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Abstract—This paper outlines formal methods and design
automation techniques for exact checking of control safety and
reachability properties of cyber-physical systems (CPS), under
timing uncertainties (common deadline miss handling and control
update policies). While such checking is often fraught with
state-space explosion problems and is hence not scalable. This
paper discusses a new joint encoding of control and scheduling
behaviors as a satisfiability-modulo-theory (SMT) formulation
and a novel abstraction-refinement procedure with incremental
solving, to scale the analysis. In addition, we also outline empirical
performance results of multiple well-known SMT solvers for this
problem. These results can inform practical decision making for
large scale control safety verification in the industry.

Index Terms—Cyber-Physical Systems, Real-Time Systems,
Formal Verification, SMT Solvers

I. INTRODUCTION

Current model-based design (MBD) approachs [1], [2] for
systematic development of embedded software emphasizes
on constructing models of the system at various levels of
abstraction. A high-level model of the embedded system
describes the possibly idealized control law (of the control
application under development) and plant dynamics, in some
domain-specific language [3]. Such languages are developed
keeping in mind the domain expert, in this case the control
designer, and generally hide the complexities associated with
the software that realizes the control law. The control model
is subsequently realized in software as a set of tasks.

The MBD process is naturally layered, beginning with
an application or control model, followed by a task model,
and so on. During the development, several assumptions are
made about the implementation details such as software tasks
execute instantaneously, library calls execute in constant time,
and resources are not held-up [4], [5]. While these assumptions
simplify high-level design, subtle effects can arise from these
implementation choices [6], [7].

A central concern in this development process is that of
ensuring timing correctness [8]–[12]. Each level of modeling
may employ different verification and validation strategies,
particularly for checking timing behaviour, as appropriate for
that level of abstraction. For example, the control designer
employs control-theoretic analysis in developing the control
application, and is concerned with properties such as stability,
overshoot, and response time [13]. The software engineer
employs techniques such as static analysis, dynamic analysis,

and assertion checking, for checking properties like input-
output correctness, reading stale inputs, runtime crash de-
tection, and time traceability. The systems engineer employs
schedulability analysis, timing diagrams and is concerned with
task execution times, deadline misses, and response times [14],
[15]. Checking timing is integral to each level of modeling,
yet, due to the wide separation between model levels and their
semantics, it is difficult to cohesively and consistently reason
about timing across models, or allow automatic feedback of
timing information and constraints between models [16].

Often, timing assumptions at design levels do not hold at
the implementation level, thereby requiring significant post-
implementation re-engineering [17], [18]. For example, tasks
mapped to an ECU may face delay or preemption due to
scheduling policies, or release timing uncertainties (jitter). A
task that is delayed in its execution may output the control ac-
tion late in time. Similarly, if a message is delayed due to com-
munication constraints, the receptor task, scheduled on time,
may read a stale value of the message, resulting in a possibly
erroneous output. Clearly, correctness of the computation
depends on inputs and outputs made available at correct
time [19]. When a critical control task misses deadline, say
due to transient overload on the processor, the corresponding
control computation may be delayed (or skipped), causing a
deviation from the expected ideal behaviour. To summarize,
the combinations of (i) delay arising from low-level timing
uncertainties at the task level, (ii) deadline miss handling
policy such as KILL or CONTINUE at the scheduler level, and
(iii) control update policy such as applying ZERO or HOLD at
the control level, can adversely affect the functionality of the
embedded system [20], [21].

Based on these observations, and especially towards check-
ing timing properties of CPS, we propose a joint encoding of
two important layers in MBD, namely control and schedul-
ing [22]. In this work, the specific goal of our encoding
is to analyze system behaviour for bugs that occur based
on the interaction between control and scheduling layers.
Such bugs are often subtle, near-impossible to reproduce by
separately analyzing control or scheduling. To establish timing
correctness with respect to control properties, we propose a
formal modeling and analysis that precisely maps task runs
containing all permitted sequences of deadline misses to the
corresponding (erroneous) control behaviour.
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Figure 1: High-level approach
Figure 1 illustrates our approach. The main technical nov-

elty is our proposed use of an abstraction-refinement approach
on top of an satisfiability-modulo-theory (SMT) encoding
that unifies modeling of control behaviour, scheduling be-
haviour and timing properties of interest. Formal modeling
and analysis has the benefit of precise reasoning but gen-
erally suffers from scalability, making industrial-level model
checking hard. Preliminary results from our exploration of
constructing abstractions for validating timing properties of
real-time tasks, together with incremental constraint solving,
are encouraging for analysis of small-to-medium size systems.
In contrast to existing closed-form analytical approaches to
timing analysis, our method enables modeling and checking
a diversity of timing properties across layers in MBD. In
addition, the encoding enables design space exploration of
high-level system parameters, and the useful debugging ability
of test cases exposing timing anomalies.

