
Wear Leveling-Aware Active Battery Cell Balancing

Enrico Fraccaroli1, 3, Seongik Jang2, Logan Stach3, Hoeseok Yang4, Sangyoung Park5 and Samarjit Chakraborty3

1University of Verona, Italy.
2Hyundai Motor Company, South Korea.

3University of North Carolina at Chapel Hill, NC, USA.
4Santa Clara University, CA, USA.

5Technical University of Berlin, Germany.

Abstract—Due to manufacturing variabilities and temperature
gradients within an electric vehicle’s battery pack, the capacities
of cells in it decrease differently over time. This reduces the
usable capacity of the battery – the charge levels of one or
more cells might be at the minimum threshold while most
of the other cells have residual charge. Active cell balancing
(i.e., transferring charge among cells) can equalize their charge
levels, thereby increasing the battery pack’s usable capacity. But
performing balancing means additional charge transfer, which
can result in energy loss and cell aging, akin to memory aging
in storage technologies due to writing. This paper studies when
cell balancing should be optimally triggered to minimize aging
while maintaining the necessary driving capability. In particular,
we propose optimization strategies for cell balancing while
minimizing their impact on aging. By borrowing terminology
from the storage domain, we refer to this as “wear leveling-
aware” active balancing.

Index Terms—Active Cell Balancing, Charge Equalization,
Battery Management, Modeling, Simulation

I. INTRODUCTION

The widespread adoption of Electric Vehicles (EVs) faces
a key challenge – battery aging [1], [2]. How to mitigate
aging has attracted considerable attention since the battery is
the most expensive component of an EV. Aging diminishes
the charge retention capacity of cells and poses a problem
in any Lithium-ion (Li-ion) battery pack [3]. Because of
manufacturing variability and temperature gradient within a
pack, its cells can age at different rates [4]. As a result, the
charge level of cells in a pack can differ despite them all being
subjected to the same charging and discharging current.

In the example of Fig. 1, an imbalanced battery pack is
dealt with by using cell balancing, highlighting two key issues:
(1) different maximum capacities of cells (Qmax,i) caused by
manufacturing deviation or differential aging, and (2) different
total charge in each cell (Qi) at any time. Although in this
example, every cell is charged or discharged at the same rate,
because of the differences in their capacities Qmax,i, their
charge levels are different at any point in time. One of the
main consequences of such a charge imbalance is a reduction
in the usable capacity of the battery pack. Fig. 1 exemplifies
the problem where, after the EV has driven for some time,
the charge level of the second cell reduces to zero, while the
first one still has charge left in it. Once the charge level of a
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Figure 1. Example of battery usage, where cell balancing can increase the
driving range of a typical battery pack.

cell goes below or above certain thresholds (e.g., below 20%
or above 100%) [5], it should not be discharged or charged
any further. Violating these thresholds might not have an
immediate impact on the battery itself. Still, if repeated, it can
lead to permanent changes in the electro-chemical properties
of the battery and sub-optimal performances. Two solutions
can extend the usage of the battery: (1) charging the pack or
(2) transferring charges between cells so that all of them have
some charge. The latter is known as cell balancing, and the
objective is to equalize the State of Charge (SoC) between
the cells of a pack. The SoC represents a cell’s charge level
relative to its capacity and is expressed as a percentage.
Innovations in this paper: Active cell balancing comes at
a price. Migrating charges causes energy loss and uneven
aging of cells, decreasing their capacity and increasing charge
imbalance. We should use it cautiously and do it on an
as-needed basis to minimize its negative effect on aging
instead of doing it at every opportunity. When should we
trigger active cell balancing, and by how much should we
balance the battery pack? These are non-trivial questions that
previous studies have not addressed yet, and this paper aims
to answer them. Towards this, we assume that the EV has
to complete a mission, defined by the distances it travels, its
times, and the amount of charging/discharging current. Given
such a mission, our goal is to determine the balancing actions
to accomplish it while minimizing the aging of the cells.
Borrowing terminology from the storage technologies domain,
we refer to this as wear leveling-aware, active cell balancing.

