1 Nw.
By Claim 6.8,
U2i41 Nu2i43 = U2i43 NW = uzi41 NWw.
Therefore,
u2i+1 N U242 = Ui+1 NW = Ui Nui43.

Hence, also up;+1 N u2i42 = usi+1 Nusi4+3. Thus, any three successive vertices in 1
have a common meet, meaning that I has exactly one splitting node. O

By Claim 6.9, H satisfies the property in this lemma. O

The next theorem shows that the upper bounds proved in Theorem 5.9 are exact for
ordered binary relational free amalgamation classes, for ordered tournaments, and for
partial orders with a linear extension.
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Fig.27 2 types forT | {uq,us, us} with uy Nuy # up Nus

Theorem 6.10 Let IC be any Fraissé class in an ordered binary relational signature
such that either KC has free amalgamation or K is one of OT or OPQ. Let G be a
universal inverse limit structure for K contained in Fpax. Then for each H € K, each
type representing H in G persists in each closed subcopy of G. It follows that the big
Ramsey degree T (H, Fiax) for finite Baire-measurable colorings of ( F‘;;‘" ) is exactly
the number of types in Tmax representing a copy of H.

Proof Let G € Fpax be a universal inverse limit structure for /C. We will prove by
induction on the number of splitting nodes that every type t for each finite structure
in K persists in G.

Suppose 7 is a type for a structure in IC which has no splitting nodes. Then 7 codes
a single element, so there is a copy of 7 in Tg.

Now assume that n > 1 and for each type t with less than » many splitting nodes,
the type t appears in 7. For the induction step, let T be a type for a structure in /C
with exactly n splitting nodes. Let s denote the splitting node of longest length in t,
and let 0 = 7 | |s|. By the induction hypothesis, there is a copy of ¢ in Tg. Then
there is a subtree U of Tg such that U has type 0. Let ¢ : ¢ — U be the strong
isomorphism from o to U, and let u = ¢(s).

Suppose that F is the finite structure in /C at the immediate successors of s in 7. Let
F € K be the structure containing a copy of F satisfying the properties in Lemma 6.1,
6.4, or 6.7, respectively. Since G is a universal inverse limit structure for K, there is a
copy H of F in the open interval N,,. Taking t = stem(7%;), then succr (¢) contains a

copy of F, and thus succry (1) contains a copy H of F. Let X denote the set of nodes
in succr (1) forming the universe of H. Let Y be a set of nodes {y, : z € U \ {u}} of
length |z| 4+ 1 such that foreach z € U \ {u}, y; 2 z. Then U U {¢t} U X U Y is a copy
of 7. Hence, t persists in G.
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Now given a structure H € I, let 19, . .., 7,1 list the collection of all types for
copies of H in Fpax. Letc : (F‘;‘Ia" ) —> m be defined by ¢(J) =i if and only if 7
has type ;. Note that c is in fact continuous, hence Baire-measurable. By the above
argument, there is a substructure G of Fyax Which is again a universal inverse limit
structure with the property that for each i < m, there is a copy of H in G with type
7;. Therefore, all colors i < m persist in G. Therefore, T (H, Fpax) > m.

By Theorem 5.9, we know that 7' (H, Fjpax) < m for finite Baire-measurable col-
orings. Therefore, T (H, Fnax) is exactly the number of types associated to H. O

Remark 6.11 Theorem 6.10 characterizes the exact big Ramsey degrees under the
finite Baire-measurable colorings for some ordered structures with one (non-order)
binary relation. It seems likely that similar methods can be developed to characterize
the exact big Ramsey degrees for all structures considered in this paper in terms of the
number of types.
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