Further, there are several state-of-art SMT solvers all of
which employ different heuristics, such as Z3, MathSAT
and CVC. It is well known that the performance of any of
the solvers for a given SMT encoding cannot be predicted
[23], [24]. Therefore, we conducted a preliminary empirical
evaluation of our encoding with well-known SMT solvers.
These experimental results are intended to aid the designers
in practical decision making for large scale control safety
verification in the industry.

Related Work: Several works focus on controller verifica-
tion [25] and on the correctness checking scheduling control
tasks [26], [27]. Verification of a combination of control and
timing models has been explored in [28], [29]. The impact of
deadline misses on control stability has been investigated in
[30]–[33], but as observed in [34], a stable control system
might still violate safety properties, hence the need of an
approach to rigorously check safety properties. Alternatively,
isolating safety-critical control task from timing interference
due to other tasks have also been studied [35], [36]. Many
control strategies have complex and conditional control flow,
making it difficult to schedule them and safely estimate their
timing behaviors [37]; scheduling techniques to address this
have also been explored [38]. Further, previous approaches
to measuring control performance [39], [40] and adapting
the control system [41] to guarantee performance [42], [43]
require a bound to be specified on the number of consecutive
deadline misses. These approaches assume worst-case task-
level behaviour that leads to imprecise modeling of deadline
misses and generally report pessimistic results. In contrast, our

approach jointly and faithfully models task runs and control
evolution, for precise analysis.

II. SYSTEM MODEL AND ENCODING

We briefly describe the system model and encoding, along
with the implemented tool architecture, that can check control
safety property violations. Detailed description of the full
encoding with proofs is presented in [44].

A. Control system model and evolution

A discrete control system describing the plant model is
defined as:

xk+1 = Axk +Buk uk = R−Kxk (1)
where x ∈ Rn×1 is the (discrete) state vector, n ≥ 1 is the
control system dimension; k ∈ N denotes the discrete steps
of evolution; A ∈ Rn×n and B ∈ Rn×1 matrices specify the
plant with timestep δ, the control action u ∈ R is computed
using a state feedback vector K ∈ R1×n. The initial state x0

lies in a box [X0, X0].
We unroll the system in Eqn. 1 up to a user-specified bound

h by introducing symbolic variables xj,k corresponding to the
control states, and uk corresponding to the control update,
where j ranges over the dimension of the control system
1, 2, . . . , n, and k ranges over the discrete steps of evolution
0, 1, . . . , h. Trajectories are encoded as:

ϕtraj :=

h∧
k=0

 n∧
i=1

xi,k+1 =

j∑
j′=1

Ai,j′xj′,k +Biuk

 (2)

The initial plant state is encoded as:
ϕinit := ∀j : Xj,0 ≤ xj,0 ≤ Xj,0 (3)

The control safety property violation over the trajectory is
encoded as:

ϕprop := ¬(Xj,k ≤ xj,k ≤ Xj,k) , 0 ≤ k ≤ h (4)

where [Xj,k, Xj,k] denotes the user-specified safety interval
(or safety pipe) for j-th dimension.

B. Task specification

The controller is realized in software via a set of tasks
T . We assume non-preemptive earliest-deadline-first (NP-
EDF) scheduling policy, scheduled on a unicore processor. A
task τi ∈ T is defined as

(
O, J,E,E, P

)
, where i is a unique

task id, O is the task offset, J denotes release jitter faced by
each task instance, E and E denote the best- and worst-case
execution times of the task, and P denotes the period. We
assume τ0 corresponds to the controller task with period set
to the discretization timestep: P 0 = δ.

Task instances, termed jobs, are spawned up to the horizon
h, and symbolic variables r, s, e, d (corresponding to release,
start, end and deadline) are introduced for each spawned job.
Due to jitter, the instant of job release lies in the interval
[kP i + Oi, kP i + Oi + J i]. Task deadlines are specified as
dik = Oi + (k+ 1)P i, and a deadline miss occurs when eik >
dik. Under CONTINUE policy, jobs are eventually scheduled
even if they miss deadline, and under KILL, jobs are aborted



in case of conservative deadline miss (i.e., a job is aborted if
its execution does not begin by dik−Ei). All times are assumed
to be integers, scaled to the appropriate unit e.g. milliseconds.

