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Abstract. Correctness of controller implementations rely on real-time
guarantees that all control tasks finish execution by their prescribed
deadlines. However, with increased complexity and heterogeneity in hard-
ware, the worst-case execution time estimates are becoming very conser-
vative. Thus, for efficient usage of hardware resources, some control tasks
might have to miss their deadlines. Recent work has shown that a sys-
tem can still abide by its safety requirements even after missing some of
its deadlines. This paper investigates an approach to synthesize a sched-
uler for control tasks that miss some deadlines without compromising its
safety requirements. But given that the number of possible schedules in-
crease combinatorially with the number of tasks involved, our scheduler
synthesis uses an efficient automata representation to search for the ap-
propriate schedule. We incorporate statistical verification techniques to
construct this automaton and accelerate the search process. Statistical
verification is advantageous compared to deterministic verification in the
synthesis process in two ways: first, it enables us to synthesize schedules
that would not be possible otherwise, and second, it drastically reduces
the time taken to synthesize such a schedule. We demonstrate both these
advantages through a case study with five controllers having different
safety specifications, but sharing the same computational resource.

1 Introduction

Modern-day cars (and other autonomous systems) have several millions of lines of
code deployed on various electronic control units (ECUs). Each ECU implements
multiple feedback control software tasks managing important functions such as
engine control, brake control, suspension, and vibration control. The typical
workflow for implementing these control tasks in software is a two-step process.
In the first step, a control designer would design the feedback function using
principles of control design. In the second step, the embedded systems engineer
⋆ This work was supported by the NSF grant #2038960.
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would schedule the control tasks such that each task would meet its prescribed
deadline. This separation of concerns allows for communication between control
designers and software engineers through task deadlines and allows for parallel
development of software architecture and feedback control mechanisms.

However, the rapid increase in the volume of software being deployed in au-
tonomous systems to enable additional autonomous features poses a challenge
to this design flow. First, due to increased complexity in hardware, safe es-
timates of Worst-Case Execution Time (WCET) are overly conservative, and
thus, applying traditional design flow with the estimated WCET would result
in a considerable waste of computational resources. Second, scheduling multiple
tasks on a shared computational resource with optimistic estimates of WCET
would risk missing task deadlines arbitrarily and the system not satisfying its
performance requirements. As a result, it is challenging to (a) ensure that none
of the control tasks miss their deadlines, and (b) synthesize a scheduler that tol-
erates these deadline misses while satisfying performance requirements. Further,
automotive in-vehicle architectures are moving away from one function per ECU
or “federated”, to multiple functions sharing resources, or “integrated” architec-
tures. The clear trend is that future architectures will be less static than before,
as indicated by developments like AUTOSTAR Adaptive and service-oriented
paradigms [3,9]. Thus, it is necessary to rethink the design flows for autonomous
systems with new software and hardware architectures.

Schedule synthesis problem: Consider the setting where a shared compu-
tational resource is used to implement multiple controller tasks, but it is not
powerful enough to ensure that all tasks meet their deadlines all the time. i.e.,
the utilization of the tasks on this resource is greater than 1. Instead of having
to reduce the number of controller tasks or use more powerful and therefore ex-
pensive hardware, this paper proposes a new correct-by-construction approach
for synthesizing control implementations. Our primary observation is that the
safety and performance specification can be satisfied even when some of the con-
trol jobs miss their deadlines. This is because the feedback control mechanisms
are often robust to delays in sensing and actuation. In particular, with some
delays, the dynamics of the closed-loop system deviate only slightly from the
dynamics when no tasks miss their deadlines. The question is: which deadline
misses cause acceptable deviation in the system dynamics, and can we synthesize
task schedules that exploit such deadline miss patterns? We leverage this obser-
vation for synthesizing the task scheduler that (a) incorporates deadline miss
patterns of control tasks — specified as weakly hard constraints [15,16,32], and
(b) the control performance, specified as a deviation in system dynamics from
the dynamics under ideal timing behavior, when control tasks are scheduled with
these weakly hard constraints. The proposed approach thus has two steps. The
first step involves checking whether a set of weakly hard timing constraints sat-
isfy a control performance specification, viz., a maximum deviation in dynamics
from the system dynamics with no task deadline misses. The second step collects
such weakly hard constraints for all the control tasks to be implemented and syn-
thesizes a scheduler that is compatible with the weakly hard constraints of all
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Fig. 1. Overview of the proposed method.

the tasks. This workflow is illustrated in Figure 1, where for each control task,
we first synthesize a collection of weakly hard constraints, and then a scheduler
for the task set is synthesized from these constraints.

Contributions: One of the important contributions of this paper is the use
of statistical model checking. In the literature, various deterministic techniques
have been proposed for ensuring that a controller implementation is compat-
ible with the scheduling of the underlying control tasks [8,17,19,36,42]. These
techniques either employ bounded model checking techniques, abstract inter-
pretation, or software model checking techniques. However, due to the non-
deterministic nature of the weakly hard constraints, deterministic techniques are
often overly conservative and suffer from scalability issues [18,39]. As a result,
the landscape of compatibility between feedback control design and schedul-
ing with weakly hard real-time constraints is poorly explored. To overcome this
challenge, we use statistical model checking approaches for exploring the com-
patibility between a given weakly hard constraint and the safety specification of
the controller. That is, instead of ensuring that a weakly hard constraint always
satisfies the performance specification, we check whether the constraint satisfies
the specification with high probability. This begs the question: how can we provide
deterministic performance guarantees when the compatibility is checked using
statistical guarantees? We provide deterministic guarantees by checking if the
final schedule (that is deterministic) satisfies all the performance requirements
of the individual controllers — a sanity check. If the final schedule does not
satisfy all the performance requirements, the schedule synthesizer would search
the space of other compatible weakly hard constraints and continue the search
process.

