
Evaluating SMT Solvers
on Schedulability Checking Instances

Ravindra Metta1,2[0000−0001−7368−2389], Anand Yeolekar1,2[0009−0002−3311−8809],
and Samarjit Chakraborty3[0000−0002−0503−6235]

1 TCS Research, Tata Consultancy Services, Pune, India
2 Technical University of Munich, Germany
r.metta@tcs.com, anand.yeolekar@tcs.com

3 The University of North Carolina at Chapel Hill, USA
samarjit@cs.unc.edu

Abstract. When using an off-the-shelf Satisfiability Modulo Theory
(SMT) solver for solving decision problems, we empirically demonstrate
that solver performance is dependent on a number of factors. In partic-
ular, these are a combination of (i) constraints modeling the application
behaviour, (ii) non-determinism inherent at the application level and
the encoding of multiple system behaviours, and (iii) presence (absence)
of witnesses, and these can affect solver performance in non-intuitive
ways. Further, there is a wide variation in solver performance, e.g., in
terms of time and memory consumed across different solvers. Based on
controlled experiments on analyzing schedulability problems encoded as
SMT formulas, we compare the performance of selected state-of-the-art
solvers. Our experiments help develop insights into understanding solver
behaviour for domain-specific SMT instances, and help assess the impact
of non-determinism on solver performance.

Keywords: Schedulability analysis · SMT solvers · Real-Time Systems

1 Introduction

Real-time systems form an important and large class of software systems. Ubiq-
uitously present in embedded and cyber-physical systems, these systems span
diverse application domains such as consumer electronics, automotive and avion-
ics control software, medical devices, and telecommunications. A central require-
ment in the design, development and validation of real-time systems is that the
system meets specified timing properties, in addition to satisfying functional
properties. A common example of such a timing property is that the task set
should be schedulable under all execution scenarios, i.e., all task instances should
meet their respective deadlines in any observation window. In particular, sys-
tems classified as safety-critical need to be rigorously checked for compliance to
stringent timing properties. Thus, exact schedulability analysis is desirable for
this class of systems.



2 Metta, Yeolekar, and Chakraborty

An instance of a task is called a job. Jobs of a task are released at regular time
intervals to be executed on a processor, and a task specification describes task
parameters like the task offset, jitter, and job release patterns (e.g., periodic or
sporadic) along with their parameters such as a period or minimum inter-arrival
time. Additional parameters include deadlines, that might also be implicitly
or externally specified, and the best- and worst-case execution times of the jobs
released by the task. The task set deployment specification describes the external
environment such as the execution platform (that may consist of unicore or
multicore processors), a scheduling policy, inter-task dependencies, and whether
jobs can be preempted before completion and resumed again. A run of the
tasks describes an execution of the set of tasks consisting of the release, start,
end and deadline times of the task instances, along with auxiliary details like
the processor-to-task mapping. Note that the task specification can admit non-
determinism via release jitter, execution time variation, selection of arbitrary
equal-priority ready-to-run task instances, or arrival of sporadic job instances
of a talk. This leads to multiple runs of jobs in a task set, and a deadline miss
could occur along any run.

A number of techniques have been developed for schedulability analysis of
classes of real-time task sets. However, most of these are pessimistic or report
approximate results in the presence of non-determinism. This is especially prob-
lematic in the case of modern cyber-physical systems such as autonomous cars [5,
7]. These systems have complex and distributed architectures with different com-
munication protocols [28]. Further, control tasks implementing autonomous fea-
tures have conditional control flows that make timing and schedulabulity analysis
to be more challenging [6, 4]. Hence, scheduling [14, 29, 38] and timing verifica-
tion [20] for such setups have drawn considerable attention in the past. Because
of the complexity of tight timing and schedulability analysis, some studies have
focused on relaxing the timing constrains required for guaranteeing the safety
of feedback controllers [13] or have proposed techniques for reducing the tim-
ing interference across critical tasks [22]. Rigorous, formal methods-based ap-
proaches for schedulability analysis have also been proposed [34, 35, 33, 26, 16,
15, 17]. These approaches encode runs of the task set along with conditions for
deadline miss, either as a model checking problem, or a set of constraints. The
encoding is then submitted to off-the-shelf model checkers or SMT solvers such
as Cbmc [19], Z3 [24], or Yices [11], to detect deadline misses.

