
Certifiable and Efficient Autonomous
Cyber-Physical Systems Design

Shengjie Xu1, Clara Hobbs1, Bineet Ghosh2, Parasara Sridhar Duggirala1, and Samarjit Chakraborty1
1The University of North Carolina at Chapel Hill, USA

2The University of Alabama, Tuscaloosa, USA

Abstract—The ability to certify the correctness of cyber-
physical systems often rely on provisioning resources to account
for worst-case behaviors. For example, timing certification ne-
cessitates that all software tasks are scheduled to be able to
meet their deadlines. However, since the execution times of tasks
have wide variances—and they continue to increase with growing
software and processor complexity—provisioning resources for
the worst case can be very pessimistic and also expensive. In
this paper we outline some of our recent efforts to address
this problem, and emerging techniques to ensure certification of
autonomous cyber-physical systems, while ensuring their efficient
implementation.

Index Terms—Cyber-Physical Systems, Real-Time Systems,
Safety, Controller Synthesis

I. INTRODUCTION

Certifying the correctness of autonomous cyber-physical
systems (CPS) [1], [2] is posing a major challenge in the
widespread adoption of technologies like autonomous vehicles
and robots. Here, most of the research literature has focused
on the formal verification of control strategies [3]–[7] that
implement the algorithmic core of many autonomous systems.
More recently, the verification and testing of machine learning
(ML) algorithms used for sensor and perception processing is
also being actively pursued in the context of CPS design [8],
[9].

However, a different form of challenge arises in closing
the “model-implementation gap” [10]–[13] between the
assumptions made when designing control strategies,
versus the realities of modern distributed implementation
platforms [14]. For example, as implementation platforms
become more complex and distributed, the timing assumptions
made during controller design [15], [16] are increasingly
difficult to ensure, or even verify [17]. Even basic timing
analysis tasks such as estimating safe and tight worst
case execution time (WCET) estimates of software tasks
is becoming a losing proposition [18], [19]. For WCET
estimates to be safe, they are increasingly overestimated.
Meeting all task deadlines with such overestimated WCET
values leads to pessimistic or infeasible implementations.
Further, in domains like automotive, in-vehicle architectures
are rapidly moving away from “one function per ECU”
or federated, to multiple functions sharing resources, viz.,
“integrated” architectures [20]. The clear trend is that
future architectures will be less “static” than before, as
indicated by developments like AUTOSAR Adaptive [21] and
service-oriented paradigms [22], [23]. As a result, the timing

non-determinism experienced by control software running
on such implementation platforms will only continue to
increase. But in traditional design processes control engineers
assume certain timing properties or deadlines that the control
tasks need to satisfy for them to behave as desired, and the
embedded systems engineers schedule them to meet those
deadlines [24]. This ensures a clean separation of concerns,
allowing the two groups of engineers to work independently.

System certification with unreliable components

As outlined above, such a design flow where system com-
ponents are designed assuming certain deterministic reliability
guarantees from the other components is increasingly breaking
down in autonomous CPS design. This is not only the case
with timing uncertainties, but is a broader design challenge.
For example, when using ML components for state estimation
— as it occurs when processing camera, radar or lidar data
in autonomous cars — the results cannot be assumed to be
perfectly correct. Similarly, 100% security [25] cannot be
assumed at moderate cost during data transmission from the
plant to the controller or the controller to the actuator. In all
of these cases, ensuring 100% reliability comes at the expense
of prohibitive cost or excessive design pessimism. Hence, an
important question is: Is it possible to certify system safety of
autonomous CPS, while ensuring efficiency?

In this paper we claim that it is possible to answer this
question in the affirmative. Towards this we outline some of
our recent work [26]–[28] on certifying system safety un-
der implementation platform timing uncertainties. We discuss
some related work in the area, and argue how such certification
may be extended to cases beyond timing uncertainty.