Using a statistical approach for listing all the compatible weakly hard con-
straints for a given controller and synthesizing the scheduler using a sanity check
has several advantages. First, statistical model checking approaches are highly
scalable as they only require opaque-box access to the plant and its corresponding
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feedback controller. Second, statistical model checking techniques are less con-
servative as the guarantees are based on the behaviors of the controller that are
sampled during the verification process. Finally, the scheduler synthesized using
statistical model checking is provably at least as good as the schedule synthesized
using traditional model checking approaches. We demonstrate the advantages of
our method to synthesize a schedule for various control tasks sharing the same
computational platform. To the best of the authors’ knowledge, this is the first
approach that leverages a statistical model checking approach for synthesizing a
deterministic scheduler.

1.1 Related Work

A number of papers have studied the characterization of deadline misses in real-
time settings. Notably, the work in [1] proposes a systematic method for charac-
terizing deadline hit/miss patterns. These so-called weakly hard constraints have
been studied in a number of settings, including schedulability analysis, formal
verification, and runtime monitoring, with [4,19,30] being some recent examples.
A significant body of recent research exists on checking control safety proper-
ties, such as stability, under deadline misses [23,30,31]. These studies are related
to the general problem of ensuring control performance when software tasks
implementing feedback controllers experience timing uncertainties. Techniques
for isolating different tasks have been investigated in [25]. Joint scheduler and
control strategy design – to satisfy stability and other performance constraints
– have been proposed [6,7,14]. On the other hand, timing analysis of control
software has also been studied [21,20] to provide tighter timing estimates by
exploiting the structure of the programs [5]. There has also been considerable
work on testing [37] and verification [22,24] of control software to ensure that
mathematical models of controllers are preserved in a software implementation
that is subjected to artifacts like delays, bounded precision arithmetic, and side
effects introduced by a compiler.

In particular, this work has been inspired by a number of recent works [12,17]
that relate quantitative safety properties—such as the maximum deviation of a
system’s trajectory from an ideal trajectory—with the maximum number of
consecutive deadline misses. These works use deterministic reachable set-based
methods, or rely on Statistical Hypothesis Testing (SHT), to provide a deviation
upper bound with a statistical guarantee. However, there has been considerably
less focus on the synthesis of task schedules that satisfy control safety properties,
particularly those beyond stability, which is the central topic of this paper. The
study in [41] explored scheduling to satisfy safety constraints, but its determin-
istic deviation estimation suffers from a tradeoff between exponentially growing
execution time and large overestimation of the deviation, similar to [17]. At a
philosophical level, the current work is also similar to program synthesis us-
ing stochastic search [34] and neuro-symbolic synthesis [29]. In these program
synthesis approaches, the search for the correct program is conducted using a
stochastic process such as random search or generative neural network, and the
final program returned is verified to satisfy the specification.
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2 Background

This section introduces the system formulation, its behavior under deadline
misses, and the characterization of deadline miss patterns that affect system
behavior. These concepts will be used throughout the rest of the paper.

2.1 System formulation

Control systems are dynamic in nature and are often described using differential
equations. These are called state equations, and each one describes the relation-
ship between the time derivative of a single state variable with respect to other
state variables and the system’s inputs. For instance, an autonomous vehicle
system might be described with equations regarding its velocity, acceleration,
and steering angle. A state equation for it is of the form:

ẋ(t) = f(x, u, t), (1)

where x(t) ∈ Rn represents the states of the system and u(t) ∈ Rp the inputs
to the system. Certain characteristics of a control system can influence the rep-
resentational forms of its dynamics. If the differential equations describing the
system are time-invariant and linear, then the system dynamics can be expressed
by the state-space model

ẋ(t) = Ax(t) +Bu(t), (2)

where A ∈ Rn×n, and B ∈ Rn×p represent the constant continuous-time transi-
tion matrix and the input matrix, respectively. Equation (2) shows that the rate
of change of the system state ẋ(t) depends both on the current state x(t) and
the control input u(t). When the controller is implemented as a software task,
the state-space model needs to be discretized and assumes the form of

x[t+ 1] = Adx[t] +Bdu[t]. (3)

where Ad and Bd represent the discrete counterparts of A and B respectively,
and are computed as:

Ad = eAP , Bd =

∫ P

0

eAτB dτ (4)

Here, P is the sampling period for sensing the environment and actuation. We
focus on closed-loop systems, where the state measurement is used to determine
the control input of the next actuation. In practice, this is done by a periodic
real-time task running on a processor and is assumed to be of the form

u[t] = Kx[t− 1], (5)

where K ∈ Rp×n is the feedback gain. We follow the logical execution time (LET)
paradigm, where the deadline equals the sampling period. A new control input is
always applied at the deadline of the control job, i.e., the system state is sampled
at time t− 1 and used to compute the control input for time t, where the state
and control input is computed according to Equations (3) and (5). This is also
in line with popular time-triggered implementations of control tasks [13].
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2.2 System Behavior under Deadline Misses

The correct behavior of the control system described in Section 2.1 relies on
the timely computation of the control input u by the end of each period. If
the periodic real-time task computing the control input misses its deadline, then
Equation (5) no longer holds, and the system may deviate from its ideal behavior
and become unsafe. However, the safety of the system depends on the amount of
deviation from its ideal behavior, and most systems can tolerate a certain degree
of deviation before it becomes unsafe. In this section, we quantify the deviation
from a system’s ideal behavior and define the set of safe trajectories.