One of the challenges in such formal modeling and analysis is to scale the
approach to analyze large task sets. The work presented in [34, 35] is currently
capable of analyzing small to medium-sized task sets. Formal methods based
approaches, while being precise in their analysis and results, struggle with the
well-known state space explosion problem. Hence, it is necessary to identify anal-
ysis bottlenecks and opportunities to improve their overall efficiency. With this
as the motivation for this work, we focus on gaining insights into the perfor-
mance of modern SMT solvers with respect to the SMT instances arising from
a schedulability analysis encoding. In particular, we have studied encodings ex-
tended from [34] and [35]. These encodings supports task set execution over



Evaluating SMT Solvers on Schedulability Checking Instances 3

multicore platforms and admit sporadic task instances. Our objectives in this
empirical study are to address the following research questions:

• RQ1: Understand how task complexity affects solver performance e.g., num-
ber of tasks, and number of task instances.

• RQ2: Understand how varying task parameters that induce non-determinism
in the system behaviour, affect solver performance

• RQ3: Understand how solver performance varies with respect to time and
memory, and the presence (absence) of witnesses

Towards addressing the above research questions, we adopt the following
experimentation methodology:

• Design candidate task sets which will serve as representative benchmarks of
SMT instances for the purpose of schedulability analysis

• Conduct controlled experiments by varying task parameters, especially those
that impact the system state-space

• Observe solver performance with default settings

2 SMT encoding for schedulability analysis

We briefly present the schedulability encoding, that has been extended from
previous works [34, 35]. In these works, the schedulability analysis for detecting
task deadline misses was restricted to task sets consisting of only periodic tasks,
deployed on a unicore platform. However, real-world task sets consist of a mix of
periodic and sporadic tasks, deployed on multicore execution platforms [31, 1].
Hence, the schedulability analysis tool is expected to support this class of task
sets.

Let τi ∈ T be a task specified as:

τi := ⟨i, O, J, type, P, C,C⟩ (1)

where i is a unique task id; O is the task offset indicating the delay in release
of the first instance of this task; J is the maximum release jitter i.e each task
instance may experience a delay in release by at most J time units from its
scheduled release time; type ∈ {per, spo} indicates if the task is periodic; P
denotes the task period if type = per, or denotes the minimum inter-arrival time
between consecutive sporadic instances; and C,C denotes that best- and worst-
case execution times of the task i.e each task instance may terminate at any
time point in this interval.

Let H denote the analysis horizon, thus task instances are spawned (symbol-
ically) up to time H. Each task instance is associated with symbolic variables
ri,j , si,j , ei,j , di,j , pi,j that denotes respectively, the release time, start, end, dead-
line time, and processor allocation, of the j-th instance of task i. We assume all
times are intervals are discrete, thus they can be encoded as integers with ap-
propriate scaling of the unit. We assume pi,j ∈ {1, 2, . . . , N} where N is the



4 Metta, Yeolekar, and Chakraborty

number of processors on which task instances could be deployed by the sched-
uler. Further, the processors are assumed to be identical and the scheduler is free
to assign any available processor to the next ready-to-run task instance. In this
work, we assume the scheduling policy is non-preemptive earliest-deadline-first
(NP-EDF).

Definition 1. A run of the task set is a sequence of task instances, sorted on
start time ⟨. . . , (si,j , ei,j , pi,j), . . .⟩, respecting the scheduling policy and processor
work conservation.

The goal of the encoding and subsequent analysis is to check if any task in-
stance misses deadline within the analysis horizon H. Figure 1 denotes the tool
flow indicating processing steps involved in the analysis. The freshly introduced
symbolic variables (Symbolic vars box in Fig. 1), associated with each task in-
stance spawned up to the horizon H, are unconstrained. Appropriate constraints
are introduced on these variables such that the solutions to the constraints cor-
respond exactly to the set of valid runs of the task set T (Encoding Runs box
in Fig. 1). Here, we only briefly list some of the constraints involved.

