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Abstract

There are synergies of research interests and in-
dustrial efforts in modeling fairness and correct-
ing algorithmic bias in machine learning. In
this paper, we present a scalable algorithm for
spectral clustering (SC) with group fairness con-
straints. Group fairness is also known as statis-
tical parity where in each cluster, each protected
group is represented with the same proportion as
in the entirety. While FairSC algorithm (Klein-
dessner et al., 2019) is able to find the fairer clus-
tering, it is compromised by high computational
costs due to the algorithm’s kernels of computing
nullspaces and the square roots of dense matrices
explicitly. We present a new formulation of the
underlying spectral computation of FairSC by in-
corporating nullspace projection and Hotelling’s
deflation such that the resulting algorithm, called
s-FairSC, only involves the sparse matrix-vector
products and is able to fully exploit the sparsity
of the fair SC model. The experimental results
on the modified stochastic block model demon-
strate that while it is comparable with FairSC in
recovering fair clustering, s-FairSC is 12× faster
than FairSC for moderate model sizes. s-FairSC
is further demonstrated to be scalable in the sense
that the computational costs of s-FairSC only in-
crease marginally compared to the SC without
fairness constraints.

1 INTRODUCTION

Machine learning (ML) is widely used to automate deci-
sions in areas such as targeting of advertising, issuing of
credit cards, and admission of students. While powerful,
ML is vulnerable to biases encoded in the raw data or
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brought by underlying algorithms against certain groups or
individuals, thus resulting in unfair decisions (Hardt et al.,
2016; Chouldechova and Roth, 2018). Examples of al-
gorithmic unfairness in real life are documented in Flores
et al. (2016); Pethig and Kroenung (2022). In the context
of algorithmic decision-making, fairness commonly refers
to the prohibition of any favoritism toward certain groups
or individuals based on their natural or acquired character-
istics. Such characteristics are also known as sensitive at-
tributes, for instance, gender, ethnicity, sexual orientation,
and age group (Mehrabi et al., 2021). The rising stake and
growing societal impact of ML algorithms have motivated
the study of fairness in academia and industry. Various ef-
forts have been attempted at modeling fairness and correct-
ing algorithmic biases in both supervised and unsupervised
ML, see e.g., Dwork et al. (2012); Chierichetti et al. (2017);
Samadi et al. (2018); Agarwal et al. (2019); Aghaei et al.
(2019); Amini et al. (2019); Zhang et al. (2019); Davidson
and Ravi (2020).

There are a wide range of studies in fair ML depending on
the choice of algorithms and fairness definitions. In this pa-
per, we focus on spectral clustering (SC) with group fair-
ness constraints. The notion of group fairness is an idea
of statistical parity by Feldman et al. (2015); Zemel et al.
(2013). It ensures that overall proportion of members in a
group receiving positive (negative) consideration is iden-
tical to the proportion of the population as a whole. In
Kleindessner et al. (2019), a mathematical model is pro-
posed to incorporate the group fairness into the SC frame-
work, FairSC for short. For synthetic networks, FairSC is
shown to recover ground-truth clustering with high proba-
bility. For real-life datasets, FairSC identifies a fairer clus-
tering compared to SC without fairness constraints. Unfor-
tunately, FairSC can only handle moderate model sizes due
to the computational costs in the computations of orthonor-
mal bases of large nullspaces and the square roots of dense
matrices. FairSC is not scalable.

In this paper, we present a new formulation of spectral com-
putation of FairSC by incorporating nullspace projection
and Hotelling’s deflation. The resulting algorithm is named
Scalable FairSC, or s-FairSC. In s-FairSC, all computa-
tional kernels only involve the sparse matrix-vector multi-
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plications and therefore are capable of fully exploiting the
sparsity of the fair SC model. A comparison of s-FairSC
with FairSC on the modified stochastic block model ex-
hibits 12x speed up for moderate model sizes. Meanwhile,
s-FairSC is comparable with FairSC in recovering fair clus-
tering. The s-FairSC is further demonstrated to be scalable
in the sense that it only has a marginal increase in com-
putational costs compared to the SC without fairness con-
straints.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the basics of spectral clustering and group
fairness. Section 3 first recaps FairSC and then derives
s-FairSC. Section 4 starts with the descriptions of experi-
mental datasets and then demonstrates the improvements of
s-FairSC in computational efficiency and scalability while
maintaining the same accuracy as FairSC. Concluding re-
marks are in Section 5.

2 SC AND FAIR SC

2.1 Clustering and fair clustering

Given a set of data, the goal of clustering is to parti-
tion the set into subsets such that data in the same subset
is more similar to each other than in those of the other
subsets. Mathematically, let G(V,W ) denote a weighted
and undirected graph with a set of vertices (data) V =
{v1, v2, . . . , vn} and a weighted adjacency matrix W =
(wij) ∈ Rn×n. The matrix W encodes the edge in-
formation. We assume wij ≥ 0 and wii = 0. If
wij > 0, then (vi, vj) is an edge with weight wij . We
denote by di =

∑n
j=1 wij the degree of a vertex vi and

D = diag(d1, d2, . . . , dn), the degree matrix of G(V,W ).
For simplicity, we assume there is no isolated vertex, and
consequently, D is positive definite.

The task of clustering is to partition V into k disjoint sub-
sets (clusters):

V = C1 ∪ · · · ∪ Ck, (2.1)

such that the total weights within each subset are large
and between two different subsets are small. The clus-
tering (2.1) can be encoded in a clustering indicator ma-
trix H = (hiℓ) ∈ Rn×k, where for i = 1, . . . , n and
ℓ = 1, . . . , k,

hiℓ :=

{
1, if vi ∈ Cℓ,
0, otherwise. (2.2)

Now let us consider how to enforce group fairness in clus-
tering. The groups refer to a partition of the collected data
V (e.g., based on sensitive attributes such as gender and
race). We denote the groups with h non-empty subsets:

V = V1 ∪ · · · ∪ Vh, (2.3)

where Vi ∩ Vj = ∅ for i ̸= j. Groups can be encoded in
a group indicator matrix G = (gis) ∈ Rn×h, where for
i = 1, . . . , n and s = 1, . . . , h

gis :=

{
1, if vi ∈ Vs,
0, otherwise. (2.4)

The group fairness for clustering refers to the case that ob-
jects from all groups are presented proportionately in each
cluster, also known as statistical parity. The following def-
inition is due to Kleindessner et al. (2019), which extends
the notion of group fairness by Chierichetti et al. (2017).

Definition 2.1. A clustering (2.1) is group fair with respect
to a group partition (2.3) if in each cluster the objects from
each group are presented proportionately as in the original
dataset. That is, for s = 1, 2, · · · , h and ℓ = 1, 2, · · · , k,

|Vs ∩ Cℓ|
|Cℓ|

=
|Vs|
|V |

, (2.5)

where |V | denotes the number of vertices in V .