We consider the behavior of the system only over a finite time horizon H.
Thus, the states of the system will be recorded at time points 0, 1, . . . ,H . For
ease of exposition, we also assume that the initial state of the system is z[0] ∈ Rn.
Setting the initial state as z[0], we define the nominal trajectory, denoted as τnom ,
of the system as the trajectory resulting from no deadline misses as follows.

Definition 1 (Nominal Trajectory). A nominal trajectory (τnom) of a sys-
tem is the sequence of states of length H+1 of the form x[0], x[1] . . . , x[H], where
x[0] = z[0] is the initial state, x[t+ 1] is computed with Equation (3) and u[t] is
computed with Equation (5).

Let T be the set of sequences of length H + 1 over Rn where the control
task has missed some deadlines. For each τ ∈ T , τ = τ [0], τ [1] . . . , τ [H] where
τ [i] ∈ Rn and τ [0] = z[0]. Intuitively, T denotes the set of all possible trajectories
of length H + 1 in the state space starting from the initial state z[0]. We wish
to find a subset of T that does not deviate from the nominal trajectory τnom
by more than a safety bound dsafe . This requires a way to quantify deviations
from the nominal trajectory. With a metric dis(·) defined between two points in
Rn, we define the distance between a pair of trajectories (τ, τ ′), also denoted as
dis(·), as follows:

dis(τ, τ ′) = max
0≤t≤H

dis(τ [t], τ ′[t]). (6)

We now fix a safety margin dsafe > 0. This leads to the set of safe trajecto-
ries Tsafe ⊂ T , defined as

Tsafe = {τ | dis(τ, τnom) ≤ dsafe}. (7)

This is the set of trajectories that do not exceed the safety margin around the
nominal trajectory, i.e., trajectories that do not deviate more than dsafe from
the nominal trajectory. Clearly, the nominal trajectory is also a member of Tsafe .

2.3 Characterizing Deadline Miss Patterns

We now characterize the pattern of deadline misses and its connection to devi-
ation in system behavior. The weakly hard constraints, proposed in [1], provide
an alternative to the traditional hard/soft classification of real-time systems and
have been studied in a number of settings including schedulability analysis and
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formal verification [19,4,30]. The
(
m
k

)
constraint is one of the four types of con-

straints proposed in [1] and states that out of any k consecutive deadlines of the
task, at least m of them must be met. A notable result from [1] is that weakly
hard constraints are regular languages over {0, 1}, provided that a deadline hit
is represented by 1 and miss by 0. We denote the regular language represent-
ing

(
m
k

)
as L(m,k).

Finally, suppose γ ∈ {0, 1}H is a sequence of length H representing a pattern
of deadline hits and misses. A unique trajectory τγ is defined for γ where τγ [0] =
z[0], τγ [t+ 1] is computed with Equation (3), and

u[t] =

{
Kτγ [t− 1], γ[t] = 1

u[t− 1], γ[t] = 0.
(8)

This leads to
T(m,k) = {τγ | γ ∈ L(m,k)}. (9)

In other words, T(m,k) is the set of all trajectories resulting from deadline hit/miss
patterns in the regular language L(m,k). We call the system safe under

(
m
k

)
if

and only if T(m,k) ⊆ Tsafe , which is equivalent to checking the following inequality

max
τ∈T(m,k)

dis(τ, τnom) ≤ dsafe . (10)

Intuitively, it means the system is safe under
(
m
k

)
if and only if the maximum

deviation of all trajectories τ ∈ T(m,k) is less than or equal to the safety margin
of the system.

3 Statistical Hypothesis Testing

Computing the exact maximum deviation pertaining to a given constraint (e.g.,
weakly hard constraints), in the worst case, might require computing deviation
of 2H trajectories, where H is the time horizon. This is clearly infeasible for
practical values of H. To address this issue, [17] proposed a deterministic tech-
nique that employs reachable sets to compute an upper bound on the maximum
deviation for a given constraint, rather than the exact maximum deviation. This
approach enables safe deviation bounds (i.e., an upper bound) to be computed
for large time bounds. However, this technique has two main issues. Firstly,
because it relies on reachable-set-based methods, the resulting upper bound is
often overly conservative, rendering it ineffective for the safety verification in
some instances. Secondly, because computing reachable sets can be computa-
tionally intensive, it was unable to compute a bound in a reasonable amount of
time (1 hour) for some applications, limiting its applicability.

In contrast to deterministic methods, a novel method presented in [12] uses
statistical hypothesis testing (SHT) to compute a bound on the maximum devi-
ation with a high level of confidence that is determined by the user. This tech-
nique demonstrates better performance than the deterministic method proposed
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Fig. 2. Statistical hypothesis testing approach proposed in [12]. The
Hypothesizer module makes an initial guess for the upper bound on the maximum
deviation and sends it to the Verifier module for verification. If the verification fails,
the counterexample is generated and sent to the Refiner module, which refines the
guessed deviation based on the counterexample and sends it back to the Verifier
module. This iteration continues until a successful verification is achieved, at which
point the computed bound d̂ on the maximum deviation is returned.

in [17], both in terms of the tightness of the computed bound and computation
time. In the rest of this section, we briefly review the technique proposed in [12]
and present an illustrative example of the technique.