Constraints on release time A task instance can’t be scheduled unless re-
leased: ri,j ≤ si,j . The release time of every task instance is affected by
jitter: Oi + j × Pi ≤ ri,j ≤ ji +Oi + j × Pi.

Constraint on execution time For each task instance, the execution time is
bounded between the best- and worst-case values as follows: Ci ≤ ei,j −
si,j ≤ Ci. Additionally, the processor must be within the specified range:
1 ≤ pi,j ≤ N .

Constraint on deadline time The deadline for periodic task instances is con-
strained as: di,j = Oi+(j+1)×Pi. And for sporadic instances, it is specified
as: di,j = ri,j + Pi,j . In addition, for all sporadic task instances: ri,0 ≤ Oi,
ri,j ≤ ri,j+1+Pi. Note that sporadic instances may or may not occur within
the analysis horizon H.

Preventing overlap If two task instances, say (i, j) and (m,n), are scheduled
on the same processor, they should not overlap in their execution. This is
encoded as: pi,j = pm,n ⇒ (ei,j ≤ sm,n ∨ em,n ≤ si,j)

Global NP-EDF scheduling order If task instance (i, j) is scheduled earlier
than instance (m,n) (irrespective of the processor assigned), then it must be
that (i, j) had its deadline no later than that of (m,n), or (i, j) was scheduled
before (m,n) was released i.e this pair of jobs did not contend with each
other. This is encoded as: si,j < sm,n ⇒ (di,j ≤ dm,n ∨ si,j < rm,n)

Schedulability check The constraint that checks for deadline miss for any task
instance is encoded as: (e1,0 > d1,0 ∨ · · · ∨ en,k > dn,k), assuming n tasks,
with k being the last job spawned. Additionally, for sporadic instances, the



Evaluating SMT Solvers on Schedulability Checking Instances 5

deadline miss is valid only if the instance was released within the analysis
horizon H.

The encoding step constructs these constraints for each task instance spawned
within the horizon, or pairs of instances, as appropriate. These constraints are
then composed via conjunction and submitted to the SMT solver. The full and
detailed encoding with proof of correctness is beyond the scope of this work and
will be presented elsewhere.

Task Specification

T1: (O1, J1, P1, type, B1, W1)
...
Tn: (On, Jn, Pn, type, Bn, Wn)

Symbolic Vars

r1,0, s1,0, d1,0, p1,0
...
rn,k, sn,k d1,n pn,k

Encoding Runs

r1,0 ≤ s1,0
∧ 1≤ p1,0 ≤ N
∧ (...∨ en,k > dn,k)

SMT Solver

Z3
Yices-SMT2
...

Deployment

-  No. of processors
-  Scheduling Policy
-  Analysis Horizon

Schedulable

TImeout /
Deadline miss 

Solver Options

-  logic
-  get-model
-  solver

Fig. 1. Schedulability analysis tool flow

3 Experiments

The main focus of this work is to assess the impact of variation in task pa-
rameters, on the solver performance. In particular, application-level parameters
that introduce non-determinism in the modeling and analysis, needs a system-
atic study. For this experimentation, we chose some of the top-performing SMT
solvers from [32, 30]. In particular, we chose Z3 [25, 37], Yices-SMT2 [12, 36],
CVC4 [3, 9], CVC5 [2, 10], Opemsmt [18, 27], MathSAT [8, 23]. These are also
some of the most widely used SMT engines and are known to perform well in
SMT competitions [30].

In order to assess the performance and suitability of the above SMT solvers,
we conducted three sets of experiments to answer the research questions. We first
took benchmark task sets from the Papabench, Malardalen, and Scade bench-
marks presented in [21]. However, in [21] some of the task parameters such as
jitter and best-case execution time are not specified. Therefore, we first created
base versions of these task sets by carefully choosing the parameter values such
that scheduling of the tasks according to NP-EDF policy will lead to at least
one task instance missing its deadline. We term these task sets as base task sets.
Their experimental evaluation is presented in Sec. 3.1.