C. Task runs

A run of the task set is a timed sequence of jobs,
⟨. . . , (i, k, sik, eik), . . .⟩, respecting the scheduling policy, work
conservation (i.e., processor can’t idle in the presence of ready-
to-run jobs) and deadline miss policy. Runs of the task set are
encoded as:

ϕruns := ∀ (i, k) : rik ≤ sik

∧ kP i +Oi ≤ rik ≤ kP i +Oi + J i

∧ Ei ≤ eik − sik ≤ Ei (CONTINUE)

∧ (sik + Ei ≤ dik ⇒ Ei ≤ eik − sik ≤ Ei) (KILL)

∧ (sik + Ei > dik ⇒ eik = sik) (KILL)

(5)

We assume the scheduling is work-conserving i.e. a ready
job must be scheduled as soon as the processor is available.
Observe that multiple runs of the task set are possible due
to (i) release jitter experienced by each job, (ii) variable
execution budget leading to non-deterministic termination time
for each job, and (iii) arbitrary selection of equal-priority
ready jobs. These runs can have varying impact on the control
performance and need to be analyzed rigorously.

D. Control update modeling

We admit ZERO and HOLD policies for control update u,
where ZERO applies u = 0 when the corresponding control
task instance misses deadline, and HOLD applies the previously
computed value. Control updates are encoded as:

ϕu := ∀k : uk = 0, if k = 0

∧ e0k−1 ≤ d0k−1 ⇒ uk = R−
n∑

j=1

Kjxj,k−1 (CONTINUE)

∧ s0k−1 + E0 ≤ d0k−1 ⇒ uk = R−
n∑

j=1

Kjxj,k−1 (KILL)

∧ s0k−1 + E0 > d0k−1 ⇒ uk = uk−1 (HOLD-KILL)

∧ s0k−1 + E0 > d0k−1 ⇒ uk = 0 (ZERO-KILL)
(6)

E. Abstraction

The constraints listed in the equations through Sections II-A
to II-D admit more than the set of permissible control and
scheduling behaviours of the system, thus forming an abstrac-
tion. For example, Eqn. 5 admits spurious behaviour such as
overlapping jobs and out-of-schedule orderings between jobs
within task runs. This is because these constraints are not
present upfront in the initial encoding. Similarly, constraints
from Sec. II-D do not specify the computation of u in the
case of a deadline miss under CONTINUE policy, thereby
admitting more trajectories than permissible. Thus the joint
encoding needs to be (iteratively) refined on detecting spurious
counterexamples reported by the backend SMT solver. In case
the solver returns unsat, indicating the constraints conflict, we
can conclude the property is safe over the original system.

III. REFINEMENT

A solution to the set of constraints reported by an SMT
solver assigns concrete values to all the symbolic variables in
the formula, consisting of the task run and trajectory, including
the initial state. If either of the two is spurious, we proceed
to block such a trace from the abstraction, by identifying the
causes of spuriousness. The task run can be spurious due to
presence of overlapping jobs, scheduling policy violation, or
work conservation violation; and the trajectory can be spurious
due to presence of unconstrained control update resulting from
a deadline miss. The abstraction is refined by constructing
an implication that blocks the spurious counterexample or
solution.

A. Overlapping jobs

Suppose job (i, j) overlaps with (i′, j′) as observed in
the counterexample, with sij ≤ si

′

j′ . This is possible as the
abstraction does not prevent overlaps upfront. To block this
overlap as witnessed in this trace, we construct:

Bov := (sij ≤ si
′

j′ ∧ si
′

j′ < eij) ⇒ eij ≤ si
′

j′ (7)

B. Schedule violation

Suppose job (i, j) precedes (i′, j′) in the run but this
precedence violates the scheduling policy. Under NP-EDF,
(i, j) can precede (i′, j′) if and only if the deadline of (i, j)
is no later than that of (i′, j′), or (i, j) is scheduled strictly
before (i′, j′) is released. Thus we construct the blocking
implication:

Bsv := sij < si
′

j′ ⇒ (dij ≤ di
′

j′ ∨ sij < ri
′

j′) (8)

C. Work conservation violation

Here, the processor is found idling in the presence of a
ready-to-run job. The basic idea behind blocking this spurious
behaviour is to statically enumerate the (conservative) set of
jobs that could precede this job across all task runs, construct
an implication based on how these jobs are ordered with
respect to the idle gap, and “reschedule” this job such that
the idling is blocked.