The proposed method in [12] employs a statistical hypothesis testing framework—
specifically, Jeffreys’s Bayes factor-based method—alongside a counterexample-
based refinement strategy to compute a deviation upper bound with probabilistic
guarantees. It comprises three main modules, namely the Hypothesizer module,
the Verifier module, and the Refiner module. First, the inputs—the system
model, the initial state, and the nominal trajectory of the system—are provided
to the Hypothesizer module, which then makes an initial guess of the upper
bound on the maximum deviation. Subsequently, the guessed upper bound is
forwarded to the Verifier module, which uses SHT to verify its correctness.
If the guessed deviation bound is incorrect, the Verifier module generates a
counterexample and passes it on to the Refiner module. The Refiner module
refines the guessed deviation based on the counterexample and sends it back to
the Verifier module for re-verification. This iterative process continues until a
successful verification occurs, with the desired level of confidence specified by the
user. At this point, the computed bound on the maximum deviation is returned.
The method is illustrated in Figure 2.

We now give a more detailed review of the statistical hypothesis testing pro-
cedure employed within the Verifier module. The purpose of the Verifier
module is to verify, using SHT, whether a given bound on the maximum devia-
tion d̂ is indeed correct with the specified confidence level. For a given value of
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confidence c, the null and alternate hypotheses can be formulated as follows:

H0 : Prob
[
T , x[0], τnom , d̂

]
< c (11)

H1 : Prob
[
T , x[0], τnom , d̂

]
≥ c (12)

where Prob
[
T , x[0], τnom , d̂

]
is the probability that a randomly selected tra-

jectory τ has a deviation that remains within the deviation upper bound d̂.
Intuitively, the null hypothesis H0 represents the rejection of d̂ as the cor-
rect deviation upper bound, while the alternative hypothesis H1 represents the
acceptance of d̂. The Verifier tests the two hypotheses by first generating
a set of K samples from the assumed distribution of executions, denoted by
X = {τ1, τ2, . . . , τK}. The sample size K is derived from the Bayes factor B and
confidence level c selected by the user. It then examines whether all members of
X satisfy the upper bound constraint of d̂ (i.e., the deviation of all the trajecto-
ries in X, from the nominal trajectory τnom , is less than d̂). If all members of X
satisfy this condition, we accept the alternative hypothesis H1 and report d̂ as
the estimated bound. However, if at least one counterexample exists, then the
Verifier rejects devub and sends the counterexample to the Refiner module.

3.1 Example of Statistical Hypothesis Testing

In this section, we demonstrate how the SHT framework from [12] is used to
compute the upper bound on the deviation d̂ for a specific weakly hard con-
straint. Figure 3 illustrates the overall process. We use the linearized motion of
an F1Tenth [28] model car as an example, discretized with the period P = 20ms:

x[t+ 1] =

[
1.000 0.1300
0 1.0000

]
x[t] +

[
0.0256
0.3937

]
u[t]

In this example, we compute the deviation upper bound for the weakly hard
constraint

(
1
3

)
from a nominal trajectory with no deadline misses, starting with
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the initial state x[0] = [1 1]T . We assume a time horizon of H = 5 periods.
When a deadline is missed, the overrun job is killed and the control input from
the previous period is held, consistent with the Hold&Kill policy [23]. The SHT
framework compute the deviation upper bound d̂ with the following steps:

1. The Hypothesizer guesses an upper bound by considering a small sam-
ple of random sequences of deadline hit/miss that satisfy the weakly hard
constraint

(
1
3

)
: 10110, 11001 (0 indicates miss, 1 indicates hit). The maxi-

mum deviation from the two random samples, 0.0482, is used as the initial
guess d̂0.

2. The guessed upper bound d̂0 = 0.0482 is verified by the Verifier, which
returns False. i.e., a counterexample is found whose deviation from nominal
trajectory d = 0.3157 exceeds the initial guess d̂0 = 0.0482.

3. Since the guessed bound d̂0 was not verified, the Refiner takes the coun-
terexample produced by the Verifier and updates the previous deviation
upper bound, d̂0 = 0.0482, to the deviation obtained from the counterexam-
ple, d̂1 = 0.3157.

4. The refined upper bound d̂1 = 0.3157 is again sent to the Verifier module
for re-checking. This time, the Verifier module accepts the d̂1 = 0.3157 as a
valid upper bound up to the desired probabilistic guarantees, and terminates
the procedure

We note that the d̂ = 0.3157 computed from the SHT is the same as the
deviation produced by the reachability analysis method used in [41] for this
example. This is because the small number of total deadline hit/miss sequences
(as a result of the small time horizon H = 5) enables both methods to find the
exact trajectory corresponding to the deviation upper bound. However, this is
no longer the case as H increases due to the exponentially growing number of
total deadline hit/miss sequences.

4 Proposed Schedule Synthesis

The schedule synthesis problem we wish to solve is as follows:

Problem 1 (Schedule Synthesis). Given a set of N controller tasks with the same
period, their respective safety margins dsafe , and an implementation platform
where at most J < N controllers can be scheduled in each period, determine
if a schedule over the time horizon H exists where all the controller tasks can
be scheduled without deviating more than their safety margin. Furthermore,
synthesize a schedule if one exists.

