
39

Cache Programming for Scientific Loops Using Leases
BENJAMIN REBER , University of Rochester
MATTHEW GOULD and ALEXANDER H. KNEIPP , Rochester Institute of Technology
FANGZHOU LIU , University of Rochester
IAN PRECHTL , Rochester Institute of Technology
CHEN DING , University of Rochester
LINLIN CHEN and DORIN PATRU , Rochester Institute of Technology
Cache management is important in exploiting locality and reducing data movement. This article studies a
new type of programmable cache called the lease cache. By assigning leases, software exerts the primary
control on when and how long data stays in the cache. Previous work has shown an optimal solution for an
ideal lease cache.

This article develops and evaluates a set of practical solutions for a physical lease cache emulated in FPGA
with the full suite of PolyBench benchmarks. Compared to automatic caching, lease programming can further
reduce data movement by 10% to over 60% when the data size is 16 times to 3,000 times the cache size, and
the techniques in this article realize over 80% of this potential. Moreover, lease programming can reduce data
movement by another 0.8% to 20% after polyhedral locality optimization.
CCS Concepts: • Software and its engineering → Compilers; • Hardware → Dynamic memory ;
Additional Key Words and Phrases: Cache management, reuse interval distribution, cache replacement
policy, lease cache, phase marking, compiler transformations
ACM Reference format:
Benjamin Reber, Matthew Gould, Alexander H. Kneipp, Fangzhou Liu, Ian Prechtl, Chen Ding, Linlin Chen,
and Dorin Patru. 2023. Cache Programming for Scienti"c Loops Using Leases. ACM Trans. Arch. Code Optim.
20, 3, Article 39 (July 2023), 25 pages.
https://doi.org/10.1145/3600090
1 INTRODUCTION
Today’s computers, such as CP Us, GP Us, and accelerators, have complex memory systems that
all use caches. This complexity is rapidly increasing with new technology, e.g., high-bandwidth
memory (HBM) , new material, e.g., Intel Optane, and new architectures, e.g., heterogeneous sys-
tems. This complexity is too great for purely automatic solutions to be fully e#ective and robust.
The manuscript is new and not a revision of a previous conference paper.
This work was supported in part by the National Science Foundation (Contract No. SHF-2217395, SHF-2114319, SHF-
2114285, CNS-1909099). Any opinions, "ndings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily re$ect the views of the funding organizations.
Authors’ addresses: B. Reber, F. Liu, and C. Ding, University of Rochester, Rochester, NY; M. Gould, A. H. Kneipp, I. Prechtl,
L. Chen, and D. Patru, Rochester Institute of Technology, Rochester, NY.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior speci"c permission and/or a fee. Request permissions from permissions@acm.org .
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1544-3566/2023/07-ART39
https://doi.org/10.1145/3600090

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

https://orcid.org/0000-0003-1633-397X
https://orcid.org/0009-0000-8105-1851
https://orcid.org/0009-0008-7063-9009
https://orcid.org/0000-0002-0715-7313
https://orcid.org/0009-0003-6020-2739
https://orcid.org/0000-0003-4968-6659
https://orcid.org/0009-0005-2100-1517
https://orcid.org/0009-0008-5671-9061
https://doi.org/10.1145/3600090
mailto:permissions@acm.org
https://doi.org/10.1145/3600090
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600090&domain=pdf&date_stamp=2023-07-19

39:2 B. Reber et al.
A recent design called the lease cache lets a program control cache management using leases [22 ,

29]. Each time a data block is accessed, a lease is given to specify the time of eviction if the data
block is not accessed again. Such leases can be assigned for each load and store instruction and
communicated to hardware when a program is loaded.

The lease cache enables program control of the cache. We refer to such program control as cache
programming . In conventional caching, all applications use the same generic caching policy such
as LRU. In the lease cache, di#erent programs can have program-speci"c cache management.

The annotation for the lease cache consists of a lease for each memory reference, i.e., each load
or store instruction in the compiled code. We call them reference-lease annotations . The problem of
lease assignment may be broken down into two distinct parts. The "rst is how to accurately gather
per-reference statistics for use in lease assignment. The second is how to use these statistics to
assign leases that optimize cache performance. This work focuses on the latter problem and uses
a pro"ling pass to gather the per-reference statistics.

This article studies the problem of lease assignment, which accounts for the structure of a pro-
gram, in particular, the loop structure in scienti"c code. A scienti"c application may compute in
many steps that we call phases . Each phase may have a di#erent data reuse pattern. Naturally, we
want to assign appropriate leases based on the usage patterns. To do so, we need to solve three
problems: (1) how to divide a program into phases, (2) how to assign leases in each phase, and (3)
how to consider data reuses between phases.

In this article, we develop new compiler techniques for cache programming in scienti"c code
using scoped leasing, support the new techniques with a hardware implementation on FPGA,
and evaluate their performance on the complete PolyBench suite. The main contributions are as
follows:
• We formulate the problem of balanced lease cache programming using leases. (Section 2.2)
• We present scope hooked eviction leasing (SHEL) , where each scope is a loop nest and is

optimized separately (Section 2.3), and cross-scope hooked eviction leasing (C-SHEL) , which
extends SHEL to consider cross-scope data reuses. (Section 2.4)

• We implement the system on a CycloneV-GT FPGA, including a RISC-V processor with
single-precision $oating-point and the ability to load scoped leases dynamically during an
execution. (Section 3)

• We evaluate the system using the 30 programs from the PolyBench/C 4.2.1 benchmark suite
and compare scoped leases with automatic caching and two previous leasing techniques.
Furthermore, we examine the e#ects of polyhedral optimization and loop tiling on lease
cache performance. These two evaluations of cache programming are conducted on three
input sizes: small, medium, and large.

This study has several limitations. Owing to the hardware prototype, we consider sequential
programs and use hardware support to collect data reuse information in program executables using
a pro"ling pass (Section 4.1). We optimize static lease assignment given memory trace statistics.
The problem of gathering reuse statistics at compile time is not explored in this article.
2 LEASE CACHE PROGRAMMING
2.1 Lease Cache
Lease Cache Hardware Prototype . We have designed, implemented, and tested a lease cache em-
ulator, whose architecture is illustrated in Figure 1 . In this preliminary hardware prototype, a
single core RISC-V executing integer and $oating point manipulation instructions is connected to
a single-level cache. This is controlled by a Lease Cache Management Unit (LCMU) , which can
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

Cache Programming for Scientific Loops Using Leases 39:3

Fig. 1. Lease cache hardware prototype.
be con"gured to apply a conventional Pseudo-Least Recently Used (PLRU) , or use reference
leases. The prototype is based on the test platform used in previous work [28 , 29].

The following two tables compare cache programming with automatic caching and two other
programming problems. First, compared to the LRU cache, the lease cache is programmable in that
the eviction is determined "rst by a lease. Unlike the LRU cache whose actions are based on only
the history information, the lease cache can be programmed based on program information. If a
program requires more cache space than what is available, then the lease cache has a secondary
policy, which randomly evicts a data block at a cache miss. 1 Second, a lease is an allocation, and
lease programming is similar to malloc-free and register allocation. These techniques all aim to
optimize resource utilization but for di#erent purposes. In heap management, the goal is to mini-
mize the size of a heap, but there is no "xed upper bound on heap size. In cache leasing, the goal is
to obtain as many cache hits as possible, but the use of the cache must be within a constant bound.

LRU cache Lease cache
primary policy LRU, automatic leases, programmed
info used history only loop analysis
secondary policy N/A random eviction

Heap Register Allocation Lease cache
allocation malloc/free live range a lease

per object per data per access
granularity object variable cache block
mem. size unbounded "xed "xed
optimality minimal liveness fewest loads/stores fewest misses

2.2 Lease Balancing
Ding et al. [17] present Compiler Assigned Reference Leasing (CARL) , an optimal algorithm
for assigning leases to a program such that the miss ratio is minimized. However, their solution
assumes a variable-sized cache that can store any number of leases at a time, so long as the av-
erage number of active leases throughout execution is equal to some target value. We call such a
cache system a virtual cache , because its storage capacity is unbounded. Furthermore, we refer to
the number of active leases in the virtual cache as the virtual cache size (VCS) . While virtual cache
size may grow and shrink dynamically throughout execution, the physical cache size (PCS) re-
mains constant.

Because virtual cache size grows and shrinks dynamically, it can exceed the physical cache
size. When this happens, new data must be cached, but there is no block with an expired lease
to select for replacement. In this case, a secondary policy must be used to force-evict a cacheline
with an active lease. We call such an event a forced eviction . If the evicted data is reused before its
remaining lease at the time of eviction, then its reuse is a hit in virtual cache, but it is a miss in
the real cache. We call this event a contention miss , and it represents the degradation of idealized
CARL performance on a real machine.
1 In Appendix A in their MEMSYS 2020 paper, Prechtl et al. [29] compared random eviction (lease oblivious) and two
other policies, shortest remaining lease and longest remaining lease. Through experiments, they found that “no one policy
dominates another. Among them, random is the most space e%cient and fastest to implement in hardware.”