D. Unconstrained control updates

The control update is left unspecified in the event of a con-
trol task instance missing deadline, under CONTINUE policy.
The basic idea for refining control updates is to locate the
(relatively) latest control job that was scheduled in the task run,
compute the control update issued as a result of the execution
of this job, and use this as the “freshest” value. The two cases
to be considered here are whether the previously scheduled job
itself met its deadline (in which case the corresponding u was
correctly computed via Eqn. 6), or it too missed deadline (in
which case the corresponding u value has to be constrained by
identifying control states at its start time). Finally, we construct
an implication to constrain the u value based on these two
cases.
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Figure 2: Tool Architecture

Table I: Synthetic task set for F1Tenth car model

id offset period [BCET, WCET] jitter

τ0 0 20 [4, 6] 2
τ1 0 20 [4, 6] 2
τ2 0 20 [4, 6] 2
τ3 5 40 [5, 10] 2

IV. TOOLING AND EXPERIMENTS

The tool design is shown in Fig. 2. The tool has been imple-
mented using Python3.0 scripts and the Z3 [45] SMT solver
API. The initial set of constraints forms an abstraction of the
set of system behaviours, and several iterations of refinement
are generally needed. Each refinement step constructs and adds
a number of blocking implications to the existing set of clauses
in the current Z3 context. The iterative refinement procedure
leverages incremental solving abilities of Z3, helping scale the
symbolic analysis.

We present a case study of checking a control safety prop-
erty from a CPS, the F1Tenth [46] model car, suitably adapted
for our setting (linearized, discretized at 20ms), with controller
adapted from [47]. The system dynamics are specified as:

xk+1 =

[
1 0.13
0 1

]
xk +

[
0.02559
0.3937

]
uk

uk =
[
0.2935 0.4403

]
xk−1

The (synthetic) task set implementing this controller is
described in Table I. The control safety property of interest
is that the steering angle should not deviate by more than 0.2
units from the ideal behaviour: −0.2 ≤ x2−xideal ≤ 0.2, to be
checked under the four combinations of ZERO-KILL, HOLD-
KILL, HOLD-CONT, ZERO-CONT. The tool implementation
currently supports refinements only with Z3, hence we evalu-
ate different SMT solvers only for the concluding refinement
step. Table II presents the evaluation over 4 different SMT
solvers: Z3 [45], CVC4 [48] , CVC5 [49], and MathSAT [50].
We chose these solvers as these are not only some of the most
popular SMT solvers, they also support many different kinds
of SMTLIB logics, in particular those that allow a mix of
integers and reals, required by our encoding.

In this Table, T denotes the corresponding solver run-time
ceiled to the nearest second and M denotes the corresponding
solver’s memory consumption ceiled to the nearest MB. The
column Policy denotes the deadline miss and control update
policies, and Safe? denotes the (expected) result reported by
the solvers, where Yes means that the control property is safe,

Table II: Evaluating different SMT solvers on F1Tenth model

F1TENTH Z3 CVC4 CVC5 MasthSAT
Policy Safe? T M T M T M T M
HOLD-CONT Yes 1 43 1 33 1 39 1 26
HOLD-KILL Yes 40 48 38 92 68 90 217 65
ZERO-CONT No 1 42 1 33 1 39 1 28
ZERO-KILL No 11 49 12 56 18 67 4 34

and No means there exists a violation of the safety property.
Notice that all solvers could correctly detect property satis-

faction as well as violation, with Z3 offering the overall trade
off in time and memory, while CVC4 is the fastest. Interest-
ingly, MathSAT is the fastest on the ZERO-KILL combination,
and MatSAT is the slowest on HOLD-KILL variation. These
preliminary results clearly indicate that it is hard to predict
which solver fares well on a particular problem instance, and
needs more investigation.

V. CONCLUDING REMARKS

Model-driven approaches have been widely used for the
design of embedded and cyber-physical systems, especially
in the domain of control and signal processing [51]. They
allow verification, and synthesis and have been shown to be
useful also for security and fault tolerance [52]–[54]. More
importantly, they allow compositional design and thereby
help tackle design complexity [55]. But as systems become
more heretogeneous and distributed [56], such traditional
compositional approaches are breaking down. In particular,
assumptions made at the modeling stage, e.g., those related to
timing, might not hold during implementation. To address this,
we have presented an approach for joint encoding of control
and scheduling layers of CPS, that can check for control safety
violations due to low-level timing uncertainties. The analysis
is precise and the approach scales to medium-sized systems
due to the refinement procedure implemented as incremental
solving. Preliminary evaluation with different SMT solvers
indicates a significant variation in solver performance in both
satisfiable and unsatisfiable instances.

In the future, we would like to extend the approach to
analyze industrial-size systems, with richer specifications,
such as admitting interrupts, task dependencies and networked
control. With industrial CPS increasingly adopting learning
components, we would like to extend our abstraction-
refinement approach to analyze the new setting of interest –
interaction between control, scheduling and learning – where
the learning strategy impacts both layers.
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