Paper outline

In the next section we show how feedback control systems
can be certified for system safety even when they experience
uncertain timing behavior on an implementation platform.
After this, we outline how to synthesize “imperfect” schedules
that lead to better resource utilization but can nevertheless
guarantee system-level safety. Finally, we list a broad class of
work on safety and certifiability in CPS, before concluding the
paper with an outline of our broad research vision. While we
outline this vision in the special case of timing uncertainties,
we argue that it extends to many other aspects of system design
that are relevant for safety certification and efficiency.



Figure 1: Safe & unsafe behaviors due to deadline misses [26].

II. SAFETY CERTIFICATION WITH TIMING UNCERTAINTIES

Instead of assuming that the platform implementing control
software has an ideal timing behavior, viz., no deadline misses,
can we certify system safety when the control task misses
deadlines [29]? The underlying idea is to first define a notion
of safety. Towards this, we construct a safety pipe around
the system trajectory in the state space that captures the
ideal dynamics of the closed-loop system. Such an ideal
dynamics or trajectory is when the system experiences an ideal
timing behavior, e.g., no deadline misses. In the presence of
deadline misses, the system’s dynamics will deviate from the
ideal trajectory, and the extent of the deviation will generally
correspond to the number of deadline misses the control task
experiences. But as long as the deviation is not significant, and
in particular is contained within the safety pipe, the system can
be certified to be safe. The diameter or shape of the safety pipe
can be specified based on the desired notion of safety.

This notion of system safety is illustrated in Figure 1 using
the model of an automotive electric steering system from [26].
It shows the evolution of the closed-loop feedback control
system in the (x1, x2) state space. Here, the solid black line
shows the ideal system trajectory, where the control task al-
ways meets its deadline. The light blue envelope/spiral around
it is the safety margin, or the set of potential system behaviors
that can be certified to be safe. Finally, the trajectories in red
and green are those arising when the control task experiences
deadline misses, and because of which its dynamics deviates
from the ideal behavior (the black line). The red trajectories
violate the specified safety property since they go out of the
safety envelope, and where the violations occur have been
marked with “×”. The corresponding time instants have been
marked with a black × on the nominal trajectory, with the
distance between a black × and its corresponding red ×
exceeding the maximum allowed deviation.

This figure shows that in contrast to the prevalent practice
of associating safety with meeting all deadlines, we (i) lift
the notion of safety to system-level behaviors, and (ii) slightly
relax the notion of safety to include multiple system trajecto-
ries rather than allowing a single behavior. With this revised
notion of safety, we see that safety certification is possible
even without a perfect timing behavior of the implementation
platform, thereby mitigating some of the obstacles outlined

T1  T3 T1  T2 T3  T4 T1  T3 T1  T2 T3  T4 ...
Schedule (repeat)

Slots

Figure 2: Scheduling control tasks with deadline misses.

in Section I. But the main open question is: Which platform
timing behaviors or deadline hit/miss patterns satisfy a given
safety specification?

Towards answering this, note that the dynamics of the sys-
tem depend on both — the deadline hit/miss pattern [30], and
how deadline misses are handled. The latter has two aspects:
(i) in the event of the control task missing its deadline, which
control input is applied, and (ii) how is the incomplete control
task handled, e.g., does it continue to execute or is it killed? If
it is continued to execute, then subsequent instances of jobs of
this control task needs to be skipped. The work in [26] studies
different possibilities that were proposed in [31]—holding the
previous control input versus applying a zero control input,
along with killing the incomplete task versus letting it continue
till completion. For any of these choices, the dynamics of
the closed-loop system might evolve differently. For a given
deadline hit/miss pattern and a strategy to handle misses, it is
easy to check whether the safety property is satisfied over any
finite time horizon. For stable systems, it is possible to identify
such finite time horizons, verification over which is sufficient.
If the system is unstable then there are standard techniques for
checking so [32], which can be adapted to also check whether
the notion of safety outlined above is satisfied.