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

39:4 B. Reber et al.
We denote a program region whose virtual cache size is above-average as overallocated and a

region whose VCS is below-average as underallocated . CARL leases achieve optimal performance
with an average allocation equal to the physical cache size. However, this may be obtained through
a balance of overallocated and underallocated program regions, which require forced evictions
and waste cache space, respectively. Since both of these e#ects degrade performance, CARL leases
are not optimal in practice. We therefore seek to augment CARL lease assignments such that the
variance in VCS is limited and the cache allocation is balanced.

We examine four CARL-based lease assignment techniques, which seek to balance cache allo-
cation in di#erent ways.

CLAM. Compiler Lease of Cache Memory , which applies CARL, setting the average VCS
of the whole program to be PCS. This is the naive solution with no balancing that causes
the most cache contention.

SHEL. Scope-Hooked Eviction Leasing , which applies CARL at each loop nest (scope), set-
ting the VCS at each scope to be PCS. SHEL ignores cross-loop reuses. See Section 2.3 .

C-SHEL. Cross-Scope Hooked Eviction Leasing , which augments SHEL by considering
cross-loop reuses. See Section 2.4 .

PRL. Phased Reference Leasing , which divides the execution into equal-length intervals
and constrains its VCS at each interval. PRL is the "rst solution to reduce cache con-
tention [29], which we discuss in Section 2.8 .

Lease programming in practice requires solving two problems: program analysis and lease as-
signment. Program analysis may be based on pro"ling or loop analysis. To focus our study entirely
on the second problem, we use pro"ling, in particular, hardware sampling analysis. Pro"ling shows
data reuse at binary load and store instructions and includes the e#ect of all compiler optimization.
2.3 Scope Hooked Eviction Leasing
We "rst de"ne the concepts of scopes and phases.

Reuse Intervals, Scopes, Phases, and Cross-scope Data Reuse . We assume scienti"c code has a regu-
lar structure: A program is a series of statements and loop nests. Each level of a loop nest contains
a series of statements and loops. A scope is a textual region of a program in which a binding envi-
ronment is active [30 , Section 3.3]. It may contain a loop including its inner loops.

We manually select scopes for assigning leases. We call them annotated scopes . In the rest of
the article, unless otherwise indicated, a scope refers to an annotated scope. A phase is a runtime
instance of a scope. While a scope is a fragment of program code, a phase is a period of program
execution.

Leases are assigned based on the Reuse Interval (RI) , which is the change in logical time
between a data block’s use and its reuse. Suppose we have a trace abc c ba , the reuse interval of the
datum a is RI = 5 . A cross-scope RI is a reuse interval that spans at least two phases of di#erent
scopes; otherwise, the RI is scope local . By this de"nition, an RI spanning two consecutive phases is
still scope local if both phases are of the same scope. Scope local reuses are not a problem, because
their leases allocate the cache only in the same scope, i.e., their e#ect is scope local.

Contention in a Fixed-size Cache . CLAM [29] assigns leases such that it targets an average cache
size in the same way as CARL [17]. Leases are assigned based on global RI histograms and there-
fore blind to dynamic $uctuations in reuse behavior. CARL leases are optimal on a virtual cache,
which can grow and shrink arbitrarily as long as the average size during execution matches the
target [17].

When the cache has a bounded size, CARL leases may cause cache over-allocation or contention ,
when the number of active leases exceeds the cache size; and cache under-allocation , when the
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

Cache Programming for Scientific Loops Using Leases 39:5
number of active leases is smaller than the cache size. A lease assignment may have the correct
average cache size because an overallocated portion of program execution is balanced out by an un-
derallocated portion. Cache over-allocation will lead to contention misses, while under-allocation
will result in fewer hits. CLAM is the naïve lease assignment policy and has no mechanism to
mitigate these e#ects.

Scope Hooked Eviction Leases . Leases assigned to references based on global reuse interval his-
tograms may target an average cache size. Because these histograms contain no information about
when di#erent RIs (and therefore leases) occur, cache allocation may not be balanced in the event
that access patterns change signi"cantly throughout execution.

If we assume RIs are uniformly distributed throughout execution, then cache usage variance
during execution is low, and so contention misses are rare and lease assignments based on average
cache size will perform well on a "xed-size cache. However, reuse behavior is not always uniform.
Programs may be composed of multiple outer loops, or else alternate between multiple inner loops,
each of which may have di#erent reuse behavior.

This problem is solved by encoding time information in RI histograms, in a technique we call
Scope-Hooked Eviction Leasing (SHEL) . In SHEL, the programmer annotates a set of program
scopes. These scopes indicate program phases with possibly di#erent reuse behavior. For sim-
plicity, we assume each reference belongs to a single scope. 2 Thus, by including a scope "eld in
reference RI histogram entries, lease assignment may be done on a per-scope, rather than global,
granularity. This allows for leases that are less pro"table globally to e#ectively bypass more prof-
itable leases if they take up space during under-allocated phases. Hence, scope annotation allows
for lease assignments that are more balanced throughout program execution, resulting in fewer
contention misses.

It is possible for the allocation in one phase to spill over into the next phase. SHEL ignores such
e#ects. As a result, SHEL may over-assign leases in a scope if the cache space available to the scope
is reduced by the spill-over e#ect from the previous phase.

In programs with coarse-grain phases, cross-phase e#ects may be negligible, and scopes may be
optimized independently. An example is a computation with two steps, and each step computes
matrix multiplication. When executed, the second step runs long enough to nullify the lingering
e#ect of any lease assigned in the "rst step.

Intuitively, the spill-over e#ects can be ignored for a program if all its phases are su%ciently
longer than the longest lease. We state this property precisely, as follows:

Proposition 1. Let s min be the minimal number of accesses in a phase, l max the longest lease
assigned, and c the cache size. If s min ! l max c , cross-scope RIs can be ignored.

Cross-scope RIs can be assumed to be in scope, and the resulting lease is the same. To see why
this is true, consider what happens at the end of a phase. The number of remaining resident items
in the cache is at most the cache size c , and they stay in the cache for at most l max . The leases
in a phase change the miss count in the next phase by at most l max × c . When the next phase is
su%ciently long, the miss ratio is una#ected; hence, there is no need to consider cross-scope RIs.

In other cases, considering cross-scope RIs may lead to a di#erent lease assignment and better
cache utilization, which we show next.
2.4 Cross-scope Leasing
It may be the case that cross-scope reuses make up a signi"cant portion of all reuses. This can occur
when the program structure is composed of several alternating phases. When assigning leases in
2 Our design allows for one reference to occur in multiple scopes due to branching or function calls. However, such behavior
is not present in any of the benchmarks presented.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

39:6 B. Reber et al.
these phases, there is a natural question of where to attribute the cost of the allocation. The cost
could naïvely be assigned fully in either the "rst phase, where the "rst use occurs, or the second
phase, where the reuse occurs. However, both options miss the true program behavior, and thus
may lead to incorrect allocation that harms performance.

To solve this problem, we introduce Cross Scope-Hooked Eviction Leasing (C-SHEL) . In
C-SHEL, we record the cross-phase behavior of reuse samples and store this aggregate data along
with RI histograms. We assume that sampled cross-phase RIs are representative of the full trace.

For a given reference lease, there are two components that together make up the total cost. The
"rst, which we denote as the head cost , is the contribution of RIs, which are less than or equal to
the lease. Accumulating the head cost of a reference lease to multiple phases is trivial; as each RI
sample is processed, we simply divide the head cost among the phases it occupies.

The second cost component, which we denote as the tail cost , is the contribution of RIs, which
are greater than the lease. Unlike head costs, accumulating the tail costs of all RIs cannot be done
sample-by-sample. This is because the tail cost of a sample contributes to all RIs that are lesser.
Thus, handling tail costs requires a second pass through the sampled RIs.

The result of sample processing is a set of RI histograms for each reference. For each RI, the
cumulative head and tail costs in each phase are stored and can be used during lease assignment
to more accurately allocate lease costs among program phases.
2.5 Instrumentation and Sampling
With our instrumentation, any scope may be annotated by the programmer. Any load or store
instruction that occurs within an annotated scope is considered as part of a phase of that scope. In
the case where no explicit phase marker is in scope, the last scope marker read in sequential order
is used.

During trace sampling, the budget for each scope is simply determined based on the number of
samples from phases associated with that scope ID. By using programmer-annotated scopes, we
are able to assign leases that more accurately use cache resources.