The fairness condition (2.5) can be represented compactly
using the matrices H in (2.2) and G in (2.4). To do so, let
us first introduce matrices

M := GTH and Z := (GT1n) · (HT1n)
T , (2.6)

where 1n is a length-n column vector with all elements
equal to 1. Then the entries of M and Z are msℓ = |Vs∩Cℓ|
and zsℓ = |Vs|·|Cℓ| for s = 1, 2, . . . , h and ℓ = 1, 2, . . . , k.
Consequently, the fairness condition (2.5) is equivalent to

n ·M = Z, (2.7)

where n = |V |. By (2.6), equation (2.7) holds if and only
if

FT
0 H = 0, (2.8)

where F0 := G − 1nz
T ∈ Rn×h and z := (GT1n)/n ∈

Rh. Observe that according to the definition of G in (2.4),
the entries of the vector z satisfy zi = |Vi|/n, for i =
1, 2, . . . , h.

The following lemma shows that it is sufficient to use the
first h − 1 columns of F0 in the constraint (2.8). The idea
of using the first h− 1 columns of F0 is from Kleindessner
et al. (2019). Extended from this idea, we justify the choice
of h−1 through the rank of F0 and prove that h−1 is indeed
the least number of columns necessary.

Lemma 2.1. Let H be the clustering indicator matrix
in (2.2), and G be the group indicator matrix as in (2.4).
Let F0 ∈ Rn×h be as defined in (2.8) and F := F0(:, 1 :
h − 1) ∈ Rn×(h−1) consists of the first h − 1 columns1 of
F0. Then,

1By changing the order of groups {Vs}, the result also holds
for F with arbitrary (h− 1) columns of F0.
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(i) rank (F0) = rank (F ) = h− 1.

(ii) The clustering (2.1) is group fair with respect to (2.3)
if and only if

FTH = 0. (2.9)

Proof. See Appendix A.1.

2.2 SC and fair SC

SC. The objective function of a normalized cut (NCut)
(Shi and Malik, 2000; Ng et al., 2001) is

NCut(C1, · · · , Ck) :=
k∑

ℓ=1

Cut(Cℓ, V \Cℓ)

vol(Cℓ)
, (2.10)

where

Cut(Cℓ, V \Cℓ) =
∑

vi∈Cℓ

vj∈V \Cℓ

wij , vol(Cℓ) =
∑

vi∈Cℓ

di.

The NCut function calculates the scaled total weights of
between-cluster edges, and measures the similarities be-
tween the clusters: a smaller NCut value implies better
clustering. The scaling in (2.10) by vol(Cℓ) takes into ac-
count the size of the cluster to avoid outliers. Hence, the
goal is to minimize NCut.

The NCut function (2.10) admits a nice expression using
the clustering indicator matrix H . Let us first scale the
clustering indicator matrix H in (2.2) to

H ← HD̂−1, (2.11)

where D̂ = diag (
√

vol(C1), · · · ,
√

vol(Ck)). We call the
new H the scaled indicator matrix. For convenience, we
use the same notation for both scaled and unscaled cluster
indicator matrices. Then, the NCut function (2.10) is recast
to the following matrix trace:

NCut(C1, · · · , Ck) = Tr (HTLH), (2.12)

where L = D − W is the Laplacian of G(V,W ). Note
that under the assumption of connectivity of G(V,W ), L is
semi-positive definite and has exactly one zero eigenvalue.
By (2.12), the NCut minimization is equivalent to the trace
minimization problem

minTr (HTLH) s.t. H is of the form (2.11). (2.13)

Solving problem (2.13) directly is NP-hard (Wagner and
Wagner, 1993). In practice, the following relaxed version
of the problem (2.13) is solved:

min
H∈Rn×k

Tr (HTLH) s.t. HTDH = Ik. (2.14)

Once an optimal solution H of (2.14) is obtained, a discrete
solution of (2.13) can be obtained by a properly chosen cri-
terion. Subsequently, the k-means algorithm (for the rows

of H) is applied for clustering, although other techniques
are also available; see, e.g., Bach and Jordan (2003); Lang
(2005).

Problem (2.14) is a classical trace minimization problem
initially studied in Fan (1949). The following theorem can
be found in (Horn and Johnson, 2012, p. 248).

Theorem 2.1. For a symmetric matrix A ∈ Rn×n,

min
XTX=Ik

Tr (XTAX) = Tr (XT
∗ AX∗) =

k∑
i=1

λi,

where λ1 ≤ · · · ≤ λk are the k smallest eigenvalues of A,
and columns of X∗ ∈ Rn×k are the corresponding eigen-
vectors.

By Theorem 2.1, we can reformulate problem (2.14) to the
standard trace minimization problem by a change of vari-
ables X = D1/2H:

min
X∈Rn×k

Tr (XTLnX) s.t. XTX = Ik, (2.15)

where Ln = D− 1
2LD− 1

2 , which is known as the normal-
ized Laplacian, and then compute the eigenvectors X cor-
responding to the k smallest eigenvalues of Ln. The solu-
tion of the problem (2.14) is recovered by H = D−1/2X .
The SC algorithm is summarized in Algorithm 1.

Algorithm 1 SC (Spectral Clustering)
Input: weighted adjacency matrix W ∈ Rn×n; degree

matrix D ∈ Rn×n; k ∈ N
Output: a clustering of indices 1 : n into k clusters

1: compute the Laplacian matrix L = D −W ;
2: compute the normalized Laplacian Ln = D− 1

2LD− 1
2 ;

3: compute the k smallest eigenvalues of Ln and the cor-
responding eigenvectors X ∈ Rn×k;

4: apply k-means clustering to the rows of H = D− 1
2X .

The SC (Shi and Malik, 2000; Ng et al., 2001) is a highly
successful clustering algorithm, and widely used in areas of
data exploration, such as image segmentation (Tung et al.,
2010), speech separation (Bach and Jordan, 2006) among
others. The SC algorithm is efficient and scalable because it
can fully take the advantage of sparsity of the SC model and
use the state-of-the-art scalable sparse eigensolvers (Bai
et al., 2000).

Fair SC. The group fairness constraints can be ele-
gantly incorporated into the SC by simply adding the
constraint (2.9) to the trace minimization problem (2.14),
which leads to

min
H∈Rn×k

Tr (HTLH) s.t. HTDH = Ik and FTH = 0,

(2.16)



Scalable Spectral Clustering with Group Fairness Constraints

where L ∈ Rn×n is the graph Laplacian, F ∈ Rn×(h−1)

is from (2.9), and FTH = 0 is the original (2.9) right-
multiplied with D̂−1 due to the scaling (2.11) of H .

The idea of enforcing group fairness in spectral clustering
using the optimization (2.16) was proposed in Kleindessner
et al. (2019). We will show that the additional linear con-
straints in (2.16) will introduce only marginal extra costs
than solving the SC (2.14).

3 ALGORITHMS

In this section, we consider numerical algorithms for solv-
ing the constrained trace minimization problem (2.16). We
first review the FairSC algorithm proposed in Kleindessner
et al. (2019) and then address the scalability issue of the
FairSC.