But since the number of timing behaviors exhibited by an
implementation platform can be exponentially large, it is not
feasible to check the safety of each one of them individually.
To address this, the work in [26] has resorted to safe but
approximate reachability analysis, where safe implies all the
timing behaviors exhibited by the platform lead to trajectories
that are within the specified safety envelope. But unsafe means
that the exhibited timing behaviors might or might not be safe.
Using such approximate reachability analysis, it is possible to
certify system-level safety for realistic systems.

III. SYNTHESIS OF CERTIFIABLE COMPONENTS

The procedure for checking system-level safety in the
presence of timing uncertainties may also be extended to
synthesize schedules for multiple control tasks. Here, given
safety specifications for each control task, the question is: Can
these tasks be scheduled, while allowing deadline misses, such
that the safety specification for each controller is satisfied?

To illustrate this question, consider a set of four control
tasks T1, . . . , T4 that need to be scheduled on a processor.
Here, time is partitioned into equal-sized slots (see Figure 2),
and for simplicity of exposition, let us assume that this slot
size is also equal to the sampling period of each of the control
tasks. The WCET of each of T1, . . . , T4 is such that at most
two of them may be scheduled in each time slot, and if a task
Ti is not scheduled in a particular slot, it misses its deadline.
This means that either a zero control input, or the previous
control input (or some other scheme to compute a missing



control input) needs to be used to actuate the plant, and its
dynamics will deviate from the ideal case.

Figure 2 shows a schedule for the four tasks that satisfy
the scheduling constraint that no more than two tasks can
be scheduled in one time slot. Note from this figure that the
schedule for the task T1 is 110110 . . ., that of T2 is 010010 . . .,
T3 is 101101 . . ., and finally, that of T4 is 001001 . . ., where a
1 denotes the deadline being met and a 0 a deadline miss. The
next question is, do these deadline hit/miss patterns satisfy the
specified safety requirements of the four tasks? This can be
answered using the techniques discussed in Section II.

Here, given a schedule, we can check whether it satisfies the
scheduling/resource constraint and the safety constraint. But
since the number of potential schedules can be exponentially
large, how can we efficiently synthesize valid schedules that
satisfy both classes of constraints? We have shown [28] that
this can be done by (i) characterizing deadline hit/miss patterns
as regular languages, (ii) using approximate reachability anal-
ysis techniques to check whether all hit/miss patterns admitted
by a given regular language meet specified safety properties
using techniques from Section II, and finally (iii) using au-
tomata theoretic techniques check whether these schedules
satisfy the scheduling/resource constraint, e.g., that no more
than two tasks can be scheduled in each time slot, as shown
in Figure 2.

This illustrates the possibility of synthesizing certifiable
CPS components, while not requiring perfect behavior (all
deadlines are met) from other components, such as the
scheduler in this case. Such flexibility allows more efficient
system design, while still ensuring certification. While we have
discussed how this works in the case of timing uncertainty,
such principles may be extended to other situations too, e.g.,
where all control messages need not be authenticated, thereby
saving computation resources, or where a ML component is
allowed to make inaccurate estimations without compromising
system safety.

IV. RELATED WORK ON SAFETY & CERTIFICATION

Safety and certification is a major design concern in most
autonomous CPS, and especially those in the safety-critical
domain, such as autonomous vehicles. In this section we
broadly discuss some of the existing literature on these topics,
with some emphasis on prior work done by us.

Since the complexity of CPS hardware architectures has
been rapidly growing, are they susceptible to a variety of
manufacturing variabilities, transient faults and aging issues,
that might impact the software execution and the results they
produce [33]–[36]. The increasing complexity of software in
autonomous CPS and the associated scheduling [37]–[39] and
management [40]–[42] of such software also contributes to
growing safety concerns. This has led to a variety of work on
testing [43]–[45] and compositional formal verification of real-
time control software and CPS architectures [6], [46]–[49].