Compiler Implementation . The compiler has two parts: analysis and code generation. The "rst
collects the RI histograms, and the second inserts reference leases. The code generator inserts a
table in a data segment of the binary code to store the lease annotations. We have implemented
source-level compiler analysis in LLVM based on Static Parallel Sampling (SPS) [12]. It analyzes
and assigns leases for array references. However, source-level analysis cannot determine the cor-
responding load and store instructions in the binary code, nor can it determine the machine code
address. Therefore, we adopted an alternative solution and used pro"ling by running the program
twice. The "rst execution samples RIs and outputs their reference by its binary instruction address.
The code generator then computes and inserts reference leases based on the sampled RIs. In the
second execution, the generated code is tested for performance. The code generator implements
all leasing techniques, including CLAM and PRL from previous work and SHEL and C-SHEL in
this article.
2.6 Scope Annotation
We statically place scope markers in program code. A phase is then the execution between any
two consecutive scope markers. In loop-based code, markers are placed by the following two rules.
First, each outermost loop is a separate scope, i.e., given its own marker.

Some scienti"c computing problems are solved by an iterative method. We describe such pro-
gram structure as having cyclic phases. The second rule applies to these programs, where we insert
markers for the outermost loops inside the time-step loop. The problem of cross-phase reuse is
particularly important for cyclic programs.
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

Cache Programming for Scientific Loops Using Leases 39:7
The question of how to select scopes in general code, and how to automate this process in a

compiler, is an interesting open problem, which is outside the scope of this work. For this reason
and for now, we leave the problem of scope annotation to the programmer.

Table 1 shows the statistics about the scope markers for the 30 benchmarks in PolyBench. It
shows the number of scope markers used in each program and the number of runtime phases for
each input data size. Acyclic programs have one phase per scope, whereas cyclic programs have
multiple phases per scope.
2.7 Lease Assignment Algorithms
Here, we describe in greater detail the two lease assignment algorithms that use annotated scopes.
One is Scoped Hooked Eviction Leasing (SHEL) and the other is Cross-Scope Hooked Evic-
tion Leasing (C-SHEL) . SHEL assigns leases independently for each phase without considering
cross scope RIs and C-SHEL considers the cross-scope RIs.

Algorithm 1 presents the lease assignment process for SHEL and C-SHEL. The inputs for both
algorithms are the same. s is the number of scopes we have for a program. For each scope, we
record its set of reuse interval histograms , RIHs , and cumulative phase length p. The phase
length is assumed to be proportional to the number of RI samples among histograms of a scope.
For C-SHEL, these RIHs contain head and tail costs for each reference, as described in Section 2.4 .
With this information, each algorithm produces reference lease assignments for a speci"ed cache
size c . Both SHEL and C-SHEL rank all candidate lease values according to their PPUC (pro!t
per unit cost) . PPUC calculates the number of hits divided by the cache use for an assignment.
Higher PPUC for a lease assignment means the same time-space cost can produce more hits, i.e., it
is a more e%cient use of cache space. The PPUC of a lease can be calculated from the RI histogram
of that reference. For each algorithm, the assignment procedure is a greedy process described in
Algorithm 1 . CLAM takes the reuse interval histogram RI H for each reference in the program
and the total time-space budget. The b udдe t is initialized by c × N , which is the number of cache
blocks times the number of accesses (denoted as N) in a program. One iteration in the while loop
in line 2 will update the lease of a reference to a larger value. Line 3 chooses the new lease l and
the reference ref to be assigned. Line 4 calculates the remaining budget after assignment in Line
3. This loop terminates when the budget is used up or all references have been assigned with the
leases equal to the value of their maximum RIs in Lines 5–8.

SHEL simply applies CLAM independently for each scope in Lines 12–15. Instead of using a
b udдe t and an RI H for the entire execution, RI H and b udдe t are collected and calculated for each
scope. The scopes containing more accesses will be initialized with larger budgets based on scope
lengths p in line 13.

To consider cross-scope RIs, C-SHEL distributes the budget to all phases and updates them si-
multaneously. Any assignment of a lease that results in cross-scope reuses increases the use of all
scopes it reaches in Line 22. If a new lease has any impact in a scope whose budget is already used
up, then the lease is rejected and the next-most-pro"table lease is checked. C-SHEL terminates
when all budgets for all scopes are used up or all leases are assigned to the maximum values.
2.8 Phased Reference Leasing (PRL)
The "rst solution to reduce the amount of cache contention is Phased Reference Leasing (PRL) ,
developed by Prechtl et al. [29]. In PRL, the overall cache capacity for the program is naïvely split
into equal-width intervals. Leases are assigned step-by-step as in CARL, except that an assignment
step is canceled if it causes the VCS in some interval to exceed PCS. By skipping assignment steps,
it is a constrained version of CARL.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

39:8 B. Reber et al.
ALGORITHM 1 : Lease assignment procedure

Input : s: number of annotated scopes
p[0..s-1]: cumulative phase length
per scope
RIH[0..s-1]: reuse interval histograms
per scope
c: cache size

1 Function clam (RIH, budget) :
2 while True do
3 ref, l = max_ppuc (RIH);
4 leases,budget = update(ref, l);
5 if (∀ leases assigned to maximum RIs
6 or budget is used up) then
7 return leases;
8 end
9 end

10 End

11 Function shel (s, p, RIH, c) :
12 for i ∈ 1..s do
13 budget[i] = p[i] ∗ c;
14 leases[i] = clam (RIH[i], budget[i]);
15 end
16 return leases;
17 End
18 Function c-shel (s, p, RIH, c) :
19 budget[i] = p[i] * c, ∀i ∈ 1 ..s;
20 while True do
21 ref, l = max_ppuc (RIH);
22 leases[i], budget[i] = update(ref, l), ∀i ∈ 1 ..s;
23 if (∀ leases assigned to maximum RIs
24 or ∀ budget[i] is used up, i ∈ 1 ..s) then
25 return leases;
26 end
27 end
28 End

There are several drawbacks to this approach. First, it only accounts for coarse-grained contigu-
ous intervals. In programs with cyclic phases where each phase has a short length, e.g., a single
outer loop containing multiple inner loops exhibiting phase behavior, an interval includes phases
of di#erent behavior. The interval-based constraint cannot remove imbalanced allocation across
phases.

Compared to SHEL, PRL does not have "ne-grained control to set interval boundaries to match
program phases. This may lead to inaccurate phase marking that can harm performance as follows:
We de"ne a boundar y inter val as one that contains the boundary between two program phases.
A boundar y inter val contains pieces from di#erent phases. We call others interior intervals . Now
consider a simple case where there are two loops, L 1 , L 2 . PRL sees interior intervals for each loop
and a boundary interval. When assigning leases for L 1 , PRL considers the behavior of its interior
intervals and the boundary interval. Since the boundary interval contains pieces of L 2 , its behavior
di#ers and may prevent PRL from assigning the best lease for interior intervals. Since the less-
than-the-best lease is used on all interior intervals, the missing opportunity of optimization can
be signi"cant if L 1 is long running.
3 HARDWARE EMULATION SYSTEM DESIGN
The Hardware Emulation System, Figure 2 , has two objectives: "rst, to be able to instantiate a
single-core CPU (RISC-V) and associated programmable and re-con"gurable cache memory, and
second, to assess the impact of adding the former cache memory features to actual hardware. The
"rst objective supports the testing and comparison of various lease cache policies, while the second
objective o#ers a cost estimate of implementing the former in actual hardware.

The lease cache hardware is able to support the application of lease policies from compilation
to program execution. Its architecture is based on that described in Prechtl et al. [29], to which the
current work makes two major additions: RISC-V 32F ($oating point) instruction set extensions and
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

Cache Programming for Scientific Loops Using Leases 39:9

Fig. 2. Lease cache hardware architecture for a cache of n blocks and lease register size of m bits. The com-
ponents in the green box are the lease look-up circuitry. The components in the red box are the replacement
logic and lease update circuitry.
hardware support for scope-leasing. The prototype runs all 30 programs of the PolyBench suite,
while previous work ran just 7 of the 30 [29]. In the interest of reading coherence, we discuss below
the detailed lease cache architecture.

Lease Assignment . The hardware that implements a lease policy complements an existing cache
memory infrastructure through the addition of a lease policy controller (Figure 2). In support of
the latter, the request bus to the cache is augmented with the address of the reference invoking
the access. Both target and reference addresses propagate through lookup tables and provide con-
currently cache location and lease policy information to the controller. A combination of four

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

39:10 B. Reber et al.
128 entry lookup tables comprise the Lease Lookup Tables (LLUTs) and resolve the following
signals:

(1) Lease Valid [1 bit] - $ag indicating a lookup table hit.
(2) Primary Lease [n bit] - lease associated with the higher probability assignment.

There is a single secondary lease associated with a single reference per phase. Its assignment
is based on an associated probability value, speci"cally, the probability that this lease will not be
assigned. These are provided in the header that pre-appends each phase and are stored in software
accessible registers.