6 Metta, Yeolekar, and Chakraborty

Next, in order to assess the impact of task parameter-level non-determinism
on SMT solvers, and gain insight into solvers are better suited for our encoding
of schedulability analysis, we crafted variants of the base task sets by increasing
(i) jitter, and (ii) worst-case execution time. The corresponding experimental
evaluation is presented in Sec. 3.2.

Finally, any exhaustive schedulability check such as the SMT-based schedu-
lability analysis technique briefly described in this paper, is expected to be ex-
ponentially difficult, as exact multicore schedulability analysis is known to be
NP-hard. The overall state space corresponding to the possible scheduling se-
quences (i.e sequences of task instances, or task runs) increases exponentially
with the input size i.e number of tasks or instances, in this case. The corre-
sponding experimental evaluation is discussed in Sec. 3.3.

3.1 Base task sets

In order to conduct a realistic evaluation, we took three task sets: Papabench, a
free real time benchmark developed for Unmanned Aerial Vehicles, Malardalen
and Scade tasks are crafted by researchers for benchmarking analysis techniques.
We created six task sets, each with at least one deadline violation, varying in
size from 8 to 14 tasks, with processor choice varying from unicore to hexacore.
Further, sporadic tasks are known to pose scalability challenges to schedulability
analysis techniques. Therefore, we varied the number of sporadic tasks from 0
to 2. These task names can be seen in the column Task in Table. 1. The names
of the task sets denote the particular composition of the task set. For example,
n1-t12-spo0.smt2 refers to the SMT encoding of a task set to be scheduled on
a single core (n1), with 12 tasks (t12), out of which there are 0 sporadic tasks.
In this table, TO represents Time Out.

We ran all the selected SMT solvers with default settings on these task sets
with a 5 minute timeout. We limited the maximum number of total task instances
within the analysis horizon to 100. The performance of the solvers in terms of
time and memory is presented in Table. 1. Note that there is a deadline miss
in each task set i.e each SMT instance has a witness or a satisfying assignment
to the symbolic variables in the encoding. From this, we make the following
observations:

• Fastest solver Z3 outperformed the other solvers and CVC5 is the slowest.
• Increase in task complexity Our set of experiments do not reveal any cor-

relation or pattern with increase in number of processors or sporadic tasks,
in the particular case of satisfiable instances. In general, solvers heuristics
are tuned towards quickly discovering witnesses, and thus increase in task
complexity does not seem to penalize the solver performance in the presence
of witnesses.

• Memory consumption Yices-SMT2 is the least memory consuming among
all the solvers

• Overall OpenSMT offers best trade off between time and memory



Evaluating SMT Solvers on Schedulability Checking Instances 7

• Wide variation Performance varies widely across solvers for the same SMT
instance, both in terms of memory and time

• Hardness of the instances In some instances, shallow witnesses were found
quickly, even though the instance size or complexity may be “larger” than
others e.g., n1-t14-spo0 has a shorter witness as compared to n1-t12-spo0.

Task Z3 Y-SMT2 CVC4 CVC5 OpenSMT MathSAT
Tm Mem Tm Mem Tm Mem Tm Mem Tm Mem Tm Mem

n1-t12-spo0 26 133 TO 29 61 137 TO 208 264 110 TO 111
n1-t14-spo0 0 65 0 9 1 42 5 64 1 19 0 52
n3-t8-spo2 10 169 34 38 53 170 107 223 34 192 73 182
n3-t14-spo2 3 112 36 23 50 137 153 178 60 61 38 116
n6-t12-spo2 6 162 23 27 16 151 76 189 17 65 23 163
n6-t14-spo2 70 107 124 21 70 106 207 148 98 66 114 109

Table 1. Solver Performance on base tasksets (Tm in sec and Mem in MB)