As outlined earlier in this paper, feedback control loops
form the core of autonomous functionality. Hence, there
are close ties between safety analysis and control theory in

autonomous systems design. Towards this, control-theoretic
methods, reachability analysis, and cross-layer design tech-
niques have been proposed for safety verification [26], [50]–
[52]. We earlier discussed the problem of ensuring controller
safety in the presence of timing uncertainties. These uncertain-
ties increase as CPS architectures continue to become more
distributed and use heterogeneous architectures and commu-
nication protocols. As a result, control signals are subject to
varying delays that can compromise the safety of the closed-
loop system, even if the control strategy is functionally correct.
Several papers have addressed this problem [31], [53]–[55].
In addition to the schedule synthesis technique discussed in
Section III, the orthogonal problem of synthesizing delay-
tolerant controllers has been studied in [56]–[58], including the
synthesis of safe controllers that exploit features of the imple-
mentation platform and its underlying operating system [59]–
[61]. Further, the problem of co-synthesizing controllers and
their underlying task schedules have been explored in [62]–
[65]. All of these problems also have connections to providing
timing isolation to critical control software [24], [66], schedul-
ing to meet timing constraints [67]–[72] and the scheduling of
mixed-criticality tasks [73], [74]. In the case of vision-based
control systems, the accuracy of the (often ML-based) vision
processing system [75]–[77] plays an important role in the
safety certification of the closed-loop system. Recent work has
focused on emerging CPS topics like electric vehicles [78]–
[81], autonomous vehicles [82], [83], CPS security [25], [84]
and safety and certification issues arising in them. With the
growing adoption of electric vehicles and drones, there has
been increasing focus on the safety and reliability of battery
systems [34], [85], [86]. Work on this topic also relies on
battery ageing models as studied in the context of mobile
devices [87], but is substantially different from prior work
on energy management for such devices [88]–[90], and is
currently much less developed.

V. CONCLUDING REMARKS

We have outlined a selection of recent work on safety and
certification of CPS as they occur in the autonomous and
semi-autonomous systems like cars and drones. For any CPS
with multiple components — such as one or more controllers,
schedulers determining the timing behaviors experienced by
the controllers, ML components determining the accuracy of
the state estimations seen by the controllers, and security
components determining the integrity of the estimated system
state and the control signals — current workflow attempts to
design each of these components to perfection. For example,
the scheduler attempts to meet all deadlines in the system.
While this enables separation of concerns and design modular-
ity, in the process of ensuring system safety and certification,
it also results in undue pessimism. We have argued that by
relaxing the notion of safety and allowing each of the system
components to admit some error or failure, it would be possible
to ensure both — safety and efficiency. We have shown this
in the case of timing and its impact on system-level safety.
Our future research agenda is to determine how this strategy



would also extend to other system components, such as those
responsible for security and ML.

Acknowledgments
This work is partially funded by the US NSF grant 2038960,

entitled “Design Automation for Automotive Cyber-Physical
Systems.”

REFERENCES

[1] U. D. Bordoloi et al., “Autonomy-driven emerging directions in
software-defined vehicles,” in Design, Automation & Test in Europe
Conference (DATE), 2023.

[2] S. Chakraborty, M. A. A. Faruque, W. Chang, D. Goswami, M. Wolf, and
Q. Zhu, “Automotive cyber-physical systems: A tutorial introduction,”
IEEE Design & Test, vol. 33, no. 4, pp. 92–108, 2016.

[3] F. Alegre, E. Feron, and S. Pande, “Using ellipsoidal domains to
analyze control systems software,” CoRR, vol. abs/0909.1977, 2009.
[Online]. Available: http://arxiv.org/abs/0909.1977

[4] P. Tabuada, Verification and Control of Hybrid Systems - A Symbolic
Approach. Springer, 2009.

[5] D. Goswami et al., “Model-based development and verification of
control software for electric vehicles,” in The 50th Annual Design
Automation Conference (DAC), 2013.

[6] M. Broy et al., “Cross-layer analysis, testing and verification of automo-
tive control software,” in 11th International Conference on Embedded
Software (EMSOFT), 2011.