We propose an efficient solution to Problem 1, using the deviation upper
bound estimation methods proposed in [12]. Our approach involves three stages:

1. Compute the collection of all weakly hard constraints that are statistically
safe.
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2. Synthesize a candidate schedule using the list of safe constraints from each
task.

3. Verify the safety of the candidate schedule. If it is unsafe, go back to step 2;
if it is safe, exit with the safe schedule.

Our approach is similar to the two-stage schedule synthesis scheme proposed
by [41]. However, our method is different from theirs in two important aspects:
First, the method in [41] deploys a deterministic technique to determine a list of
safe constraints. This causes issues where lengthy execution time and substantial
overestimation of deviation upper bounds significantly restrict the pool of weakly
hard constraints available for schedule synthesis considerably. In contrast, our
scheduler synthesis method capitalizes on the speed and tightness advantages
of the SHT-based method proposed in [12]. Second, given that the deviation
guarantee provided by the SHT-based method is probabilistic, our method in-
corporates an additional schedule verification phase. This step verifies the safety
of the schedule produced by the schedule synthesis step. It is important to note
that, because the exact deviations for the trajectories corresponding to the final
schedule can be exactly determined, the schedules generated by our method are
deterministically safe despite its reliance on a statistical method for constraint
checking. This is different from the [12], where the gain in performance and
tightness is at the price of only obtaining a probabilistic guarantee (e.g., with
confidence c = 0.99).

Constraint Checking Given a control task Ti and its safety margin dsafei ,
constraint checking determines the set of weakly hard constraints under which
the system is safe. This amounts to checking if d(m, k) ≤ dsafei , where d(m, k) is
the maximum deviation of the trajectories in T(m,k) from the nominal trajectory
of Ti. More precisely,

d(m, k) = max
{
dis(τ, τnom)

∣∣ τ ∈ T(m,k)

}
. (13)

However, checking this directly is expensive, due to the exponential number of
hit/miss patterns of length H. To get around this, we compute an upper bound
d̂(m, k) on d(m, k) with confidence c using the SHT-based method in [12]. It
then suffices to check that d̂(m, k) ≤ dsafe to derive a probabilistic guarantee of
the safety of the system under

(
m
k

)
. We then iterate through all weakly hard

constraints (up to a maximum window size kmax ≪ H) and compute d̂(m, k)

using the SHT-based method for each constraint
(
m
k

)
. If d̂(m, k) ≤ dsafei , we

conclude that the system is safe under
(
m
k

)
with confidence c and add

(
m
k

)
to

the set of safe constraints.

Schedule Synthesis As introduced in Section 2.3, a weakly hard constraint
(
m
k

)
is a regular language L(m, k) over {0, 1}, where a string represents a hit/miss
pattern satisfying

(
m
k

)
. We denote such an automaton for the control task Ti

by Ai = ⟨Li, Σ, δi, F i, ℓi0⟩, where Li is a set of states, Σ = {0, 1} is the input
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alphabet (miss/hit), δi = Li×Σ → Li is the transition function, F i is the set of
accepting states, and ℓi0 is the initial state. With this construction, an accepting
run of Ai is a hit/miss pattern that satisfies at least one safe weakly hard con-
straint for the corresponding controller task Ti. We use these individual finite
automata for each task i to construct a scheduler automaton as follows:

Definition 2 (Scheduler Automaton). A scheduler automaton AS for
a set of N controllers whose constraints are represented by the automata of the
form Ai = ⟨Li, Σ, δi, F i, ℓi0⟩, where at most J controllers can be scheduled in
each time slot, is defined as an automaton ⟨LS , ΣS , δS , FS , ℓS0 ⟩:

LS set of states, LS =
∏

i L
i;

ΣS input alphabet, ΣS ⊂ {0, 1}N . A sequence σ ∈ {0, 1}N is in ΣS if and only
if
∑

i σ
i ≤ J ;

δS transition function, δS(ℓ, σ) =
∏

i δ
i(ℓi, σi);

FS accepting states of the automaton, FS =
∏

i F
i;

ℓS0 initial state of the automaton, ℓS0 =
∏

i ℓ
i
0.

The set of states LS is a Cartesian product of the controller automaton states:
LS = L1 ×L2 × · · · ×LN , where each state ℓ ∈ LS is a tuple of individual states
from each controller: ℓ = ⟨ℓ1, ℓ2, . . . , ℓN ⟩. The set of actions ΣS ⊂ {0, 1}N now
captures hits and misses for all controllers, and an action σ = ⟨σ1, σ2, . . . , σN ⟩
is valid if and only if

∑
i σ

i ≤ J . For example, N = 3, J = 1 results in ΣS =
{000, 001, 010, 100}, where σ = 010 indicates that only the second controller
is scheduled. The transition function δS is the Cartesian product of individual
transition functions

∏
i δ

i. Concretely, assuming σ ∈ ΣS is a valid action for the
scheduler automaton AS , the transition function δS becomes:

δS(ℓ, σ) = ⟨δ1(ℓ1, σ1), δ2(ℓ2, σ2), . . . , δN (ℓN , σN )⟩.

The set of accepting states F is the Cartesian product of the individual accepting
states. A state ℓ = ⟨ℓ1, ℓ2, . . . , ℓN ⟩ is an accepting state if and only if ℓi ∈ F i

for all i ∈ [1, N ]. Intuitively, this means that the schedule is valid only if all the
controllers operate within their safety margin; if any of the controller automaton
Ai transition to a non-accepting (unsafe) state, the scheduler automaton will also
transition to a non-accepting state.