3.2 Solver performance with increasing non-determinism

In order to assess the impact of non-determinism introduced by varying task
parameters on the solver performance, we varied the base task sets by increasing
jitter and by increasing wcet. Jitter is the potential delay experienced by each
task instance during its release. Thus, each task instance is released at a non-
deterministic time point within the bounded range, instead of being release at
a fixed periodic time instant. Further, each task instance can terminate non-
deterministically at any time point in the interval [bcet,wcet]. Thus change in
jitter and wcet parameters of the task impacts each corresponding task instance
and thereby the set of runs of the task set. In our experimentation, we increased
jitter and wcet of some of the randomly chosen tasks by at most 10%. The
results are shown in Table. 2 and Table 3. Here, B Tm represents time taken for
the base taskset, J Tm represents time taken for an increased jitter variation of
the base taskset, W Tm represents time taken for an increased wcet variation of
the base taskset, and TO represents timeout, which is restricted to 300 seconds.
From this, we make the following observations:

• Fastest solver Z3 outperformed the other solvers and CVC5 is the slowest.
• Increase in non-determinism due to jitter In most cases, when the in-

stances are satisfiable, increasing jitter is improving solver performance. This
is due to the fact that, although the overall state space has increased due
to jitter, but the solution space too has widened, as there are potentially
more witnesses than earlier, compared to the base case. Hence, with more
witnesses present in the state space, the solvers are generally able to discover
a witness faster than the base case.

• Increase in non-determinism due to wcet Similar to the jitter param-
eter observation above, increasing wcet has a positive impact in this case.
The reason for this is the same as explained above.



8 Metta, Yeolekar, and Chakraborty

Task Z3 Yices-SMT2 CVC4 CVC5 OpenSMT MathSAT
B Tm J Tm B Tm J Tm B Tm J Tm B Tm J Tm B Tm J Tm B Tm J Tm

n1-t12-spo0 27 4 TO TO 62 147 TO TO 265 224 TO 117
n1-t14-spo0 1 1 0 0 2 1 6 6 1 1 1 1
n3-t8-spo2 10 12 34 33 54 47 108 128 35 46 74 60
n3-t14-spo2 3 4 37 34 51 72 153 180 60 81 39 45
n6-t12-spo2 7 22 24 19 16 16 76 100 18 22 24 33
n6-t14-spo2 70 16 125 66 111 57 207 131 98 166 155 TO

Table 2. Solver Performance with increasing jitter (Tm is time in sec)

Task Z3 Yices-SMT2 CVC4 CVC5 OpenSMT MathSAT
B Tm W Tm B Tm W Tm B Tm W Tm B Tm W Tm B Tm W Tm B Tm W Tm

n1-t12-spo0 27 51 TO 208 62 TO TO TO 265 139 TO TO
n1-t14-spo0 1 1 0 0 2 2 6 5 1 1 1 2
n3-t8-spo2 10 13 34 33 54 59 108 164 35 36 74 47
n3-t14-spo2 3 6 37 38 51 49 153 154 60 80 39 41
n6-t12-spo2 7 10 24 13 17 17 76 120 18 23 24 72
n6-t14-spo2 70 6 125 31 111 47 207 105 98 63 155 82

Table 3. Solver Performance with increasing WCET (Tm is time in sec)

3.3 Solver performance for full state space exploration

Finally, we assess the impact of non-determinism on solver performance, when
the task set is schedulable i.e no deadline miss. In this case, the solvers are forced
to explore the entire state space i.e all the possible runs of the task set, stressing
out the internal heuristics of the solvers. We created such task sets by carefully
adjusting the values of task parameters such that the task set is schedulable.
First, we created a set of tasks from a base task, by varying only the jitter
parameter of different tasks. Then, we created another set of tasks by varying
only the wcet of different tasks. Table 4 shows the results for a representative
base task set n4-t6-spo0. Bother jitter and wcet increase was restricted to
10% of the initial values. Here, TO represents Time Out. From this, we make
the following observations:

• Fastest solver Yices-SMT2, closely followed by OpenSMT, significantly out-
performed the other solvers. Surprisingly, Z3, which performed the fastest
given the presence of witnesses (deadline violations), is the slowest to explore
the entire states space i.e unsatisfiable instances.