[7] M. Kauer et al., “Fault-tolerant control synthesis and verification of
distributed embedded systems,” in Design, Automation & Test in Europe
Conference (DATE), 2014.

[8] C. Hsieh, Y. Li, D. Sun, K. Joshi, S. Misailovic, and S. Mitra, “Verifying
controllers with vision-based perception using safe approximate abstrac-
tions,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 41,
no. 11, pp. 4205–4216, 2022.

[9] Z. Wang et al., “Bounding perception neural network uncertainty for
safe control of autonomous systems,” in Design, Automation & Test in
Europe Conference (DATE), 2021.

[10] S. Tripakis, R. Limaye, K. Ravindran, and G. Wang, “On tokens and
signals: Bridging the semantic gap between dataflow models and hard-
ware implementations,” in Intl. Conf. on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), 2014.

[11] S. Tripakis, “Bridging the semantic gap between heterogeneous mod-
eling formalisms and FMI,” in International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS),
2015.

[12] P. Caspi, N. Scaife, C. Sofronis, and S. Tripakis, “Semantics-preserving
multitask implementation of synchronous programs,” ACM Trans. Em-
bedded Comput. Syst., vol. 7, no. 2, pp. 15:1–15:40, 2008.

[13] D. Roy et al., “Semantics-preserving cosynthesis of cyber-physical
systems,” Proceedings of the IEEE, vol. 106, no. 1, pp. 171–200, 2018.

[14] S. Chakraborty et al., “Cross-layer interactions in CPS for performance
and certification,” in DATE, 2019.

[15] L. Ju et al., “Context-sensitive timing analysis of Esterel programs,” in
46th Design Automation Conference (DAC), 2009.

[16] L. Ju, B. K. Huynh, A. Roychoudhury, and S. Chakraborty, “Timing
analysis of Esterel programs on general-purpose multiprocessors,” in
47th Design Automation Conference (DAC), 2010.

[17] M. Geier, T. Burghart, M. Hackl, and S. Chakraborty, “In situ latency
monitoring for heterogeneous real-time systems,” in 32nd International
Conference on VLSI Design (VLSID), 2019.

[18] R. Wilhelm, “Determining reliable and precise execution time bounds
of real-time software,” IT Professional, vol. 22, no. 3, pp. 64–69, 2020.

[19] L. Thiele and R. Wilhelm, “Design for timing predictability,” Real-Time
Systems, vol. 28, no. 2-3, pp. 157–177, 2004.

[20] R. Obermaisser, C. E. Salloum, B. Huber, and H. Kopetz, “From a
federated to an integrated automotive architecture,” IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., vol. 28, no. 7, pp. 956–965, 2009.

[21] C. Menard, A. Goens, M. Lohstroh, and J. Castrillón, “Achieving
determinism in adaptive AUTOSAR,” in Design, Automation and Test
in Europe Conference (DATE), 2020.

[22] E. Fraccaroli, P. Joshi, S. Xu, K. Shazzad, M. Jochim, and
S. Chakraborty, “Timing predictability for SOME/IP-based service-
oriented automotive in-vehicle networks,” in Design, Automation & Test
in Europe Conference (DATE), 2023.

[23] A. Arestova, M. Martin, K.-S. J. Hielscher, and R. German, “A service-
oriented real-time communication scheme for AUTOSAR adaptive using
OPC UA and time-sensitive networking,” Sensors, vol. 21, no. 7, 2021.

[24] A. Masrur et al., “VM-based real-time services for automotive control
applications,” in 16th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2010.

[25] P. Waszecki et al., “Automotive electrical and electronic architecture
security via distributed in-vehicle traffic monitoring,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 36, no. 11, pp. 1790–
1803, 2017.

[26] C. Hobbs, B. Ghosh, S. Xu, P. S. Duggirala, and S. Chakraborty, “Safety
analysis of embedded controllers under implementation platform timing
uncertainties,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
vol. 41, no. 11, pp. 4016–4027, 2022.