Under this formulation, an accepting run of length H + 1 of the scheduler
automaton is a schedule that satisfies at least one weakly hard constraint in
the set of safe constraints for each control task. The existence of safe schedules
can be checked by running emptiness checking on the scheduler automaton, and
schedules can be generated using breadth-first search (BFS).

Schedule Verification Given a synthesized schedule, we verify if the actual
deviation of each system is within its safety margin. Toward this, we first cal-
culate the exact trajectory of each system τ i using the synthesized schedule for
that system γi from the previous stage. The actual deviation of that system
can be then calculated using the with di = dis(τ i, τ inom). If di < dsafei for all



Statistical Approach to Deterministic Schedule Synthesis for CPS 13

systems, the schedule is verified to be safe. Note that since the exact deviation
for each system is determined by the schedule, the schedule is deterministically
safe despite the probabilistic guarantee given by the SHT-based method in Con-
straint Synthesis. Otherwise, the verification fails and a different schedule must
be synthesized. If no schedule has passed the verification step and no more can-
didate schedules are available from schedule synthesis, the process terminates
and returns No Schedule.

Since the safety guarantee obtained for each system by SHT has a confidence
of at least c, the probability that a schedule produced by schedule synthesis is
safe for N controllers is at least cN . For N = 20 and c = 0.99, this translates
to a probability of at least 0.9920 ≈ 0.81 and an expected 1

0.81 = 1.23 repitions
until a safe schedule is verified. We think this is reasonable and won’t become a
bottleneck for the scalability of the proposed approach.

4.1 Comparison with Deterministic Method Proposed in [41]

We now demonstrate that our scheduler synthesis technique that uses stochastic
hypothesis testing for generating all the weakly hard constraints is at least as
good as scheduler synthesis that uses a deterministic verification process.

Lemma 1. Consider the controller Ti that is scheduled to satisfy the weakly
hard constraint

(
m
k

)
leading to at most d(m, k) deviation from the nominal tra-

jectory. For such a controller, if the SHT estimates the deviation d̂(m, k) and
a deterministic verification method provides an upper bound of d̃(m, k), then,
d̂(m, k) ≤ d(m, k) ≤ d̃(m, k).

Since the deterministic verification techniques would compute a conservative
overapproximation of all behaviors, d(m, k) ≤ d̃(m, k). Since the estimation of
the deviation during SHT is generated from one of the counterexamples, there
exists at least one behavior with deviation d̂(m, k) ≤ d(m, k).

Theorem 1. If the scheduler synthesis procedure using the deterministic verifi-
cation technique for collecting the set of all the safe weakly hard constraints suc-
cessfully generates a schedule, then the SHT-based constraint generation would
also eventually generate it.

Proof. Suppose that the deterministic verification method returned a safe sched-
ule where the weakly hard constraint for each task Ti is

(
m
k

)
i
. From Lemma 1,

we know that the same weakly hard constraint
(
m
k

)
i

would also be considered
safe using the SHT method. Therefore, the scheduler automaton generated using
constraints using SHT would either terminate early with a safe schedule or even-
tually construct the scheduler automaton with weakly hard constraints

(
m
k

)
i
for

the task i. Therefore, the scheduler automaton, in the worst case, returns the
same schedule obtained using deterministic verification.
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5 Evaluation

To evaluate the effectiveness of our approach in scheduler synthesis, we imple-
mented the proposed method in Julia [2] and conducted experiments on a system
where five different controllers share the same computational platform. Our goal
is to answer the following research questions:

1. Is our approach capable of synthesizing safe schedules where existing meth-
ods cannot?

2. How does the execution time of our approach compare to existing methods?

5.1 Benchmarks

We use five dynamical system models from the automotive domain. All systems
are discretized with a period P = 20ms, and controllers for each system are
computed with LQR using a one-period delay.

RC Network (RC) Our first model is a resistor-capacitor network [10] with
the following model:

ẋ(t) =

[
−6.0 1.0
0.2 −0.7

]
x(t) +

[
5.0
0.5

]
u(t).

F1Tenth Car (F1) Our second model is the linearized motion of an F1Tenth
model car [28]:

ẋ(t) =

[
0 6.5
0 0

]
x(t) +

[
0

19.685

]
u(t).

Our next three plant models are selected from [33] and also represent sub-
systems from the automotive domain.

DC Motor (DC) Our third model is the speed controller for a DC motor
adapted from [38]:

ẋ(t) =

[
−10 1
−0.02 −2

]
x(t) +

[
0
2

]
u(t).

Car Suspension (CS) Our fourth model is a suspension system adapted
from [35]:

ẋ(t) =


0 1 0 0
−8 −4 8 4
0 0 0 1
80 40 −160 −60

x(t) +


0
80
20

−1120

u(t).
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Table 1. Initial states and safety margins of the five models used in experiments.

Initial State Safety Margin

RC Network [1 1]T 0.07
F1 Tenth Car [1 1]T 0.56
DC Motor [100 100]T 0.1
Car Suspension [100 100 100 100]T 0.8
Cruise Control [1 1 1]T 0.06

Cruise Control (CC) Our final model is a cruise control system adapted
from [27]:

ẋ(t) =

 0 1 0
0 0 1

−6.0476 −5.2856 −0.238

x(t) +

 0
0

2.4767

u(t).