This paper shows that determining the optimal balancing
schedule is an optimization problem. The main contributions
are formulating and solving this problem, which fills an
essential gap in the active cell balancing literature. An assump-
tion we make is the notion of a mission and our complete
knowledge about it. We encourage the readers to see this
as a foundational step towards solving the more general and
realistic problem, where the “mission” is not entirely known,
and its various components are only specified in a stochastic



setting. The resulting stochastic optimization problem can be
solved by leveraging the solution we propose in this paper.

II. BACKGROUND

Much literature exists on automotive embedded systems and
software [6], [7]. While the issue of active power management
arises in battery-operated devices [8]–[10], a different form of
power management in combination with automotive embedded
systems arises in electric vehicles. This section introduces this
and outlines basic concepts related to battery aging and some
prominent cell-balancing architectures. It then explains the
non-neighbor active cell balancing architecture we rely upon.

A. Battery aging models

Aging-induced degradation of Li-ion batteries with usage is
inevitable, and both external and internal factors can influence
it. There are several approaches to model battery degradation,
and in general, they fall into two categories: empirical [11] and
electro-chemical [12] models. As the name implies, the former
is a simple and effective model based on parameters fitted
from extensive measurement data. The latter describes and
mimics the underlying electrochemical processes that occur
inside a battery during its lifetime. Section IV-A provides a
detailed description of the model we rely upon in this paper,
specifically, the empirical model presented in [11].

B. Cell balancing architectures and strategies

There are two prominent families of cell balancing architec-
tures: passive and active. Passive balancing equalizes the SoC
across cells by dissipating excess energy from cells to reach
the charge level of the cell with the lowest SoC. Although
simple, this strategy wastes energy that could instead be used
for driving. It also increases the temperature of the pack and
further accelerates aging (see [11] for more details). Active
balancing equalizes SoC by migrating charge among cells. It
is more advantageous and has been extensively studied in the
literature recently. Follows a list of the most prominent active
cell balancing architectures and strategies.

Depending on the energy storage element, we could con-
sider several variations of the active cell balancing archi-
tectures in this work. There are three prominent families of
architectures, i.e., capacitor-based [13], inductor-based [14],
and transformer-based [15]. In this section, we first discuss a
capacitor-based one, followed by an inductor-based one, and
finally, we provide a lengthy description of a transformer-
based one that we relied upon in this work. The approach in
this paper is compatible with any of these variations; we need
access to the software controlling when balancing is activated.

In this paper, we rely upon a transformer-based architecture
that enables exchanging charges between non-adjacent cells,
improving balancing efficiency and time [15]. The proposed
balancing architecture equips each cell with a balancing mod-
ule composed of the flyback transformer and several switches.
It then controls each switch, establishing a path for transferring
charges from the source to the destination cell, passing through
a temporary energy buffer. Thanks to its topology, charges can

be physically transmitted and received simultaneously among
multiple pairs of cells. With the term single transfer cycle,
we refer to the time it takes for the software-based controller
to operate the control signals that actuate the switches and
transfer energy from one cell to another. The time it takes
to perform the whole transfer operation is identified by 1)
the charging of the first winding and 2) the transfer of the
charges to the non-adjacent cell. Furthermore, the transfer time
depends on the pair of cells involved in the operation (more
details on this in Section V). For the remainder of the paper,
we identify the time it takes to perform single transfer cycle
from the i-th to the j-th cell with Tc(i, j).