[27] B. Ghosh et al., “Statistical hypothesis testing of controller implementa-
tions under timing uncertainties,” in 28th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2022.

[28] S. Xu et al., “Safety-aware flexible schedule synthesis for cyber-physical
systems using weakly-hard constraints,” in 28th Asia and South Pacific
Design Automation Conference (ASPDAC), 2023.

[29] P. Pazzaglia et al., “DMAC: deadline-miss-aware control,” in 31st
Euromicro Conference on Real-Time Systems (ECRTS), 2019.

[30] ——, “Beyond the weakly hard model: Measuring the performance
cost of deadline misses,” in 30th Euromicro Conference on Real-Time
Systems (ECRTS), 2018.

[31] M. Maggio, A. Hamann, E. Mayer-John, and D. Ziegenbein, “Control-
system stability under consecutive deadline misses constraints,” in 32nd
Euromicro Conference on Real-Time Systems (ECRTS), 2020.

[32] D. Liberzon, Switching in Systems and Control, ser. Systems & Control:
Foundations & Applications. Birkhäuser, 2003.

[33] G. Georgakos et al., “Reliability challenges for electric vehicles: from
devices to architecture and systems software,” in 50th Annual Design
Automation Conference (DAC), 2013.

[34] W. Chang et al., “Reliable CPS design for mitigating semiconductor and
battery aging in electric vehicles,” in 3rd IEEE International Conference
on Cyber-Physical Systems, Networks, and Applications (CPSNA), 2015.

[35] ——, “Battery- and aging-aware embedded control systems for electric
vehicles,” in 35th IEEE Real-Time Systems Symposium (RTSS), 2014.

[36] F. H. Gandoman et al., “Status and future perspectives of reliability
assessment for electric vehicles,” Reliab. Eng. Syst. Saf., vol. 183, pp.
1–16, 2019.

[37] S. Chakraborty, T. Erlebach, and L. Thiele, “On the complexity of
scheduling conditional real-time code,” in 7th International Workshop
on Algorithms and Data Structures (WADS), 2001.

[38] L. Zhang et al., “Schedule management framework for cloud-based fu-
ture automotive software systems,” in 22nd IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2016.

[39] R. Schneider et al., “Multi-layered scheduling of mixed-criticality cyber-
physical systems,” Journal of Systems Architecture - Embedded Systems
Design, vol. 59, no. 10-D, pp. 1215–1230, 2013.

[40] S. Ramesh et al., “Specification, verification and design of evolving
automotive software,” in 54th Annual Design Automation Conference
(DAC), 2017.

[41] F. Sagstetter et al., “Multischedule synthesis for variant management in
automotive time-triggered systems,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 35, no. 4, pp. 637–650, 2016.

[42] S. Samii et al., “Dynamic scheduling and control-quality optimization
of self-triggered control applications,” in 31st IEEE Real-Time Systems
Symposium (RTSS), 2010.

[43] G. Tibba et al., “Testing automotive embedded systems under X-in-
the-loop setups,” in 35th International Conference on Computer-Aided
Design (ICCAD), 2016.

[44] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmark for free,” in International Workshop on Analysis Tools and
Methodologies for Embedded and Real-Time Systems, 2015.

[45] J. Oetjens et al., “Safety evaluation of automotive electronics using
virtual prototypes: State of the art and research challenges,” in 51st
Design Automation Conference (DAC), 2014.

[46] Z. Wang, H. Liang, C. Huang, and Q. Zhu, “Cross-layer design of
automotive systems,” IEEE Des. Test, vol. 38, no. 5, pp. 8–16, 2021.



[47] L. Guo, Q. Zhu, P. Nuzzo, R. Passerone, A. L. Sangiovanni-Vincentelli,
and E. A. Lee, “Metronomy: A function-architecture co-simulation
framework for timing verification of cyber-physical systems,” in Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2014.