The primary and secondary leases are multiplexed by probability evaluation. An LFSR generates
a random number that is compared against the probability value output by the lease probability
lookup table. If the random value is greater than the one output by the LLUT the secondary lease
is passed through, else the primary lease is passed through. A second multiplexer makes the "nal
selection. If the access results in an LLUT hit, then the current lease assignment is validated and
passed. Else if the reference is not found in the table, a default lease assignment, stored in a soft-
ware accessible register, is instead passed through. In this way, lease selection is not transparent
to the policy controller and strictly abides by CLAM/PRL/SHEL/C-SHEL. References without an
associated lease assignment are assumed to have no near future re-reference and provide little
bene"t to cache performance regardless of cache utilization. We elect to assign a default lease of
one to these references, so after their immediate use these are eligible for eviction.

Line Vacancy . Each cache line has an associated lease register with two control ports and a
multi-bit output bus. The output bus of each register drives a NOR reduction operator, essentially
a comparator with zero, which produces an expired bit per lease register. A priority encoder ex-
amines all expired bits and identi"es the "rst occurrence (lowest address) of an expired lease. A
pointer to this address is produced and transferred to the controller to be used in case an eviction
is necessary. The pointer is validated by a reduction OR (inequality with zero comparison) of all
expired bits. If at the time an eviction is necessary and the pointer is invalid (no lease has expired),
then the replacement follows the auxiliary policy, i.e., random replacement.

The auxiliary replacement policy is also employed if there are a large number of default leases
assignments in a row. This is to handle the possibility that the assumption that references without
an associated lease assignment have no near future re-reference is invalid. If that is the case, then
the lease cache would perform poorly, as it is just evicting the highest expired line in the set
and completely ignoring any type of data locality. Hence, the lease cache is designed such that if
there are more than x (for this work 1,024 was chosen) default leases assigned consecutively, the
lease cache will exclusively use the auxiliary policy until an LLUT hit occurs, whereupon normal
operation resumes.

The Application of a Lease Policy is illustrated in Figure 3 . At every cache access, all non-expired
lease registers are decremented. If the access resolves as a cache hit (not a lease lookup table hit),
then the lease register at the translated address is load-enabled, regardless of lease assignment. If
the access is a miss, then the item is cached in the location generated by the relevant policy (either
lease or the auxiliary policy) and then assigned a lease value as described above.

Hardware Support for Scoped Lease Policies is illustrated in Figure 4 . After reset, the Lease
Lookup Table (LLUT) is populated with the leases of the "rst phase and the lease cache con"g-
uration information: secondary lease value, secondary lease probability, the number of references
in the phase, default lease value, and the address of the reference assigned the secondary lease.
During benchmark kernel execution, if a phase marker for a phase di#erent than the current one
is encountered in the software, the CPU adjusts the value of the current phase register to that
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

Cache Programming for Scientific Loops Using Leases 39:11

Fig. 3. Lease cache operation flowchart. Fig. 4. Scoped leases flowchart.
of the marker. The lease cache detects this change and sets a $ag that stalls the CPU. The lease
cache then requests the leases for this new phase from main memory, writes them to the LLUT,
and additionally updates the lease cache con"guration information with the values from the new
phase header. The lease cache then clears the $ag it sets to take the CPU out of stall and to resume
benchmark execution. This process repeats at every phase marker, denoting a new phase until the
benchmark kernel execution "nishes.

Expanded RISC-V Instruction Set Support . The RISC-V core used by Prechtl et al. [29] supported
only the RISC-V 32IM extensions, which limited the testing to only 7 out of the 30 benchmarks in
the PolyBench suite. The current RISC-V core has been redesigned to support the 32F extension
(single-precision $oating-point), which allows the execution of the entire PolyBench suite.
4 EVALUATION
4.1 Experimental Setup

Implementation The cache size is 8 KB with 128 cache blocks. The baseline is automatic caching,
for which we use the Pseudo Least Recently Used (PLRU) eviction policy, a commonly used
approximation of LRU that is more time- and space-e%cient to implement (using a single status bit
in each cache line) [31]. We compare four cache programming techniques: CLAM, which does not
consider phase variation; PRL, which divides a program execution into a "xed number of phases
(Section 2.8); SHEL, which uses scope local leases (Section 2.3), and C-SHEL, which assigns inter-
scope leases (Section 2.4). For PRL, we divide executions into "ve equal-length phases, as was done
in Reference [29]. In addition, we have implemented the FPGA to output the aggregate vacancy
and the remaining lease values for visualization (Section 4.2).

Benchmarks . We use PolyBench/C 4.2.1, which contains 30 numerical kernels [26]. We use Poly-
Bench for several reasons. First, the benchmark suite is relatively easy to port through the FPGA
tool chain to allow testing on a real system. Second, the current emulation system is not yet
equipped to execute other benchmark suites due to limited RISCV instruction set coverage. De-
spite the latter limitations, PolyBench kernels are extracted from linear algebra, image processing,
physics simulation, dynamic programming, and statistics, which are all common workloads in sci-
enti"c computing and have been extensively used in studying performance analysis [1 , 25] and
optimizations [2 , 19]. We compile each program with the GCC -O3 optimization level without vec-
torization, which our CPU does not currently support, and report the results for small, medium,

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

39:12 B. Reber et al.
Table 1. Phase Markers Inserted for PolyBench

of scope # of phases for di#erent datasets
benchmark markers small medium large
2mm 2 2 2 2
3mm 3 3 3 3
adi 3 80 200 1,000
correlation 4 4 4 4
covariance 3 3 3 3
deriche 6 6 6 6
fdtd-2d 3 120 300 1,500
gemver 4 4 4 4
heat-3d 2 80 200 1,000
jacobi-2d 2 80 200 1,000
lu 2 240 800 4,000
ludcmp 4 242 802 4,002
mvt 2 2 2 2
atax, bicg, cholesky, doitgen, durbin,

1 1 1 1 $oyd-warshall, gemm, gesummv,
gramschmidt, jacobi-1d, nussinov, seidel-2d,
symm, syr2k, syrk, trisolv, trmm
17/30 of them only have single scope/phase across all three datasets.

and large dataset sizes. Approximately, the amount of program data in these sizes are 128 KB, 1 MB,
and 25 MB, respectively.

PLUTO Compiler . Version 0.11.4 of the PLUTO optimizing compiler was additionally used to
optimize the PolyBench benchmarks [9]. The compiler was invoked using only the --tile option,
to enable cache tiling and polyhedral optimizations. The compiler was con"gured to produce 16 ×
16 × 16 tiles to e#ectively "t in our cache size. For the code run with the CLAM and PRL leasing
policies, the PLUTO output was unchanged. For codes run with the SHEL and C-SHEL policies, the
PLUTO output needed to be manually annotated to work with the current lease generator applica-
tion with scope markings. For benchmarks that produced large optimized output, we separate the
non-optimized source into several subregions and let the PLUTO compiler be invoked in each sub-
region. The code, after the PLUTO optimization, was then compiled and run exactly as described
previously. All of the benchmarks were able to be optimized with the PLUTO compiler, excluding
heat-3d , which we were not able to run and collect data for after optimization. We present the
results of lease cache on programs compiled without PLUTO optimization in Section 4.2 , and we
explore the combined e#ects of lease cache and PLUTO optimization in Section 4.3 .
4.2 Performance of Cache Programming in Unoptimized Loops
We divide the benchmarks into two groups based on the number of scopes in them (shown in
Figure 5). The "rst group consists of 13 benchmarks that have two or more scopes, and the sec-
ond group has the remaining 17. Figure 5 shows the two groups side-by-side in three rows, each
showing a di#erent data size from small (top row) to large (bottom). The x-axis shows program
names, and the y-axis shows the miss ratio of the cache. We discuss the multi-scope group in this
section and single-scope group later in Section B . For the multi-scope group, the red vertical line
in each graph separates those with non-cyclic phases (Left) and those with cyclic phases (Right).
Their phase counts are shown in Table 1 .
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

Cache Programming for Scientific Loops Using Leases 39:13

Fig. 5. Miss ratios for 13 multi-scope benchmarks (le!) and 17 single-scope benchmarks (right) as well as
their geometric means. Lower is be"er. Values are reported for small (top) medium (middle), and large (bot-
tom) inputs. The red vertical line separates multi-scope benchmarks into those with non-cyclic (le!) and
cyclic phases (right).

Overall Comparison . Overall, cache programming improves signi"cantly over automatic
caching. The four techniques are used to provide leases for 13 multi-scope tests on each input,
for a total of 156 (4 × 13 × 3) lease solutions. When compared with PLRU as shown in Figure 5 , in
153 out of 156 cases, lease cache matches or performs better than PLRU, reducing the number of
misses by over 15% in 75 (about half) solutions, by over 75% in 16 (over 10%) solutions, and by as
much as 87% in the best case. Hence, we have the "rst "nding:

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

39:14 B. Reber et al.
Finding.

(1) Caching programming using leases is overwhelmingly better than automatic caching (using
PLRU), reducing the miss count by over 15% in one of every two cases and over 75% in every
ten.

This shows the bene"t of using program information when managing the cache. Note that, in this
study, we use pro"ling, and the test run is the same as the training run. Hence, this improvement
is an ideal case.