• Memory-efficient Yices-SMT2 is the least memory consuming solver across
the instances, while the CVC twins require most memory.

• Increase in non-determinism due to jitter In all cases, when the instances
are unsatisfiable, successively increasing jitter is negatively impacting solver
performance, as expected. The solver has to explore increasingly larger state
space to conclude schedulability.



Evaluating SMT Solvers on Schedulability Checking Instances 9

• Increase in non-determinism due to wcet Here, we have a mix of re-
sults. In the case of CVC4 and CVC5, the observation matches that of jitter
described above. However, in the case of Yices-SMT2, OpenSMT and Math-
SAT, with increasing number of tasks having a modified wcet, the solver
performance is improving instead of degrading. This warrants more experi-
mentation.

Task Z3 Y-SMT2 CVC4 CVC5 OpenSMT MathSAT
Tm Mem Tm Mem Tm Mem Tm Mem Tm Mem Tm Mem

n4-t6-spo0-jitter 227.25 146 31.09 26 63.85 159 131.59 209 27.35 101 52.79 146
n4-t6-spo0-jitter-4t TO 151 30.25 25 99.55 206 218.06 180 45.17 127 76.97 155
n4-t6-spo0 202.40 147 24.19 24 66.05 182 149.97 162 35.40 100 59.12 156
n4-t6-spo0-wcet1 TO 150 42.2 28 85.2 173 112.4 211 48.1 128 106.2 167
n4-t6-spo0-wcet2 TO 149 22.3 23 112.7 182 173.1 0 39.0 98 80.2 153

Table 4. Solver Perf. on full state-space exploration (Tm in sec and Mem in MB)

4 Concluding remarks

The availability of powerful SMT solvers have opened up the possibility of tight
schedulability analysis for a variety of task models and complex architectures.
But our study in this paper clearly shows that the performance of SMT solvers
can vary significantly depending on the task complexity (RQ1), amount of non-
determinism (RQ2), and full state space exploration (RQ3). Overall, Z3, Yices-
SMT2 and OpenSMT seem to be better suited for our encoding of the schedula-
bility analysis problems we considered. In the future, we intend to conduct more
experiments on a wider range of task sets, with additional solvers.

References

1. Akesson, B., et al.: A comprehensive survey of industry practice in real-time sys-
tems. Real Time Systems 58(3) (2022)

2. Barbosa, H., et al.: cvc5: A versatile and industrial-strength SMT solver. In: 28th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS) (2022)

3. Barrett, C.W., et al.: CVC4. In: 23rd International Conference on Computer Aided
Verification (CAV) (2011)

4. Chakraborty, S., Erlebach, T., Thiele, L.: On the complexity of scheduling con-
ditional real-time code. In: 7th International Workshop on Algorithms and Data
Structures (WADS) (2001)

5. Chakraborty, S., Faruque, M.A.A., Chang, W., Goswami, D., Wolf, M., Zhu, Q.:
Automotive cyber-physical systems: A tutorial introduction. IEEE Design & Test
33(4), 92–108 (2016)

6. Chakraborty, S., Thiele, L.: A new task model for streaming applications and its
schedulability analysis. In: Design, Automation and Test in Europe Conference
((DATE) (2005)

7. Chang, W., Chakraborty, S.: Resource-aware automotive control systems design:
A cyber-physical systems approach. Foundations and Trends in Electronic Design
Automation 10(4), 249–369 (2016)



10 Metta, Yeolekar, and Chakraborty

8. Cimatti, A., et al.: The MathSAT5 SMT Solver. In: 19th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS)
(2013)

9. CVC4 Solver (2023), https://cvc4.github.io/
10. CVC5-website (2023), https://cvc5.github.io/
11. Dutertre, B.: Yices 2.2. In: 26th International Confernece on Computer-Aided Ver-

ification (CAV) (2014)
12. Dutertre, B.: Yices 2.2. In: 26th International Conference on Computer-Aided Ver-

ification (CAV) (2014)
13. Goswami, D., Schneider, R., Chakraborty, S.: Relaxing signal delay constraints in

distributed embedded controllers. IEEE Trans. Contr. Sys. Techn. 22(6), 2337–
2345 (2014)