III. RELATED WORK

There are several balancing strategies for equalizing battery
charges. [14] proposes an inductor-based balancing architec-
ture that allows concurrent charge transfers between non-
adjacent cells. It uses a heuristic-based balancing strategy
that selects a set of charge transfer pairs and the appropriate
architecture that enables those transfers. A transformer-based
balancing architecture that enables concurrent charge transfers
between non-adjacent cells is studied in [15]. Here, a hybrid
balancing strategy transfers charges between individual cells
and from a single cell to a group of cells and vice versa,
with increased energy efficiency and low balancing time. [16]
proposes an active balancing strategy focusing on minimizing
energy loss and balancing time. While these strategies might
achieve their objectives, they do not consider the aspects
related to batteries’ State of Health (SoH). They all consider
cells to be identical, disregarding the effect of manufacturing
process deviation on the physical aspects of the batteries
and, consequently, on balancing. In contrast, [17] considers
cells with different charge/discharge rates and formulates a
balancing strategy that compensates for it. It extends the usable
time when discharging and reduces the charging time through
preconditioning. However, its primary goal is to extend the
battery’s usable capacity, and it does not aim to minimize the
impact on cell aging.

Other studies propose SoH-aware cell balancing strategies.
Recently, [18] described an active cell balancing strategy
that extends battery pack lifespan by mitigating the thermal
gradient inside the pack. However, it considers an abstracted
balancing behavior without concrete consideration of actual
balancing operations. [19] proposes a heuristic-based active
cell balancing. After studying the aging model, it concludes
that letting weaker cells rest can extend the battery pack’s
lifespan. It proposes a balancing strategy where healthier cells
help the other ones discharge less load current. However, it
assumes a simplified balancing operation instead of a realistic
transferring process. The heuristic strategy cannot be based on
a quantitative optimization of charge transfer.

This paper proposes an optimized balancing strategy based
on the quantitative model of the imbalance evolution over time,
with an analytic model of the balancing operation.



IV. SYSTEM MODEL

This section shows the model of the batteries, the driving
profile we use to formulate our optimal balancing strategy and
our analytic model of active cell balancing architecture.

A. Battery Model

In this paper, we consider the typical battery pack mounted
on EVs, consisting of 96 series-connected modules, and each
module is composed of 24 parallel connected cells. Let us
assume that the parallel cells are electronically indistinguish-
able, so the charging and discharging currents are evenly
distributed between parallel cells. Ideally, each manufactured
cell has a nominal capacity of 2.5Ah; however, it eventually
differs from the nominal value due to different factors, from
manufacturing process variation to aging. The ratio of the
current maximum capacity of a cell to the nominal one of
a new cell is a good indicator of its degree of aging, thus
called SoH, and is expressed as a percentage.

Self-discharging is a chemical phenomenon that causes bat-
teries to lose charge even when not connected to an electrical
load. These are usually called self-discharging currents and are
the main reason for charge imbalance inside battery packs [20].
Furthermore, Li-ion battery cells are known to charge and
discharge at different rates [21], which represents another
source of imbalance. Throughout this paper, we denote with
Qmax,i the nominal capacity of the i-th cell and its remaining
charge with Qi while we denote its self-discharge current with
Isr,i. Charge and discharge rates are denoted as ηc,i and ηd,i,
respectively, and describe the efficiency by which electrons
are transferred from and to the cells.

The battery degrades with repeated charge and discharge
cycles. We can compute the percentage of capacity lost during
the lifetime of the i-th cell as follows [11]:

Qloss,i = a · eb·Crate,i ·Ahthrp,i , (1)
where Crate,i is the measured ratio of current to the maximum
capacity, and Ahthrp,i is the amount of charged and dis-
charged current. Meanwhile, a and b are tunable temperature-
dependent coefficients. Section V explains how both Crate,i

and Ahthrp,i are computed. We can compute the effect of
aging on the SoH for the i-th cell as follows:

SoHi [%] = 100−Qloss,i . (2)
When the SoH reaches 80% (i.e., we have lost more than
20%), the battery is considered to be in its end-of-life state
(or second-life state) [22]. Ideally, it becomes inefficient if
installed on an EV; however, these second-life batteries still
have some use in non-automotive applications.