For the multi-scope group for the small dataset, the baseline technique CLAM and PRL reduce
the miss count by 55% and 58%, on average. As a reminder, PRL considers phases but not the pro-
gram structure. SHEL increases the average reduction to 60%, and C-SHEL to 61%, by considering
the program structure, and in the case of C-SHEL, considering cross-scope reuses.

The data sizes in medium and large inputs are 1 MB and 25 MB and much greater than the cache
size 8 KB. The improvement in caching has a smaller e#ect. For medium, the average reduction is
12%, 15%, 26%, and 21% for CLAM, PRL, SHEL, and C-SHEL, respectively. For large, these are 8%,
9%, 11%, and 11%.

E!ect on Multi-scope Programs . Lease optimization is most important for multi-scope programs.
We focus on the three methods that treat scopes di#erently, while using CLAM, which does not
distinguish scopes, as a baseline. Indeed, except a few cases, they all outperform CLAM by con-
sidering each scope and assigning scope-local leases. SHEL, for example, outperforms CLAM by
6%, 15%, 4% for the three inputs, respectively. Within each scope, they use the same algorithm
and di#er only in how they treat the boundary e#ect. Among the three, no single method domi-
nates in all cases. On average, the lowest miss count is obtained by C-SHEL on the small dataset,
SHEL on the medium, and both SHEL and C-SHEL on the large. SHEL performs well except on the
small input, where it performs the worst. While all three methods assign di#erent leases for dif-
ferent program phases, SHEL ignores cross-loop reuses when assigning leases. On the small input,
however, phases are the shortest, and cross-loop reuses are important to cache management.

By considering these reuses, both C-SHEL and PRL outperform SHEL on small inputs. Between
the two, C-SHEL performs better than PRL on average on all three input sizes, for mainly two
reasons. First, C-SHEL phases are marked according to program structure, while PRL intervals are
even divisions. PRL optimization is less e#ective in boundary intervals where the reuse behavior
is mixed. Second, as discussed in Section 2.8 , PRL considers cross-loop reuses only in a boundary
interval but uses the same leases on all interior intervals. The lease assigned based on a boundary
interval may be sub-optimal for interior intervals. The "rst weakness can be ameliorated by us-
ing more intervals, but the second cannot. In comparison, C-SHEL considers the boundary e#ect
proportionally. For our tests, however, the results show that it is better to ignore these e#ects on
medium and large inputs. C-SHEL gives no signi"cant advantage over SHEL on any of these tests
but is signi"cantly worse on some of them. In summary, we "nd the following:

Finding. On multi-scope tests, the three lease-optimization methods show that:
(2) It is best for lease optimization to ignore cross-loop reuses, that is, SHEL is the best or close to

the best in all cases.
(3) C-SHEL, by considering boundary reuses, has signi"cant bene"ts on small inputs, is counter

productive on medium inputs, and has no e!ect on large.
(4) PRL, by constraining CARL using intervals, is always bene"cial compared to CLAM, but less

e!ective than SHEL on medium and large inputs
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

Cache Programming for Scientific Loops Using Leases 39:15

Fig. 6. Cache occupancy spectra for CLAM (le!) vs. SHEL (right) for 2 mm with the small dataset. Over-
allocation is visible as large chunks of dark blue and under-allocation as chunks of yellow.

It is worth noting that the weakness of PRL, i.e., leases are constrained by the behavior of all
intervals, is also a strength in robustness in that PRL never increases cache contention compared
to CLAM. This is shown in the comparison where in all but one test, PRL performs the same as or
better than CLAM.

Limit Analysis . CARL computes the miss ratios for an ideal cache, which, as proved by Ding et al.
[17], is the best for the same average virtual cache size for all lease solutions. No lease optimization
can perform better than CARL. Note that CARL bounds may not be tight, i.e., what is included in
the potential may not be reachable. What is valuable, however, is that they show what is excluded,
which is de"nitely not realizable. No lease optimization can perform better than CARL.

Compared to PLRU, the potential for cache programming depends on the input size. On our
system, the cache size is 8 KB, and the amount of program data is approximately 128 KB, 1 MB, and
25 MB for the three input sizes, respectively. The average potential is 62%, 36%, and 11% reduction
over PLRU for the three input sizes. Given these potentials, the average realized by our three
techniques is 84% for small by SHEL, 46% for medium by C-SHEL, and 82% for large by C-SHEL.

The CARL bound is not tight, because they require variable cache sizes. The realizable bound
lies in the gap between the best actual result and the CARL bound. Among the three input sizes,
this gap is narrowest in the large input, so the CARL bound is closest to the actual potential, so is
the realized portion of the CARL bound to the realized potential. Hence, we have two additional
"ndings based on the limit analysis:

Finding. The limit analysis shows that:
(5) Lease-based cache programming may improve cache management over LRU by over 60%

when data size is 16 times the cache size and may still improve by over 10% when the data
size 3,000 times larger.

(6) The techniques in this article have realized over 80% of the potential of lease cache
programming.

The limit of cache programming is also bounded by optimal "xed-size caching, i.e., the OPT or
MIN method [13 , 23]. Optimal caching is automatic but unrealizable, because it requires precise
future knowledge. Two earlier studies have shown that ideal lease cache performs as well as or
better than OPT for both storage traces [22] and PolyBench programs [17].

Lease Visualization . Prechtl et al. [29] showed that leases give a user the ability to visualize
the state of the cache at each moment, and by taking samples and showing them in a sequence,
cache dynamics over an execution. We use visualization in Figure 6 to show the e#ect of lease

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

39:16 B. Reber et al.
optimization on one of our test programs. The graphs plot the individual cache line status , which
shows the current lease for each cache block. At each moment, the entire cache space of 128 blocks
is shown as a column of 128 cells, colored individually to show the current remaining lease in that
block. Previous work [29] calls this a cache tenancy spectrum. From the execution start time at the
left boundary to the execution end time at the right boundary, we plot the execution as a matrix of
colored cells. Yellow means no lease (empty block) and blue means occupied. The darker the blue
is, the longer the lease. Thus, over-allocation is visible as large chunks of blue and under-allocation
as chunks of yellow.

Figure 6 clearly shows the bene"t of phase-aware lease assignment strategies. This program is
composed of two top-level nested loops, whose e#ect can be clearly seen in the cache occupancy
spectra. CLAM allocation is blind to this structure; it simply assigns all the most pro"table leases
until the budget has been met. Unfortunately, a disproportionate number of the most pro"table
lease assignments lie in the "rst loop, and fewer of them lie in the second loop. The result is over-
allocation during the "rst loop and under-allocation during the second loop. SHEL, however, is
able to optimize each loop individually, resulting in a balanced cache use, with fewer contention
misses in the "rst phase and more hits in the second phase.

E!ect on Single-scope Programs . Figure 5 shows the normalized miss count for the 17 single-scope
tests. Because these programs have only a single scope, SHEL and C-SHEl lease assignments are
identical to those of CLAM. On average for the small dataset, PRL reduction, 54%, is slightly better
than CLAM’s 52%. For medium and large, the two results are e#ectively the same, with reductions
of 27% and 26%, respectively. This can be explained by behavior variations in single-scope tests.
PRL considers them separately using intervals, but CLAM does not. The e#ect, however, is signif-
icant only in small inputs. For the other two inputs, PRL sometimes performs worse than CLAM,
likely because optimal leases assigned some intervals are sub-optimal overall.
4.3 Performance of Cache Programming in Optimized Loops
Data locality can be greatly improved by the compiler using the polyhedral abstraction [7 , 20]. We
consider compiler transformations and lease caching to be complementary solutions for improving
cache performance. Lease caching seeks to improve the hit ratio via optimization of the cache
replacement policy given a memory access stream. Compiler transformations seek to improve
the hit ratio by reordering the memory access stream itself, such that locality is improved. We
examine the combined e#ect of polyhedral loop optimization done by the PLUTO compiler [9]
and our method of lease caching. We evaluate all four caching techniques (CLAM, PRL, SHEL, and
C-SHEL) on 12 multi-scope benchmarks and CLAM and PRL on 17 single-scope benchmarks, each
run with three di#erent data sizes.

Overall Comparison . Comparing the PLRU results (black bar) in Figure 5 and Figure 7 , the cache
performance can be greatly improved by the PLUTO compiler. Cache programming still improves
performance over automatic caching for locality-optimized code. As shown in Figure 7 , in 168 out
of 246 cases, lease cache matches or performs better than PLRU. In 146/168 tests, the programmable
cache improves the cache performance by 25%. Another 14 solutions reduce the cache misses by
over 50%, and the best reduction can reach as high as 82%. It is worth noting that PLUTO triples the
cache misses in ludcmp on PLRU, but such a negative impact does not happen in a programmable
cache: Both PLU TO and non-PLU TO codes have the same cache performance in ludcmp . For the
remaining 78 cases where the lease cache does not perform well, more than 90% of them add
less than 50% misses, and none of them makes the cache perform worse than the non-PLUTO
performance. In addition, their cache miss ratio is relatively low, and the degradation is smaller in
larger data inputs. The geometric mean miss ratios in the programmable cache are 1.00% (0.75% in
PLRU) for small data size, 0.84% (0.63% in PLRU) for medium, and 0.34% (0.26% in PLRU) for large.
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

Cache Programming for Scientific Loops Using Leases 39:17

Fig. 7. Miss counts for 12 multi-scope benchmarks (le!) and 17 single-scope benchmarks (right) as well as
their geometric means a!er optimized by PLUTO compiler. Lower is be"er. Values are reported for small
(top), medium (middle), and large (bo"om) inputs.

