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Abstract. Examples of cyber-physical systems (CPS) are many — au-
tonomous and semi-autonomous cars, robots, industrial manufacturing
systems, to name a few. Today, many critical functions in these systems
are controlled by embedded computers and software, where the algorith-
mic core of the software is made up of multiple feedback controllers. The
design of such control algorithms follow well-developed principles of ab-
straction, and rely on many simplifying assumptions on the implemen-
tation platform. However, as both—the controllers and the embedded
computers implementing them—become more complex, heterogeneous,
and distributed, traditional abstractions are increasingly becoming infea-
sible. In particular, it is becoming challenging to have efficient implemen-
tations, while ensuring certifiability. We will discuss the reasons behind
this, and ongoing research in our group to address these challenges.

Keywords: Cyber-Physical Systems - Real-Time Systems - Controller
Synthesis

1 Introduction

The design of cyber-physical systems (CPS) software requires an explicit model-
ing of the dynamics of physical systems being controlled by computers. There is
a large volume of existing literature on how to design such controllers and imple-
ment them as software [65]. However, with the advent of autonomous systems—
viz., autonomous cars, robots, drones, etc.—control strategies have become more
complex, perception processing increasingly relies on machine learning (ML), and
the hardware platforms used to implement such controllers have also become
more heterogeneous and distributed in their architecture. All of these develop-
ments have made it difficult to reconcile the models of CPS with their software
implementations running on real-embedded systems. Because of this, certifying
the correctness of autonomous CPS [8,13] is posing a challenge in the adoption
of technologies like autonomous vehicles and robots.

Towards addressing this challenge, work has been done on formal verification
of control strategies [2,77,31,9,42], and on the verification and testing of ML
algorithms used for sensor and perception processing [37,84]. A considerable
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amount of research has also been done on closing the “model-implementation
gap” [81,80,10,67] arising from the assumptions made when designing con-
trol strategies, versus the realities of modern distributed implementation plat-
forms [11], as outlined above. As implementation platforms become more com-
plex, timing assumptions made during controller design [41, 40] are increasingly
difficult to ensure and verify [24]. In fact basic timing analysis tasks such as
estimating safe and tight worst case execution time (WCET) estimates of soft-
ware tasks is becoming very challenging [86,78]. For WCET estimates to be
safe, they are increasingly overestimated. Meeting all task deadlines with such
overestimated WCET values leads to pessimistic or infeasible implementations.
Further, in domains like automotive, in-vehicle architectures are rapidly moving
away from “one function per ECU” or federated, to multiple functions sharing
resources, viz., “integrated” architectures [55]. The clear trend is that future ar-
chitectures will be less “static” than before, as indicated by developments like
AUTOSAR Adaptive [51] and service-oriented paradigms [22,4]. As a result,
the timing non-determinism experienced by control software running on such
implementation platforms will only continue to increase. But in traditional de-
sign processes control engineers assume certain timing properties or deadlines
that the control tasks need to satisfy for them to behave as desired, and the
embedded systems engineers schedule them to meet those deadlines [50]. This
ensures a clean separation of concerns, allowing the two groups of engineers to
work independently.

Such a design flow where system components are designed assuming certain
deterministic reliability guarantees from the other components is increasingly
breaking down. This is not only the case with timing uncertainties, but is a
broader design challenge. For example, when using ML components for state
estimation — as it occurs when processing camera, radar or lidar data in au-
tonomous cars — the results cannot be assumed to be perfectly correct. Similarly,
100% security [85] cannot be assumed at moderate cost during data transmis-
sion from the plant to the controller or the controller to the actuator. In all of
these cases, ensuring 100% reliability comes at the expense of prohibitive cost
or excessive design pessimism. Hence, an important question is: Is it possible to
certify system safety of autonomous CPS, while ensuring efficiency? We claim
that it is indeed possible to do so, and outline some of our recent work [35, 26, 88]
on certifying system safety under implementation platform timing uncertainties.

In the next section we outline our work on certifying a controller implemen-
tation for safety, and briefly describe how such a scheme can also be used to
synthesize task schedulers that aim not towards meeting deadline constraints,
but towards satisfying system-level safety properties. In Section 3 we describe
some related work, mostly focusing on prior work done by us.

2 Safety Certification and Synthesis

By focusing on timing uncertainties, in this section we briefly outline how closed-
loop controllers can be certified for safety even when control tasks occasionally
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miss their deadlines. We then show how this could be exploited to synthesize
schedulers for scheduling multiple control tasks. Such a scheduler can miss task
deadlines, but will ensure that the specified system-level safety property of each
controller is satisfied. With a less stringent real-time constraint (wviz., allowing
tasks to miss deadlines), it is possible to obtain more efficient implementations
of control software or allow more pessimistic WCET estimates. Such a scheduler
will be able to schedule more control tasks on an implementation platform,
compared to a conventional task scheduler whose goal will be to meet real-
time—instead of system-level safety—constraints.