B. Driving Profile Model

We consider the driving profile (mission) as a finite list
of n segments, each representing the current usage and its
length in terms of time. The current usage can be any of three
among discharging (I > 0), charging (I < 0), and idle current
(I = 0). We can formally describe the driving profile as a
sequence of tuples as follows:

M = ⟨⟨I1, t0, t1⟩, ..., ⟨Ik, tk−1, tk⟩, ..., ⟨In, tn−1, tn⟩⟩ , (3)

where Ik is the current usage during the whole segment, while
tk−1 and tk are the starting and ending times of the k-th
segment, respectively. Without loss of generality, we assume
that the current usage inside a segment remains constant.
Nevertheless, we can consider varying currents by splitting a
segment into smaller segments with different current usages.
Given a mission, we can model the current usage at time t as
a piecewise constant function as follows:

I(t) = Ik | tk−1 ≤ t < tk . (4)
We can formulate the remaining charge amount of the i-th cell
after the k-th segment as follows:

Qk
i = Q0

i −
∫ tk

0

(ηi · I(t) + Isr,i) dt , (5)

where ηi is ηc,i when we are charging, ηd,i when we are
discharging, or 0 when idle.

C. Analytic Model of Active Cell Balancing

Several active cell balancing architectures exist, as discussed
in Section II. This paper uses the balancing architecture
proposed in [15], which enables concurrent charge transfers
between non-neighbor cells within the maximum distance d.
The value d is computed based on the voltage the switches
composing the architecture can withstand. Although concur-
rent charge transfer is possible, balancing paths cannot overlap
between multiple pairs as it would cause a short circuit. The
following equations are inspired by the work in [16], and we
refine them to enable the novel formulation of Section V.

The transmitted charge from the i-th cell to another one
during a single transfer operation is computed as follows:

Qtx(i) = ln
(

Vi

Vi−Ipeak·Rs(i)

)
· L·Vi

Rs(i)2
− L·Ipeak

Rs(i)
,(6)

where Vi is the voltage of the i-th cell, Rs(i) is the parasitic
resistances of the circuit around it, L is the inductance of
the secondary winding of the transformer, and Ipeak denotes
the peak current that flown through it. Specifically, Rs(i)
considers the source cell resistance, the parasitic resistances
of its winding, and the parasitic resistances of its switches.

The amount of charge that the i-th cell receives from the
j-th one in a single transfer operation is computed as follows:

Qrx(i, j) = ln
(

Vi

Vi+Ipeak·Rd(i,j)

)
· L·Vi

Rd(i,j)2
+

L·Ipeak

Rd(i,j)
, (7)

where Rd(i, j) is the total resistance in the path from the re-
ceiving cell i to the source cell j and is directly proportional to
the distance between them. Specifically, Rd(i, j) considers the
source cell resistance, the parasitic resistances of its winding,
and all the parasitic resistances of the switches encountered on
the path. It does not include the destination cell’s resistance,
which is already considered by Rs(i).

V. BALANCING METHODOLOGY

This section proposes our balancing strategy accounting for
different cell capacities, called wear leveling-aware active cell
balancing. This strategy aims to minimize unnecessary balanc-
ing operations based upon a limited knowledge of our future
missions, i.e., only for a given time window. Conversely, the



state-of-the-art balancing strategy proposed in [16], which we
call opportunistic balancing, assumes to equalize the charge
of cells at every opportunity, regardless of future missions.

The baseline for comparing balancing strategies is the no
balancing approach, which has no impact on the aging of
the cells. While opportunistic balancing instead exploits every
single idle period to balance the SoC of the cells. It effectively
keeps the charge levels equalized at all times but leads to
accelerated aging of the cells. However, wear leveling-aware
balancing delays the balancing operation and performs it only
when necessary, i.e., when the SoC of some cells is about to
go below 20% during the next drive activity. We can also set
a higher threshold to increase our safety margin.

To summarize the effect of each strategy on aging. The
baseline is the no-balancing strategy, which has a low im-
pact on aging, but we might not be able to complete our
mission with it. Wear leveling-aware balancing speeds up
aging and ensures we can complete future missions. Similarly,
opportunistic ensures we can complete future missions at the
expense of faster aging. This paper wants to find the trade-off
between the two opposing strategies.