5.2 Experiments

We compared the effectiveness and performance of the proposed SHT-based
method with the existing deterministic method [41]. For each method, the five
models in Section 5.1 are used with a starting state x0 that is offset from the
origin in the state-space. The goal of all controllers is to bring the state x to
the origin. The starting states and safety margins for the five systems are shown
in Table 1. We assume that the controller tasks of the five systems are imple-
mented on the same processor. During each period of P = 20ms, we also assume
that only two out of the five tasks can be run (i.e., J = 2). The limitation that
at most two tasks can be executed in each slot is very similar to the scheduling in
AUTOSTAR Adaptive, where several tasks with the same period are combined
together for scheduling purposes.

We used Julia 1.8 for all experiments. The parameters used in the experiments
are as follows: The maximum window size for weakly hard constraint kmax is
6; the Bayes factor B is 4.15 ∗ 105; the time horizon H is 100; the confidence
level c for statistical hypothesis testing is 0.99. We used Euclidean distance for
all deviation estimations.

We recognize that some of the parameters (e.g., kmax = 6 and N = 5) are
relatively small. These values are selected primarily for the ease of comparison
against the existing deterministic method. Additionally, as the majority of com-
putation effort is spent on the constraint synthesis phase, whose execution time
grows linearly with the number of controllers N , increasing N has a mostly lin-
ear effect on the overall execution time. On the other hand, as a max window
size of kmax = 6 already covers cases as extreme as only 1 deadline hit in every
6 consecutive invocations of the task, we believe that the potential benefit of
experimenting with even higher values of kmax is outweighed by the increased
computation.
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Table 2. Deviation upper bounds d̂ for each system and weakly hard constraint, com-
puted by the SHT-based method.

Window
Size (k)

Minimum Hits (m)
1 2 3 4 5 6

RC Network
dsafe = 0.07

1 0.0 – – – – –
2 0.036 0.0 – – – –
3 0.0656 0.036 0.0 – – –
4 0.0899 0.0656 0.036 0.0 – –
5 0.11 0.0899 0.0656 0.036 0.0 –
6 0.126 0.11 0.0899 0.0656 0.036 0.0

F1 Tenth Car
dsafe = 0.56

1 0.0 – – – – –
2 0.179 0.0 – – – –
3 0.364 0.179 0.0 – – –
4 0.557 0.364 0.179 0.0 – –
5 0.75 0.557 0.364 0.179 0.0 –
6 0.949 0.75 0.557 0.364 0.179 0.0

DC Motor
dsafe = 0.1

1 0.0 – – – – –
2 0.0546 0.0 – – – –
3 0.107 0.0546 0.0 – – –
4 0.156 0.107 0.0546 0.0 – –
5 0.204 0.157 0.107 0.0546 0.0 –
6 0.248 0.204 0.157 0.107 0.0546 0.0

Car Suspension
dsafe = 0.8

1 0.0 – – – – –
2 0.16 0.0 – – – –
3 0.34 0.16 0.0 – – –
4 0.53 0.34 0.159 0.0 – –
5 0.729 0.529 0.339 0.159 0.0 –
6 0.908 0.717 0.526 0.338 0.158 0.0

Cruise Control
dsafe = 0.06

1 0.0 – – – – –
2 0.0138 0.0 – – – –
3 0.0298 0.0115 0.0 – – –
4 0.0368 0.0212 0.0117 0.0 – –
5 0.0455 0.0323 0.0194 0.0115 0.0 –
6 0.0584 0.0423 0.0262 0.0201 0.0116 0.0

5.3 RQ1: Effectiveness of the Proposed Approach to Synthesize
Safe Schedules

To answer RQ1, we applied our SHT-based constraint and schedule synthesis
method to the systems in Section 5.1. We also ran the deterministic method
in [41] with iteration parameter n = 15. Result: the proposed SHT-based
method was able to synthesize a safe schedule, shown in Figure 4, while the
deterministic method failed to find a safe schedule.

Detailed results of constraint and schedule synthesis are outlined in Table 2
and Table 3, respectively. In Table 2, the value at row k and column m in Ta-
ble 2 represents the deviation upper bound d̂(m, k) associated with weakly hard
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RC Network

F1 Tenth Car

DC Motor

Car Suspension

Cruise Control

1 2 3 4 5 6

Repeat

Fig. 4. Schedule synthesized by the SHT-based method.

constraint
(
m
k

)
, computed by the SHT-based method. If d̂(m, k) < dsafe , then(

m
k

)
is added to the safe list of constraints for that system. The safe values are

highlighted in Table 2, where values highlighted with are safe according to
both the SHT-based method and the deterministic method (d̂, d̃ < dsafe), and
values highlighted with light green are safe according to the SHT-based only
and unsafe according to the deterministic method (d̂ ≤ dsafe ≤ d̃). As shown
in Lemma 1, any constraint deemed safe by the deterministic method is always
deemed safe by the SHT-based method too. We observe from Table 2 that while
the deterministic method and the SHT-based method performed similarly for
the RC Network and DC Motor systems, the SHT-based method is able to pro-
duce tighter estimates for the F1 Tenth Car, Car Suspension and Cruise Control
systems. The Car Suspension and Cruise Control systems especially see a large
increase in safe constraints.