3.1 FairSC algorithm

A nullspace-based algorithm for solving the problem (2.16)
proposed in Kleindessner et al. (2019) is as follows. Since
the columns of H live in the nullspace of FT , we can write

H = ZY

for some Y ∈ R(n−h+1)×k, where Z ∈ Rn×(n−h+1) is an
orthonormal basis matrix of null(FT ). Consequently, the
optimization problem (2.16) is equivalent to the following
trace optimization without linear constraints:

min
Y ∈R(n−h+1)×k

Tr (Y T [ZTLZ]Y ) s.t. Y T [ZTDZ]Y = Ik.

(3.1)
We can further transform the problem (3.1) to the standard
trace minimization (2.14) by another change of variables

X = QY with Q = (ZTDZ)1/2,

which leads to

min
X∈R(n−h+1)×k

Tr (XTMX) s.t. XTX = Ik, (3.2)

where M = Q−1ZTLZQ−1. Observe that M is posi-
tive semi-definite of size n − h + 1. According to Theo-
rem 2.1, problem (3.2) is solved by linear eigenvalue prob-
lem Mx = λx. The optimal solution X = [x1, . . . , xk]
consists of the eigenvectors corresponding to the k small-
est eigenvalue of M . Finally, H = ZQ−1X is the solution
of the fair SC minimization (2.16).

We summarize the aforementioned algorithm for the group-
fair spectral clustering in Algorithm 2, called FairSC.
FairSC requires two major computational kernels. The first
one is the nullspace of FT in step 2. This can be done
by the SVD of F = UΣV T , where U ∈ Rn×n and
V ∈ R(h−1)×(h−1) are orthogonal, and Σ ∈ Rn×(h−1)

is diagonal. According to Lemma 2.1, F has a full col-
umn rank h − 1. Therefore U(:, h : n) is an orthonor-
mal basis of the nullspace of FT . We can also use QR
decomposition F = UR, where U ∈ Rn×n is orthogonal
and R ∈ Rn×(h−1) is upper triangular. We can then set
Z = U(:, h : n). For both SVD and QR, the computation
complexity is about O(n(h − 1)2); see, e.g., Golub and
Van Loan (1996). The second kernel is the matrix square
root of size n − h + 1 in step 3. This can be done by
the blocked Schur algorithm (Higham and Al-Mohy, 2010;
Deadman et al., 2012). The computation complexity is
O((n− h+ 1)3). For matrices of large sizes, both kernels
involving large dense matrices are computationally expen-
sive due to memory space and data communication costs.
Consequently, FairSC is only suitable for small to medium
size fair SC models; see numerical results in Section 4.

Algorithm 2 FairSC
Input: weighted adjacency matrix W ∈ Rn×n; degree

matrix D ∈ Rn×n; group-membership matrix F ∈
Rn×(h−1); k ∈ N

Output: a clustering of indices 1 : n into k clusters
1: compute the Laplacian matrix L = D −W ;
2: compute an orthonormal basis Z of the nullspace of

FT ;
3: compute the matrix square root Q = (ZTDZ)1/2;
4: compute M = Q−1ZTLZQ−1;
5: compute the k smallest eigenvalues of M and the cor-

responding eigenvectors X ∈ Rn×k;
6: apply k-means clustering to the rows of H = ZQ−1X .

3.2 First variant of FairSC

As the first variant of FairSC, we can avoid computing the
square root of a dense matrix by reordering the changes
of variables used in FairSC. Let us begin with a change of
variables

X = D
1
2H

and turn the optimization (2.16) to

min
X∈Rn×k

Tr (XTLnX) s.t. XTX = Ik and CTX = 0,

(3.3)
where Ln = D− 1

2LD− 1
2 is the normalized Laplacian, and

C = D− 1
2F . Recall that the degree matrix D is diago-

nal, so generating Ln and C requires only row and column
scaling. Next, we remove the linear constraints CTX = 0
in (3.3) using the nullspace basis of CT . Specifically, since
the columns of X live in the nullspace of CT we can pa-
rameterize

X = V Y for some Y ∈ R(n−h+1)×k,

where V ∈ Rn×(n−h+1) is an orthonormal basis matrix of
the nullspace of CT . Then the optimization (3.3) is equiv-
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alent to the standard trace minimization

min
Y ∈R(n−h+1)×k

Tr (Y T Lv
n Y ) s.t. Y TY = Ik, (3.4)

where Lv
n = V TLnV ∈ R(n−h+1)×(n−h+1). Conse-

quently, by Theorem 2.1, we just need to solve the sym-
metric eigenvalue problem

Lv
ny = λy. (3.5)

The eigenvectors corresponding to the k smallest eigenval-
ues provide the solution Y of (3.4), by which we recover
the solution H = D− 1

2V Y of the fair SC minimization
problem (2.16).

Although this variant of FairSC avoids computing ma-
trix square root of a dense matrix, the other drawbacks
of FairSC remain, namely explicit computation of the
nullspace of CT and eigenvalue computation of the dense
matrix Lv

n.

3.3 Scalable FairSC algorithm

We now show how to reformulate the eigenvalue prob-
lem (3.5) to address the remaining pitfalls of FairSC. We
begin with the eigenvalue problem of Lv

n in (3.5):

(V TLnV ) y = λy.

A left multiplication of V leads to

(V V TLnV V T )V y = λ · V y, (3.6)

where on the left side V V T · V y ≡ V y due to the fact
V TV = I . Denote by P = V V T a projection matrix onto
the range space of V (i.e., nullspace of CT ). Then (3.6)
leads to the following projected eigenvalue problem

Lp
n x = λx, (3.7)

where x = V y and Lp
n = PLnP ∈ Rn×n. Consequently,

an eigenvalue λ of Lv
n in (3.5) is also an eigenvalue of Lp

n

in (3.7). A major advantage of the projected eigenvalue
problem (3.7) is that it may avoid the computation of the
nullspace of CT by exploiting the fact that the projection
matrix

P = I − U2U
T
2 , (3.8)

where U2 ∈ Rn×(h−1) is an orthonormal basis of the
range C. ([V,U2] ∈ Rn×n is orthogonal) This is espe-
cially beneficial since C is a tall and skinny matrix, where
U2 ∈ Rn×(h−1) is much smaller than V ∈ Rn×(n−h+1). In
addition, to compute the eigenvalues of Lp

n by an iterative
eigensolver, we only need the matrix-vector product Lp

nw
for a given vector w and the matrix Lp

n is never formed
explicitly. The product Pw can be applied without formu-
lating U2; see implementation detail in Section 3.4.

For FairSC, we need the k smallest eigenvalues of the ma-
trix Lv

n in (3.5). The following proposition connects the
eigenstructures of the matrices Lv

n and Lp
n.

Proposition 3.1. Suppose Lv
n in (3.5) has the eigendecom-

position
Lv
n = Y ΛvY

T , (3.9)

where Λv = diag(λ1, λ2, . . . , λn−h+1) contains the eigen-
values, and Y is an orthogonal matrix of order n − h + 1
containing eigenvectors. Then the matrix Lp

n from (3.7) has
the eigendecomposition

Lp
n =

[
U1 U2

] [Λv

0h−1,h−1

] [
UT
1

UT
2

]
, (3.10)

where U = [U1, U2] ∈ Rn×n is orthogonal with U1 =
V Y ∈ Rn×(n−h+1) and U2 ∈ Rn×(h−1) being an arbi-
trary orthonormal basis of the range of C.