A. Wear leveling-aware balancing

In this paper, we propose an optimal way to perform bal-
ancing that guarantees fulfilling the foreseen future missions
when we know the details of the next day’s mission. The idea
is to receive the details of the next day’s mission during the
night, i.e., when the vehicle is inactive and probably charging.

We have already established that we cannot further dis-
charge serially connected cells when even one of them runs out
of charge. The usable capacity, namely QUC , can be defined
as the minimum remaining charge between cells. When we
know the mission for the following day, we can quantitatively
calculate the remaining charge of each cell after each discharge
activity by using Eq. (5). Due to the different self-discharge
currents and nominal capacities, the imbalance may get exac-
erbated, making the following activities unachievable without
balancing. In some cases, we would need to perform balancing
during idle segments. The set of indices of idle segments up
to the k-th segment can be defined as follows:

Lk = {l|1 ≤ l ≤ k, Il = 0} . (8)

While the voltage levels of cells are assumed to remain
constant during a single balancing event, they may vary
between balancing events as the charge level may vary severely
according to usage. The analytic models of transmitted and
received charges shown in Eqs. (6) and (7) must be extended to
account for different voltage levels at different idle segments.
As such, we need to change them as follows:

Ql
tx(i) = ln

(
V l
i

V l
i −Ipeak·Rs(i)

)
· L·V l

i

Rs(i)2
-L·Ipeak

Rs(i)
, (9)

Ql
rx(i, j) = ln

(
V l
i

V l
i +Ipeak·Rd(i,j)

)
· L·V l

i

Rd(i,j)2
+L·Ipeak

Rd(i,j)
. (10)

Before building our constraints, we need to define our deci-
sion variable CT l

i,j , which denotes the number of transfer
operations from the i-th cell to the j-th during the l-th idle

period. Notably, the amount of charge transmitted and received
depends on the distance between the pairs of cells and their
voltages. The cell voltage is proportional to the SoC of cells.
In this paper, we assume that cell voltage remains constant
during the balancing process as the difference in charge is
negligible [16]. We also assume that the balancing operations
happen only when the pack is not utilized, i.e., during the idle
periods. We define Pi as the set of “compatible” cells that
can either receive from or transmit to the i-th cell, i.e., those
within the maximum distance d. We can start building our
first constraint by computing each cell’s total transmitted and
received charges during each idle period.

The total transmitted charges from the i-th cell to all the
other compatible cells in the l-th idle period is computed as:

Ql
T,i =

∑
j∈Pi

(
Ql

tx(i) · CT l
i,j

)
, (11)

while the charge the i-th cell receives is computed as follows:

Ql
R,i =

∑
j∈Pi

(
Ql

rx(i, j) · CT l
j,i

)
. (12)

The act of balancing inherently changes the charge level of
the cells. We can compute the charge level of the i-th cell after
balancing at the k-th segment, as follows:

Qk
i = Qk

i +
∑
l∈Lk

(
Ql

R,i −Ql
T,i

)
. (13)

After a balancing operation, the charge levels must be
sufficient for upcoming driving activities but always stay
within safe ranges. This means they must be higher than the
minimal usable capacity and lower than the maximum nom-
inal capacity. As such, we can formulate our first balancing
constraint as follows:

∀i, k, QUC ≤ Qk
i ≤ Qmax,i . (14)

Here k is unbounded (i.e., ∀k); however, in the objective
function, k will be set to the size of our knowledge window.

As mentioned in Section II-B, the time needed to perform
a single transfer cycle, namely Tc, depends on the specific
pairs of cells selected for the operation. We can compute the
time it takes for the i-th cell to receive charges from the other
compatible cells during the l-th idle period as follows:

T l
tran,i =

∑
j∈Pi

(
CT l

j,i · Tc(j, i)
)

, (15)

where Tc(j, i) is the specific single transfer cycle time between
cells j and i. In general, the balancing time is given by the
number of single transfer cycles it takes each feasible pair
of cells to perform charge equalization. Here, we perform
balancing during idle periods; thus, we must constrain the
balancing time to complete within those periods. This means
that the balancing time during the l-th idle period must be
lower than the length of the idle period ∆l. We can write our
second balancing constraint as follows:

∀l ∈ Lk,
∑
i

T l
tran,i ≤ ∆l . (16)

After defining these two constraints, we build our objective
function to be minimized. The battery’s throughput up to the
k-th segment, defined as the sum of absolute charged and



discharged current, can be computed by treating the balancing
as micro-charging or micro-discharging events as follows:
Ahk

thrp,i =
∫
(ηi · |I(t)|+ Isr,i) dt+

∑
l∈Lk

(
Ql

T,i +Ql
R,i

)
. (17)

While the ratio of average current to maximum capacity up to
the k-th segment is defined as:

Ck
rate,i =

Ahk
thrp,i

Qmax,i · T
, (18)

where T is the cumulative usage time up to the k-th segment.
It would seem appropriate to minimize the capacity loss of

the i-th cell by using Eq. (1). However, since the aging model
exhibits non-linear behavior, the objective function cannot
be directly formulated in a linear form by using Eq. (1).
Instead, we have seen after extensive study that Crate,i is
a monotonically increasing function of Ahthrp,i, and the
capacity loss is also a monotonically increasing function of
Ahthrp,i. We can use Ahthrp,i in the formulation to maintain
linearity instead of directly using Eq. (1). Finally, we can
build our optimization function to minimize the maximum
degradation among the cells (i.e., wear leveling) for a given
time window w. When the number of mission segments for
the next day is w, we can limit the range of values that k can
assume, and the wear leveling-aware balancing objective can
be formulated as follows:

Min
(
max(Ahk

thrp,i)
)

,

s.t. ∀i, t ≤ k ≤ t+ w, Eqs. (14) and (16) hold true,
(19)

where the current time is t, and w is the size of our knowledge
window. We write the optimization problem described above
as an Mixed Integer Linear Programming (MILP) formulation.
Its solution yields the number of charge transfer operations
during idle periods CT l

i,j , equalizing cells wear.

VI. EXPERIMENTAL SETUP AND RESULTS

This section compares our proposed wear leveling-aware
strategy against the state-of-the-art opportunistic one in typical
real-world scenarios. Our simulation environment is written
in Python, while we use CPLEX [23] to solve the MILP
problem, with a timeout of 5 s for finding a solution. If the
optimizer takes more than 5 s to complete, we return the initial
charge distribution as a result (i.e., no balancing). This is
necessary because the opportunistic strategy tends to run for
long periods, leading to simulations that last for hours.

We consider the peak current Ipeak for our battery pack
to be 12A, and the maximum distance between cells can
exchange charge d is 6. We use the aging model shown in
Eq. (1) and set the temperature of the cells to 22 ◦C for all
experiments. We interpolate parameters a and b for the 22 ◦C
temperature, based upon the values proposed in [11], and
obtain a = 0.00083 and b = 0.3789. To model manufacturing
process variation for our 2.5Ah cells, we generate their
nominal capacities following a normal distribution with a
mean of 100% and a standard deviation of 4% [24]. We have
also randomly generated each cell’s self-discharge currents,
charge, and discharge rates following a normal distribution.
Specifically, we uniformly distribute charge and discharge

rates in relatively small ranges with ηc ∈ [0.996, 1.00] and
ηd ∈ [1.00, 1.001], since Li-ion batteries are known to have
high efficiency [21]. On the other hand, since self-discharge
currents are the leading causes of imbalance, we assume they
follow a normal distribution with a mean of 0.175mA and a
standard deviation of 0.1mA. Even when the battery is not
utilized, part of its charge is depleted because of the self-
discharge phenomenon. We set the minimum usable capacity
QUC as 20% of the total capacity [5].