2.1 Safety Certification with Timing Uncertainties

Instead of assuming that the platform implementing control software has an ideal
timing behavior, viz., no deadline misses, can we certify system safety when the
control task misses deadlines [59]?7 The underlying idea is to first define a notion
of safety. Towards this, we construct a safety pipe around the system trajectory
in the state space that captures the ideal dynamics of the closed-loop system.
Such an ideal dynamics or trajectory is when the system experiences an ideal
timing behavior, e.g., no deadline misses. In the presence of deadline misses, the
system’s dynamics will deviate from the ideal trajectory, and the extent of the
deviation will generally correspond to the number of deadline misses the control
task experiences. But as long as the deviation is not significant, and in particular
is contained within the safety pipe, the system can be certified to be safe. The
diameter or shape of the safety pipe can be specified based on the desired notion
of safety [35].

Towards realizing this idea, we first characterize deadline hit/miss patterns of
a control task as a regular language [48]. Using approximate reachability analysis
we then check whether all patterns admitted by a given language meet the above
safety requirement. In other words, if the deviation of the closed-loop dynamics
of the system from the dynamics when the control task always meets its deadline,
is less than a specified bound.

2.2 Synthesizing schedulers for system safety

The procedure for checking system-level safety in the presence of timing un-
certainties may also be extended to synthesize schedules for multiple control
tasks [26, 88]. Here, given safety specifications for each control task, the question
is: Can these tasks be scheduled, while allowing deadline misses, such that the
safety specification for each controller is satisfied?

The synthesis involves (i) again characterizing deadline hit/miss patterns
as regular languages, (ii) using approximate reachability analysis techniques to
check whether all hit/miss patterns admitted by a given regular language meet
specified safety properties using techniques, and finally (iii) using automata theo-
retic techniques to check whether these schedules satisfy the scheduling /resource
constraint. An example of such a constraint could be that time is partitioned
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into equal-length slots and no more than two tasks can be scheduled in each time
slot. This means that tasks that are not scheduled in a slot miss their deadlines.

3 Related Work on Efficient & Certifiable CPS Design

Since the complexity of CPS hardware architectures has been rapidly growing,
are they susceptible to a variety of manufacturing variabilities, transient faults
and aging issues, that might impact the software execution and the results they
produce [25,17,16,23]. The increasing complexity of software in autonomous
CPS and the associated scheduling [12,90, 74| and management [64,71,73] of
such software also contributes to growing safety concerns. This has led to a
variety of work on testing [79,43,56] and compositional formal verification of
real-time control software and CPS architectures [9, 83, 34, 62, 76].

Different control-theoretic methods, reachability analysis, and cross-layer de-
sign techniques have been proposed for safety verification of CPS [35,68, 18, 44,
27]. Timing uncertainties increase in CPS architectures as they become more
distributed and use heterogeneous architectures and communication protocols.
As a result, control signals are subject to varying delays that can compromise
the safety of the closed-loop system, even if the control strategy is functionally
correct. Several papers have addressed this problem [29,48,6,82|. In addition
to schedule and implementation architecture synthesis, the orthogonal problem
of synthesizing delay-tolerant controllers has been studied in [28, 52, 15], includ-
ing the synthesis of safe controllers that exploit features of the implementation
platform and its underlying operating system [21, 19, 20]. Further, the problem
of co-synthesizing controllers and their underlying task schedules have been ex-
plored in (75,66, 7,49]. All of these problems also have connections to providing
timing isolation to critical control software [50,69], scheduling to meet timing
constraints [61, 39, 89, 70, 46, 38] and the scheduling of mixed-criticality tasks [14,
30]. In the case of vision-based control systems, the accuracy of the (often ML-
based) vision processing system [5,3,57] plays an important role in the safety
certification of the closed-loop system. Recent work has focused on emerging
CPS topics like electric vehicles [47,45, 87, 1], autonomous vehicles [72, 36|, CPS
security [53,85] and safety and certification issues arising in them. With the
growing adoption of electric vehicles and drones, there has been increasing fo-
cus on the safety and reliability of battery systems [17,58,54]. Work on this
topic also relies on battery aging models as studied in the context of mobile de-
vices [63], but is substantially different from prior work on energy management
for such devices [32,33,60], and is currently much less developed.

It is worth noting that conventional controller design approaches focus on
ensuring stability or on optimizing control performance metrics like peak over-
shoot. During such a design process, computer science or algorithmic efficiency
metrics pertaining to computation, communication, or memory consumption are
not accounted for. These only come into picture at the implementation stage,
by when the control strategy has already been frozen. Some of our work has
also attempted to incorporate these metrics at the controller design stage [19,
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15, 21], which result in more efficient controller implementations, while ensuring
stability, control performance, and also certifiability.

4 Concluding Remarks

Current workflows for CPS design attempt to design each component in isolation,
and aim to optimize a “local” metric, like meet all task deadlines. While this
enables separation of concerns and design modularity, in the process of ensuring
system safety and certification, it also results in undue pessimism. We argue that
by relaxing the notion of safety and allowing each of the system components to
admit some error or failure, it would be possible to ensure both — efficiency and
certifiability. We have recently shown this in the case of timing and its impact on
system-level safety. Our future research agenda is to determine how this strategy
would also extend to other system components, such as those responsible for
security and ML.
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