Proof. See Appendix A.2.

The following is a direct consequence of Proposition 3.1.

Corollary 3.1. Let Lv
n and Lp

n be defined as in (3.4)
and (3.7). Then

(i) If (λ, y) is an eigenpair of Lv
n, then (λ, x) with x =

V y is an eigenpair of Lp
n.

(ii) If (λ, x) is an eigenpair of Lp
n and CTx = 0, then

(λ, y) with y = V Tx is an eigenpair of Lv
n.

Let us return to the eigenvalue problem (3.5). Since the
matrix Lv

n is positive semi-definite, it has n−h+1 ordered
eigenvalues 0 ≤ λ1 ≤ · · · ≤ λn−h+1. By (3.10), the pro-
jected matrix Lp

n has n ordered eigenvalues: 0 = · · · = 0︸ ︷︷ ︸
h−1

≤

λ1 ≤ · · · ≤ λn−h+1, where the first h− 1 zero eigenvalues
(counting multiplicity) have eigenvectors in the range of C.

In the simple case of λ1 > 0, the k smallest eigenval-
ues λ1, . . . , λk of Lv

n corresponds to the k smallest posi-
tive eigenvalues of Lv

n. To find those eigenvalues, we can
first compute K = k + h − 1 smallest eigenvalues of Lp

n

by an eigensolver, and then select the desired k eigenpairs
corresponding to non-zero eigenvalues (alternatively, se-
lect those eigenvalues with eigenvectors orthogonal to C).
However, if λ1 = 0 (or λ1 ≈ 0), then this simple selec-
tion scheme does not work, as the eigenvector correspond-
ing to λ1 = 0 is mixed (or numerically mixed) with the
eigenspace of the h− 1 zero eigenvalues. This eigenspace
mixing issue happens, in particular, if the solution is com-
puted by an iterative method with low accuracy.

To address the eigenspace mixing issue, we turn to the
second major contribution of this work, namely a novel
use of Hotelling’s deflation. In the following, we first
discuss Hotelling’s deflation (Hotelling, 1943), which is
also known as explicit external deflation and is suitable for
high-performance computing; see, e.g., Parlett (1998); Ya-
mazaki et al. (2019). The main idea of Hotelling’s deflation
is summarized in the following proposition.
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Proposition 3.2. Let the eigenvalue decomposition of a
symmetric matrix A ∈ Rn×n be given by

A = QΛQT =
[
Q1 Q2

] [Λ1

Λ2

] [
QT

1

QT
2

]
, (3.11)

where Λ1 ∈ Rk×k and Λ2 ∈ R(n−k)×(n−k) contain eigen-
values, and Q1 ∈ Rn×k and Q2 ∈ Rn×(n−k) are orthonor-
mal eigenvectors. For a given shift σ ∈ R, define the shifted
matrix

Aσ = A+ σQ1Q
T
1 .

Then the eigenvalue decomposition of Aσ has the following
form

Aσ =
[
Q1 Q2

] [Λ1 + σI
Λ2

] [
QT

1

QT
2

]
. (3.12)

Proof. See Appendix A.3.

Suppose we are interested in the eigenvalues Λ2 and the
corresponding eigenvectors Q2. By Proposition 3.2, if we
choose the shift σ sufficiently large, eigenvalues in Λ2 will
always correspond to the n − k smallest eigenvalues of
Aσ , since the unwanted eigenvalues Λ1 are shifted away
to Λ1 + σI . The corresponding eigenvectors remain un-
changed. This is exactly what we need to untangle the un-
wanted h−1 zero eigenvalues of Lp

n in (3.10) from the rest
of the eigenvalues of λi.

Recall the eigenvalue decomposition of Lp
n in (3.10). To

shift away the unwanted h − 1 zero eigenvalues, we can
apply Hotelling’s deflation with a shift σ to obtain

Lσ
n := Lp

n + σU2U
T
2 , (3.13)

where recall that U2 is an orthonormal basis for the range
of C. If the shift σ is chosen such that σ > λk, where
λk is the k-th smallest eigenvalue in Λv, then our desired
k smallest eigenvalues in Λv are corresponding to the k
smallest eigenvalues of Lσ

n . Consequently, the eigenspace
mixing issue is solved. On the other hand, by (3.8), the
shifted matrix in (3.13) can be expressed as follows

Lσ
n = PLnP + σ(I − P ) = P (Ln − σI)P + σI. (3.14)

Then the matrix-vector multiplication with Lσ
n only re-

quires operations with P and Ln. This is extremely ben-
eficial for large-scale fair SC models.

3.4 Algorithm and implementation

As we described in the previous section, Hotelling’s de-
flation with a proper choice of σ resolves the eigenspace
mixing issue for the projected eigenvalue problem (3.7).
To summarize, the solution of the constrained trace mini-
mization (2.16) can now be characterized by the following
proposition.

Proposition 3.3. Let Lσ
n ∈ Rn×n be defined as in (3.14)

and assume σ is sufficiently large such that σ > λk(L
v
n),

where λk(L
v
n) is the k-th smallest eigenvalue of Lv

n in (3.5).
Then H is a solution to the trace minimization (2.16) if and
only if H = D− 1

2X , where X = [x1, x2, . . . , xk] ∈ Rn×k

contains the k eigenvectors corresponding to the k smallest
eigenvalues of Lσ

n .

The final algorithm based on projected eigenproblem (3.7)
and Hotelling’s deflation is presented in Algorithm 3,
called scalable FairSC, s-FairSC in short.

Algorithm 3 Scalable FairSC (s-FairSC)
Input: weighted adjacency matrix W ∈ Rn×n; degree

matrix D ∈ Rn×n; group-membership matrix F ∈
Rn×(h−1); shift σ ∈ R; k ∈ N

Output: a clustering of indices 1 : n into k clusters
1: compute the Laplacian matrix L = D −W ;
2: set Ln = D− 1

2LD− 1
2 , and C = D− 1

2F ;
3: compute the k smallest eigenvalues of Lσ

n in (3.14)
and the corresponding eigenvectors as columns of X ∈
Rn×k;

4: apply k-means clustering to the rows of H = D− 1
2X .

Implementation issues. A few implementation issues
regarding s-FairSC (Algorithm 3) are in order. (i) For com-
puting eigenvalue of Lσ

n , we can use an iterative eigen-
solver, such as eigs in MATLAB, which is based on
ARPACK (Lehoucq et al., 1998), an implicitly restarted
Arnoldi method. The eigensolver only needs to access Lσ

n

through the matrix-vector multiplication Lσ
nw. By (3.14),

Lσ
nw = P (Ln(Pw))− σPw + σw.