To compare the balancing algorithms extensively, we gen-
erated 50 scenarios with the following procedure. First, we
randomly generate a connected Watts–Strogatz small-world
graph with 30 nodes, each connected with six nearest neigh-
bors, and a 30% probability of rewiring each edge (see [25]
for a detailed explanation). Then, we randomly generate travel
times and currents for each edge, select four nodes as charging
stations, and generate probability distributions for the outgoing
edges of each node. We generate our missions by simulating
thousands of random walks of length 10, starting from a node
marked as a charging station. That ensures we can charge the
battery at least once during our missions. We place an idle
period with a randomly generated duration between segments.

Solving an optimization problem can be both time-
consuming and energy-intensive. This could be problematic if
the algorithm that solves it is meant to be used in an embedded
setup. As such, it is essential to assess both the time taken
and the memory used by the different balancing techniques.
Before discussing the results, it is worth clarifying that the
opportunistic strategy runs at every idle period. In contrast,
the wear leveling-aware one is executed only once at the
start of the knowledge window. The algorithm can work with
knowledge windows ranging from knowing the next driving
segment to knowing the entire day or several. As such, the
size of the knowledge window determines how many times
the wear leveling-aware optimization runs. Table I reports the
peak memory usage and the elapsed time required to solve
each optimization problem, with wear leveling-aware having
a knowledge window of one day. Both strategies have low
average memory usage, making both viable solutions for an
embedded system platform. The Opportunistic strategy takes
considerably more time to find a solution than the wear
leveling-aware one. The average solve time for opportunistic
balancing would have been even higher if we did not set a 5 s
timeout inside the CPLEX solver. The opportunistic strategy
has a broader range of performance metrics, while the wear
leveling-aware one has a narrower range. These results show
how the wear leveling-aware strategy has lower variability

Table I
MINIMUM, MAXIMUM, AND AVERAGE PEAK MEMORY USAGE AND SOLVE

TIME FOR EACH BALANCING TECHNIQUE.

Algorithm Peak Memory (KB) Solve time (ms)

Min Avg Max Min Avg Max

Opportunistic 2 28 561 33 2472 5489
Wear leveling-aware 69 71 176 64 79 1268
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Figure 2. Comparing battery lifespan with none, opportunistic and wear
leveling-aware (WLA) balancing strategies.

with comparable if not better results than the opportunistic
one, making it a more reliable and compelling solution.

Next, we evaluated the impact of each balancing strategy on
the lifespan. We are comparing the lifespan, in each mission,
when the car is used every day (A), once every two days (B),
and once every three days (C). This sums up to a total of 150
simulations and comparisons. The comparison between the
three strategies is depicted in Fig. 2. The wear leveling-aware
strategy has the same lifespan as not doing balancing in all
scenarios. When comparing the wear leveling-aware against
the opportunistic, the improvements are, on average, one
month with scenario A, four and a half months with scenario
B, and around ten months with scenario C. Although all
experiments are substantially different from each other, wear
leveling-aware can improve the lifespan in every one of them.
Let’s compare the average number of balancing operations of
wear leveling-aware against the opportunistic. It is 7 against
842 in scenario A, it is 3 against 420 in scenario B, and it
is 3 against 284 in scenario C. As expected, wear leveling-
aware drastically reduces the number of balancing operations.
Overall, wear leveling-aware has better performances in terms
of reduced aging, memory consumption, and solving time,
making it a compelling cell balancing strategy.

VII. CONCLUDING REMARKS

This paper presents an active cell balancing strategy, viz.,
when and how much we balance, that optimally triggers
balancing to minimize aging from balancing. We compared
this wear leveling-aware strategy against a more intuitive
opportunistic strategy. Results show that our approach ensures
we can complete a planned driving mission while having a
negligible impact on aging from balancing. Although both
strategies have a low impact on memory usage, opportunistic
balancing takes considerably more time and often fails to
solve. Furthermore, our approach is compatible with different
cell aging models and balancing architectures. Future inves-
tigations will study (1) stocastic modeling of future driving
patterns to replace the current oracle-like knowledge of them,
(2) include dynamic evolution of cell temperature based upon

thermal modeling and simulation, and (3) testing the aging
evolution with other optimization objectives.
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