Table 2 summarizes the average (geo-mean) cache miss reduction by the lease cache under two
groups of benchmarks with three data inputs. Negative number means lease cache performs worse
than automatic caching (PLRU). For multi-scope tests, except for one anomaly lu , the same dis-
covery discussed in the previous section still applies to PLUTO-optimized code: C-SHEL performs
the best on small dataset, SHEL on medium dataset, and SHEL and C-SHEL on the large. The same
observation also applies to single-scope. Excluding one anomaly gramschmidt , the best perfor-
mance is obtained by PRL on small dataset but later switched to CLAM on medium and large
datasets. These two anomalies signi"cantly impact the lease cache performance. For PLUTO re-
sults, Table 2 shows the e#ect without these anomalies in parentheses. Next, we discuss why such
anomalies happen in lease cache.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

39:18 B. Reber et al.
Table 2. Cache Miss Reduction (in Geomean) by Lease Cache in PolyBench

Input Size Multi-scope Single-scope
CLAM PRL SHEL C-SHEL CLAM PRL

SMALL 56.9% 61.5% 60.5% 62.9% 43.0% 43.7%
No PLUTO MEDIUM 10.4% 13.4% 25.3% 22.3% 21.3% 21.0%

LARGE 7.7% 8.7% 11.4% 11.4% 28.0% 27.9%
SMALL 10.9% (12.1%) 9.1% (14.1%) 7.0% (14.4%) 8.0% (15.4%) 20.8% 16.4%

PLUTO MEDIUM −4.4% (−2.1%) −4.2% (−2.3%) −20.9% (8.5%) −3.0% (8.0%) 5.0% 4.7%
LARGE −4.2% −4.3% 4.5% 4.5% 0.8% 0.4%

Lease Cache Anomalies. There are two anomalies, lu from multi-scope programs and
gramschmidt from single-scope programs. Lease cache has 2.3 × and 35 × more misses on small
and medium dataset in lu and 2.5 × more on small dataset in gramschmidt . PLUTO transforms
a loop and increases the number of references in it. This poses two problems for the lease cache.
The "rst is information loss. The e#ect of sampling is “diluted” in that the RI distribution for each
reference may have fewer RIs. This is likely the problem in gramschmidt . The anomaly happens
only for PRL and not for other methods, because PRL divides a program into "ve phases. The
second problem is lease-table truncation. Our current hardware has 128 entries. If a program has
more than 128 references, then the top 128 most pro"table leases are loaded, and the remaining
references are assigned the default lease (which is 1). This is likely the case of the two lu anomalies.

In summary, we have the following discovery on the e#ect of programmable cache on
polyhedral-optimized code:

Finding. The three programmable caching schemes on PLUTO-optimized code show that:
(7) Programs after polyhedral optimization can still bene"t from the lease cache optimization,

and their best performance can be achieved by considering the scope.
Interaction between Cache Programming and Compiler Optimization . The PLUTO compiler will

transform the original loop structures to remove dependencies to improve parallelization and lo-
cality. These transformations include loop distribution ("ssion) and loop fusion. Such transforma-
tions have two impacts on the lease cache: (1) The program scope can be altered by these trans-
formations, making the scope marker we set on the original program less optimal. (2) More array
references are inserted to handle boundary conditions when performing loop blocking or tiling.
As the number of references increases, lease caching is negatively a#ected by two problems: infor-
mation loss and lease-table truncation. The two problems happen on 3 of the 246 cases, 2 of them
for the small input size, all by only SHEL and PRL (not CLAM or C-SHEL), and only for PLUTO
optimized loops. Other tests are not signi"cantly a#ected by these problems.

Finally, we observe that lease cache is bene"cial for compiler optimized code. Polyhedral opti-
mizations may not always provide perfect locality. In some cases, a compiler cannot eliminate all
cache misses because either a program cannot be further optimized, the compiler fails to apply the
full optimization possible, or a user fails to con"gure the compiler properly. Providing an addi-
tional layer of optimization can be bene"cial for cases where there is still room for improvement
in the cache replacement policy when applied to a transformed program.

Our results show improvement in geomean performance in all cases with SHEL and C-SHEL
after PLUTO optimization, excluding the anomalous results of a single outlier program (lu).
For deriche and ludcmp , PLUTO makes no locality improvement among all three input sizes.
For ludcmp on the small size, PLUTO optimization is counter-productive. It more than triples
the miss ratio in the PLRU cache. The lease cache has no such problem. It performs the same
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

Cache Programming for Scientific Loops Using Leases 39:19
with and without PLUTO on all three sizes. PLUTO is slightly worse in the medium size and
the same in the large size. This shows that compiler optimization may falter in rare cases, and
the programmable cache provides another line of defense, and in this case, largely removes the
degradation.

In this work, we show the results of lease cache on benchmarks whose loops are Static Control
Parts (SCoP) [9], because the reuse interval information required by the lease assignment can be
gathered statically. For parts of programs that are not SCoPs, a dynamic lease cache policy, which
gathers statistics and assigns leases at runtime, could be applied to more parts beyond those that
are amenable to such compiler transformations. However, the development of such a system is
beyond the scope of this article, in which we seek to evaluate the performance of our design,
which uses static leases.
5 RELATED WORK

Programmable Cache . Prechtl et al. [29] presented the "rst study of lease-cache prototype and
lease-based programming using CLAM and PRL (Section 2.2). Ding et al. [17] extended the study
to show formally that the greedy algorithm, called Compiler Assignment of Reference Leases
(CARL) , is optimal in that no other leases based on the same information can perform better. The
optimality is for virtual cache only. This article formulates and solves the problem of a "xed-size
cache.

CLAM is the "rst design and implementation of the lease cache in hardware and with a "xed
size [29]. The current work adds hardware support for scope-based leasing. In addition, by adding
RISC-V 32F ($oating point) instruction set extensions, our prototype runs all 30 programs of the
PolyBench suite, while previous work ran just 7 of the 30.

Prechtl et al. [29] tested for only CLAM and PRL. Ding et al. [17] included all PolyBench tests but
only for the virtual cache. The past work did not consider the over- and under-allocation problem
of lease programming, except in PRL. Based on intervals, PRL forgoes a lease in all intervals if it
causes over-allocation in any interval (Section 2.8). SHEL and C-SHEL in this article are based on
scopes. SHEL performs better than PRL on medium and large inputs (Finding 4 in Section 4).

The greedy algorithm was "rst used by Li et al. [22] to assign Optimal Steady-state Lease
(OSL) for storage caches. Like CARL, OSL targeted the virtual cache. Unlike CARL, which assigned
reference leases, OSL assigned a lease for each data page. The CARL optimality for reference leases
implies OSL optimality for page-based leases [17]. Since the number of references in a program
can be many orders of magnitude less than the size of data, reference leases are more practical for
hardware caches.

A hardware technique, Protecting Distance-based Policy (PDP) “prevents replacing a cache
line until a certain number of accesses to its cache set” [18]. Its hardware support is similar to
our design, including the RI sampler and cache tags. Unlike our work, PDP assigns the protecting
distance at runtime, so it stores an RI histogram in hardware. The technique is shown to improve
the performance of single-core caches and the throughput and fairness of multi-core caches. Using
a protecting distance is the same as assigning the same lease to every data access. Chen et al.
[11] called such a policy the uniform lease (UL) and showed the theoretical conditions when
UL is equivalent to LRU and the common cases in practice when one is better than the other. In
lease programming, a program may assign a di#erent lease for each reference. Lease programming
performs better than LRU (Finding 1).

Lease programming uses dual leases, supported by our hardware prototype (Section 3). In cache
management, Talus [6] and SLIDE [33] partitioned the access stream to have the e#ect of dividing
the working set for LRU and other cache policies. The dual lease creates a similar e#ect through
cache programming, which localizes their use for a single reference rather than for all.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

39:20 B. Reber et al.
Working-set Caching . As cache allocation, lease programming is related to the working-set the-

ory. Denning de"ned the working set as the data touched in the last τ accesses [13 –15]. In virtual
memory management, physical memory is allocated based on the dynamic working set. In a recent
survey paper, Denning summarized key properties including the optimality of the working-set pol-
icy [16]. The optimality has two conditions: the "rst is steady-state behavior within each phase;
the second is variable size cache memory.