(ii) The projection P in (3.8) can be written as P = I −
C(CTC)−1CT , see Golub et al. (2000). Consequently,

Pw = (I − C(CTC)−1CT )w = w − Cz, (3.15)

where z is the solution to the least-squares problem

min
z
∥Cz − w∥2.

For small to moderate size problems, direct LS solver can
be applied to computing z. For large scale problems, iter-
ative methods such as LSQR (Paige and Saunders, 1982)
can be applied; this is in line with the inner-outer iteration
methods for eigenvalue computation, see e.g., Golub et al.
(2000). (iii) For an appropriate choice of shift σ, one can
use an estimation for the largest eigenvalue of Ln. Such a
shift also guarantees the numerical stability of Hotelling’s
deflation (Lin et al., 2021).

Time Complexity. The complexity of s-FairSC is dom-
inated by computing k eigenpairs of the matrix Lσ

n . To
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use a modern Krylov subspace eigensolver, say the func-
tion eigs in MATLAB, the two leading costs are (1) the
matrix-vector product Lσ

nw, and (2) the orthonormalization
of basis vectors of Krylov subspace eigensolver. For (1),
the complexity is O(nm + nh2) and for (2), it is O(nk2),
where n = |V |, m = |W | of graph G(V,W ), h is the
number of groups and assume that the product Pw for the
projection matrix P is computed by a direct least squares
solver since h is typically small. Therefore, the complex-
ity of s-FairSC is O(n(m+ h2 + k2)), where the constant
of O(·) depends on the number of restarts of subspace it-
erations, usually about 10 to 20. Using the same analy-
sis, the complexity of SC (without fairness constraints) is
O(n(m + k2)). Since h is typically small, say h = 10,
it explains observations that s-FairSC is as fast as SC; see
numerical results in Section 4.2.

3.5 Related work

The idea of transforming the optimization problem (2.16)
to an equivalent eigenvalue problem is very natural. For
the case of k = 1, the projected eigenvalue problem (3.7)
was considered in Golub (1973) and (Golub and Van Loan,
1996, p. 621).

The projected eigenvalue problem (3.7) is a form of so-
called constrained eigenvalue problems, which is more
generally formulated as Ax = λMx subject to CTx = 0,
where A and M are symmetric and M is positive definite.
The constrained eigenvalue problems are found in many
applications. There are a number of approaches available;
see Arbenz and Drmac (2002) for an algorithm for posi-
tive semidefinite A with a known nullspace; Baker and
Lehoucq (2009) for a preconditioning technique; Golub
et al. (2000) for a Lanczos process with inner-outer itera-
tions to handle large matrices; and Porcelli et al. (2015)
for a solution procedure within the structural finite-element
code NOSA-ITACA. For constrained eigenvalue problems,
the matrix C is typically corresponding to the nullspace
of A, and the constraint CTx = 0 is to avoid comput-
ing “null eigenvectors”. Since the entire nullspace of A
is avoided, there is no eigenvector selection issue as in our
problem (3.7). Simoncini (2003) proposed a reformulation
of the constrained eigenproblem based on null eigenvalue
shifting. Her approach essentially includes Hotelling’s de-
flation as a special case, but with a goal to shift away the
entire nullspace of A. By discussion in Section 3, we show
that Hotelling’s deflation is also capable of splitting the un-
wanted null vectors from those desired ones.

4 EXPERIMENTS

In this section, we present experimental results on the pro-
posed s-FairSC (Algorithm 3). Similar to SC and FairSC,

s-FairSC is implemented in MATLAB®.2 The results are
obtained from a MacBook Pro with an 8-core i9 processor
@2.3 GHz, 16 GB memory, and 16 MB L3 cache.

4.1 Datasets

Modified Stochastic block model (m-SBM). The
stochastic block model (SBM) (Holland et al., 1983) is
a random graph model with planted blocks (ground-truth
clustering). It is widely used to generate synthetic networks
for clustering and community detection (Rohe et al., 2011;
Balakrishnan et al., 2011; Lei and Rinaldo, 2015; Sarkar
and Bickel, 2015). To take group fairness into account,
we use a modified SBM (m-SBM) proposed by Kleindess-
ner et al. (2019) to generate the test graph G(V,W ). In
m-SBM, n vertices are assigned to k prescribed (ground-
truth) clusters V = C1 ∪ · · · ∪Ck, and between any pair of
vertices, an edge is placed with a probability that depends
only on the clusters of the two vertices (see Appendix B.1
for details). Let V = Ĉ1 ∪ · · · ∪ Ĉk be a computed cluster-
ing. The discrepancy between the computed and ground-
truth clustering is measured by the error rate of clustering
(proportion of misclustered vertices):

Err(Ĥ −H) :=
1

n
min
J∈Πk

∥ĤJ −H∥2F , (4.1)

where H and Ĥ are the ground-truth and computed clus-
ter indicator matrices, respectively, and Πk is the set of all
possible k × k permutation matrices.

FacebookNet. FacebookNet3 is a dataset that collects
Facebook friendship relations between students in a high
school in France in 2013. This social network dataset was
studied for information propagation and opinion forma-
tion Mastrandrea et al. (2015) and for clustering (Crawford
and Milenković, 2018; Kleindessner et al., 2019; Chodrow
et al., 2021). In graph G(V,W ), V is the set of students
(n = |V | = 155), and an edge represents a friendship be-
tween two students. Students are divided by gender into
two groups V = V1 ∪ V2, with |V1| = 70 of girls and
|V2| = 85 of boys.

LastFMNet. LastFMNet4 (Rozemberczki and Sarkar,
2020) is a real-world dataset that contains mutual follower
relations among users of Last.fm, a recommender-system-
based online radio and music community in Asia. LastFM-
Net was collected from public API in 2020 and used to

2SC and FairSC code: https://github.com/matth
klein/fair_spectral_clustering. s-FairSC code:
https://github.com/jiiwang/scalable_fair_s
pectral_clustering

3http://www.sociopatterns.org/datasets/h
igh-school-contact-and-friendship-networks/

4http://snap.stanford.edu/data/feather-l
astfm-social.html

https://github.com/matthklein/fair_spectral_clustering
https://github.com/matthklein/fair_spectral_clustering
https://github.com/jiiwang/scalable_fair_spectral_clustering
https://github.com/jiiwang/scalable_fair_spectral_clustering
http://www.sociopatterns.org/datasets/high-school-contact-and-friendship-networks/
http://www.sociopatterns.org/datasets/high-school-contact-and-friendship-networks/
http://snap.stanford.edu/data/feather-lastfm-social.html
http://snap.stanford.edu/data/feather-lastfm-social.html
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study the distribution of vertex features on graphs. In graph
G(V,W ), V is the set of users with n = |V | = 5576,
and an edge represents a mutual follower friendship be-
tween two users. LastFMNet also records nationalities of
the users V = V1 ∪ · · · ∪ V6 with |V1| = 1073, |V2| = 505,
|V3| = 645, |V4| = 1266, |V5| = 558 and |V6| = 1529.
G(V,W ) has 19587 edges, and the density is 0.00013.