14. Goswami, D., et al.: Time-triggered implementations of mixed-criticality automo-
tive software. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE) (2012)

15. Gu, Z.G., et al.: A model-checking approach to schedulability analysis of global
multiprocessor scheduling with fixed offsets. International Journal of Embedded
Systems (IJES) 6(2-3) (2014)

16. Guan, N., et al.: Exact schedulability analysis for static-priority global multiproces-
sor scheduling using model-checking. In: Proceedings of 5th International Work-
shop on Software Technologies for Embedded and Ubiquitous Systems (SEUS)
(2007)

17. Guan, N., et al.: Schedulability analysis of global fixed-priority or edf multiproces-
sor scheduling with symbolic model-checking. In: Proceedings of 11th International
Symposium on Object and Component-Oriented Real-Time Distributed Comput-
ing (ISORC) (2008)

18. Hyvärinen, A.E.J., et al.: Opensmt2: An smt solver for multi-core and cloud com-
puting. In: The International Conference on Theory and Applications of Satisfia-
bility Testing (SAT) (2016)

19. Kroening, D., Tautschnig, M.: Cbmc – c bounded model checker. In: 20th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS) (2014)

20. Kumar, P., et al.: A hybrid approach to cyber-physical systems verification. In:
Design Automation Conference (DAC) (2012)

21. Lunniss, W., Altmeyer, S., Davis, R.: A comparison between fixed priority and edf
scheduling accounting for cache related pre-emption delays. Leibniz Transactions
on Embedded Systems 1(1) (2014)

22. Masrur, A., et al.: VM-based real-time services for automotive control applications.
In: 16th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA) (2010)

23. MathSAT Solver (2023), https://mathsat.fbk.eu/
24. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: 14th International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (2008)

25. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (2008)

26. Nasri, M., Brandenburg, B.B.: An exact and sustainable analysis of non-preemptive
scheduling. In: IEEE Real-Time Systems Symposium (RTSS) (2017)

27. OpenSMT Solver (2023), https://verify.inf.usi.ch/opensmt



Evaluating SMT Solvers on Schedulability Checking Instances 11

28. Roy, D., et al.: Multi-objective co-optimization of FlexRay-based distributed con-
trol systems. In: 22nd IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS) (2016)

29. Schneider, R., et al.: Multi-layered scheduling of mixed-criticality cyber-physical
systems. Journal of Systems Architecture - Embedded Systems Design 59(10-D),
1215–1230 (2013)

30. SMTComp-2023 (2023), https://smt-comp.github.io/2023/participants.
html

31. Sun, Z., Guo, M., Liu, X.: A survey of real-time scheduling on multiprocessor
systems. In: 39th National Conference of Theoretical Computer Science, (NCTCS)
(2021)

32. Weber, T., et al.: The SMT competition 2015-2018. Journal on Satisfiability,
Boolean Modeling and Computation 11(1) (2019)

33. Yalcinkaya, B., Nasri, M., Brandenburg, B.B.: An exact schedulability test for non-
preemptive self-suspending real-time tasks. In: 23rd Design, Automation & Test in
Europe Conference & Exhibition, (DATE) (2019)

34. Yeolekar, A., et al.: Refining task specifications using model checking. In: 24th
International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA) (2018)

35. Yeolekar, A., et al.: Checking scheduling-induced violations of control safety prop-
erties. In: 20th International Symposium on Automated Technology for Verification
and Analysis (ATVA) (2022)

36. Yices-SMT2 Solver (2023), https://yices.csl.sri.com/
37. Z3 Solver (2023), https://github.com/z3prover/z3.git
38. Zhang, L., et al.: Task- and network-level schedule co-synthesis of ethernet-based

time-triggered systems. In: 19th Asia and South Pacific Design Automation Con-
ference (ASP-DAC) (2014)