Similar to the working-set policy, PRL divided an execution into "xed length intervals but tar-
geted a "xed-size cache. PRL intervals may be too coarse, so it misses phase variation inside a PRL
interval, or too "ne, so it misses the e#ect of cross-scope RIs. This article presents scope-based so-
lutions and solves the programming problem using the structure of loops. Each scope is a loop nest
that has a uniform data usage pattern. In addition, C-SHEL accommodates cross-loop reuses with
cross-scope leases. PRL requires a pro"ling step, while SHEL and C-SHEL can use pro"ling (as in
this study) or compiler analysis, for example, static sampling [12], which has been demonstrated
for (virtual-cache) lease programming by Ding et al. [17].

Program Optimization . Loop-nest optimization has long been developed and is critical in im-
proving the cache performance [3 , 4 , 36 , 37]. Recent work includes polyhedral optimization [27]
and sparse optimization [24] for computation and for data [32]. Program optimization targets LRU
caches. This has led to a growing list of compiler and runtime techniques to model the LRU cache
performance [5 , 8 , 10 , 12 , 21 , 34]. While it is beyond the scope of this article, programmable cache
has the potential to enable greater optimization than what is possible with automatic caches, as
well as being a new target for static analysis.
6 CONCLUSION
We have designed, implemented, and tested a lease cache architecture prototype with support
for RISC-V with $oating point instructions. We have formulated the problem of optimal cache
programming using leases, presented two novel algorithms, SHEL and C-SHEL. Furthermore, we
have compared four solutions on the full suite of PolyBench programs with three input sizes. The
results show that (1) cache programming is overwhelmingly better than automatic PLRU caching;
(2) this improvement potential is signi"cant even when program data size is far larger than the
cache size; (3) the best strategy is SHEL, which ignores inter-scope reuses; (4) SHEL realizes most
of the potential of cache programming; and (5) after polyhedral optimization, apart from a few
outliers, programs still bene"t from the lease cache, and their best performance is achieved by
considering the scope as in SHEL or C-SHEL.
APPENDICES
A REUSE INTERVAL SAMPLER
The objective of the sampler is to pro"le a program and provide the lease compiler with the RI
distribution necessary to generate leases. This allows the lease compiler to operate independently
of instruction set architectures (ISAs) . The lease cache hardware is designed to support lease
policy management for all eviction possibilities:
• Zero vacancy : no cache line has an expired lease.
• Single vacancy : exactly one cache line has expired.
• Multiple vacancies : more than one cache line has expired.

For a single vacancy, the eviction selection is obvious. The zero vacancy case requires the appli-
cation of an auxiliary policy, because there is no line eligible for eviction according to the current
lease values. Multiple vacancies are handled by prioritizing the eviction of low index cache lines.
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

Cache Programming for Scientific Loops Using Leases 39:21

Fig. A.1. Reuse interval (RI) histograms for four of the references of the five-point stencil program. Each row
represents a di#erent reuse interval that is observed for each reference. References with no reuses (b[i][j]
and a[i-1][j]) are omi"ed.

Fig. A.2. Hardware reuse interval sampler system overview. The text file snapshot shows the sampler output.
The current lease cache hardware handles all eviction cases, stochastically assigns dual leases to
accesses, and monitors cache utilization/vacancy.

Consider the "ve-point stencil; from its inspection there are six memory references. The result-
ing reuse interval distribution of the program is straightforward, as given in Figure A.1 . When
assembled and linked, however, additional references are present in the form of stack manipu-
lations and similar operations. The manner in which the binary is compiled has a direct impact
on how the leases are to be practically applied. This is not limited to compiler nuance. Take, for
example, the RISC-V ISA [35], which de"nes 32 general purpose registers. When compiled for the
embedded variant of the ISA only 16 registers are used. This results in increased memory ref-
erences to data that would otherwise be stored in the register "le. The clairvoyance breadth of

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

39:22 B. Reber et al.
the compiler required is a practical issue when considering lease policies as a solution towards a
programmable cache.

The hybrid solution to this issue is a front-end lease cache hardware integrated with the lease
compiler as the back-end. The hardware generates the reuse interval distribution for the compiler,
which then generates leases based on it. In this way, the lease compiler requires no ISA/compile
knowledge and can be applied to any system, given that this reuse interval sampler hardware can
be integrated.

Operation of the Hardware Reuse Interval Sampler . The sampler is essentially a communication
snooper. It is integrated within the request bus between the core and next level memory, which
in this case is the internal cache. The sampler monitors the memory accesses between the RISC-V
core and memory, periodically sampling bus transactions, and generates the resulting reuse inter-
vals. The sampling period is an application heuristic—the objective is to gather reuse intervals for
all memory references within a program. However, this is not a necessary condition. References
without collected reuse intervals are assumed sparse and contribute minimally to program exe-
cution. This subset of references is instead associated with a default lease. A 64-entry hardware
lookup table caches two access "elds—the target address (search "eld) and address of the reference
invoking the access. An additional counter is associated with each entry of the table to record the
running reuse interval of the reference (incremented at every access). The table is populated at
variable intervals using a nine-bit linear feedback shift register (LFSR) . The LFSR generates a
pseudo-random sequence that seeds a sampling counter, which decrements at every access. When
the counter expires, a new sample is started by adding the current access "elds to the table. The
sampling counter is re-seeded with the next number generated by the LFSR. Using a nine-bit LFSR
results in an average sampling rate of 1 sample per 256 accesses.

A block reuse is indicated by an access target address matching an entry of the table. At this
point, the sample is complete, and the reuse interval for the memory reference should be recorded.
The entry of the table that resulted in the match is evicted and its "elds are stored into a sample
bu#er, along with the current time (current trace length). Eviction also forcibly occurs if all entries
of the table are active when the sampling counter elapses. To allocate space for the new sample, the
oldest entry of the table is evicted. Because this entry was not evicted due to a reuse, it is written
to the bu#er with a negative RI to $ag it as a non-reuse for the lease assignment algorithm.

Reuse interval sampler parameter selection is heuristic and depends on the program being exam-
ined. Furthermore, there is a direct relationship between population and eviction rates. Increased
sampling frequency results in more active table entries, bringing the table to full capacity more
quickly. The rate at which the table becomes bottle-necked limits the magnitude of reuse inter-
vals that can be recorded by the table. As the sample rate increases, capacity evictions become
more frequent—removing entries with the largest active running intervals, and so long RIs have a
smaller chance of being recorded.

Hardware Sampler Extension to Support Scoped Lease Policies . The reuse interval sampler pro-
posed in Prechtl et al. [29] is modi"ed to record not only the instruction address of the memory
reference, but also to record the speci"c phase of that access (Figure 2). This modi"cation is what
enables the SHEL and C-SHEL algorithms to determine which references belong to which scope
during lease generation.
B RUNTIME RESULTS
Figure B.1 shows the runtime of each benchmark in terms of clock cycles. The penalty of a cache
miss in our system is 16 cycles. SHEL and C-SHEL require CPU stall cycles to repopulate the lease
ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

Cache Programming for Scientific Loops Using Leases 39:23

Fig. B.1. Clock cycles for execution of all benchmarks using each cache leasing technique, normalized to
PLRU performance.
lookup table on phase change. This e#ect is greatest on cyclic benchmarks with small data sizes,
e.g., lu and ludcmp . However, for medium and large data sizes, this e#ect is minimal. At each
dataset size, SHEL and C-SHEL still outperform policies with no CPU stall.
ACKNOWLEDGMENTS
The authors would like to thank Dong Chen, Jonathan Waxman, Boyang Wang, Adam Bobok,
Michael Scott, other members of the systems group, and the anonymous referees for their valuable
comments and helpful suggestions.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

39:24 B. Reber et al.
REFERENCES
[1] Miguel Á. Abella-González, Pedro Carollo-Fernández, Louis-Noël Pouchet, Fabrice Rastello, and Gabriel Rodríguez.

2021. PolyBench/Python: Benchmarking Python environments with polyhedral optimizations. In Proceedings of the
30th ACM SIGPLAN International Conference on Compiler Construction . ACM, 59–70. DOI: https://doi.org/10.1145/
3446804.3446842

[2] Aravind Acharya and Uday Bondhugula. 2015. PLUTO+: Near-complete modeling of a%ne transformations for par-
allelism and locality. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming . ACM, 54–64. DOI: https://doi.org/10.1145/2688500.2688512

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je#rey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools
(2nd ed.). Addison-Wesley.

[4] Randy Allen and Ken Kennedy. 2001. Optimizing Compilers for Modern Architectures: A Dependence-based Approach .
Morgan Kaufmann Publishers.

[5] Wenlei Bao, Sriram Krishnamoorthy, Louis-Noël Pouchet, and P. Sadayappan. 2018. Analytical modeling of cache
behavior for a%ne programs. PACMPL 2, POPL (2018), 32:1–32:26. DOI: https://doi.org/10.1145/3158120

[6] Nathan Beckmann and Daniel Sanchez. 2015. Talus: A simple way to remove cli#s in cache performance. In Proceed-
ings of the International Symposium on High-Performance Computer Architecture . 64–75. DOI: https://doi.org/10.1109/
HPCA.2015.7056022

[7] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric Bastoul. 2010. The polyhedral
model is more widely applicable than you think. In Proceedings of the International Conference on Compiler Construc-
tion , Vol. 6011. Springer, 283–303.