Random Laplacian. To create a random Laplacian of
graph G(V,W ), we first generate a random symmetric
weight matrix W ∈ Rn×n with prescribed sparsity s and
n = |V |, and then set the degree matrix D = diag(W1n)
and the Laplacian L = D−W . The matrix F ∈ Rn×(h−1)

in the constraints of the fair SC model (2.16) is also con-
structed as a random matrix. Here, F is not for the group-
membership information but only acts as a placeholder. We
will use this dataset to show the scalability of algorithms.

4.2 Experimental results

Experiment 1. This experiment is conducted on the m-
SBM to compare the error rate (4.1) and running time of
SC, FairSC, and s-FairSC. Figure 1 depicts the computa-
tion results. SC and s-FairSC are tested for model sizes
from n = 1000 to 10000. FairSC stops at n = 4000 due
to its high computational cost, echoing results reported in
Kleindessner et al. (2019).

0.00

0.25

0.50

0.75

1.00

2000 4000 6000 8000 10000
n

Er
ro

r r
at

e

0

5

10

15

20

25

2000 4000 6000 8000 10000
n

R
un

ni
ng

 ti
m

e 
(s

)

SC
FairSC

s−FairSC
n3

m−SBM: h = 5, k = 5, probabilities ~ (logn
n )2

3

Figure 1: Error rate and running time (in seconds) of SC,
FairSC and s-FairSC of an m-SBM with h = 5, k = 5, and
edge connectivity probabilities proportional to ( logn

n )
2
3 .

From Figure 1, we observe that both FairSC and s-FairSC
successfully retrieve the fair ground-truth clustering, but
SC fails. We can see that s-FairSC is as good as FairSC
in terms of error rate for the computed clustering. But its
running time is only a fraction of that of FairSC; e.g., for
n = 4000, s-FairSC is 12× faster than FairSC. We also ob-
serve that s-FairSC is as scalable as SC, but the latter does
not account for the fairness constraints.

Experiment 2. We use the FacebookNet dataset to quan-
tify the group fairness in the computed clustering. Table 1
records the quantities from Definition 2.1.

SC FairSC s-FairSC
|V1|
|V | 0.4516

|V1∩Ĉ1|
|Ĉ1|

0.6528 0.3537 0.3537

|V1∩Ĉ2|
|Ĉ2|

0.2771 0.5616 0.5616

|V2|
|V | 0.5484

|V2∩Ĉ1|
|Ĉ1|

0.3472 0.6463 0.6463

|V2∩Ĉ2|
|Ĉ2|

0.7229 0.4384 0.4384

Table 1: Fractions of group membership within each cluster
for the recovered clustering V = Ĉ1 ∪ Ĉ2.

The average balance introduced in Chierichetti et al. (2017)
has been used to measure fairness in clustering. Given a
clustering V = C1 ∪ · · · ∪ Ck and group partition V =
V1 ∪ · · · ∪ Vh, the balance of cluster Cℓ for ℓ = 1, 2, · · · , k
is defined as

balance(Cℓ) := min
s̸=s′∈{1,··· ,h}

|Vs ∩ Cℓ|
|Vs′ ∩ Cℓ|

∈ [0, 1]. (4.2)

The average balance is then given by

Average Balance :=
1

k

k∑
l=1

balance(Cℓ). (4.3)

A higher balance implies a fairer clustering; see Ap-
pendix B.2 for an explanation.
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Figure 2: Average Balance of SC, FairSC, and s-FairSC
on FacebookNet as a function of the number k of clusters.

By Table 1 and Figure 2, we observe that since prob-
lem (2.13) is relaxed to problem (2.14), the equality
in (2.5) does not hold. Nevertheless, both FairSC and s-
FairSC have improved fairness compared to SC. In addi-
tion, FairSC and s-FairSC produce almost identical results.

Experiment 3. In this experiment, we use LastFMNet to
compare the running time of SC, FairSC, and s-FairSC. We
also measure average balance (4.3) to evaluate the fairness
of clustering by the algorithms. The running time as a func-
tion of the number k of clusters is illustrated in Figure 3.
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We observe that when k ≥ 5, s-FairSC is 7× faster than
FairSC, and it is as fast as SC. Figure 4 shows the val-
ues of Average Balance as a function of the number k of
clusters. Both FairSC and s-FairSC have higher values of
Average Balance than SC, indicating they have improved
fairness compared to SC.

0

20

40

60

80

2 3 4 5 6 7 8 9 10
# clusters: k

R
un

ni
ng

 ti
m

e 
(s

) SC FairSC s−FairSC

LastFMNet: Running Time

Figure 3: Running time (in seconds) of SC, FairSC, and
s-FairSC on LastFMNet as a function of the number k of
clusters.
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Figure 4: Average Balance of SC, FairSC, and s-FairSC
on LastFMNet as a function of the number k of clusters.

Experiment 4. In this experiment, we use random Lapla-
cian to demonstrate that s-FairSC has a similar scalabil-
ity as SC. Figure 5 reports the running time of SC (Algo-
rithm 1) for solving the SC model (2.14) and the s-FairSC
(Algorithm 3) for solving the fair SC model (2.16). Here,
the model sizes range from 5000 to 10000 with the num-
ber of groups h = 5 and different numbers of clusters
k = 5, 8, 10. We observe that s-FairSC is only slightly
more expensive than SC and is as scalable as SC.

5 CONCLUDING REMARKS

FairSC (Algorithm 2) is able to recover fairer clustering,
but sacrifices the performance and scalability. In this paper,
we presented a scalable FairSC (s-FairSC, Algorithm 2)
by incorporating nullspace projection and Hotelling’s de-
flation. All computational kernels of s-FairSC only in-
volve the sparse matrix-vector products, so the algorithm
can fully exploit the sparsity of the fair SC model (2.16)

Figure 5: Running time (in seconds) of SC and s-FairSC on
random Laplacian with h = 5 and k ∈ {5, 8, 10}.

and is scalable in the sense that it only has a marginal in-
crease in computational costs compared to SC without fair-
ness constraints.

We note that the non-overlap of groups leads to the full rank
of the group indicator matrix H , which simplifies the rest of
presentation substantially. An interesting extension to the
current work is to incorporate group overlapping. The over-
lap of groups may lead to the rank deficiency of F . In this
case, a simple approach is to perform rank-revealing factor-
ization of F first, and the rest of the discussion will hold.
However, it is a subject of further study on how to avoid the
rank-revealing factorization, and maintain the sparsity of F
in computation. Another intriguing problem is the develop-
ment of scalable algorithms to solve the group fairness con-
dition (2.5) in a less stringent manner. For instance, the fol-
lowing notion of group fairness clustering with lower and
upper bounds is introduced in Bera et al. (2019):

βs ≤
|Vs ∩ Cℓ|
|Cℓ|

≤ αs for s = 1, 2, · · · , h, (5.1)

where βs and αs are lower and upper bounds for group
Vs, respectively, and 0 < βs ≤ αs < 1. A fur-
ther topic is to extend the s-FairSC to individual fair-
ness, where any two individuals who are similar with re-
spect to a specific sensitive attribute should be treated simi-
larly (Dwork et al., 2012; Zemel et al., 2013). An SC model
with individual fairness constraints is devised in Gupta and
Dukkipati (2022). However, the existing algorithm (Gupta
and Dukkipati, 2022) is not scalable due to the high costs
of its computational kernels.
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A MISSING PROOFS

In this section, we provide proofs that are missing in the main manuscript.