[48] L. T. X. Phan et al., “Composing functional and state-based performance
models for analyzing heterogeneous real-time systems,” in 28th IEEE
Real-Time Systems Symposium ((RTSS), 2007.

[49] R. Schneider et al., “Compositional analysis of switched Ethernet
topologies,” in Design, Automation and Test in Europe (DATE), 2013.

[50] D. Roy et al., “Automated synthesis of cyber-physical systems from
joint controller/architecture specifications,” in Forum on Specification
and Design Languages (FDL), 2016.

[51] W. Chang et al., “Model-based design of resource-efficient automotive
control software,” in 35th International Conference on Computer-Aided
Design (ICCAD), 2016.

[52] P. Kumar et al., “A hybrid approach to cyber-physical systems verifica-
tion,” in Design Automation Conference (DAC), 2012.

[53] D. Goswami, R. Schneider, and S. Chakraborty, “Relaxing signal delay
constraints in distributed embedded controllers,” IEEE Trans. Contr. Sys.
Techn., vol. 22, no. 6, pp. 2337–2345, 2014.

[54] M. Balszun et al., “Effectively utilizing elastic resources in networked
control systems,” in 23rd IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2017.

[55] H. Voit et al., “Optimizing hierarchical schedules for improved con-
trol performance,” in 5th IEEE International Symposium on Industrial
Embedded Systems (SIES), 2010.

[56] D. Goswami, R. Schneider, and S. Chakraborty, “Co-design of cyber-
physical systems via controllers with flexible delay constraints,” in 16th
Asia South Pacific Design Automation Conference (ASP-DAC), 2011.

[57] S. Mohamed, D. Goswami, V. Nathan, R. Rajappa, and T. Basten,
“A scenario- and platform-aware design flow for image-based control
systems,” Microprocess. Microsystems, vol. 75, p. 103037, 2020.

[58] W. Chang and S. Chakraborty, “Resource-aware automotive control
systems design: A cyber-physical systems approach,” Foundations and
Trends in Electronic Design Automation, vol. 10, no. 4, pp. 249–369,
2016.

[59] W. Chang et al., “OS-aware automotive controller design using non-
uniform sampling,” ACM Transactions on Cyber-Physical Systems
TCPS, vol. 2, no. 4, pp. 26:1–26:22, 2018.

[60] ——, “Memory-aware embedded control systems design,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 36, no. 4, pp. 586–599,
2017.

[61] ——, “Cache-aware task scheduling for maximizing control perfor-
mance,” in Design, Automation & Test in Europe (DATE), 2018.

[62] R. Schneider et al., “Constraint-driven synthesis and tool-support
for flexray-based automotive control systems,” in 9th International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2011.

[63] D. Roy et al., “Multi-objective co-optimization of FlexRay-based dis-
tributed control systems,” in 22nd IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2016.

[64] L. Bhatia, I. Tomic, A. Fu, M. Breza, and J. A. McCann, “Control
communication co-design for wide area cyber-physical systems,” ACM
Trans. Cyber Phys. Syst., vol. 5, no. 2, pp. 18:1–18:27, 2021.

[65] R. Mahfouzi, A. Aminifar, S. Samii, A. Rezine, P. Eles, and Z. Peng,
“Breaking silos to guarantee control stability with communication over
ethernet TSN,” IEEE Des. Test, vol. 38, no. 5, pp. 48–56, 2021.

[66] F. Sagstetter, M. Lukasiewycz, and S. Chakraborty, “Generalized asyn-
chronous time-triggered scheduling for FlexRay,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 36, no. 2, pp. 214–226, 2017.

[67] L. T. X. Phan, S. Chakraborty, and P. S. Thiagarajan, “A multi-mode
real-time calculus,” in 29th IEEE Real-Time Systems Symposium (RTSS),
2008.

[68] L. Ju, S. Chakraborty, and A. Roychoudhury, “Accounting for cache-
related preemption delay in dynamic priority schedulability analysis,”
in Design, Automation and Test in Europe (DATE), 2007.