[8] Kristof Beyls and Erik H. D’Hollander. 2005. Generating cache hints for improved program e%ciency. J. Syst. Archit.
51, 4 (2005), 223–250.

[9] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical automatic polyhedral paral-
lelizer and locality optimizer. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation . 101–113.

[10] Calin Cascaval and David A. Padua. 2003. Estimating cache misses and locality using stack distances. In Proceedings
of the International Conference on Supercomputing . 150–159.

[11] Dong Chen, Chen Ding, Fangzhou Liu, Benjamin Reber, Wesley Smith, and Pengcheng Li. 2021. Uniform lease vs. LRU
cache: Analysis and evaluation. In Proceedings of the ACM SIGPLAN International Symposium on Memory Management .
ACM, 15–27.

[12] Dong Chen, Fangzhou Liu, Chen Ding, and Sreepathi Pai. 2018. Locality analysis through static parallel sampling.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation . 557–570.
DOI: https://doi.org/10.1145/3192366.3192402

[13] Edward G. Co#man Jr. and Peter J. Denning. 1973. Operating Systems Theory . Prentice-Hall.
[14] Peter J. Denning. 1968. The working set model for program behaviour. Commun. ACM 11, 5 (1968), 323–333.
[15] Peter J. Denning. 1980. Working sets past and present. IEEE Trans. Softw. Eng. SE-6, 1 (Jan. 1980).
[16] Peter J. Denning. 2021. Working set analytics. ACM Comput. Surv. 53, 6 (2021), 113:1–113:36. DOI: https://doi.org/10.

1145/3399709
[17] Chen Ding, Dong Chen, Fangzhou Liu, Benjamin Reber, and Wesley Smith. 2022. CARL: Compiler Assigned Reference

Leasing. ACM Trans. Archit. Code Optim. 19, 1 (2022), 15:1–15:28.
[18] Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and Alexander V. Veidenbaum. 2012. Im-

proving cache management policies using dynamic reuse distances. In Proceedings of the ACM/IEEE International
Symposium on Microarchitecture . 389–400. DOI: https://doi.org/10.1109/MICRO.2012.43

[19] Stefan Ganser, Armin Größlinger, Norbert Siegmund, Sven Apel, and Christian Lengauer. 2017. Iterative schedule
optimization for parallelization in the polyhedron model. ACM Trans. Archit. Code Optim. 14, 3 (2017), 23:1–23:26.
DOI: https://doi.org/10.1145/3109482

[20] Martin Griebl, Christian Lengauer, and Sabine Wetzel. 1998. Code generation in the polytope model. In Proceedings of
the International Conference on Parallel Architectures and Compilation Techniques . IEEE Computer Society, 106–111.
DOI: https://doi.org/10.1109/PACT.1998.727179

[21] Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoe$er. 2019. A fast analytical model of fully associative
caches. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation . 816–
829. DOI: https://doi.org/10.1145/3314221.3314606

[22] Pengcheng Li, Colin Pronovost, William Wilson, Benjamin Tait, Jie Zhou, Chen Ding, and John Criswell. 2019. Beating
OPT with statistical clairvoyance and variable size caching. In Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems . 243–256. DOI: https://doi.org/10.1145/3297858.
3304067

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

https://doi.org/10.1145/3446804.3446842
https://doi.org/10.1145/3446804.3446842
https://doi.org/10.1145/2688500.2688512
https://doi.org/10.1145/3158120
https://doi.org/10.1109/HPCA.2015.7056022
https://doi.org/10.1109/HPCA.2015.7056022
https://doi.org/10.1145/3192366.3192402
https://doi.org/10.1145/3399709
https://doi.org/10.1145/3399709
https://doi.org/10.1109/MICRO.2012.43
https://doi.org/10.1145/3109482
https://doi.org/10.1109/PACT.1998.727179
https://doi.org/10.1145/3314221.3314606
https://doi.org/10.1145/3297858.3304067
https://doi.org/10.1145/3297858.3304067

Cache Programming for Scientific Loops Using Leases 39:25
[23] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. 1970. Evaluation techniques for storage hierarchies. IBM Syst. J. 9,

2 (1970), 78–117.
[24] Mahdi Soltan Mohammadi, Tomofumi Yuki, Kazem Cheshmi, Eddie C. Davis, Mary W. Hall, Maryam Mehri Dehnavi,

Payal Nandy, Catherine Olschanowsky, Anand Venkat, and Michelle Mills Strout. 2019. Sparse computation data
dependence simpli"cation for e%cient compiler-generated inspectors. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation . 594–609.

[25] Auguste Olivry, Julien Langou, Louis-Noël Pouchet, P. Sadayappan, and Fabrice Rastello. 2020. Automated derivation
of parametric data movement lower bounds for a%ne programs. In Proceedings of the 41st ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation . ACM, 808–822. DOI: https://doi.org/10.1145/
3385412.3385989

[26] Louis-Noël Pouchet. 2018. PolyBench/C 4.0. Retrieved from http://polybench.sourceforge.net .
[27] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam, P. Sadayappan, and Nicolas

Vasilache. 2011. Loop transformations: Convexity, pruning and optimization. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages . 549–562.

[28] Ian Prechtl, Chen Ding, and Dorin Patru. 2020. Design and Evaluation of a "xed-size Programmable Working-set
Cache on FPGAs. Retrieved from https://dx.doi.org/10.13140/RG.2.2.24423.60320

[29] Ian Prechtl, Ben Reber, Chen Ding, Dorin Patru, and Dong Chen. 2020. CLAM: Compiler lease of cache memory. In
Proceedings of the International Symposium on Memory Systems . ACM, 281–296.

[30] Michael L. Scott. 2009. Programming Language Pragmatics (3rd ed.). Morgan Kaufmann Publishers.
[31] Kimming So and Rudolph N. Rechtscha#en. 1988. Cache operations by MRU change. IEEE Trans. Comput. 37, 6 (1988),

700–709. DOI: https://doi.org/10.1109/12.2208
[32] Anand Venkat, Mary W. Hall, and Michelle Strout. 2015. Loop and data transformations for sparse matrix code. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation . 521–532.
DOI: https://doi.org/10.1145/2737924.2738003

[33] Carl A. Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun Park. 2017. Cache modeling and optimization
using miniature simulations. In Proceedings of the USENIX Annual Technical Conference . 487–498. Retrieved from
https://w w w.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger .

[34] Qingsen Wang, Xu Liu, and Milind Chabbi. 2019. Featherlight reuse-distance measurement. In Proceedings of the
International Symposium on High-Performance Computer Architecture . IEEE, 440–453. DOI: https://doi.org/10.1109/
HPCA.2019.00056

[35] Andrew Waterman and Krste Asanović. 2017. The RISC-V Instruction Set Manual: Volume I: User-level ISA . Version 2.2.
https://riscv.org/wp- content/uploads/2017/05/riscv- spec-v2.2.pdf.

[36] M. J. Wolfe. 1996. High Performance Compilers for Parallel Computing . Addison-Wesley, Redwood City, CA.
[37] Jingling Xue. 2000. Loop Tiling for Parallelism . Kluwer International Series in Engineering and Computer Science,

Vol. 575. Kluwer.
Received 20 September 2022; revised 2 May 2023; accepted 5 May 2023

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 39. Publication date: July 2023.

https://doi.org/10.1145/3385412.3385989
https://doi.org/10.1145/3385412.3385989
http://polybench.sourceforge.net
https://dx.doi.org/10.13140/RG.2.2.24423.60320
https://doi.org/10.1109/12.2208
https://doi.org/10.1145/2737924.2738003
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://doi.org/10.1109/HPCA.2019.00056
https://doi.org/10.1109/HPCA.2019.00056
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

	1 INTRODUCTION
	2 LEASE CACHE PROGRAMMING
	2.1 Lease Cache
	2.2 Lease Balancing
	2.3 Scope Hooked Eviction Leasing
	2.4 Cross-scope Leasing
	2.5 Instrumentation and Sampling
	2.6 Scope Annotation
	2.7 Lease Assignment Algorithms
	2.8 Phased Reference Leasing (PRL)

	3 HARDWARE EMULATION SYSTEM DESIGN
	4 EVALUATION
	4.1 Experimental Setup
	4.2 Performance of Cache Programming in Unoptimized Loops
	4.3 Performance of Cache Programming in Optimized Loops

	5 RELATED WORK
	6 CONCLUSION
	7 APPENDICES
	8 REUSE INTERVAL SAMPLER
	9 RUNTIME RESULTS
	10 ACKNOWLEDGMENTS
	REFERENCESendgraf