A.1 Proof of Lemma 2.1

For (i): recall that each row of G contains exactly one nonzero entry, and it equals 1. Hence,

G1h = 1n and 1T
nG1h = n. (A.1)

Since G has orthogonal columns, the first equation above implies

1h = G†1n, (A.2)

where G† := (GTG)−1GT denotes the pseudo inverse of G. For rank(F0) = h − 1, it is sufficient to show that the
nullspace of F0 is of dimension one. Let x ∈ Rp be a null vector of F0, i.e., F0x = 0. By the definition of F0, we have

Gx = α · 1n with α := (1T
nGx)/n.

A multiplication of G† to the equation, together with (A.2), leads to x = α1h. On the other hand, 1h is a null vector of F0:

F0 · 1h = G1h − 1n(1
T
nG1h)/n = 0,

where we used (A.1). Consequently, the nullspace of F0 is spanned by the vector 1h. By the rank-nullity theorem in linear
algebra, rank(F0) = h− 1. It follows from F0 · 1h = 0 that the last column of F0 is a linear combination of the first h− 1
columns. Consequently, we have rank(F0) = rank(F ).

For (ii): it follows from (i) that F0 and F have the same range space. Hence, FT
0 y = 0 if and only if FT y = 0. Then (ii)

follows from (2.8).

A.2 Proof of Proposition 3.1

We just need to verify that (3.10) is an eigenvalue decomposition of the matrix Lp
n. First, since V is a basis of the nullspace

of CT and U2 is a basis of the range of C, we have

V TU2 = 0 and UT
1 U2 = Y T (V TU2) = 0.

A quick verification shows U = [U1, U2] satisfy UTU = In. Therefore U is orthogonal.

On the other hand, it follows from Lv
n = V TLnV and Lp

n = PLnP that

Lp
n = V Lv

nV
T .

Hence,
Lp
n U1 = (V Lv

nV
T )(V Y ) = V (Lv

nY ) = V (Y Λv) = U1Λv,

where we used (3.9) in the third equality. On the other hand, V TU2 = 0 implies

Lp
n U2 = V Lv

nV
TU2 = 0.

Consequently, Lp
n[U1, U2] = [U1, U2] · blockdiag(Λv,0h−1,h−1), i.e., the eigenvalue decomposition (3.10) of Lp

n.

A.3 Proof of Proposition 3.2

It follows from (3.11) that AQ1 = Q1Λ1 and AQ2 = Q2Λ2. Consequently, AσQ1 = AQ1 + σQ1 = Q1(Λ1 + σI) and
AσQ2 = AQ2 = Q2Λ2.

B ADDITIONAL EXPERIMENTS AND DISCUSSIONS

B.1 m-SBM Dataset

In this section, we first describe the standard stochastic block model (SBM). Then, we discuss a modification to accommo-
date group fairness.
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B.1.1 SBM

In an SBM with n vertices and k blocks, each vertex is assigned to one block (a cluster) to prescribe a clustering, and
edges are placed between vertex pairs with probabilities dependent only on the block membership of the vertices.

Following (Lei and Rinaldo, 2015), to generate a random graph G(V,W ) with a ground-truth clustering V = C1∪· · ·∪Ck

by an SBM, we need a pair of parameters (u, P ). The vector u = [u1, u2, . . . , uk] ∈ Nk stores the sizes of each block,
i.e., each element ui denotes the number of vertices in Ci, so that

∑k
i=1 ui = n, where n = |V |. Once u is assigned,

we can represent the ground-truth clustering by an indicator matrix H ∈ {0, 1}n×k as defined in (2.2). P is a symmetric
probability matrix P = (pij) ∈ Rn×n defining the edge connectivity with

pij =

{
a, if vi and vj are in the same cluster,
b, if vi and vj are in different clusters. (B.1)

We require a > b so that two vertices within a same cluster have a higher chance to be joined by an edge than between
clusters.

Next, let α and β be the weights for within-cluster and between-cluster edges, respectively. Then the weighted adjacency
matrix W = (wij) ∈ {0, α, β}n×n of graph G is generated by

wij =

{
Bernoulli(pij), if i ̸= j,
0, if i = j,

(B.2)

where Bernoulli(pij) is a random variable satisfying the Bernoulli distribution with probability pij such that{
Pr(wij = α) = pij = 1− Pr(wij = 0), if vi and vj are in the same cluster,
Pr(wij = β) = pij = 1− Pr(wij = 0), if vi and vj are in different clusters. (B.3)

The SBM graph is then given by G(V,W ).

Example B.1. Let k = 3, n = 6, we set vector u = [u1, u2, u3] = [2, 2, 2], parameters α = 3, β = 1 for the edge weight,
and parameters a = 0.6, b = 0.2 for the probability matrix P . First, we define a ground-truth clustering from u using the
cluster indicator matrix H as follows

H =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

T

.

Based on H , we then use (B.1), (B.2) and (B.3) to generate the adjacency matrix W with given α, β, and a, b. Figure 6
depicts the SBM G(V,W ) and the underlying ground-truth clustering V = C1 ∪ C2 ∪ C3. □

  C1

C3

                         C2
3

1

3

1 1

3

Figure 6: The SBM G(V,W ) and the ground-truth clustering V = C1 ∪ C2 ∪ C3 (Example B.1).

B.1.2 m-SBM

To take group fairness into account, we utilize a modified SBM (m-SBM) proposed in Kleindessner et al. (2019). In m-
SBM, n vertices are partitioned into h disjoint groups such that V = V1 ∪ · · · ∪ Vh, and are assigned to k clusters for a
prescribed fair ground-truth clustering V = C1 ∪ · · · ∪Ck. An edge between a pair of vertices is placed with probabilities
dependent only on whether the terminal vertices belong to the same cluster or group.
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Specifically, let us first define u = [u1, u2, . . . , uk] as the block vector consisting of k blocks. Each block ui ∈ Nh

contains h elements, and each element u(j)
i of ui equals the number of vertices in Vj ∩ Ci, i.e.,

u
(j)
i = |Vj ∩ Ci|.

Consequently, we have
k∑

i=1

u
(j)
i = |Vj |,

h∑
j=1

u
(j)
i = |Ci|, and

k∑
i=1

h∑
j=1

u
(j)
i = |V |.

To satisfy the fairness condition (2.5), for j = 1, 2, · · · , h, the elements of the vector u should be chosen such that

u
(j)
i∑h

j=1 u
(j)
i

=

∑k
i=1 u

(j)
i

|V |
for any i = 1, 2, · · · , k. (B.4)

Once u is set, we have

• Group-membership vectors g(s), for s = 1, 2, · · · , h, as defined in (2.4), and the corresponding group-membership
matrix F as defined in Lemma 2.1;

• Clustering indicator matrix H ∈ {0, 1}n×k as defined in (2.2), containing the fair ground-truth clustering.