Table 3 shows the exact deviation for each system under the schedule in Fig-
ure 4, per the schedule verification procedure described in Section 4. We observe
that the schedule for each individual system closely matches one of the safe
constraints for that system. For example, the schedule for RC Network matches
the weakly hard constraint

(
1
3

)
. We compared the actual deviation with the

estimated d̂(m, k) for that constraint. For two out of five systems, the determin-
istic method estimates deviation upper bounds d̃ higher than the safety margin
dsafe ; the SHT-based method estimates values closer to the actual deviation that
are all within the safety margin. This matches the result in Table 2, where the
deterministic method greatly overestimates the deviation upper bound for the
Car Suspension and Cruise Control systems. Finally, we note that the scheduler
passed the schedule verifier on the first try. This is expected, given the high
confidence level c = 0.99 used during the constraint synthesis step.

These results suggest that our SHT-based approach effectively produces de-
terministically safe schedules, even when the existing method fails to do so.
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Table 3. Exact deviation values for each system when scheduled according to Fig-
ure 4. All systems have deviation values within their respective safety margin, i.e., the
schedule is deterministically safe.

Safety
Margin

Closest
Constraint

Estimated
d̂(m, k)

Estimated
d̃(m, k)

Actual
Deviation

RC Network 0.07
(
1
3

)
0.0656 0.0656 0.0092

F1 Tenth Car 0.56
(
1
3

)
0.364 0.364 0.303

DC Motor 0.1
(
1
2

)
0.0546 0.0546 0.157

Car Suspension 0.8
(
1
3

)
0.34 1.04 0.13

Cruise Control 0.06
(
1
2

)
0.0138 0.0712 0.00578

5.4 Reduction of Execution Time using the Proposed Approach

In addition to the two configurations used in Section 5.3, we also ran an addi-
tional configuration of the deterministic approach in [41] with parameter n = 18.
We ran this additional configuration because a higher n value correlates to a
tighter deviation estimation, and we incremented the n value progressively until
the deterministic method returns a valid schedule with n = 18. The execution
times for the constraint synthesis and schedule synthesis using the two methods
are outlined in Table 4.

We observe that the SHT-based method delivers a 30× to 600× speed up for
constraint synthesis of individual systems compared to the deterministic method.
In total, the SHT-based method is 55× and 394× faster than the deterministic
method with n = 15 and n = 18, respectively. Second, the procedure of schedule
synthesis and verification accounts for a relatively small fraction of the over-
all execution time. Third, our method takes roughly the same amount of time
for each system, whereas the deterministic method takes much more time to
compute the Car Suspension system than other systems. Finally, we note that
although the deterministic method is able to synthesize a safe schedule for the
benchmarks with parameter n = 18, it does so using exponentially more time
as n increases [17]. The SHT-based method eliminates the need for finding the
suitable n value, which in itself is a time-consuming process.

In summary, the deterministic method takes orders of magnitudes more time
than the SHT-based method to execute and requires a suitable n value to syn-
thesize a safe schedule. The SHT-based is able to synthesize a schedule much
faster while eliminating the need to find the n value through trial and error,
further reducing execution time.

6 Concluding Remarks

Ensuring traditional real-time guarantees that no task misses its deadline has
become increasingly challenging because of (a) the increased volume of software
being deployed in modern autonomous systems, and (b) the increased complexity
of the hardware in such systems. Consequently, some feedback control tasks may
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Table 4. Execution times for the SHT-based and deterministic methods.

SHT (c = 0.99) DET (n = 15) DET (n = 18)

RC Network 2.17 s 115.35 s 818.92 s
F1 Tenth Car 2.09 s 115.96 s 817.70 s
DC Motor 2.78 s 112.95 s 820.18 s
Car Suspension 3.10 s 292.35 s 2071.46 s
Cruise Control 3.33 s 111.65 s 799.89 s

Schedule Synthesis 0.017 s 0.106 s 0.012 s
Schedule Verification 0.008 s – –

Total 13.50 s 748.37 s 5328.16 s
Schedulable? Yes No Yes

miss their deadlines and their behavior would deviate from the nominal behavior.
This causes a divergence between the design and implementation of autonomous
systems, posing a major hurdle in their certification. Our approach to overcome
this hurdle is to synthesize a correct-by-construction control system implemen-
tation for all control tasks sharing computational resources. By allowing tasks
to miss their deadlines by design, the pessimism associated with software timing
analysis is partly mitigated. We demonstrated that incorporating probabilistic
model checking to collect a collection of weakly hard constraints in the sched-
uler synthesis (1) enables us to schedule tasks that could not be scheduled using
deterministic verification techniques, and (2) reduces the computational effort
required for synthesizing such schedules. We demonstrated these two advantages
by scheduling a task set on a system, where five controllers share the same com-
putational resource.

Currently, our work requires that all the controllers have the same period
and are scheduled on a uni-processor. While these restrictions are compatible
with the AUTOSTAR Dynamic framework of scheduling groups of processes
that share a control period, we plan to extend this work to controllers that have
different sampling periods as a part of future work.

There are a number of optimization and extensions of the work that we are
interested in exploring. For example, in addition to the

(
m
k

)
constraints used in

this work, several other types of weakly hard constraints exist and may be ap-
plicable to the problem, such as the

〈
m
〉

constraint that specifies no more than
m consecutive misses can occur [39]. Finally, while this paper is on synthesizing
schedules by focusing on “system-level properties,” like control safety, instead of
“secondary” properties like timing behavior, this idea is applicable more gener-
ally. For example, when messages are not fully encrypted or authenticated for
security [26,40], it might be shown that a safety property of the form studied in
this paper cannot be violated even if the system is under attack. Similar results
may also be established in the case of ensuring system reliability [11].
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