[69] L. Zhang et al., “Task- and network-level schedule co-synthesis of
ethernet-based time-triggered systems,” in 19th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2014.

[70] F. Sagstetter et al., “Schedule integration framework for time-triggered
automotive architectures,” in 51st Annual Design Automation Conference
(DAC), 2014.

[71] M. Lukasiewycz et al., “Modular scheduling of distributed heteroge-
neous time-triggered automotive systems,” in 17th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2012.

[72] R. Jacob et al., “TTW: A time-triggered wireless design for CPS,” in
Design, Automation & Test in Europe Conference (DATE), 2018.

[73] S. Chakraborty et al., “Embedded systems and software challenges in
electric vehicles,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2012.

[74] D. Goswami et al., “Time-triggered implementations of mixed-criticality
automotive software,” in Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2012.

[75] M. Balszun, M. Geier, and S. Chakraborty, “Predictable vision for
autonomous systems,” in IEEE 23rd International Symposium on Real-
Time Distributed Computing (ISORC), 2020.

[76] T. Amert, M. Balszun, M. Geier, F. D. Smith, J. H. Anderson, and
S. Chakraborty, “Timing-predictable vision processing for autonomous
systems,” in Design, Automation & Test in Europe Conference (DATE),
2021.

[77] N. Otterness et al., “An evaluation of the NVIDIA TX1 for supporting
real-time computer-vision workloads,” in IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), G. Parmer, Ed.,
2017.

[78] M. Lukasiewycz et al., “System architecture and software design for
electric vehicles,” in 50th Annual Design Automation Conference (DAC),
2013.

[79] ——, “Cyber-physical systems design for electric vehicles,” in 15th
Euromicro Conference on Digital System Design (DSD), 2012.

[80] G. Xu, K. Xu, C. Zheng, X. Zhang, and T. Zahid, “Fully electrified
regenerative braking control for deep energy recovery and maintaining
safety of electric vehicles,” IEEE Trans. Veh. Technol., vol. 65, no. 3,
pp. 1186–1198, 2016.

[81] R. Aalund, W. Diao, L. Kong, and M. G. Pecht, “Understanding the non-
collision related battery safety risks in electric vehicles a case study in
electric vehicle recalls and the LG chem battery,” IEEE Access, vol. 9,
pp. 89 527–89 532, 2021.

[82] K. Samal, M. Wolf, and S. Mukhopadhyay, “Closed-loop approach to
perception in autonomous system,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2021.

[83] C. Hobbs et al., “Perception computing-aware controller synthesis
for autonomous systems,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2021.

[84] P. Mundhenk et al., “Security analysis of automotive architectures
using probabilistic model checking,” in 52nd Annual Design Automation
Conference (DAC), 2015.

[85] S. Park, L. Zhang, and S. Chakraborty, “Battery assignment and schedul-
ing for drone delivery businesses,” in International Symposium on Low
Power Electronics and Design (ISLPED), 2017.

[86] S. Narayanaswamy, M. Kauer, S. Steinhorst, M. Lukasiewycz, and
S. Chakraborty, “Modular active charge balancing for scalable battery
packs,” IEEE Trans. Very Large Scale Integr. Syst., vol. 25, no. 3, pp.
974–987, 2017.

[87] A. Pröbstl, B. Islam, S. Nirjon, N. Chang, and S. Chakraborty, “Intel-
ligent chargers will make mobile devices live longer,” IEEE Des. Test,
vol. 37, no. 5, pp. 42–49, 2020.

[88] Y. Gu and S. Chakraborty, “A hybrid DVS scheme for interactive
3d games,” in 14th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2008.

[89] ——, “Power management of interactive 3d games using frame struc-
tures,” in 21st International Conference on VLSI Design, 2008.

[90] N. Peters et al., “Web browser workload characterization for power
management on HMP platforms,” in 11th International Conference on
Hardware/Software Codesign and System Synthesis (CODES), 2016.