The probability matrix P = (pij) ∈ Rn×n for edge connectivity is defined as follows:

pij =


a, if vi, vj are in the same cluster and group,
b, if vi, vj are in different clusters but the same group,
c, if vi, vj are in the same cluster but different groups,
d, if vi, vj are in different clusters and groups,

(B.5)

where a > b > c > d. Let α be the weight of within-cluster edges and β be the weight of between-cluster edges and
α > β, then the adjacency matrix of the m-SBM G(V,W ) is given by W = (wij) ∈ {0, α, β}n×n as follows:

wij =

{
Bernoulli(pij), if i ̸= j,
0, if i = j,

(B.6)

where Bernoulli(pij) is a random variable satisfying the Bernoulli distribution with probability pij such that{
Pr(wij = α) = pij = 1− Pr(wij = 0), if vi and vj are in the same cluster,
Pr(wij = β) = pij = 1− Pr(wij = 0), if vi and vj are in different clusters. (B.7)

Example B.2. Let k = 3, h = 2 and n = 10, we set the block vector u = [u1, u2, u3] = [(2, 2), (2, 2), (1, 1)], parameters
α = 3 and β = 1 for the edge weight, and parameters a = 0.6, b = 0.4, c = 0.2, d = 0.1 for the probability matrix P .
By the vector u, we have the following group membership vectors g(s) and the indicator matrix H of the fair ground-truth
clustering

g(1) =
[
1 1 0 0 1 1 0 0 1 0

]T
,

g(2) =
[
0 0 1 1 0 0 1 1 0 1

]T
,

H =

1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1

T

.

By (B.5), (B.6) and (B.7), with given weights α, β, probabilities a, b, c, d, group information g(1), g(2), and the cluster
information in H , we can generate the adjacency matrix W . The m-SBM G(V,W ) is shown in Figure 7. □
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Figure 7: An m-SBM G(V,W ) and fair ground-truth clustering V = C1 ∪ C2 ∪ C3 with respect to the group partition
V = V1 ∪ V2, where V1 is the set of red vertices and V2 is the set of blue vertices (Example B.2).

B.2 Fairness Measured by Balance

For the metric of balance discussed in Section 4.2, we claimed “a higher balance implies a fairer clustering”. Here we give
a brief justification. First, let us recall the definitions of balance and average balance.

Definition B.1. Given a clustering V = C1 ∪ · · · ∪ Ck and a non-overlapping group partition V = V1 ∪ · · · ∪ Vh, the
balance of cluster Cℓ for ℓ = 1, 2, · · · , k is defined as

Balance(Cℓ) := min
s̸=s′∈{1,··· ,h}

|Vs ∩ Cℓ|
|Vs′ ∩ Cℓ|

. (4.2)

The average balance is defined as

Average Balance =
1

k

k∑
ℓ=1

Balance(Cℓ). (4.3)

It follows from Kleindessner et al. (2019) that for any clustering, we have

min
ℓ∈{1,··· ,k}

Balance(Cℓ) ≤ min
s̸=s′∈{1,··· ,h}

|Vs|
|Vs′ |

. (B.8)

Assume a clustering reaches the upper bound (B.8), i.e.,

|Vs ∩ Cℓ|
|Vs′ ∩ Cℓ|

=
|Vs|
|Vs′ |

, (B.9)

for ℓ = 1, . . . , k and s, s′ = 1, . . . , h and s ̸= s′. Then we will have the group fairness as defined in (2.5), i.e.,

|Vs ∩ Cℓ|
|Cℓ|

=
|Vs|
|V |

, (B.10)

for ℓ = 1, . . . , k and s = 1, . . . , h. To justify the equation above, we derive from (B.9) that

|Vs ∩ Cℓ| · |Vs′ | = |Vs| · |Vs′ ∩ Cℓ|. (B.11)

Therefore, ∑
s̸=s′∈{1,...,h}

|Vs ∩ Cℓ| · |Vs′ | =
∑

s̸=s′∈{1,...,h}

|Vs| · |Vs′ ∩ Cℓ|.

Consequently,
(|Cℓ| − |Vs′ ∩ Cℓ|)|Vs′ | = (|V | − |Vs′ |)|Vs′ ∩ Cℓ|,

or equivalently
|Vs′ ∩ Cℓ|
|Cℓ|

=
|Vs′ |
|V |

.
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Multiplication of the above equation to (B.9) leads directly to the group fairness (2.5):

|Vs ∩ Cℓ|
|Cℓ|

=
|Vs|
|V |

.

Combining (4.2), (B.8), and (B.9), we can conclude that a higher value of Average Balance indicates a fairer clustering.

B.3 Hyperparameter Tuning

s-FairSC (Algorithm 3) takes a few parameters as input, namely, parameter k (the number of clusters), parameter h (the
number of groups), and shift parameter σ for Hotelling’s deflation. In this section, we illustrate the effect of these parame-
ters on the performance of our algorithm.

Parameter k. In Experiment 4 on Random Laplacian dataset, we report the performance with respect to the parameter
k; see Figure 5.

Parameter h. We provide additional experiments on the performance with respect to the parameter h. Recall that the
number of groups h is associated with the number of linear constraints in the fair SC model (2.16). We perform experiments
with fixed probabilities a, b, c, d and number of clusters k, but different group numbers h. Figure 8 depicts the error rates
and running time of SC, FairSC, and s-FairSC. SC and s-FairSC are tested for model sizes from n = 1000 to 10000.
However, FairSC stops at n = 4000 due to its high computational cost, echoing results reported in Kleindessner et al.
(2019).

From Figure 1, we observe that SC has high error rates and fails to recover the fair ground-truth clustering, while both
FairSC and s-FairSC are able to retrieve the fair ground-truth clustering and s-FairSC is as accurate as FairSC. However,
the running time of s-FairSC is only a fraction of that of FairSC. For instance, when n = 4000, s-FairSC is about 10× to
12× faster than FairSC. We also observe that s-FairSC is as scalable as SC without fairness constraints. Noticeably, we
observe that when h = 10, s-FairSC is even faster than SC. For example, when n = 10000, s-FairSC takes only 62% time
of SC. We anticipate that it is due to the factors such as the sparsity distribution of the random graph G(V,W ), and the
eigenvalue distribution of Lσ

n in (3.14). This issue is subject to further investigation.

Parameter σ. In our implementation,we use ∥Ln∥1 as shift σ. Theoretical justification for the choice of the shift can
be found in Lin et al. (2021). Given the equivalence of matrix norms, there is no significant difference with respect to the
choice of the matrix norm.
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Figure 8: Error rates and running time (in seconds) of SC, FairSC, and s-FairSC on m-SBM with h ∈ {2, 5, 10}, edge con-
nectivity probabilities proportional to ( logn

n )
2
3 , specifically a = 10×( logn

n )2/3, b = 7×( logn
n )2/3, c = 4×( logn

n )2/3, d =

( logn
n )2/3.
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